1
|
Khanicheragh P, Abbasi-Malati Z, Saghebasl S, Hassanpour P, Milani SZ, Rahbarghazi R, Hasani A. Exosomes and breast cancer angiogenesis; Highlights in intercellular communication. Cancer Cell Int 2024; 24:402. [PMID: 39696346 DOI: 10.1186/s12935-024-03606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
Breast cancer (BC) is a prevalent and highly lethal cancer in females. Like other cancer types, the intricate cellular and molecular heterogeneity leads to the variation of therapeutic outcomes. The development and progression of blood vessels increase the tumor cell expansion and metastasis to remote sites. Based on several pieces of scientific data, different mediators and cells are involved in the promotion of angiogenesis into the tumor parenchyma. Recent data have indicated the critical role of extracellular vesicles, especially exosomes (Exos), in the transfer of angiogenesis molecules between the BC cells. Due to unique physicochemical properties, and the transfer of certain signaling molecules, Exos are at the center of attention in terms of biomarkers and therapeutic bullets in cancer patients. Along with these statements, understanding the modulatory role of Exos in BC angiogenesis seems critical in the clinical setting. Here, the mechanisms by which BC cells can orchestrate the angiogenesis phenomenon via Exos are discussed in detail. The present study can help us to understand the pro-/anti-angiogenesis role of Exos in BC and to design better oncostatic strategies.
Collapse
Affiliation(s)
- Parisa Khanicheragh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5165687386, Iran
| | - Zahra Abbasi-Malati
- Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5165687386, Iran
| | - Soheil Zamen Milani
- Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Hasani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5165687386, Iran.
| |
Collapse
|
2
|
Mir R, Baba SK, Elfaki I, Algehainy N, Alanazi MA, Altemani FH, Tayeb FJ, Barnawi J, Husain E, Bedaiwi RI, Albalawi IA, Alhujaily M, Mir MM, Almotairi R, Alatwi HE, Albalawi AD. Unlocking the Secrets of Extracellular Vesicles: Orchestrating Tumor Microenvironment Dynamics in Metastasis, Drug Resistance, and Immune Evasion. J Cancer 2024; 15:6383-6415. [PMID: 39513123 PMCID: PMC11540496 DOI: 10.7150/jca.98426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vehicles (EVs) are gaining increasing recognition as central contributors to the intricate landscape of the tumor microenvironment (TME). This manuscript provides an extensive examination of the multifaceted roles played by EVs in shaping the TME, with a particular emphasis on their involvement in metastasis, drug resistance, and immune evasion. Metastasis, the process by which cancer cells disseminate to distant sites, remains a formidable challenge in cancer management. EVs, encompassing exosomes and microvesicles, have emerged as critical participants in this cascade of events. They facilitate the epithelial-to-mesenchymal transition (EMT), foster pre-metastatic niche establishment, and enhance the invasive potential of cancer cells. This manuscript delves into the intricate molecular mechanisms underpinning these processes, underscoring the therapeutic potential of targeting EVs to impede metastasis. Drug resistance represents a persistent impediment to successful cancer treatment. EVs are instrumental in intrinsic and acquired drug resistance, acting as mediators of intercellular communication. They ferry molecules like miRNAs and proteins, which confer resistance to conventional chemotherapy and targeted therapies. This manuscript scrutinizes the diverse strategies employed by EVs in propagating drug resistance while also considering innovative approaches involving EV-based drug delivery systems to counteract this phenomenon. Immune evasion is a hallmark of cancer, and EVs are central in sculpting the immunosuppressive milieu of the TME. Tumor-derived EVs thwart immune responses through various mechanisms, including T cell dysfunction induction, the expansion of regulatory T cells (Tregs), and polarization of macrophages towards an immunosuppressive phenotype. In addition, the manuscript explores the diagnostic potential of EVs as biomarkers and their role as therapeutic agents in immune checkpoint blockade therapies. This manuscript provides a comprehensive overview of EV's pivotal role in mediating intricate interactions within the TME, ultimately influencing cancer progression and therapeutic outcomes. A profound understanding of EV-mediated processes in metastasis, drug resistance, and immune evasion opens up promising avenues for developing innovative therapeutic strategies and identifying valuable biomarkers in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sadaf Khursheed Baba
- Watson Crick Center for Molecular Medicine, Islamic University of Science and Technology, J & K, India
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faris Jamal Tayeb
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Eram Husain
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Biochemistry, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan E. Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | |
Collapse
|
3
|
Lee H, Haque S, Gupta R, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. BCL2 Protein Progressively Declines during Robust CLL Clonal Expansion: Potential Impact on Venetoclax Clinical Efficacy and Insights on Mechanism. LYMPHATICS 2024; 2:50-78. [PMID: 39664277 PMCID: PMC11632909 DOI: 10.3390/lymphatics2020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
CLL B cells express elevated pro-survival BCL2, and its selective inhibitor, venetoclax, significantly reduces leukemic cell load, leading to clinical remission. Nonetheless, relapses occur. This study evaluates the hypothesis that progressively diminished BCL2 protein in cycling CLL cells within patient lymph node niches contributes to relapse. Using CFSE-labeled, purified CLL populations known to respond with vigorous cycling in d6 cultures stimulated with TLR9-activating ODN (oligodeoxynucleotide) + IL15, we show that BCL2 protein progressively declines during consecutive cell divisions. In contrast, MCL1 and survivin are maintained/slightly elevated during cycling. Delayed pulsing of quiescent and activated CLL cultures with selective inhibitors of BCL2 or survivin revealed selective targeting of noncycling and cycling populations, respectively, raising implications for therapy. To address the hypothesis that BCL2-repressive miRs (miR15a/miR16-1), encoded in Chr13, are mechanistically involved, we compared BCL2 protein levels within ODN + IL15-stimulated CLL cells, with/without del(13q), yielding results suggesting these miRs contribute to BCL2 reduction. In support, within ODN-primed CLL cells, an IL15-driven STAT5/PI-3K pathway (required for vigorous cycling) triggers elevated p53 TF protein known to directly activate the miR15a/miR16-1 locus. Furthermore, IL15 signaling elicits the repression of BCL2 mRNA within 24 h. Additional comparisons of del(13q)+ and del(13q)-/- cohorts for elevated p53 TF expression during cycling suggest that a documented miR15a/miR16-1-mediated negative feedback loop for p53 synthesis is active during cycling. Findings that robust CLL cycling associates with progressively decreasing BCL2 protein that directly correlates with decreasing venetoclax susceptibility, combined with past findings that these cycling cells have the greatest potential for activation-induced cytosine deaminase (AICDA)-driven mutations, suggest that venetoclax treatment should be accompanied by modalities that selectively target the cycling compartment without eliciting further mutations. The employment of survivin inhibitors might be such an approach.
