1
|
Niharika, Ureka L, Roy A, Patra SK. Dissecting SOX2 expression and function reveals an association with multiple signaling pathways during embryonic development and in cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189136. [PMID: 38880162 DOI: 10.1016/j.bbcan.2024.189136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
SRY (Sex Determining Region) box 2 (SOX2) is an essential transcription factor that plays crucial roles in activating genes involved in pre- and post-embryonic development, adult tissue homeostasis, and lineage specifications. SOX2 maintains the self-renewal property of stem cells and is involved in the generation of induced pluripotency stem cells. SOX2 protein contains a particular high-mobility group domain that enables SOX2 to achieve the capacity to participate in a broad variety of functions. The information about the involvement of SOX2 with gene regulatory elements, signaling networks, and microRNA is gradually emerging, and the higher expression of SOX2 is functionally relevant to various cancer types. SOX2 facilitates the oncogenic phenotype via cellular proliferation and enhancement of invasive tumor properties. Evidence are accumulating in favor of three dimensional (higher order) folding of chromatin and epigenetic control of the SOX2 gene by chromatin modifications, which implies that the expression level of SOX2 can be modulated by epigenetic regulatory mechanisms, specifically, via DNA methylation and histone H3 modification. In view of this, and to focus further insights into the roles SOX2 plays in physiological functions, involvement of SOX2 during development, precisely, the advances of our knowledge in pre- and post-embryonic development, and interactions of SOX2 in this scenario with various signaling pathways in tumor development and cancer progression, its potential as a therapeutic target against many cancers are summarized and discussed in this article.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lina Ureka
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
2
|
MacLean MR, Walker OL, Arun RP, Fernando W, Marcato P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int J Mol Sci 2024; 25:4102. [PMID: 38612911 PMCID: PMC11012648 DOI: 10.3390/ijms25074102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/β-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.
Collapse
Affiliation(s)
- Maya R. MacLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Olivia L. Walker
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health Authority, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
3
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
4
|
Chuang KT, Chiou SS, Hsu SH. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:3338. [PMID: 37444447 DOI: 10.3390/cancers15133338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors involve many proteins in the process of transactivating or transcribing (none-) encoded DNA to initiate and regulate downstream signals, such as RNA polymerase. Their unique characteristic is that they possess specific domains that bind to specific DNA element sequences called enhancer or promoter sequences. Epithelial-mesenchymal transition (EMT) is involved in cancer progression. Many dysregulated transcription factors-such as Myc, SNAIs, Twists, and ZEBs-are key drivers of tumor metastasis through EMT regulation. This review summarizes currently available evidence related to the oncogenic role of classified transcription factors in EMT editing and epigenetic regulation, clarifying the roles of the classified conserved transcription factor family involved in the EMT and how these factors could be used as therapeutic targets in future investigations.
Collapse
Affiliation(s)
- Kai-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Zhang J, Wang Z, Zhao H, Wei Y, Zhou Y, Zhang S, Zhao J, Li X, Lin Y, Liu K. The roles of the SOX2 protein in the development of esophagus and esophageal squamous cell carcinoma, and pharmacological target for therapy. Biomed Pharmacother 2023; 163:114764. [PMID: 37100016 DOI: 10.1016/j.biopha.2023.114764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
SOX2 is a transcription factor belonging to the SOX gene family, whose activity has been associated with the maintenance of the stemness and self-renewal of embryonic stem cells (ESCs), as well as the induction of differentiated cells into induced pluripotent stem cells (iPSCs). Moreover, accumulating studies have shown that SOX2 is amplified in various cancers, notably in esophageal squamous cell carcinoma (ESCC). In addition, SOX2 expression is linked to multiple malignant processes, including proliferation, migration, invasion, and drug resistance. Taken together, targeting SOX2 might shed light on novel approaches for cancer therapy. In this review, we aim to summarize the current knowledge regarding SOX2 in the development of esophagus and ESCC. We also highlight several therapeutic strategies for targeting SOX2 in different cancer types, which can provide new tools to treat cancers possessing abnormal levels of SOX2 protein.
Collapse
Affiliation(s)
- Jiaying Zhang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Life Science, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Yuxuan Wei
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Yijian Zhou
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Shihui Zhang
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam 999077, Hong Kong, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Jing Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Xinxin Li
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Yong Lin
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam 999077, Hong Kong, China; Fujian Health College, Fuzhou, Fujian, 350101, China.
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China.
| |
Collapse
|
6
|
Stevanovic M, Kovacevic-Grujicic N, Petrovic I, Drakulic D, Milivojevic M, Mojsin M. Crosstalk between SOX Genes and Long Non-Coding RNAs in Glioblastoma. Int J Mol Sci 2023; 24:ijms24076392. [PMID: 37047365 PMCID: PMC10094781 DOI: 10.3390/ijms24076392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Glioblastoma (GBM) continues to be the most devastating primary brain malignancy. Despite significant advancements in understanding basic GBM biology and enormous efforts in developing new therapeutic approaches, the prognosis for most GBM patients remains poor with a median survival time of 15 months. Recently, the interplay between the SOX (SRY-related HMG-box) genes and lncRNAs (long non-coding RNAs) has become the focus of GBM research. Both classes of molecules have an aberrant expression in GBM and play essential roles in tumor initiation, progression, therapy resistance, and recurrence. In GBM, SOX and lncRNAs crosstalk through numerous functional axes, some of which are part of the complex transcriptional and epigenetic regulatory mechanisms. This review provides a systematic summary of current literature data on the complex interplay between SOX genes and lncRNAs and represents an effort to underscore the effects of SOX/lncRNA crosstalk on the malignant properties of GBM cells. Furthermore, we highlight the significance of this crosstalk in searching for new biomarkers and therapeutic approaches in GBM treatment.
Collapse
|
7
|
Zhu C, Fu Y, Xia L, Li F, Huang K, Sun X. Expression Profiles, Prognosis, and ceRNA Regulation of SRY-Related HMG-Box Genes in Stomach Adenocarcinoma. J Environ Pathol Toxicol Oncol 2023; 42:79-91. [PMID: 36749091 DOI: 10.1615/jenvironpatholtoxicoloncol.2022044640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aberrant expression of the SRY-related HMG-box (SOX) genes contributes to tumor development and progression. This research aimed to identify the regulation of the SOX genes in stomach adenocarcinoma (STAD). Expression profiles downloaded from The Cancer Genome Atlas (TCGA) were conducted to analyze the expression and function of the SOX genes. A competing endogenous RNAs (ceRNA) network mediated by the SOX genes was effectively constructed consisting of 64 lncRNAs, 29 miRNAs, and 11 SOX genes based on predicted miRNAs shared by lncRNAs and mRNAs using miRDB, TargetScan, miRTarBase, miRcode, and starBase v2.0. SOX9 was identified as a prognostic signature, which showed the usefulness of diagnosis and prognosis of STAD by the receiver operating characteristic (ROC) and Kaplan-Meier curves. SOX9 was also shown specifically in STAD and identified as highly expressed in the gastrointestinal tract. Gene Ontology (GO) enrichment analysis showed that SOX9 might influence the genes related to the pattern specification process, sodium ion homeostasis, and potassium ion transport, mainly including FEZF1, HOXC13, HOXC10, HOXC9, HOXA11, DPP6, ATP4B, CASQ2, KCNA1, ATP4A, and SFRP1. Furthermore, HOTAIR knockdown, miR-206-mimic transfection, the Cell Count Kit-8 (CCK-8) assay were performed to verify the function of HOTAIR/miR-206/SOX9 axis, which was identified in the ceRNA network analysis. HOTAIR could induce proliferation potentially by competitively binding miR-206/SOX9 axis in STAD. These findings provide new clues with prognostic and therapeutic implications in STAD and suggest that HOTAIR/miR-206/SOX9 might be a potential new strategy for therapeutic targeting of gastric cancer.
Collapse
Affiliation(s)
- Chang Zhu
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yuxiang Fu
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Ligang Xia
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Fang Li
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Kaibin Huang
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xiao Sun
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| |
Collapse
|
8
|
Zhang S, Chen Y, Hu Q, Zhao T, Wang Z, Zhou Y, Wei Y, Zhao H, Wang J, Yang Y, Zhang J, Shi S, Zhang Y, Yang L, Fu Z, Liu K. SOX2 inhibits LLGL2 polarity protein in esophageal squamous cell carcinoma via miRNA-142-3p. Cancer Biol Ther 2022; 23:1-15. [PMID: 36131361 PMCID: PMC9519027 DOI: 10.1080/15384047.2022.2126248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/17/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022] Open
Abstract
ABBREVIATIONS CCK-8, Cell Counting Kit 8; Chip, Chromatin Immunoprecipitation; EC, Esophageal cancer; EMT, epithelial-to-mesenchymal transition; ESCC, Esophageal squamous cell carcinomas; LLGL2, lethal (2) giant larvae protein homolog 2; LLGL2ov, LLGL2 overexpression; MET, mesenchymal-epithelial transition; miRNAs, MicroRNAs; PRM-MS, Parallel reaction monitoring-Mass spectrometry; SD, Standard deviation; SOX, sex determining region Y (SRY)-like box; SOX2-Kd, SOX2-knockdwon; TUNEL, TdT-mediated dUTP Nick-End Labeling.