Collapse
Affiliation(s)
- Hyunjoo Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Shabirul Haque
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Rashmi Gupta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Jonathan E. Kolitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Steven L. Allen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kanti Rai
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Cancer Institute, Lake Success, NY 11042, USA
| | - Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Cancer Institute, Lake Success, NY 11042, USA
| | - Patricia K. A. Mongini
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
4
|
Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in Cancer: Diagnostic and Therapeutic Applications. Clin Med Insights Oncol 2024; 18:11795549231215966. [PMID: 38249520 PMCID: PMC10799603 DOI: 10.1177/11795549231215966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
Small extracellular vesicles called exosomes are produced by cells and contain a range of biomolecules, including proteins, lipids, and nucleic acids. Exosomes have been implicated in the development and spread of cancer, and recent studies have shown that their contents may be exploited as biomarkers for early detection and ongoing surveillance of the disease. In this review article, we summarize the current knowledge on exosomes as biomarkers of cancer. We discuss the various methods used for exosome isolation and characterization, as well as the different types of biomolecules found within exosomes that are relevant for cancer diagnosis and prognosis. We also highlight recent studies that have demonstrated the utility of exosomal biomarkers in different types of cancer, such as lung cancer, breast cancer, and pancreatic cancer. Overall, exosomes show great promise as noninvasive biomarkers for cancer detection and monitoring. Exosomes have the ability to transform cancer diagnostic and therapeutic paradigms, providing promise for more efficient and individualized. This review seeks to serve as an inspiration for new ideas and research in the never-ending fight against cancer. Moreover, further studies are needed to validate their clinical utility and establish standardized protocols for their isolation and analysis. With continued research and development, exosomal biomarkers have the potential to revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yasar Saleem
- Department of Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex Lahore, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Science, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Di Donato M, Medici N, Migliaccio A, Castoria G, Giovannelli P. Exosomes: Emerging Modulators of Pancreatic Cancer Drug Resistance. Cancers (Basel) 2023; 15:4714. [PMID: 37835408 PMCID: PMC10571735 DOI: 10.3390/cancers15194714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer (PaC) is one of the most lethal tumors worldwide, difficult to diagnose, and with inadequate therapeutical chances. The most used therapy is gemcitabine, alone or in combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel), and the multidrug FOLFIRINOX. Unfortunately, PaC develops resistance early, thus reducing the already poor life expectancy of patients. The mechanisms responsible for drug resistance are not fully elucidated, and exosomes seem to be actively involved in this phenomenon, thanks to their ability to transfer molecules regulating this process from drug-resistant to drug-sensitive PaC cells. These extracellular vesicles are released by both normal and cancer cells and seem to be essential mediators of intercellular communications, especially in cancer, where they are secreted at very high numbers. This review illustrates the role of exosomes in PaC drug resistance. This manuscript first provides an overview of the pharmacological approaches used in PaC and, in the last part, focuses on the mechanisms exploited by the exosomes released by cancer cells to induce drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Pia Giovannelli
- Department of Precision Medicine, University of Campania “L.Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
6
|
Farahmand Y, Tehrany PM, Nazari A, Nava ZH, Alsaffar MF, Yazdani O, Adili A, Esbati R, Ghafouri K. A comprehensive survey into the role of exosomes in pancreatic cancer; from the origin of cancer to the progress and possibility of diagnosis and treatment. Pathol Res Pract 2023; 245:154465. [PMID: 37119731 DOI: 10.1016/j.prp.2023.154465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic cancer is the fourth most common malignant tumor in the world, which has a high mortality rate due to high invasiveness, early metastases, lack of specific symptoms, and high invasiveness. Recent studies have shown that exosomes can be essential sources of biomarkers in pancreatic cancer. Over the past ten years, exosomes have been implicated in multiple trials to prevent the growth and metastasis of many cancers, including pancreatic cancer. Exosomes also play essential roles in immune evasion, invasion, metastasis, proliferation, apoptosis, drug resistance, and cancer stemness. Exosomes help cells communicate by carrying proteins and genetic material, such as non-coding RNAs, including mRNAs and microRNAs. This review examines the biological significance of exosomes in pancreatic cancer and their functions in tumor invasion, metastasis, treatment resistance, proliferation, stemness, and immune evasion. We also emphasize recent advances in our understanding of the main functions of exosomes in diagnosing and treating pancreatic cancer.
Collapse
Affiliation(s)
- Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooya M Tehrany
- Faculty of Medicine, National University of Malaysia, Bani, Malaysia
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marwa Fadhil Alsaffar
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, 51001 Hillah, Babil, Iraq
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Ali Adili
- Tabriz University of Medical Sciences, Tabriz, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran.
| | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Musi A, Bongiovanni L. Extracellular Vesicles in Cancer Drug Resistance: Implications on Melanoma Therapy. Cancers (Basel) 2023; 15:1074. [PMID: 36831417 PMCID: PMC9954626 DOI: 10.3390/cancers15041074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in the pathogenesis of neoplastic diseases. Their role in mediating drug resistance has been widely described in several types of cancers, including melanoma. EVs can mediate drug resistance through several different mechanisms, such as drug-sequestration, transfer of pro-survival proteins and RNA, induction of cancer stem cell-like features and interaction with cells of the tumor microenvironment and immune-system. Melanoma is a highly immunogenic tumor originating from the malignant transformation of melanocytes. Several therapeutic strategies currently used in the treatment of melanoma and the combination of BRAF and MEK-inhibitors, as well as immune check-point inhibitors (ICI), have consistently improved the overall survival time of melanoma patients. However, the development of resistance is one of the biggest problems leading to a poor clinical outcome, and EVs can contribute to this. EVs isolated from melanoma cells can contain "sequestered" chemotherapeutic drugs in order to eliminate them, or bioactive molecules (such as miRNA or proteins) that have been proven to play a crucial role in the transmission of resistance to sensitive neoplastic cells. This leads to the hypothesis that EVs could be considered as resistance-mediators in sensitive melanoma cells. These findings are a pivotal starting point for further investigations to better understand EVs' role in drug resistance mechanisms and how to target them. The purpose of this review is to summarize knowledge about EVs in order to develop a deeper understanding of their underlying mechanisms. This could lead to the development of new therapeutic strategies able to bypass EV-mediated drug-resistance in melanoma, such as by the use of combination therapy, including EV release inhibitors.
Collapse
Affiliation(s)
- Alice Musi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Laura Bongiovanni
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CT Utrecht, The Netherlands
| |
Collapse
|
8
|
Survivin Small Molecules Inhibitors: Recent Advances and Challenges. Molecules 2023; 28:molecules28031376. [PMID: 36771042 PMCID: PMC9919791 DOI: 10.3390/molecules28031376] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Survivin, as a member of the inhibitor of apoptosis proteins (IAPs) family, acts as a suppressor of apoptosis and plays a central role in cell division. Survivin has been considered as an important cancer drug target because it is highly expressed in many types of human cancers, while it is effectively absent from terminally differentiated normal tissues. Moreover, survivin is involved in tumor cell resistance to chemotherapy and radiation. Preclinically, downregulation of survivin expression or function reduced tumor growth induced apoptosis and sensitized tumor cells to radiation and chemotherapy in different human tumor models. This review highlights the role of survivin in promoting cellular proliferation and inhibiting apoptosis and summarizes the recent advances in and challenges of developing small-molecule survivin inhibitors.
Collapse
|
9
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Kannampuzha S, Murali R, Namachivayam A, Ganesan R, Renu K, Dey A, Vellingiri B, Prabakaran DS. Exploring the Molecular Pathogenesis, Pathogen Association, and Therapeutic Strategies against HPV Infection. Pathogens 2022; 12:25. [PMID: 36678374 PMCID: PMC9865103 DOI: 10.3390/pathogens12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The human papillomavirus (HPV), commonly documented as the cause of warts, has gained much interest recently due to its possible links to several types of cancer. HPV infection is discussed in this review from multiple angles, including its virology, epidemiology, etiology, immunology, clinical symptoms, and treatment. Recent breakthroughs in molecular biology have led to the development of new methods for detecting and treating HPV in tissue. There is no cure for HPV, and although vaccines are available to prevent infection with the most common HPV viruses, their utilization is limited. Destruction and excision are the primary treatment modalities. This review sheds light on the epidemiology, molecular pathogenesis, the association of several other pathogens with HPV, the latest treatment strategies available to treat the same, and an overview of the progress made and the obstacles still to be overcome in the fight against HPV infection.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
10
|
Kaczmarek M, Baj-Krzyworzeka M, Bogucki Ł, Dutsch-Wicherek M. HPV-Related Cervical Cancer and Extracellular Vesicles. Diagnostics (Basel) 2022; 12:2584. [PMID: 36359429 PMCID: PMC9689649 DOI: 10.3390/diagnostics12112584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/03/2023] Open
Abstract
Cervical cancer is the fourth most common type of cancer in females worldwide. Infection with a human papillomavirus is crucial to the etiopathogenesis of cervical cancer. The natural trajectory of HPV infection comprises HPV acquisition, HPV persistence versus clearance, and progression to precancer and invasive cancer. The majority of HPV infections are cleared and controlled by the immune system within 2 years, but some infections may become quiescent or undetectable. The persistence of high-risk HPV infection for a longer period of time enhances the risk of malignant transformation of infected cells; however, the mechanisms responsible for the persistence of infection are not yet well-understood. It is estimated that 10-15% of infections do persist, and the local microenvironment is now recognized as an important cofactor promoting infection maintenance. Extracellular vesicles (EVs) are small membrane vesicles derived from both normal cells and cancer cells. EVs contain various proteins, such as cytoskeletal proteins, adhesion molecules, heat shock proteins, major histocompatibility complex, and membrane fusion proteins. EVs derived from HPV-infected cells also contain viral proteins and nucleic acids. These biologically active molecules are transferred via EVs to target cells, constituting a kind of cell-to-cell communication. The viral components incorporated into EVs are transmitted independently of the production of infectious virions. This mode of transfer makes EVs a perfect vector for viruses and their components. EVs participate in both physiological and pathological conditions; they have also been identified as one of the mediators involved in cancer metastasis. This review discusses the potential role of EVs in remodeling the cervical cancer microenvironment which may be crucial to tumor development and the acquisition of metastatic potential. EVs are promising as potential biomarkers in cervical cancer.
Collapse
Affiliation(s)
- Magdalena Kaczmarek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Łukasz Bogucki
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Magdalena Dutsch-Wicherek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| |
Collapse
|
11
|
Fuller RN, Kabagwira J, Vallejos PA, Folkerts AD, Wall NR. Survivin Splice Variant 2β Enhances Pancreatic Ductal Adenocarcinoma Resistance to Gemcitabine. Onco Targets Ther 2022; 15:1147-1160. [PMID: 36238134 PMCID: PMC9553431 DOI: 10.2147/ott.s341720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis, as it is difficult to predict or circumvent, and it develops chemoresistance quickly. One cellular mechanism associated with chemoresistance is alternative splicing dysfunction, a process through which nascent mRNA is spliced into different isoforms. Survivin (Baculoviral IAP Repeat-Containing Protein 5 (BIRC5)), a member of the inhibitor of apoptosis (IAP) protein family and a cell cycle-associated oncoprotein, is overexpressed in most cancers and undergoes alternative splicing (AS) to generate six different splicing isoforms. Methods To determine if survivin splice variants (SSV) could be involved in PDAC chemoresistance, a Gemcitabine (Gem) resistant (GR) cell line, MIA PaCa-2 GR, was created and assessed for its SSV levels and their potential association with GR. Cross-resistance was assessed in MIA-PaCa-2 GR cells to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin). Once chemoresistance was confirmed, RT-qPCR was used to assess the expression of survivin splice variants (SSVs) in PDAC cell lines. To confirm the effect of SSVs on chemoresistance, we used siRNA to knockdown all SSVs or SSV 2β. Results The MIA PaCa-2 GR cell line was 40 times more resistant to Gem and revealed increased resistance to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin); when compared to the parental MIA-PaCa-2 cells. RT-qPCR studies revealed an 8-fold relative expression increase in SSV 2β and a 2- to 8-fold increase in the other five SSVs in the GR cells. Knockdown of all SSV or SSV 2β only, using small inhibitory RNA (siRNA), sensitized the GR cells to Gem, indicating that these SSVs play a role in PDAC chemoresistance. Conclusion These findings provide evidence for the potential role of SSV 2β and other SSVs in innate and acquired PDAC chemoresistance. We also show that the expression of SSVs is not affected by the type of chemoresistance, therefore targeting survivin splice variants in combination with chemotherapy could benefit a wide range of patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Paul A Vallejos
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Andrew D Folkerts
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nathan R Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,Correspondence: Nathan R Wall, Center for Health Disparities & Molecular Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda University, Loma Linda, CA, 92350, USA, Tel +909-558-4000 x81397, Email
| |
Collapse
|
12
|
Palazzolo S, Canzonieri V, Rizzolio F. The history of small extracellular vesicles and their implication in cancer drug resistance. Front Oncol 2022; 12:948843. [PMID: 36091133 PMCID: PMC9451101 DOI: 10.3389/fonc.2022.948843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/06/2022] [Indexed: 12/01/2022] Open
Abstract
Small extracellular vesicles (EVs) in the last 20 years are demonstrated to possess promising properties as potential new drug delivery systems, biomarkers, and therapeutic targets. Moreover, EVs are described to be involved in the most important steps of tumor development and progression including drug resistance. The acquired or intrinsic capacity of cancer cells to resist chemotherapies is one of the greatest obstacles to overcome to improve the prognosis of many patients. EVs are involved in this mechanism by exporting the drugs outside the cells and transferring the drug efflux pumps and miRNAs in recipient cells, in turn inducing drug resistance. In this mini-review, the main mechanisms by which EVs are involved in drug resistance are described, giving a rapid and clear overview of the field to the readers.