Collapse
Affiliation(s)
- Shihui Zhang
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Yunyun Chen
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Qiong Hu
- School of Medicine, Xiamen University, Xiamen, China
- Department of Clinic Medical Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Tingting Zhao
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Zhuo Wang
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Yijian Zhou
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Yuxuan Wei
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhou Zhao
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Junkai Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaxin Yang
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Jiaying Zhang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, China
| | - Yujun Zhang
- School of Medicine, Xiamen University, Xiamen, China
| | - Ling Yang
- School of Medicine, Xiamen University, Xiamen, China
| | - Zhichao Fu
- Department of radiotherapy, 900 Hospital of the Joint Logistics Team (Dongfang Hospital, Xiamen University), Fuzhou, China
| | - Kuancan Liu
- Central Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Dissecting Stemness in Aggressive Intracranial Meningiomas: Prognostic Role of SOX2 Expression. Int J Mol Sci 2022; 23:ijms231911690. [PMID: 36232992 PMCID: PMC9570252 DOI: 10.3390/ijms231911690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas are mostly benign tumors that, at times, can behave aggressively, displaying recurrence despite gross-total resection (GTR) and progression to overt malignancy. Such cases represent a clinical challenge, particularly because they are difficult to recognize at first diagnosis. SOX2 (Sex-determining region Y-box2) is a transcription factor with a key role in stem cell maintenance and has been associated with tumorigenesis in a variety of cancers. The purpose of the present work was to dissect the role of SOX2 in predicting the aggressiveness of meningioma. We analyzed progressive/recurrent WHO grade 1−2 meningiomas and WHO grade 3 meningiomas; as controls, non-recurring WHO grade 1 and grade 2 meningioma patients were enrolled. SOX2 expression was evaluated using both immunohistochemistry (IHC) and RT-PCR. The final analysis included 87 patients. IHC was able to reliably assess SOX2 expression, as shown by the good correlation with mRNA levels (Spearman R = 0.0398, p = 0.001, AUC 0.87). SOX2 expression was an intrinsic characteristic of any single tumor and did not change following recurrence or progression. Importantly, SOX2 expression at first surgery was strongly related to meningioma clinical behavior, histological grade and risk of recurrence. Finally, survival data suggest a prognostic role of SOX2 expression in the whole series, both for overall and for recurrence-free survival (p < 0.0001 and p = 0.0001, respectively). Thus, SOX2 assessment could be of great help to clinicians in informing adjuvant treatments during follow-up.
Collapse
|
10
|
Nieland L, van Solinge TS, Cheah PS, Morsett LM, El Khoury J, Rissman JI, Kleinstiver BP, Broekman ML, Breakefield XO, Abels ER. CRISPR-Cas knockout of miR21 reduces glioma growth. Mol Ther Oncolytics 2022; 25:121-136. [PMID: 35572197 PMCID: PMC9052041 DOI: 10.1016/j.omto.2022.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Non-coding RNAs, including microRNAs (miRNAs), support the progression of glioma. miR-21 is a small, non-coding transcript involved in regulating gene expression in multiple cellular pathways, including the regulation of proliferation. High expression of miR-21 has been shown to be a major driver of glioma growth. Manipulating the expression of miRNAs is a novel strategy in the development of therapeutics in cancer. In this study we aimed to target miR-21. Using CRISPR genome-editing technology, we disrupted the miR-21 coding sequences in glioma cells. Depletion of this miRNA resulted in the upregulation of many downstream miR-21 target mRNAs involved in proliferation. Phenotypically, CRISPR-edited glioma cells showed reduced migration, invasion, and proliferation in vitro. In immunocompetent mouse models, miR-21 knockout tumors showed reduced growth resulting in an increased overall survival. In summary, we show that by knocking out a key miRNA in glioma, these cells have decreased proliferation capacity both in vitro and in vivo. Overall, we identified miR-21 as a potential target for CRISPR-based therapeutics in glioma.
Collapse
Affiliation(s)
- Lisa Nieland
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Thomas S. van Solinge
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Pike See Cheah
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
| | - Liza M. Morsett
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Joseph I. Rissman
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Marike L.D. Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, the Netherlands
| | - Xandra O. Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Erik R. Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
11
|
Uyar R. Glioblastoma microenvironment: The stromal interactions. Pathol Res Pract 2022; 232:153813. [PMID: 35228161 DOI: 10.1016/j.prp.2022.153813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Glioblastomas (GBMs) are the most common primary brain tumors with poor prognosis due to their aggressive growth accompanied by invasive behavior and therapy-resistance. These features promote a high rate of recurrence; therefore, they are largely incurable. One major cause of the incurability is brought about by the intimate relationship of GBM cells with the microenvironment, which supports the tumor growth in various ways by providing a permissive neighborhood. In the tumor microenvironment are glioma stem cells (GSC); endothelial cells (EC) and hypoxic regions; immune cells and immune modulatory cues; astrocytes; neural stem/precursor cells (NPC) and mesenchymal stem cells (MSC). Each cell type contributes to GBM pathology in unique ways; therefore, it is necessary to understand such interactions between GBM cells and the stromal cells in order to establish a through understanding of the GBM pathology. By explaining the contribution of each stromal entity to GBM pathology we aim to draw an interaction map for GBMs and promote awareness of the complexity of the GBM microenvironment.
Collapse
Affiliation(s)
- Ramazan Uyar
- Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.
| |
Collapse
|
12
|
Pouremamali F, Vahedian V, Hassani N, Mirzaei S, Pouremamali A, Kazemzadeh H, Faridvand Y, Jafari-gharabaghlou D, Nouri M, Maroufi NF. The role of SOX family in cancer stem cell maintenance: With a focus on SOX2. Pathol Res Pract 2022; 231:153783. [DOI: 10.1016/j.prp.2022.153783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
|
13
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
14
|
Combining HDAC and MEK Inhibitors with Radiation against Glioblastoma-Derived Spheres. Cells 2022; 11:cells11050775. [PMID: 35269397 PMCID: PMC8909581 DOI: 10.3390/cells11050775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma stem-like cells (GSLCs) in glioblastoma limit effective treatment and promote therapeutic resistance and tumor recurrence. Using a combined radiation and drug-screening platform, we tested the combination of a histone deacetylase inhibitor (HDACi) and MAPK/ERK kinase inhibitor (MEKi) with radiation to predict the efficacy against GSLCs. To mimic a stem-like phenotype, glioblastoma-derived spheres were used and treated with a combination of HDACi (MS-275) and MEKi (TAK-733 or trametinib) with 4 Gy irradiation. The sphere-forming ability after the combined radiochemotherapy was investigated using a sphere formation assay, while the expression levels of the GSLC markers (CD44, Nestin and SOX2) after treatment were analyzed using Western blotting and flow cytometry. The combined radiochemotherapy treatment inhibited the sphere formation in both glioblastoma-derived spheres, decreased the expression of the GSLC markers in a cell-line dependent manner and increased the dead cell population. Finally, we showed that the combined treatment with radiation was more effective at reducing the GSLC markers compared to the standard treatment of temozolomide and radiation. These results suggest that combining HDAC and MEK inhibition with radiation may offer a new strategy to improve the treatment of glioblastoma.
Collapse
|
15
|
Liu B, Cao Y, Li Y, Ma H, Yang M, Zhang Q, Li G, Zhang K, Wu Y, Zhou Y, Yang W, Sun T. Glioma Stem Cells Upregulate CD39 Expression to Escape Immune Response through SOX2 Modulation. Cancers (Basel) 2022; 14:cancers14030783. [PMID: 35159053 PMCID: PMC8834269 DOI: 10.3390/cancers14030783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Glioblastoma is the most malignant tumor of the central nervous system. Glioma stem cells are the cause of adverse outcomes such as early recurrence and low overall survival in glioma patients. Targeting glioma stem cells is considered a promising anti-glioma strategy, Although CD39 plays a key role in the initiation and regulation of DC-mediated antigen-specific immune responses, its impact on GSCs is unclear. Therefore, we systematically investigated the effect of CD39 on extracellular ATP levels, dendritic cell recruitment and T cell killing in glioma stem cells. The molecular mechanism by which SOX2 binds to the CD39 promoter to regulate extracellular ATP levels, and evaluated the immune response enhanced by inhibition of CD39 after ADM treatment in a mouse glioma model. We suggest that CD39 is an effective target for glioma immunotherapy. Abstract Ectonucleotidase CD39 hydrolyzing extracellular ATP (eATP) functions as a key modulator of immune response in the tumor microenvironment, yet the role of CD39 in contributing tumor stem cells in a more immunosuppressive microenvironment remains elusive. Here we report that the upregulation of CD39 is crucial for the decrease of extracellular ATP concentration around glioma stem cells (GSCs) to maintain an immunosuppressive microenvironment. Adriamycin (ADM) is able to promote the release of ATP, which recruits dendritic cells (DCs) to phagocytose GSCs. CD39 inhibition further increased extracellular ATP concentrations following ADM treatment and DCs phagocytosis. In addition, GSCs upregulated CD39 expression by SOX2-binding CD39 promotor. In mouse tumor models, the combination of ADM and CD39 blockade increased immune cell infiltration and reduced tumor size. These findings suggest that GSCs upregulate CD39 expression by their biological characteristics to maintain an immunosuppressive microenvironment, and CD39 inhibition supplies a favorable tumor microenvironment (TME) for immunotherapeutic intervention and enhances the immune response induced by chemotherapy.