Collapse
Affiliation(s)
- Stefano Palazzolo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di ricovero e cura a carattere scientifico (IRCCS), Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di ricovero e cura a carattere scientifico (IRCCS), Aviano, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di ricovero e cura a carattere scientifico (IRCCS), Aviano, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscary University, Venice, Italy
| |
Collapse
|
13
|
Ran Z, Wu S, Ma Z, Chen X, Liu J, Yang J. Advances in exosome biomarkers for cervical cancer. Cancer Med 2022; 11:4966-4978. [PMID: 35578572 PMCID: PMC9761094 DOI: 10.1002/cam4.4828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/03/2023] Open
Abstract
Cervical cancer (CC) ranks as the fourth most frequently diagnosed malignancy in females worldwide. Exosomes are a subclass of extracellular vesicles released by nearly all types of cells that act as cargo transport vehicles, carrying proteins, and genetic material (such as miRNAs, long noncoding RNAs, and mRNAs) derived from their parent cells may affect receiving cells and thus have emerged as key players in several biological processes, including inflammatory pathways. In this review, we concentrated on the findings of exosome investigations in CC, particularly their components. They direct the actions of CC cells by inducing surface molecules associated with various biological pathways. We summarized the current knowledge of exosomal RNAs and proteins from CC cells and discussed the feasibility of exosomes as potential biomarkers for CC. We suggest that cancer-derived exosomes promote metastasis in CC by supporting EMT, controlling the proliferation, invasion, or migration of cancer cells, as well as influencing immune escape and aiding angiogenesis. Overall, cancer-derived exosomes are critical in the progression of CC, and further studies are necessary to advance our understanding of the clinical value of exosomes in CC.
Collapse
Affiliation(s)
- Zihan Ran
- Department of ResearchShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghaiChina,Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Shaobo Wu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Zijng Ma
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Xiuwen Chen
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Jing Liu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina
| | - Jingcheng Yang
- The Genius Medicine Consortium (TGMC)ShanghaiChina,State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer CenterFudan UniversityShanghaiChina,Greater Bay Area Institute of Precision MedicineGuangzhouChina
| |
Collapse
|
14
|
Xavier CP, Belisario DC, Rebelo R, Assaraf YG, Giovannetti E, Kopecka J, Vasconcelos MH. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updat 2022; 62:100833. [PMID: 35429792 DOI: 10.1016/j.drup.2022.100833] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023]
|
15
|
Bai S, Wang Z, Wang M, Li J, Wei Y, Xu R, Du J. Tumor-Derived Exosomes Modulate Primary Site Tumor Metastasis. Front Cell Dev Biol 2022; 10:752818. [PMID: 35309949 PMCID: PMC8924426 DOI: 10.3389/fcell.2022.752818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-derived exosomes (TDEs) are actively produced and released by tumor cells and carry messages from tumor cells to healthy cells or abnormal cells, and they participate in tumor metastasis. In this review, we explore the underlying mechanism of action of TDEs in tumor metastasis. TDEs transport tumor-derived proteins and non-coding RNA to tumor cells and promote migration. Transport to normal cells, such as vascular endothelial cells and immune cells, promotes angiogenesis, inhibits immune cell activation, and improves chances of tumor implantation. Thus, TDEs contribute to tumor metastasis. We summarize the function of TDEs and their components in tumor metastasis and illuminate shortcomings for advancing research on TDEs in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zunyun Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Minghua Wang
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Junai Li
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Yuan Wei
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Ruihuan Xu
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Juan Du
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
16
|
Comandatore A, Immordino B, Balsano R, Capula M, Garajovà I, Ciccolini J, Giovannetti E, Morelli L. Potential Role of Exosomes in the Chemoresistance to Gemcitabine and Nab-Paclitaxel in Pancreatic Cancer. Diagnostics (Basel) 2022; 12:286. [PMID: 35204377 PMCID: PMC8871170 DOI: 10.3390/diagnostics12020286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, a growing number of studies have evaluated the role of exosomes in pancreatic ductal adenocarcinoma cancer (PDAC) demonstrating their involvement in a multitude of pathways, including the induction of chemoresistance. The aim of this review is to present an overview of the current knowledge on the role of exosomes in the resistance to gemcitabine and nab-paclitaxel, which are two of the most commonly used drugs for the treatment of PDAC patients. Exosomes are vesicular cargos that transport multiple miRNAs, mRNAs and proteins from one cell to another cell and some of these factors can influence specific determinants of gemcitabine activity, such as the nucleoside transporter hENT1, or multidrug resistance proteins involved in the resistance to paclitaxel. Additional mechanisms underlying exosome-mediated resistance include the modulation of apoptotic pathways, cellular metabolism, or the modulation of oncogenic miRNA, such as miR-21 and miR-155. The current status of studies on circulating exosomal miRNA and their possible role as biomarkers are also discussed. Finally, we integrated the preclinical data with emerging clinical evidence, showing how the study of exosomes could help to predict the resistance of individual tumors, and guide the clinicians in the selection of innovative therapeutic strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Annalisa Comandatore
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy;
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Benoit Immordino
- Fondazione Pisana per La Scienza, 56124 Pisa, Italy; (B.I.); (M.C.)
- SMARTc Unit, Centre de Recherche en Cancérologie de Marseille, Inserm U1068 Aix Marseille Université, 13385 Marseille, France;
| | - Rita Balsano
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| | - Mjriam Capula
- Fondazione Pisana per La Scienza, 56124 Pisa, Italy; (B.I.); (M.C.)
| | - Ingrid Garajovà
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| | - Joseph Ciccolini
- SMARTc Unit, Centre de Recherche en Cancérologie de Marseille, Inserm U1068 Aix Marseille Université, 13385 Marseille, France;
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Fondazione Pisana per La Scienza, 56124 Pisa, Italy; (B.I.); (M.C.)
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy;
| |
Collapse
|
17
|
Pan L, Li B, Chen J, Zhang H, Wang X, Shou J, Yang D, Yan X. Nanotechnology-Based Weapons to Combat Human Papillomavirus Infection Associated Diseases. Front Chem 2021; 9:798727. [PMID: 34869242 PMCID: PMC8635520 DOI: 10.3389/fchem.2021.798727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection will eventually lead to clinical problems, varying from verrucous lesions to malignancies like cervical cancer, oral cancer, anus cancer, and so on. To address the aforementioned problems, nanotechnology-based strategies have been applied to detect the virus, prevent the interaction between virus and mammalian cells, and treat the virus-infected cells, due mainly to the unique physicochemical properties of nanoparticles. In this regard, many nanotechnology-based chemotherapies, gene therapy, vaccination, or combination therapy have been developed. In this Minireview, we outline the pathogenesis of HPV infection and the recent advances in nanotechnology-based weapons that can be applied in combating HPV-associated diseases.
Collapse
Affiliation(s)
- Luyao Pan
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingxin Li
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahua Chen
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haofeng Zhang
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi Wang
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahui Shou
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dejun Yang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xiaojian Yan
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Xu P, Lu C, Wang D, Fu D. Combination of ultrathin micro-patterned MXene and PEDOT: Poly(styrenesulfonate) enables organic electrochemical transistor for amperometric determination of survivin protein in children osteosarcoma. Mikrochim Acta 2021; 188:301. [PMID: 34409498 DOI: 10.1007/s00604-021-04947-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023]
Abstract
An ultrathin micro-patterned MXene/PEDOT:PSS-based organic electrochemical transistor biosensor was constructed, which can significantly amplify the amperometric signal and transistor's performance. A novel interdigitated OECTs biosensor has been developed for reliable determination of survivin for the following considerations: (1) The synergistic effect of intercalated MXene and ionic PEDOT:PSS enhanced the mobility and volumetric capacitance of OECTs biosensor. (2) Compared with the best previous literatures, our assay demonstrated enhanced detection limit of survivin down to 10 pg mL-1, as well as satisfactory selectivity, reproducibility, and reliability. (3) Comparison of OECTs against commercial ELISA kit yielded favorable linearity (Y = 1.0015*X + 0.0039) and correlation coefficient (R2 = 0.9717). Those advantages are expected to pave the way to design of an OECTs biosensor with robustness, non-invasiveness, and miniaturization for the point-of-care applications.
Collapse
Affiliation(s)
- Ping Xu
- Department of Orthopedics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chunwen Lu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dahui Wang
- Department of Orthopedics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Dong Fu
- Department of Orthopedics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
19
|
Benaiges E, Ceperuelo-Mallafré V, Madeira A, Bosch R, Núñez-Roa C, Ejarque M, Maymó-Masip E, Huber-Ruano I, Lejeune M, Vendrell J, Fernández-Veledo S. Survivin drives tumor-associated macrophage reprogramming: a novel mechanism with potential impact for obesity. Cell Oncol (Dordr) 2021; 44:777-792. [PMID: 33710603 PMCID: PMC8338861 DOI: 10.1007/s13402-021-00597-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Recent studies point to adipose-derived stem cells (ASCs) as a link between obesity and cancer. We aimed to determine whether survivin, which is highly secreted by ASCs from subjects with obesity, might drive a pro-tumoral phenotype in macrophages. METHODS The effect of ASC conditioned medium on the macrophage phenotype was assessed by expression studies. Survivin intracellular localization and internalization were examined by subcellular fractionation and immunofluorescence, respectively. Loss- and gain-of-function studies were performed using adenoviral vectors, and gene expression patterns, migration and invasion capacities of cancer cells were examined. Heterotypic cultures of ASCs, macrophages and cancer cells were established to mimic the tumor microenvironment. Survivin-blocking experiments were used to determine the impact of survivin on both macrophages and cancer cells. Immunohistochemical analysis of survivin was performed in macrophages from ascitic fluids of cancer patients and healthy controls. RESULTS We found that obese-derived ASCs induced a phenotypic switch in macrophages characterized by the expression of both pro- and anti-inflammatory markers. Macrophages were found to internalize extracellular survivin, generating hybrid macrophages with a tumor-associated phenotype that included secretion of survivin. Exogenous expression of survivin in macrophages generated a similar phenotype and enhanced the malignant characteristics of cancer cells by a mechanism dependent on survivin phosphorylation at threonine 34. Survivin secreted by both ASCs from subjects with obesity and tumor-associated macrophages synergistically boosted the malignancy of cancer cells. Importantly, survivin was mainly detected in ascites-associated macrophages from patients with a malignant diagnosis. CONCLUSION Our data indicate that survivin may serve as a molecular link between obesity and cancer and as a novel marker for tumor-associated macrophages.