Collapse
Affiliation(s)
- Bin Liu
- Department of Neurosurgery, Laboratory of Brain and Nerve Research, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; (B.L.); (Y.C.); (Y.L.); (K.Z.); (Y.W.); (Y.Z.)
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai 810007, China; (H.M.); (M.Y.); (Q.Z.); (G.L.)
| | - Yufei Cao
- Department of Neurosurgery, Laboratory of Brain and Nerve Research, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; (B.L.); (Y.C.); (Y.L.); (K.Z.); (Y.W.); (Y.Z.)
| | - Yanyan Li
- Department of Neurosurgery, Laboratory of Brain and Nerve Research, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; (B.L.); (Y.C.); (Y.L.); (K.Z.); (Y.W.); (Y.Z.)
| | - Haifeng Ma
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai 810007, China; (H.M.); (M.Y.); (Q.Z.); (G.L.)
| | - Mingfei Yang
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai 810007, China; (H.M.); (M.Y.); (Q.Z.); (G.L.)
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai 810007, China; (H.M.); (M.Y.); (Q.Z.); (G.L.)
| | - Guofeng Li
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai 810007, China; (H.M.); (M.Y.); (Q.Z.); (G.L.)
| | - Kai Zhang
- Department of Neurosurgery, Laboratory of Brain and Nerve Research, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; (B.L.); (Y.C.); (Y.L.); (K.Z.); (Y.W.); (Y.Z.)
| | - Yue Wu
- Department of Neurosurgery, Laboratory of Brain and Nerve Research, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; (B.L.); (Y.C.); (Y.L.); (K.Z.); (Y.W.); (Y.Z.)
| | - Youxin Zhou
- Department of Neurosurgery, Laboratory of Brain and Nerve Research, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; (B.L.); (Y.C.); (Y.L.); (K.Z.); (Y.W.); (Y.Z.)
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
- Correspondence: (W.Y.); (T.S.)
| | - Ting Sun
- Department of Neurosurgery, Laboratory of Brain and Nerve Research, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; (B.L.); (Y.C.); (Y.L.); (K.Z.); (Y.W.); (Y.Z.)
- Correspondence: (W.Y.); (T.S.)
| |
Collapse
|
16
|
Pan C, Liang L, Wang Z, Zhang B, Li Q, Tian Y, Yu Y, Chen Z, Wang X, Liu H. Expression and significance of SOX B1 genes in glioblastoma multiforme patients. J Cell Mol Med 2021; 26:789-799. [PMID: 34953010 PMCID: PMC8817144 DOI: 10.1111/jcmm.17120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
The overall survival of glioblastoma multiforme (GBM) patients remains poor. To improve patient outcomes, effective diagnostic and prognostic biomarkers for GBM are needed. In this study, we first applied bioinformatic analyses to identify biomarkers for GBM, focusing on SOX (sex‐determining region on the Y chromosome (SRY)‐related high mobility group (HMG) box) B1 family members. The ONCOMINE, GEPIA, LinkedOmics and CCLE databases were used to assess mRNA expression levels of the SOX B1 family members in different cancers and normal tissue. Further bioinformatic analysis was performed using the ONCOMINE database in combination with the LinkedOmics data set to identify the prognostic value of SOX B1 family members for GBM. We found mRNA expression levels of all tested SOX B1 genes were significantly increased in GBM. In the LinkedOmics database, increased expression of SOX3 indicated a better overall survival. In GEPIA databases, increased expression of all SOX B1 family members suggested an improved overall survival, but none of them were statistically different. Then, Transwell assays and wound healing were employed to evaluate the motility and invasive captivity of U251 cells when silencing SOX2 and SOX3. We found exogenous inhibition of SOX2 appeared to reduce the migration and invasion of U251 cells in vitro. Collectively, our research suggested that SOX2 might serve as a cancer‐promoting gene to identify high‐risk GBM patients, and SOX3 had the potential to be a prognostic biomarker for GBM patients.
Collapse
Affiliation(s)
- Cunyao Pan
- School of Public Health Lanzhou University, Lanzhou, China
| | - Lanlan Liang
- School of Public Health Lanzhou University, Lanzhou, China
| | - Zirou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Baoyi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Qionglin Li
- School of Public Health Lanzhou University, Lanzhou, China
| | - Yingrui Tian
- School of Public Health Lanzhou University, Lanzhou, China
| | - Yijing Yu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Hui Liu
- School of Public Health Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Audesse AJ, Karashchuk G, Gardell ZA, Lakis NS, Maybury-Lewis SY, Brown AK, Leeman DS, Teo YV, Neretti N, Anthony DC, Brodsky AS, Webb AE. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. AGING AND CANCER 2021; 2:137-159. [PMID: 36303712 PMCID: PMC9601604 DOI: 10.1002/aac2.12043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/14/2021] [Indexed: 01/14/2023]
Abstract
Background Glioblastoma (GBM) is an aggressive, age-associated malignant glioma that contains populations of cancer stem cells. These glioma stem cells (GSCs) evade therapeutic interventions and repopulate tumors due to their existence in a slowly cycling quiescent state. Although aging is well known to increase cancer initiation, the extent to which the mechanisms supporting GSC tumorigenicity are related to physiological aging remains unknown. Aims Here, we investigate the transcriptional mechanisms by which Forkhead Box O3 (FOXO3), a transcriptional regulator that promotes healthy aging, affects GSC function and the extent to which FOXO3 transcriptional networks are dysregulated in aging and GBM. Methods and results We performed transcriptome analysis of clinical GBM tumors and observed that high FOXO3 activity is associated with gene expression signatures of stem cell quiescence, reduced oxidative metabolism, and improved patient outcomes. Consistent with these findings, we show that elevated FOXO3 activity significantly reduces the proliferation of GBM-derived GSCs. Using RNA-seq, we find that functional ablation of FOXO3 in GSCs rewires the transcriptional circuitry associated with metabolism, epigenetic stability, quiescence, and differentiation. Since FOXO3 has been implicated in healthy aging, we then investigated the extent to which it regulates common transcriptional programs in aging neural stem cells (NSCs) and GSCs. We uncover a shared transcriptional program and, most strikingly, find that FOXO3-regulated pathways are associated with altered mitochondrial functions in both aging and GBM. Conclusions This work identifies a FOXO-associated transcriptional program that correlates between GSCs and aging NSCs and is enriched for metabolic and stemness pathways connected with GBM and aging.
Collapse
Affiliation(s)
- Amanda J. Audesse
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Galina Karashchuk
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Zachary A. Gardell
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Nelli S. Lakis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sun Y. Maybury-Lewis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Abigail K. Brown
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Dena S. Leeman
- Department of Discovery Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| | - Douglas C. Anthony
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | - Alexander S. Brodsky
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
18
|
Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D. SOX transcription factors and glioma stem cells: Choosing between stemness and differentiation. World J Stem Cells 2021; 13:1417-1445. [PMID: 34786152 PMCID: PMC8567447 DOI: 10.4252/wjsc.v13.i10.1417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common, most aggressive and deadliest brain tumor. Recently, remarkable progress has been made towards understanding the cellular and molecular biology of gliomas. GBM tumor initiation, progression and relapse as well as resistance to treatments are associated with glioma stem cells (GSCs). GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types, generating a range of distinct cell types within the tumor, leading to cellular heterogeneity. GBM tumors may contain different subsets of GSCs, and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy. GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties, making them more malignant, able to rapidly spread. The impact of SOX transcription factors (TFs) on brain tumors has been extensively studied in the last decade. Almost all SOX genes are expressed in GBM, and their expression levels are associated with patient prognosis and survival. Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation. The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation. Therefore, innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM. Combatting GBM has been a demanding and challenging goal for decades. The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival. Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
- Chair Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade 11158, Serbia
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Belgrade 11000, Serbia.
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| |
Collapse
|
19
|
Khalil A, Nemer G. The potential oncogenic role of the RAS-like GTP-binding gene RIT1 in glioblastoma. Cancer Biomark 2021; 29:509-519. [PMID: 32831193 DOI: 10.3233/cbm-191264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glioblastoma is the most common type of malignant brain tumors and the most feared cancer among adults. The poor prognosis among patients affected with this type of cancer is associated with its high-invasiveness and the lack of successful therapies. A comprehensive understanding for the early molecular mechanisms in glioblastoma would definitely enhance the diagnosis and the treatment strategies. Deregulated expression of key genes that are known to be involved in early neurogenesis could be the instigator of brain tumorigenesis. Ras Like Without CAAX 1 (RIT1) gene that encodes an unusual "orphan" GTPase protein belongs to this category of critical genes that are known to be involved in controlling sequential proliferation and differentiation of adult hippocampal neural progenitor cells. In this study, we surveyed RIT1 gene expression by in-silico approaches to determine its spatio-temporal pattern in glioblastoma. Our results revealed a significant and progressive upregulation of RIT1 mRNA levels in various publicly available datasets. RIT1 expression ranked among the top upregulated genes in glioblastoma cohorts and it correlated with poor overall survival. Genetic and epigenetic analysis of RIT1 didn't reveal any significant aberration that could underlie its deregulated expression. Yet, our results highlighted the possibility of its activity to be transcriptionally controlled by STAT3, one of the main players in the onset of glioblastoma. In conclusion, our study presented for the first time a potential oncogenic role for RIT1 in glioblastoma. Knowing that the RAS superfamily of proteins has created an evolution in the cancer field, RIT1 should be added to this list through further investigations on its possible usage as a biomarker and therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Athar Khalil
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
20
|
Mamun MA, Mannoor K, Cao J, Qadri F, Song X. SOX2 in cancer stemness: tumor malignancy and therapeutic potentials. J Mol Cell Biol 2021; 12:85-98. [PMID: 30517668 PMCID: PMC7109607 DOI: 10.1093/jmcb/mjy080] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/18/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs), a minor subpopulation of tumor bulks with self-renewal and seeding capacity to generate new tumors, posit a significant challenge to develop effective and long-lasting anti-cancer therapies. The emergence of drug resistance appears upon failure of chemo-/radiation therapy to eradicate the CSCs, thereby leading to CSC-mediated clinical relapse. Accumulating evidence suggests that transcription factor SOX2, a master regulator of embryonic and induced pluripotent stem cells, drives cancer stemness, fuels tumor initiation, and contributes to tumor aggressiveness through major drug resistance mechanisms like epithelial-to-mesenchymal transition, ATP-binding cassette drug transporters, anti-apoptotic and/or pro-survival signaling, lineage plasticity, and evasion of immune surveillance. Gaining a better insight and comprehensive interrogation into the mechanistic basis of SOX2-mediated generation of CSCs and treatment failure might therefore lead to new therapeutic targets involving CSC-specific anti-cancer strategies.