Collapse
Affiliation(s)
- E Benaiges
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Rovira i Virgili University, 43003, Tarragona, Spain
| | - V Ceperuelo-Mallafré
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - A Madeira
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - R Bosch
- Grup de Recerca en Patologia Oncològica i Bioinformàtica, Molecular Biology and Research Section, Hospital de Tortosa Verge de la Cinta, IISPV, URV, 43500, Tortosa, Spain
| | - C Núñez-Roa
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - M Ejarque
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - E Maymó-Masip
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - I Huber-Ruano
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- Rovira i Virgili University, 43003, Tarragona, Spain
| | - M Lejeune
- Grup de Recerca en Patologia Oncològica i Bioinformàtica, Molecular Biology and Research Section, Hospital de Tortosa Verge de la Cinta, IISPV, URV, 43500, Tortosa, Spain
| | - J Vendrell
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
- Rovira i Virgili University, 43003, Tarragona, Spain.
| | - S Fernández-Veledo
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
20
|
Li Y, Lu W, Yang J, Edwards M, Jiang S. Survivin as a biological biomarker for diagnosis and therapy. Expert Opin Biol Ther 2021; 21:1429-1441. [PMID: 33877952 DOI: 10.1080/14712598.2021.1918672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Survivin (SVN) is a member of the inhibitor of apoptosis (IAP) protein family that promotes cellular proliferation and inhibits apoptosis. Overexpression of SVN is associated with autoimmune disease, hyperplasia, and tumors and can be used as a biomarker in these diseases. SVN is widely recognized as a tumor-associated antigen (TAA) and has become an important target for cancer diagnosis and treatment.Areas covered: We reviewed SVN research progress from the PubMed and clinical trials focused on SVN from https://clinicaltrials.gov since 2000 and anticipate future developments in the field. The trials reviewed cover various modalities including diagnostics for early detection and disease progression, small molecule inhibitors of the SVN pathway and immunotherapy targeting SVN epitopes.Expert opinion: The most promising developments involve anti-SVN immunotherapy, with several therapeutic SVN vaccines under evaluation in phase I/II trials. SVN is an important new immune-oncology target that expands the repertoire of individualized combination treatments for cancer.
Collapse
Affiliation(s)
- Yuming Li
- Department of Oncology, University of Oxford, Oxford, UK.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenshu Lu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Jiarun Yang
- Department of Oncology, University of Oxford, Oxford, UK
| | - Mark Edwards
- Department of Research and Development, Oxford Vacmedix UK Ltd, Oxford, UK
| | - Shisong Jiang
- Department of Oncology, University of Oxford, Oxford, UK.,Department of Research and Development, Oxford Vacmedix UK Ltd, Oxford, UK
| |
Collapse
|
21
|
Puskas R, Bikov A, Horvath P, Lazar Z, Kunos L, Nagy R, Pinter G, Galffy G. Circulating Survivin Protein Levels in Lung Cancer Patients Treated With Platinum-Based Chemotherapy. Pathol Oncol Res 2021; 27:631969. [PMID: 34257598 PMCID: PMC8262151 DOI: 10.3389/pore.2021.631969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
The survivin protein contributes to the development and progression of tumors. Protein expression and mRNA levels correlate with clinicopathological parameters and survival of cancer patients. Our purpose was to evaluate whether circulating survivin levels have any diagnostic or predictive value in lung cancer. 118 patients with advanced stage lung cancer participated in our study. 53 suffered from adenocarcinoma (ADC), 33 from squamous cell carcinoma (SqCC), and 32 from small cell lung cancer (SCLC). We also enrolled 21 control subjects. Blood samples were collected before and after two cycles of chemotherapy. We measured survivin concentrations with ELISA. Non-parametric tests were used for analysis. We did not find significant difference in survivin levels between patients and control subjects (17.19/0–829.74/vs. 49.13/0–165.92/pg/ml; p = 0.07). We found lower survivin concentrations in patients with SqCC (0/0–171.24/pg/ml) than in those with ADC (24.94/0–626.46 pg/ml) and SCLC (45.51/0–829.74/pg/ml) (ADC vs. SqCC p < 0.0001, ADC vs. SCLC p = 0.0405, SqCC vs. SCLC p < 0.0001). Survivin levels were higher in stage IV patients than in patients without distant metastases (p = 0.0061), and concentrations were progressively higher with increasing number of metastatic organ sites (p = 0.04). We observed a decrease in survivin levels in ADC patients after platinum plus pemetrexed chemotherapy (26.22/0–626.46/pg/ml before vs. 0/0–114.36/pg/ml after; p = 0.01). Neither progression-free nor overall survival correlated with survivin levels at baseline. Our data imply that survivin may be involved in the development of metastases and it might be used as a biomarker of disease progression. However, circulating survivin concentrations do not predict survival of patients with lung cancer.
Collapse
Affiliation(s)
- Rita Puskas
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Törökbálint Pulmonology Hospital, Törökbálint, Hungary
| | - Andras Bikov
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Peter Horvath
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Lazar
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Laszlo Kunos
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Törökbálint Pulmonology Hospital, Törökbálint, Hungary
| | - Reka Nagy
- Semmelweis University, Budapest, Hungary
| | | | - Gabriella Galffy
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Törökbálint Pulmonology Hospital, Törökbálint, Hungary.,Department of Thoracic Surgery, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Systematic Analysis of the Transcriptome Profiles and Co-Expression Networks of Tumour Endothelial Cells Identifies Several Tumour-Associated Modules and Potential Therapeutic Targets in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13081768. [PMID: 33917186 PMCID: PMC8067977 DOI: 10.3390/cancers13081768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most common cause of cancer-related death, with tumour associated liver endothelial cells being thought to be major drivers in HCC progression. This study aims to compare the gene expression profiles of tumour endothelial cells from the liver with endothelial cells from non-tumour liver tissue, to identify perturbed biologic functions, co-expression modules, and potentially drugable hub genes that could give rise to novel therapeutic targets and strategies. Gene Set Variation Analysis (GSVA) showed that cell growth-related pathways were upregulated, whereas apoptosis induction, immune and inflammatory-related pathways were downregulated in tumour endothelial cells. Weighted Gene Co-expression Network Analysis (WGCNA) identified several modules strongly associated to tumour endothelial cells or angiogenic activated endothelial cells with high endoglin (ENG) expression. In tumour cells, upregulated modules were associated with cell growth, cell proliferation, and DNA-replication, whereas downregulated modules were involved in immune functions, particularly complement activation. In ENG+ cells, upregulated modules were associated with cell adhesion and endothelial functions. One downregulated module was associated with immune system-related functions. Querying the STRING database revealed known functional-interaction networks underlying the modules. Several possible hub genes were identified, of which some (for example FEN1, BIRC5, NEK2, CDKN3, and TTK) are potentially druggable as determined by querying the Drug Gene Interaction database. In summary, our study provides a detailed picture of the transcriptomic differences between tumour and non-tumour endothelium in the liver on a co-expression network level, indicates several potential therapeutic targets and presents an analysis workflow that can be easily adapted to other projects.