Collapse
Affiliation(s)
- Mahfuz Al Mamun
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Kaiissar Mannoor
- Oncology Laboratory, Institute for Developing Science & Health Initiatives (ideSHi), Dhaka, Bangladesh
| | - Jun Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Firdausi Qadri
- Oncology Laboratory, Institute for Developing Science & Health Initiatives (ideSHi), Dhaka, Bangladesh
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
21
|
Hub gene identification and prognostic model construction for isocitrate dehydrogenase mutation in glioma. Transl Oncol 2020; 14:100979. [PMID: 33290989 PMCID: PMC7720094 DOI: 10.1016/j.tranon.2020.100979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
We identified ten hub genes which were driving IDH status in GBM and LGG. We constructed a prognostic model for IDH-mutant patients. Our findings have important clinical implications for accurate treatment in glioma.
Our study attempted to identify hub genes related to isocitrate dehydrogenase (IDH) mutation in glioma and develop a prognostic model for IDH-mutant glioma patients. In a first step, ten hub genes significantly associated with the IDH status were identified by weighted gene coexpression analysis (WGCNA). The functional enrichment analysis demonstrated that the most enriched terms of these hub genes were cadherin binding and glutathione metabolism. Three of these hub genes were significantly linked with the survival of glioma patients. 328 samples of IDH-mutant glioma were separated into two datasets: a training set (N = 228) and a test set (N = 100). Based on the training set, we identified two IDH-mutant subtypes with significantly different pathological features by using consensus clustering. A 31 gene-signature was identified by the least absolute shrinkage and selection operator (LASSO) algorithm and used for establishing a differential prognostic model for IDH-mutant patients. In addition, the test set was employed for validating the prognostic model, and the model was proven to be of high value in classifying prognostic information of samples. The functional annotation revealed that the genes related to the model were mainly enriched in nuclear division, DNA replication, and cell cycle. Collectively, this study provided novel insights into the molecular mechanism of IDH mutation in glioma, and constructed a prognostic model which can be effective for predicting prognosis of glioma patients with IDH-mutation, which might promote the development of IDH target agents in glioma therapies and contribute to accurate prognostication and management in IDH-mutant glioma patients.
Collapse
|
22
|
Kim JY, Kim HJ, Jung CW, Choi BI, Lee DH, Park MJ. PARK7 maintains the stemness of glioblastoma stem cells by stabilizing epidermal growth factor receptor variant III. Oncogene 2020; 40:508-521. [PMID: 33188296 DOI: 10.1038/s41388-020-01543-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
PARK7 is involved in many key cellular processes, including cell proliferation, transcriptional regulation, cellular differentiation, oxidative stress protection, and mitochondrial function maintenance. Deregulation of PARK7 has been implicated in the pathogenesis of various human diseases, including cancer. Here, we aimed to clarify the effect of PARK7 on stemness and radioresistance of glioblastoma stem cells (GSCs). Serum differentiation and magnetic cell sorting of GSCs revealed that PARK7 was preferentially expressed in GSCs rather than differentiated GSCs. Immunohistochemical staining showed enhanced expression of PARK7 in glioma tissues compared to that in normal brain tissues. shRNA-mediated knockdown of PARK7 inhibited the self-renewal activity of GSCs in vitro, as evidenced by the results of neurosphere formation, limiting dilution, and soft-agar clonogenic assays. In addition, PARK7 knockdown suppressed GSC invasion and enhanced GSC sensitivity to ionizing radiation (IR). PARK7 knockdown suppressed expression of GSC signatures including nestin, epidermal growth factor receptor variant III (EGFRvIII), SOX2, NOTCH1, and OCT4. Contrarily, overexpression of PARK7 in CD133- non-GSCs increased self-renewal activities, migration, and IR resistance, and rescued the reduction of GSC factors under shPARK7-transfected and serum-differentiation conditions. Intriguingly, PARK7 acted as a co-chaperone of HSP90 by binding to it, protecting EGFRvIII from proteasomal degradation. Knockdown of PARK7 increased the production of reactive oxygen species, inducing partial apoptosis and enhancing IR sensitivity in GSCs. Finally, PARK7 knockdown increased mouse survival and IR sensitivity in vivo. Based on these data, we propose that PARK7 plays a pivotal role in the maintenance of stemness and therapeutic resistance in GSCs.
Collapse
Affiliation(s)
- Jeong-Yub Kim
- Radiation Therapeutics Development Team, Division of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Radiation Therapeutics Development Team, Division of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.,School of Biomedical Science, Korea University, Seoul, Republic of Korea
| | - Chan-Woong Jung
- Radiation Therapeutics Development Team, Division of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.,Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Byung-Il Choi
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, Republic of Korea
| | - Dae-Hee Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, Republic of Korea.
| | - Myung-Jin Park
- Radiation Therapeutics Development Team, Division of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther 2020; 5:135. [PMID: 32728033 PMCID: PMC7391717 DOI: 10.1038/s41392-020-00242-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
SOX2 is a well-characterized pluripotent factor that is essential for stem cell self-renewal, reprogramming, and homeostasis. The cellular levels of SOX2 are precisely regulated by a complicated network at the levels of transcription, post-transcription, and post-translation. In many types of human cancer, SOX2 is dysregulated due to gene amplification and protein overexpression. SOX2 overexpression is associated with poor survival of cancer patients. Mechanistically, SOX2 promotes proliferation, survival, invasion/metastasis, cancer stemness, and drug resistance. SOX2 is, therefore, an attractive anticancer target. However, little progress has been made in the efforts to discover SOX2 inhibitors, largely due to undruggable nature of SOX2 as a transcription factor. In this review, we first briefly introduced SOX2 as a transcription factor, its domain structure, normal physiological functions, and its involvement in human cancers. We next discussed its role in embryonic development and stem cell-renewal. We then mainly focused on three aspects of SOX2: (a) the regulatory mechanisms of SOX2, including how SOX2 level is regulated, and how SOX2 cross-talks with multiple signaling pathways to control growth and survival; (b) the role of SOX2 in tumorigenesis and drug resistance; and (c) current drug discovery efforts on targeting SOX2, and the future perspectives to discover specific SOX2 inhibitors for effective cancer therapy.
Collapse
|
24
|
Xia X, Guan C, Chen J, Qiu M, Qi J, Wei M, Wang X, Zhang K, Lu S, Zhang L, Hua C, Xue S, Yao L. Molecular characterization of AwSox2 from bivalve Anodonta woodiana: Elucidating its player in the immune response. Innate Immun 2020; 26:381-397. [PMID: 31889462 PMCID: PMC7903536 DOI: 10.1177/1753425919897823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Sox2 is an embryonal stem cell Ag essential for early embryonic development, tissue homeostasis and immune regulation. In the current study, one complete Sox2 cDNA sequence was cloned from freshwater bivalve Anodonta woodiana and named AwSox2. Histological changes of testis derived from Bisphenol A (BPA) treatment were analyzed by hematoxylin and eosin staining. Expressions of AwSox2 derived from BPA, LPS and polyinosinic:polycytidylic (Poly I:C) challenge were measured by quantitative real-time PCR. The full-length cDNA of AwSox2 contained an open reading frame of 927 nucleotides bearing the typical structural features of Sox2 family. Obvious degeneration, irregular arrangement of spermatids, and clotted dead and intertwined spermatids were observed in BPA-treated groups. Administration of BPA could result in a dose-dependent up-regulation of AwSox2 expression in the male gonadal tissue of A. woodiana. In addition, expression of AwSox2 was significantly induced by LPS and Poly I:C treatment in the hepatopancreas, gill and hemocytes, compared with that of control group. These results indicated that up-regulations of AwSOx2 are closely related to apoptosis of spermatogonial stem cells derived from BPA treatment as well as enhancement of immune defense against LPS and Poly I:C challenge in A. woodiana.
Collapse
Affiliation(s)
- Xichao Xia
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| | - Cuiui Guan
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| | - Jiawei Chen
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Maolin Qiu
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Jinxu Qi
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Mengwei Wei
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Xiaowei Wang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Ke Zhang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Suxiang Lu
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Linguo Zhang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Chunxiu Hua
- Basic Medicine College of Nanyang Medical University, Nanyang,
Henan Province, China
| | - Shipeng Xue
- Basic Medicine College of Nanyang Medical University, Nanyang,
Henan Province, China
| | - Lunguang Yao
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| |
Collapse
|
25
|
Ahmadi-Beni R, Vand-Rajabpour F, Ahmadifard M, Daneshpazhooh M, Noormohammadpour P, Rahmati J, Hesari KK, Yaseri M, Tabrizi M. Decreased Sox2 Messenger RNA Expression in Basal Cell Carcinoma. Indian J Dermatol 2020; 65:178-182. [PMID: 32565556 PMCID: PMC7292465 DOI: 10.4103/ijd.ijd_387_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Sox2, zeb1, and p21 have been implicated in aggressive behavior of squamous cell carcinoma (SCC) and melanoma. However, their expression level in basal cell carcinoma (BCC) has not been elucidated. We hypothesized BCC, contrary to SCC, and melanoma, could be a suitable model to study mechanisms which attenuate tumor metastasis. The aim of this study was to examine the messenger RNA (mRNA) expression levels of sox2, zeb1, and p21 in BCC. Materials and Methods Twenty-seven nonmetastatic BCC and twelve normal skin samples were evaluated using real-time reverse transcriptase polymerase chain reaction. Results The stemness marker sox2 demonstrated marked down-regulation, but zeb1 and p21 showed no significant change. Conclusions Here, we report a negative association between sox2 mRNA expression level and nonmetastatic BCC, thus, providing a likely explanation for the fact that normal skin is more reliant on sox2 than BCC. BCC may be using decreased sox2 mRNA to remain incognito from metastatic potential.
Collapse
Affiliation(s)
- Reza Ahmadi-Beni
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Vand-Rajabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Ahmadifard
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Javad Rahmati
- Department of General Surgery and Plastic Surgery, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Tabrizi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Meneceur S, Linge A, Meinhardt M, Hering S, Löck S, Bütof R, Krex D, Schackert G, Temme A, Baumann M, Krause M, von Neubeck C. Establishment and Characterisation of Heterotopic Patient-Derived Xenografts for Glioblastoma. Cancers (Basel) 2020; 12:cancers12040871. [PMID: 32260145 PMCID: PMC7226316 DOI: 10.3390/cancers12040871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an aggressive brain tumour with a patient median survival of approximately 14 months. The development of innovative treatment strategies to increase the life span and quality of life of patients is hence essential. This requires the use of appropriate glioblastoma models for preclinical testing, which faithfully reflect human cancers. The aim of this study was to establish glioblastoma patient-derived xenografts (PDXs) by heterotopic transplantation of tumour pieces in the axillae of NMRI nude mice. Ten out of 22 patients' samples gave rise to tumours in mice. Their human origin was confirmed by microsatellite analyses, though minor changes were observed. The glioblastoma nature of the PDXs was corroborated by pathological evaluation. Latency times spanned from 48.5 to 370.5 days in the first generation. Growth curve analyses revealed an increase in the growth rate with increasing passages. The methylation status of the MGMT promoter in the primary material was maintained in the PDXs. However, a trend towards a more methylated pattern could be found. A correlation was observed between the take in mice and the proportion of Sox2+ cells (r = 0.49, p = 0.016) and nestin+ cells (r = 0.55, p = 0.007). Our results show that many PDXs maintain key features of the patients' samples they derive from. They could thus be used as preclinical models to test new therapies and biomarkers.
Collapse
Affiliation(s)
- Sarah Meneceur
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- Correspondence:
| | - Annett Linge
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Matthias Meinhardt
- Institute for Pathology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany;
| | - Sandra Hering
- Institute for Legal Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany;
| | - Steffen Löck
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rebecca Bütof
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Medical Faculty and University Hospital Carl Gustav Carus, 01307 Dresden, Germany;
| | - Gabriele Schackert
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Department of Neurosurgery, Medical Faculty and University Hospital Carl Gustav Carus, 01307 Dresden, Germany;
| | - Achim Temme
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Department of Neurosurgery, Medical Faculty and University Hospital Carl Gustav Carus, 01307 Dresden, Germany;
| | - Michael Baumann
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mechthild Krause
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumour Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Cläre von Neubeck
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz- Zentrum Dresden-Rossendorf, 01307 Dresden, Germany; (A.L.); (S.L.); (R.B.); (M.B.); (M.K.); (C.v.N.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; (G.S.); (A.T.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
27
|
Mahmoodi S, Nezafat N, Negahdaripour M, Ghasemi Y. A New Approach for Cancer Immunotherapy Based on the Cancer Stem Cell Antigens Properties. Curr Mol Med 2020; 19:2-11. [PMID: 30714514 DOI: 10.2174/1566524019666190204114721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cancer stem cells (CSCs) are a rare population of tumor cells, which play an important role in tumor initiation, progression, and maintenance. The concept that cancer cells arise from stem cells was presented about 150 years ago. Recently, this hypothesis was renewed considering the heterogeneity of tumor cells. CSCs are resistant to chemo- and radio-therapy. Therefore, targeting CSCs could be a novel and effective strategy to struggle with tumor cells. OBJECTIVE In this mini-review, we highlight that different immunotherapeutic approaches can be used to target cancer cells and eradicate different tumor cells. The most important targets are specific markers recognized on the CSC surface as CSC antigens such as CD44, CD133, Aldehyde Dehydrogenase (ALDH), and SOX family members. This article emphasizes recent advances in CSCs in cancer therapy. RESULTS Our results present that CSC antigens play an important role in tumor initiation, especially in the cells that are resistant to chemo- and radiotherapy agents. Therefore, they are ideal targets for cancer immunotherapy, for instance, in developing different types of cancer vaccines or antibodies against tumor cells. CONCLUSION The current studies related to cancer immunotherapy through targeting the CSC antigens based on their properties are briefly summarized. Altogether, CSC antigens can be efficiently targeted to treat cancer patients.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Yoo YA, Vatapalli R, Lysy B, Mok H, Desouki MM, Abdulkadir SA. The Role of Castration-Resistant Bmi1+Sox2+ Cells in Driving Recurrence in Prostate Cancer. J Natl Cancer Inst 2020; 111:311-321. [PMID: 30312426 DOI: 10.1093/jnci/djy142] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/02/2018] [Accepted: 07/17/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Recurrence following androgen-deprivation therapy is associated with adverse clinical outcomes in prostate cancer, but the cellular origins and molecular mechanisms underlying this process are poorly defined. We previously identified a population of castration-resistant luminal progenitor cells expressing Bmi1 in the normal mouse prostate that can serve as a cancer cell-of-origin. Here, we investigate the potential of Bmi1-expressing tumor cells that survive castration to initiate recurrence in vivo. METHODS We employed lineage retracing in Bmi1-CreER; R26R-confetti; Ptenf/f transgenic mice to mark and follow the fate of emerging recurrent tumor clones after castration. A tissue recombination strategy was used to rescue transgenic mouse prostates by regeneration as grafts in immunodeficient hosts. We also used a small molecule Bmi1 inhibitor, PTC-209, to directly test the role of Bmi1 in recurrence. RESULTS Transgenic prostate tumors (n = 17) regressed upon castration but uniformly recurred within 3 months. Residual regressed tumor lesions exhibited a transient luminal-to-basal phenotypic switch and marked cellular heterogeneity. Additionally, in these lesions, a subpopulation of Bmi1-expressing castration-resistant tumor cells overexpressed the stem cell reprogramming factor Sox2 (mean [SD] = 41.1 [3.8]%, n = 10, P < .001). Bmi1+Sox2+ cells were quiescent (BrdU+Bmi1+Sox2+ at 3.4 [1.5]% vs BrdU+Bmi1+Sox2- at 18.8 [3.4]%, n = 10, P = .009), consistent with a cancer stem cell phenotype. By lineage retracing, we established that recurrence emerges from the Bmi1+ tumor cells in regressed tumors. Furthermore, treatment with the small molecule Bmi1 inhibitor PTC-209 reduced Bmi1+Sox2+ cells (6.1 [1.4]% PTC-209 vs 38.8 [2.3]% vehicle, n = 10, P < .001) and potently suppressed recurrence (retraced clone size = 2.6 [0.5] PTC-209 vs 15.7 [5.9] vehicle, n = 12, P = .04). CONCLUSIONS These results illustrate the utility of lineage retracing to define the cellular origins of recurrent prostate cancer and identify Bmi1+Sox2+ cells as a source of recurrence that could be targeted therapeutically.