Collapse
|
23
|
Mull B, Davis R, Munir I, Perez MC, Simental AA, Khan S. Differential expression of Vitamin D binding protein in thyroid cancer health disparities. Oncotarget 2021; 12:596-607. [PMID: 33868582 PMCID: PMC8021030 DOI: 10.18632/oncotarget.27920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancer incidence, recurrence, and death rates are higher among Filipino Americans than European Americans. We propose that vitamin D binding protein (DBP) with multifunctionality with ethnic variability plays a key role within different ethnicities. In this study, we determined the correlation between differential DBP expression in tumor tissues and cancer staging in Filipino Americans versus European Americans. We assayed DBP expression by immunohistochemistry and analyzed the data with confocal microscopy on 200 thyroid cancer archival tissue samples obtained from both ethnicities. DBP-stable knockdown/gain-in-function assays were done by using DBP-shRNA/DBP-cDNA-expression in vitro. The majority of Filipino Americans presented with advanced tumor staging. In contrast, European Americans showed early staging and very few advanced tumors. A significantly low to no DBP staining was detected and correlated to the advanced staging in Filipino Americans. On the contrary, in the tumor tissues derived from European Americans, moderate to strong DBP staining was detected and correlated to early staging. When downregulation of the DBP gene in papillary thyroid cancer (PTC) cell lines was observed, tumor proliferation and migration were enhanced. On the other hand, the upregulation of the DBP gene decreased cell proliferation and migration in PTC cells. In conclusion, we determined a differential expression of an essential biological molecule (DBP) is linked to cancer staging in thyroid cancer health disparities in two ethnicities. Loss-of-DBP/gain-in-DBP-function influenced tumor progression. A future study is underway to determine the DBP regulation and its downstream pathways to elucidate strategies to eliminate the observed thyroid cancer health disparities.
Collapse
Affiliation(s)
| | - Ryan Davis
- Division of Biochemistry, Loma Linda, CA 92350, USA.,Center for Health Disparities & Molecular Medicine, Loma Linda, CA 92350, USA
| | - Iqbal Munir
- Riverside University Health System, Moreno Valley, CA 92555, USA
| | - Mia C Perez
- Department of Pathology & Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Alfred A Simental
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Salma Khan
- Division of Biochemistry, Loma Linda, CA 92350, USA.,Center for Health Disparities & Molecular Medicine, Loma Linda, CA 92350, USA.,Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.,Department of Internal Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
24
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|
25
|
Fontana F, Carollo E, Melling GE, Carter DRF. Extracellular Vesicles: Emerging Modulators of Cancer Drug Resistance. Cancers (Basel) 2021; 13:749. [PMID: 33670185 PMCID: PMC7916933 DOI: 10.3390/cancers13040749] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as crucial modulators of cancer drug resistance. Indeed, it has been shown that they can directly sequester anti-tumor drugs, decreasing their effective concentration at target sites. Moreover, they facilitate the horizontal transfer of specific bioactive cargoes able to regulate proliferative, apoptotic, and stemness programs in recipient cells, potentially conferring a resistant phenotype to drug-sensitive cancer cells. Finally, EVs can mediate the communication between the tumor and both stromal and immune cells within the microenvironment, promoting treatment escape. In this context, clarifying the EV-driven resistance mechanisms might improve not only tumor diagnosis and prognosis but also therapeutic outcomes. Detailed cellular and molecular events occurring during the development of EV-mediated cancer drug resistance are described in this review article.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Carollo
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK; (E.C.); (G.E.M.)
| | - Genevieve E. Melling
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK; (E.C.); (G.E.M.)
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David R. F. Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK; (E.C.); (G.E.M.)
| |
Collapse
|
26
|
Ferguson Bennit HR, Gonda A, Kabagwira J, Oppegard L, Chi D, Licero Campbell J, De Leon M, Wall NR. Natural Killer Cell Phenotype and Functionality Affected by Exposure to Extracellular Survivin and Lymphoma-Derived Exosomes. Int J Mol Sci 2021; 22:1255. [PMID: 33513976 PMCID: PMC7865330 DOI: 10.3390/ijms22031255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The inherent abilities of natural killer (NK) cells to recognize and kill target cells place them among the first cells with the ability to recognize and destroy infected or transformed cells. Cancer cells, however, have mechanisms by which they can inhibit the surveillance and cytotoxic abilities of NK cells with one believed mechanism for this: their ability to release exosomes. Exosomes are vesicles that are found in abundance in the tumor microenvironment that can modulate intercellular communication and thus enhance tumor malignancy. Recently, our lab has found cancer cell exosomes to contain the inhibitor of apoptosis (IAP) protein survivin to be associated with decreased immune response in lymphocytes and cellular death. The purpose of this study was to explore the effect of survivin and lymphoma-derived survivin-containing exosomes on the immune functions of NK cells. NK cells were obtained from the peripheral blood of healthy donors and treated with pure survivin protein or exosomes from two lymphoma cell lines, DLCL2 and FSCCL. RNA was isolated from NK cell samples for measurement by PCR, and intracellular flow cytometry was used to determine protein expression. Degranulation capacity, cytotoxicity, and natural killer group 2D receptor (NKG2D) levels were also assessed. Lymphoma exosomes were examined for size and protein content. This study established that these lymphoma exosomes contained survivin and FasL but were negative for MHC class I-related chains (MIC)/B (MICA/B) and TGF-β. Treatment with exosomes did not significantly alter NK cell functionality, but extracellular survivin was seen to decrease natural killer group 2D receptor (NKG2D) levels and the intracellular protein levels of perforin, granzyme B, TNF-α, and IFN-γ.