Collapse
Affiliation(s)
- Young A Yoo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rajita Vatapalli
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Barbara Lysy
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Hanlin Mok
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mohamed M Desouki
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
29
|
A review of predictive, prognostic and diagnostic biomarkers for brain tumours: towards personalised and targeted cancer therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractBackground:Brain tumours are relatively rare disease but present a large medical challenge as there is currently no method for early detection of the tumour and are typically not diagnosed until patients have progressed to symptomatic stage which significantly decreases chances of survival and also minimises treatment efficacy. However, if brain cancers can be diagnosed at early stages and also if clinicians have the potential to prospectively identify patients likely to respond to specific treatments, then there is a very high potential to increase patients’ treatment efficacy and survival. In recent years, there have been several investigations to identify biomarkers for brain cancer risk assessment, early detection and diagnosis, the likelihood of identifying which group of patients will benefit from a particular treatment and monitoring patient response to treatment.Materials and methods:This paper reports on a review of 21 current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis, and monitoring the response of treatment of brain cancers.Conclusion:Understanding biomarkers, molecular mechanisms and signalling pathways can potentially lead to personalised and targeted treatment via therapeutic targeting of specific genetic aberrant pathways which play key roles in malignant brain tumour formation. The future holds promising for the use of biomarker analysis as a major factor for personalised and targeted brain cancer treatment, since biomarkers have the potential to measure early disease detection and diagnosis, the risk of disease development and progression, improved patient stratification for various treatment paradigms, provide accurate information of patient response to a specific treatment and inform clinicians about the likely outcome of a brain cancer diagnosis independent of the treatment received.
Collapse
|
30
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
31
|
Zhou YX, Liu Q, Wang H, Ding F, Ma YQ. The expression and prognostic value of SOX2, β-catenin and survivin in esophageal squamous cell carcinoma. Future Oncol 2019; 15:4181-4195. [PMID: 31789057 DOI: 10.2217/fon-2018-0884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: We mainly explored the effect of SOX2, β-catenin and survivin on prognosis in esophageal squamous cell carcinoma. Materials & methods: Immunohistochemistry was used to examine the expression of SOX2, β-catenin and survivin. χ2 test was used to analyze the relationship between proteins and clinicopathological parameters. Survival analysis was used to investigate the effect of three proteins on prognosis. Results: SOX2 was related to lymph node metastasis (p = 0.004) and vascular invasion (p = 0.041). β-catenin was associated with depth of invasion (p = 0.014), lymph node metastasis (p = 0.032) and postoperative chemoradiotherapy (p < 0.001). Survivin was related to gender (p = 0.022) and nerve invasion (p = 0.014). There was a positive correlation between SOX2 and β-catenin. Patients with SOX2 and β-catenin overexpression had poor prognosis. Survivin-positive patients who received postoperative chemoradiotherapy had a short time. Conclusion: SOX2, β-catenin and survivin can be used as prognostic markers of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Ya-Xing Zhou
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China, 830054
| | - Qian Liu
- Department of Pathology, Basic Medicine College, Medical University of Xinjiang, Urumqi, PR China, 830054
| | - Hui Wang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China, 830054
| | - Fend Ding
- Department of Pathology, The First People's Hospital of Pingyuan County, Dezhou, Shandong, PR China, 253100
| | - Yu-Qing Ma
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China, 830054
| |
Collapse
|
32
|
Ravindran S, Rasool S, Maccalli C. The Cross Talk between Cancer Stem Cells/Cancer Initiating Cells and Tumor Microenvironment: The Missing Piece of the Puzzle for the Efficient Targeting of these Cells with Immunotherapy. CANCER MICROENVIRONMENT 2019; 12:133-148. [PMID: 31758404 PMCID: PMC6937350 DOI: 10.1007/s12307-019-00233-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Cancer Stem Cells/Cancer Initiating Cells (CSCs/CICs) is a rare sub-population within a tumor that is responsible for tumor formation, progression and resistance to therapies. The interaction between CSCs/CICs and tumor microenvironment (TME) can sustain “stemness” properties and promote their survival and plasticity. This cross-talk is also pivotal in regulating and modulating CSC/CIC properties. This review will provide an overview of the mechanisms underlying the mutual interaction between CSCs/CICs and TME. Particular focus will be dedicated to the immunological profile of CSCs/CICs and its role in orchestrating cancer immunosurveillance. Moreover, the available immunotherapy strategies that can target CSCs/CICs and of their possible implementation will be discussed. Overall, the dissection of the mechanisms regulating the CSC/CIC-TME interaction is warranted to understand the plasticity and immunoregulatory properties of stem-like tumor cells and to achieve complete eradications of tumors through the optimization of immunotherapy.
Collapse
Affiliation(s)
- Shilpa Ravindran
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar
| | - Saad Rasool
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar
| | - Cristina Maccalli
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar.
| |
Collapse
|
33
|
Yu W, Ren X, Hu C, Tan Y, Shui Y, Chen Z, Zhang L, Peng J, Wei Q. Glioma SOX2 expression decreased after adjuvant therapy. BMC Cancer 2019; 19:1087. [PMID: 31718604 PMCID: PMC6849258 DOI: 10.1186/s12885-019-6292-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND SOX2 is regarded as an important marker in stem cell. The change of SOX2 expression after adjuvant therapy in high grade glioma (HGG) remains unknown so far. Few patients with recurrent glioma have opportunity to undergo operation once again, so the recurrent glioma samples are scarce. This study tries to analyze SOX2 expression in paired primary and recurrent HGG, aims to better understand the transformation law of SOX2 after adjuvant therapy in HGG. METHODS Twenty-four recurrent HGG patients who undergone a second resection were included. 16 patients received adjuvant therapy, the remaining 8 patients didn't receive any adjuvant therapy at all. The protein expression of SOX2 in paired primary and recurrent HGG was tested by immunohistochemistry. The statistical analysis was conducted by IBM SPSS Statistics 19.0. RESULTS In primary HGG, SOX2 expression of 3 + , 2 + , 1+ and 0+ were seen in 20 (83.3%), 1 (4.2%), 1 (4.2%) and 2 cases (8.3%), respectively. The expression of SOX2 was decreased in recurrent HGG compared to the paired primary sample (p = 0.001). The decrease of SOX2 was often seen in patients received chemotherapy, radiotherapy or both (p = 0.003). Patients with SOX2 high expression in primary glioma had a longer median PFS than those with SOX2 low expression with marginal statistic significance (12.7 vs. 5.4 months, p = 0.083). For cases with SOX2 high expression in the primary glioma, those had SOX2 low expression after recurrence seemed to have worse prognosis as compared to patients with stable SOX2 high expression (PFS: 10.4 vs. 14.9 months, p = 0.036; OS: 27.0 vs 49.5 months, p = 0.005). CONCLUSIONS This is the first study comparing the protein expression of SOX2 in recurrent HGG and its paired primary tumor. SOX2 high expression is common in brain HGG, a tendency of decreased SOX2 expression in recurrent gliomas was evidenced. Lower SOX2 expression was seen in those patients who received adjuvant chemotherapy and/or radiotherapy. Patients with low SOX2 expression in primary HGG usually have poorer prognosis, those with SOX2 expression decreased in recurrent HGG had worse outcome.
Collapse
Affiliation(s)
- Wei Yu
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, People's Republic of China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, 310009, People's Republic of China
| | - Xiaoqiu Ren
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, People's Republic of China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, 310009, People's Republic of China
| | - Chunxiu Hu
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, People's Republic of China.,Department of Radiation Oncology, Zhejiang Quhua Hospital, Quzhou, 324000, People's Republic of China
| | - Yinuo Tan
- Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Yongjie Shui
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, People's Republic of China
| | - Zexin Chen
- Center of Clinical Epidemiology and Biostatistics for statistical analysis, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Lili Zhang
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, People's Republic of China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, 310009, People's Republic of China
| | - Jiaping Peng
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, People's Republic of China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, 310009, People's Republic of China
| | - Qichun Wei
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88, Hangzhou, 310009, People's Republic of China. .,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
34
|
Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol 2019; 67:74-82. [PMID: 31412296 DOI: 10.1016/j.semcancer.2019.08.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023]
Abstract
The transcription factor SOX2 is essential for embryonic development and plays a crucial role in maintaining the stemness of embryonic cells and various adult stem cell populations. On the other hand, dysregulation of SOX2 expression is associated with a multitude of cancer types and it has been shown that SOX2 positively affects cancer cell traits such as the capacity to proliferate, migrate, invade and metastasize. Moreover, there is growing evidence that SOX2 mediates resistance towards established cancer therapies and that it is expressed in cancer stem cells. These findings indicate that studying the role of SOX2 in the context of cancer progression could lead to the development of new therapeutic options. In this review, the current knowledge about the role of SOX2 in development, maintenance of stemness, cancer progression and the resistance towards cancer therapies is summarized.
Collapse
Affiliation(s)
- Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jonathan J Elton
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
35
|
Kumar P, Mistri TK. Transcription factors in SOX family: Potent regulators for cancer initiation and development in the human body. Semin Cancer Biol 2019; 67:105-113. [PMID: 31288067 DOI: 10.1016/j.semcancer.2019.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) have a key role in controlling the gene regulatory network that sustains explicit cell states in humans. However, an uncontrolled regulation of these genes potentially results in a wide range of diseases, including cancer. Genes of the SOX family are indeed crucial as deregulation of SOX family TFs can potentially lead to changes in cell fate as well as irregular cell growth. SOX TFs are a conserved group of transcriptional regulators that mediate DNA binding through a highly conserved high-mobility group (HMG) domain. Accumulating evidence demonstrates that cell fate and differentiation in major developmental processes are controlled by SOX TFs. Besides; numerous reports indicate that both up- and down-regulation of SOX TFs may induce cancer progression. In this review, we discuss the involvement of key TFs of SOX family in human cancers.
Collapse
Affiliation(s)
- Prasann Kumar
- The Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India; The Department of Agronomy, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tapan Kumar Mistri
- The Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India; The Department of Chemistry, Lovely Professional University, Jalandhar, Punjab, 144411, India.
| |
Collapse
|
36
|
Abdelrahman AE, Ibrahim HM, Elsebai EA, Ismail EI, Elmesallamy W. The clinicopathological significance of CD133 and Sox2 in astrocytic glioma. Cancer Biomark 2019; 23:391-403. [PMID: 30248046 DOI: 10.3233/cbm-181460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The treatment strategies of astrocytoma have not changed considerably due to the restricted appreciation of its biology. OBJECTIVES This study aimed to evaluate the expression of the stem cell-related proteins (CD133 and Sox2) and their prognostic value in astrocytic glioma. METHODS The immunohistochemical expression of CD133 and Sox2 in 40 patients with an astrocytic glioma of different grades was studied. The recorded data on the overall survival (OS), progression-free survival (PFS) and the response to the therapeutic protocol were collected and lastly analyzed. RESULTS CD133 expression was observed in 87.5% of the cases, while positive Sox2 expression was found in all the studied cases. There was a significant association of CD133 expression with the histological grade and the tumor size (p< 0.001). A significant association of Sox2 with the histological grade and the tumor size was noted (p= 0.004, p= 0.006 respectively). Up-regulation of both CD133 and Sox2 had a significant association with poor clinical response to the therapy (p< 0.001 for each). Shorter OS and PFS were related to CD133 and Sox2 overexpression. CONCLUSIONS Astrocytoma with CD133 and Sox2 overexpression had an unfavorable prognosis and poor clinical response to the current therapeutic protocol.
Collapse
Affiliation(s)
- Aziza E Abdelrahman
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanaa M Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman A Elsebai
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman I Ismail
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Wael Elmesallamy
- Neurosurgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
37
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
38
|
High expression level of SOX2 is significantly associated with shorter survival in patients with thymic epithelial tumors. Lung Cancer 2019; 132:9-16. [PMID: 31097100 DOI: 10.1016/j.lungcan.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Thymic epithelial tumors (TET) are heterogenous tumors which are composed of thymoma (TM) and thymic carcinoma (TC). We attempted to determine differences in gene expression between TM and TC, and to determine the effect of such genes on the prognosis of patients with TET. MATERIALS AND METHODS Gene expression profiles of SOX2, OCT-4, IGF-1, IGF-1R and IR mRNA transcripts in tumor tissues of TM and TC were determined using real-time PCR (RT-PCR). We constructed tissue microarray with 140 paraffin-embedded tumor tissues and performed immunohistochemistry (IHC) for IGF-1R-related signaling molecules, including SOX2, IGF-1, IGF-1R and pAKT. RESULTS SOX2 mRNA expression was notably higher (216-fold) in TCs than in TMs. However, there was no significant difference in expression of IGF-1, IGF-1R, OCT-4 or IR between the two tumor types. In IHC results, SOX2 (HR: 7.57, P = 0.001) and IGF-1 (HR: 9.43, P = 0.001) expression levels in TC were significantly higher than those in TM. There was a significant correlation in expression of SOX2 with IGF-1 (P = 0.021) and pAKT (P = 0.026). In univariate analysis, clinical TNM stage, WHO classification, serum LDH, expression of SOX2, IGF-1R, IGF-1 and pAKT, were significantly correlated with overall survival (OS). Multivariate analysis using a forward-selection procedure revealed that clinical N stage (HR: 4.08, P < 0.001), M stage (HR: 3.37, P = 0.001) and SOX2 expression (HR: 4.53, P = 0.010) were significantly associated with OS. CONCLUSIONS SOX2 is expressed significantly higher in TC than in TM. SOX2 expression is also closely related to IGF-1 and pAKT expression. The higher expression of SOX2 is significantly associated with shorter survival in patients with TET.
Collapse
|
39
|
Mansel C, Fross S, Rose J, Dema E, Mann A, Hart H, Klawinski P, Vohra BPS. Lead exposure reduces survival, neuronal determination, and differentiation of P19 stem cells. Neurotoxicol Teratol 2019; 72:58-70. [PMID: 30776472 DOI: 10.1016/j.ntt.2019.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023]
Abstract
Lead (Pb) is a teratogen that poses health risks after acute and chronic exposure. Lead is deposited in the bones of adults and is continuously leached into the blood for decades. While this chronic lead exposure can have detrimental effects on adults such as high blood pressure and kidney damage, developing fetuses and young children are particularly vulnerable. During pregnancy, bone-deposited lead is released into the blood at increased rates and can cross the placental barrier, exposing the embryo to the toxin. Embryos exposed to lead display serious developmental and cognitive defects throughout life. Although studies have investigated lead's effect on late-stage embryos, few studies have examined how lead affects stem cell determination and differentiation. For example, it is unknown whether lead is more detrimental to neuronal determination or differentiation of stem cells. We sought to determine the effect of lead on the determination and differentiation of pluripotent embryonic testicular carcinoma (P19) cells into neurons. Our data indicate that lead exposure significantly inhibits the determination of P19 cells to the neuronal lineage by alteration of N-cadherin and Sox2 expression. We also observed that lead significantly alters subsequent neuronal and glial differentiation. Consequently, this research emphasizes the need to reduce public exposure to lead.
Collapse
Affiliation(s)
- Clayton Mansel
- William Jewell College, Department of Biology, Liberty, MO, United States of America
| | - Shaneann Fross
- William Jewell College, Department of Biology, Liberty, MO, United States of America
| | - Jesse Rose
- William Jewell College, Department of Biology, Liberty, MO, United States of America
| | - Emily Dema
- William Jewell College, Department of Biology, Liberty, MO, United States of America
| | - Alexis Mann
- William Jewell College, Department of Biology, Liberty, MO, United States of America
| | - Haley Hart
- William Jewell College, Department of Biology, Liberty, MO, United States of America
| | - Paul Klawinski
- William Jewell College, Department of Biology, Liberty, MO, United States of America
| | - Bhupinder P S Vohra
- William Jewell College, Department of Biology, Liberty, MO, United States of America.
| |
Collapse
|
40
|
Maccalli C, Rasul KI, Elawad M, Ferrone S. The role of cancer stem cells in the modulation of anti-tumor immune responses. Semin Cancer Biol 2018; 53:189-200. [DOI: 10.1016/j.semcancer.2018.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
|
41
|
Hüser L, Novak D, Umansky V, Altevogt P, Utikal J. Targeting SOX2 in anticancer therapy. Expert Opin Ther Targets 2018; 22:983-991. [PMID: 30366514 DOI: 10.1080/14728222.2018.1538359] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION SOX2 is a transcription factor that is important in the development and maintenance of the stem cell state. Furthermore, SOX2 is associated with cancer progression because it promotes the migration, invasion, and proliferation of cancer cells. SOX2 is also expressed in cancer stem cells and appears to be involved in the resistance toward anticancer therapies. These features render SOX2 an attractive target for cancer therapy. Areas covered: In this review, we highlight the role of SOX2 in cancer and in the resistance toward anticancer therapies. We summarize recent studies dealing with SOX2 as a direct or indirect therapeutic target in cancer. Expert opinion: SOX2 is an attractive target in cancer therapy because of its role in cancer progression and therapy resistance. SOX2 is a transcription factor, hence direct targeting is difficult. Studies aimed at a functional depletion, for example by knock-down with siRNAs, are difficult to translate into clinical settings. Alternatively, the identification of SOX2 upstream or downstream regulators that are easier to target is of paramount importance.
Collapse
Affiliation(s)
- Laura Hüser
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Daniel Novak
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Viktor Umansky
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Peter Altevogt
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Jochen Utikal
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| |
Collapse
|
42
|
Khan IN, Ullah N, Hussein D, Saini KS. Current and emerging biomarkers in tumors of the central nervous system: Possible diagnostic, prognostic and therapeutic applications. Semin Cancer Biol 2018; 52:85-102. [PMID: 28774835 DOI: 10.1016/j.semcancer.2017.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ishaq N Khan
- PK-Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Najeeb Ullah
- Department of Anatomy, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan.
| | - Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Kulvinder S Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh 173101, India.
| |
Collapse
|
43
|
Abstract
In the originally published paper, the "before" image for the afatinib condition in Fig. 6c was incorrect. Instead of an image displaying a GBM-3 neoplastic organoid before afatinib treatment, this panel showed an image from the GBM-2 control (DMSO) group before treatment. This error has now been corrected in the HTML and PDF versions of the article; the "before, afatinib" panel in Fig. 6c now shows a representative image from the indicated experiment. The color of all error bars in Fig. 6 has also been changed to black, for consistency. All statistical analysis and all conclusions presented in the article are unaffected by this error. Nevertheless, we apologize for the mistake.
Collapse
|
44
|
Yuan J, Levitin HM, Frattini V, Bush EC, Boyett DM, Samanamud J, Ceccarelli M, Dovas A, Zanazzi G, Canoll P, Bruce JN, Lasorella A, Iavarone A, Sims PA. Single-cell transcriptome analysis of lineage diversity in high-grade glioma. Genome Med 2018; 10:57. [PMID: 30041684 PMCID: PMC6058390 DOI: 10.1186/s13073-018-0567-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Despite extensive molecular characterization, we lack a comprehensive understanding of lineage identity, differentiation, and proliferation in high-grade gliomas (HGGs). METHODS We sampled the cellular milieu of HGGs by profiling dissociated human surgical specimens with a high-density microwell system for massively parallel single-cell RNA-Seq. We analyzed the resulting profiles to identify subpopulations of both HGG and microenvironmental cells and applied graph-based methods to infer structural features of the malignantly transformed populations. RESULTS While HGG cells can resemble glia or even immature neurons and form branched lineage structures, mesenchymal transformation results in unstructured populations. Glioma cells in a subset of mesenchymal tumors lose their neural lineage identity, express inflammatory genes, and co-exist with marked myeloid infiltration, reminiscent of molecular interactions between glioma and immune cells established in animal models. Additionally, we discovered a tight coupling between lineage resemblance and proliferation among malignantly transformed cells. Glioma cells that resemble oligodendrocyte progenitors, which proliferate in the brain, are often found in the cell cycle. Conversely, glioma cells that resemble astrocytes, neuroblasts, and oligodendrocytes, which are non-proliferative in the brain, are generally non-cycling in tumors. CONCLUSIONS These studies reveal a relationship between cellular identity and proliferation in HGG and distinct population structures that reflects the extent of neural and non-neural lineage resemblance among malignantly transformed cells.
Collapse
Affiliation(s)
- Jinzhou Yuan
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hanna Mendes Levitin
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Veronique Frattini
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Erin C Bush
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
- Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Deborah M Boyett
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jorge Samanamud
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michele Ceccarelli
- Department of Science and Technology, Università degli Studi del Sannio, 82100, Benevento, Italy
| | - Athanassios Dovas
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - George Zanazzi
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anna Lasorella
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA.
- Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
45
|
Genetically engineered cerebral organoids model brain tumor formation. Nat Methods 2018; 15:631-639. [PMID: 30038414 PMCID: PMC6071863 DOI: 10.1038/s41592-018-0070-7] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
Brain tumours are among the most lethal and devastating cancers. Their study is limited by genetic heterogeneity and the incompleteness of available laboratory models. Three-dimensional organoid culture models offer innovative possibilities for modelling human disease. Here, we establish a 3D in vitro model, named neoplastic cerebral organoid (neoCOR), in which we recapitulate brain tumorigenesis by introducing oncogenic mutations in cerebral organoids via transposon- and CRISPR/Cas9-mediated mutagenesis. By screening clinically-relevant mutations identified in cancer genome projects, we define mutation combinations that result in glioblastoma-like and central nervous system primitive neuroectodermal tumour (CNS-PNET)-like neoplasms. We demonstrate that neoCORs are suitable to study aspects of tumour biology such as invasiveness, and to evaluate the effect of drugs in the context of specific DNA aberrations. neoCORs will provide a valuable complement to current basic and preclinical models for studying brain tumour biology.
Collapse
|
46
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neurosci Bull 2018; 34:573-588. [PMID: 29582250 PMCID: PMC5960455 DOI: 10.1007/s12264-018-0219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France.
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
47
|
Ren S, Klump W. Gynecologic Serous Carcinoma: An Immunohistochemical Analysis of Malignant Body Fluid Specimens. Arch Pathol Lab Med 2018; 143:677-682. [PMID: 29688031 DOI: 10.5858/arpa.2017-0260-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Evaluation of fluid specimens involved by serous carcinoma might potentially include PAX8, GATA3, Uroplakin II, SOX2, and SALL4 antibodies. Those markers are commonly employed for diagnosing carcinomas of various types, including urothelial malignancies and germ cell tumors. There have been no comprehensive immunohistochemical studies, to our knowledge, for those markers on fluid specimens involved by serous carcinoma. OBJECTIVE.— To evaluate immunohistochemical markers PAX8, GATA3, SOX2, uroplakin II, and SALL4 in the diagnosis of high-grade serous carcinoma in fluid specimens. DESIGN.— We examined 113 fluids (96 ascites specimens and 17 pleural fluid specimens) that were positive for carcinoma. Most (94 cases; 83.2%) consisted of high-grade serous carcinoma of Müllerian origin. Nineteen cases of non-high-grade serous carcinoma (including one case of low-grade serous carcinoma) of gynecologic origin were also included as anecdotal data. RESULTS.— In 113 fluid specimens with positive results for carcinoma, including nonserous types, 99 (87.6%) had positive results for PAX8, 19 (16.8%) for GATA3; 19 (16.8%) for SOX2, 23 (20.4%) for uroplakin II, and 8 (7.1%) for SALL4. Of 94 fluids (83.2%) involved with high-grade serous carcinoma, 84 (89.4%) had positive results for PAX8, 18 (19.1%) for GATA3, 17 (18.1%) for SOX2, 22 (23.4%) for uroplakin II, and 8 (8.5%) for SALL4. Some of these specimens showed reactivity for more than one immunohistochemical marker. CONCLUSIONS.— Most fluids involving high-grade serous carcinoma showed positive results for PAX8, and some cases expressed GATA3, SOX2, uroplakin II, and SALL4. Serous carcinoma in fluids may be positive for immunohistochemical markers not thought of traditionally as associated with gynecologic malignancy, an important consideration in avoiding misdiagnosis.
Collapse
Affiliation(s)
| | - William Klump
- From the Department of Pathology and Laboratory Medicine, Cooper Medical School of Rowan University, Camden, New Jersey
| |
Collapse
|
48
|
Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment. Int J Mol Sci 2018; 19:ijms19041115. [PMID: 29642503 PMCID: PMC5979613 DOI: 10.3390/ijms19041115] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant tumors of the central nervous system (CNS) are among cancers with the poorest prognosis, indicated by their association with tumors of high-level morbidity and mortality. Gliomas, the most common primary CNS tumors that arise from neuroglial stem or progenitor cells, have estimated annual incidence of 6.6 per 100,000 individuals in the USA, and 3.5 per 100,000 individuals in Taiwan. Tumor invasion and metastasis are the major contributors to the deaths in cancer patients. Therapeutic goals including cancer stem cells (CSC), phenotypic shifts, EZH2/AXL/TGF-β axis activation, miRNAs and exosomes are relevant to GBM metastasis to develop novel targeted therapeutics for GBM and other brain cancers. Herein, we highlight tumor metastasis in our understanding of gliomas, and illustrate novel exosome therapeutic approaches in glioma, thereby paving the way towards innovative therapies in neuro-oncology.
Collapse
|
49
|
Wuebben EL, Rizzino A. The dark side of SOX2: cancer - a comprehensive overview. Oncotarget 2018; 8:44917-44943. [PMID: 28388544 PMCID: PMC5546531 DOI: 10.18632/oncotarget.16570] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
The pluripotency-associated transcription factor SOX2 is essential during mammalian embryogenesis and later in life, but SOX2 expression can also be highly detrimental. Over the past 10 years, SOX2 has been shown to be expressed in at least 25 different cancers. This review provides a comprehensive overview of the roles of SOX2 in cancer and focuses on two broad topics. The first delves into the expression and function of SOX2 in cancer focusing on the connection between SOX2 levels and tumor grade as well as patient survival. As part of this discussion, we address the developing connection between SOX2 expression and tumor drug resistance. We also call attention to an under-appreciated property of SOX2, its levels in actively proliferating tumor cells appear to be optimized to maximize tumor growth - too little or too much SOX2 dramatically alters tumor growth. The second topic of this review focuses on the exquisite array of molecular mechanisms that control the expression and transcriptional activity of SOX2. In addition to its complex regulation at the transcriptional level, SOX2 expression and activity are controlled carefully by microRNAs, long non-coding RNAs, and post-translational modifications. In the Conclusion and Future Perspectives section, we point out that there are still important unanswered questions. Addressing these questions is expected to lead to new insights into the functions of SOX2 in cancer, which will help design novels strategies for more effectively treating some of the most deadly cancers.
Collapse
Affiliation(s)
- Erin L Wuebben
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
50
|
Longevity-Related Gene Transcriptomic Signature in Glioblastoma Multiforme. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8753063. [PMID: 29849920 PMCID: PMC5914091 DOI: 10.1155/2018/8753063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023]
Abstract
Glioblastoma multiforme (GBM) (grade IV astrocytoma) has been assumed to be the most fatal type of glioma with low survival and high recurrence rates, even after prompt surgical removal and aggressive courses of treatment. Transcriptional reprogramming to stem cell-like state could explain some of the deregulated molecular signatures in GBM disease. The present study aimed to quantify the expression profiling of longevity-related transcriptional factors SOX2, OCT3/4, and NANOG to evaluate their diagnostic and performance values in high-grade gliomas. Forty-four specimens were obtained from glioblastoma patients (10 females and 34 males). Quantitative real-time polymerase chain reaction was applied for relative gene expression quantification. In silico network analysis was executed. NANOG and OCT3/4 mRNA expression levels were significantly downregulated while that of SOX2 was upregulated in cancer compared to noncancer tissues. Receiver operating characteristic curve analysis showed high diagnostic performance of NANOG and OCT3/4 than SOX2. However, the aberrant expressions of the genes studied were not associated with the prognostic variables in the current population. In conclusion, the current study highlighted the aberrant expression of certain longevity-associated transcription factors in glioblastoma multiforme which may direct the attention towards new strategies in the treatment of such lethal disease.
Collapse
|