Collapse
Affiliation(s)
- Heather R. Ferguson Bennit
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Amber Gonda
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Laura Oppegard
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
| | - David Chi
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
| | - Jenniffer Licero Campbell
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
- Division of Physiology, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Marino De Leon
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
- Division of Physiology, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Nathan R. Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| |
Collapse
|
27
|
Dong X, Bai X, Ni J, Zhang H, Duan W, Graham P, Li Y. Exosomes and breast cancer drug resistance. Cell Death Dis 2020; 11:987. [PMID: 33203834 PMCID: PMC7673022 DOI: 10.1038/s41419-020-03189-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Drug resistance is a daunting challenge in the treatment of breast cancer (BC). Exosomes, as intercellular communicative vectors in the tumor microenvironment, play an important role in BC progression. With the in-depth understanding of tumor heterogeneity, an emerging role of exosomes in drug resistance has attracted extensive attention. The functional proteins or non-coding RNAs contained in exosomes secreted from tumor and stromal cells mediate drug resistance by regulating drug efflux and metabolism, pro-survival signaling, epithelial–mesenchymal transition, stem-like property, and tumor microenvironmental remodeling. In this review, we summarize the underlying associations between exosomes and drug resistance of BC and discuss the unique biogenesis of exosomes, the change of exosome cargo, and the pattern of release by BC cells in response to drug treatment. Moreover, we propose exosome as a candidate biomarker in predicting and monitoring the therapeutic drug response of BC and as a potential target or carrier to reverse the drug resistance of BC.
Collapse
Affiliation(s)
- Xingli Dong
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, China.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Xupeng Bai
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology and Department of Pathology, Jinan University Medical College, 510630, Guangzhou, China
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia. .,School of Basic Medicine Sciences, Zhengzhou University, 450001, Henan, China.
| |
Collapse
|
28
|
Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. Oncoimmunology 2020; 9:1779991. [PMID: 32934883 PMCID: PMC7466856 DOI: 10.1080/2162402x.2020.1779991] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identification of immunogenic tumor antigens that are efficiently processed and delivered by dendritic cells to prime the immune system and to induce an appropriate immune response is a research hotspot in the field of cancer vaccine development. High biosafety is an additional demand. Tumor-derived exosomes (TEXs) are nanosized lipid bilayer encapsulated vesicles that shuttle bioactive information to the tumor microenvironment facilitating tumor progression. However, accumulating evidence points toward the capacity of TEXs to efficiently stimulate immune responses against tumors provided they are appropriately administered. After briefly describing the function of exosomes in cancer biology and their communication with immune cells, we summarize in this review in vitro and preclinical studies eliciting the potency of TEXs in inducing effective anti-tumor responses and recently modified strategies further improving TEX-vaccination efficacy. We interpret the available data as TEXs becoming a lead in cancer vaccination based on tumor antigen-selective high immunogenicity.
Collapse
Affiliation(s)
- Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Margot Zöller
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Dogrammatzis C, Waisner H, Kalamvoki M. Cloaked Viruses and Viral Factors in Cutting Edge Exosome-Based Therapies. Front Cell Dev Biol 2020; 8:376. [PMID: 32528954 PMCID: PMC7264115 DOI: 10.3389/fcell.2020.00376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) constitute a heterogeneous group of vesicles released by all types of cells that play a major role in intercellular communication. The field of EVs started gaining attention since it was realized that these vesicles are not waste bags, but they carry specific cargo and they communicate specific messages to recipient cells. EVs can deliver different types of RNAs, proteins, and lipids from donor to recipient cells and they can influence recipient cell functions, despite their limited capacity for cargo. EVs have been compared to viruses because of their size, cell entry pathways, and biogenesis and to viral vectors because they can be loaded with desired cargo, modified, and re-targeted. These properties along with the fact that EVs are stable in body fluids, they can be produced and purified in large quantities, they can cross the blood-brain barrier, and autologous EVs do not appear to cause major adverse effects, have rendered them attractive for therapeutic use. Here, we discuss the potential for therapeutic use of EVs derived from virus infected cells or EVs carrying viral factors. We have focused on six major concepts: (i) the role of EVs in virus-based oncolytic therapy or virus-based gene delivery approaches; (ii) the potential use of EVs for developing viral vaccines or optimizing already existing vaccines; (iii) the role of EVs in delivering RNAs and proteins in the context of viral infections and modulating the microenvironment of infection; (iv) how to take advantage of viral features to design effective means of EV targeting, uptake, and cargo packaging; (v) the potential of EVs in antiviral drug delivery; and (vi) identification of novel antiviral targets based on EV biogenesis factors hijacked by viruses for assembly and egress. It has been less than a decade since more attention was given to EV research and some interesting concepts have already been developed. In the coming years, additional information on EV biogenesis, how they are hijacked and utilized by pathogens, and their impact on the microenvironment of infection is expected to indicate avenues to optimize existing therapeutic tools and develop novel approaches.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
30
|
Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dyn 2020; 39:3034-3060. [DOI: 10.1080/07391102.2020.1756409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Raied A. Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Molecular Diagnostic Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, Pushchino, Moscow Region, Russia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
A Novel Model of Cancer Drug Resistance: Oncosomal Release of Cytotoxic and Antibody-Based Drugs. BIOLOGY 2020; 9:biology9030047. [PMID: 32150875 PMCID: PMC7150871 DOI: 10.3390/biology9030047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes or oncosomes, often carry oncogenic molecules derived from tumor cells. In addition, accumulating evidence indicates that tumor cells can eject anti-cancer drugs such as chemotherapeutics and targeted drugs within EVs, a novel mechanism of drug resistance. The EV-releasing drug resistance phenotype is often coupled with cellular dedifferentiation and transformation in cells undergoing epithelial-mesenchymal transition (EMT), and the adoption of a cancer stem cell phenotype. The release of EVs is also involved in immunosuppression. Herein, we address different aspects by which EVs modulate the tumor microenvironment to become resistant to anticancer and antibody-based drugs, as well as the concept of the resistance-associated secretory phenotype (RASP).
Collapse
|
32
|
Bernardo PS, Lemos LGT, de Moraes GN, Maia RC. Unraveling survivin expression in chronic myeloid leukemia: Molecular interactions and clinical implications. Blood Rev 2020; 43:100671. [PMID: 32107072 DOI: 10.1016/j.blre.2020.100671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the BCR-ABL oncoprotein, known to drive leukemogenesis by orchestrating multiple signaling pathways ultimately involved in cell survival. Despite successful response rates of CML patients to tyrosine kinase inhibitors (TKIs), resistance eventually arises due to BCR-ABL-dependent and independent mechanisms. Survivin is an inhibitor of apoptosis protein acting in the interface between apoptosis deregulation and cell cycle progression. In CML, high levels of survivin have been associated with late stages of disease and therapy resistance. In this review, we provide an overview of important aspects concerning survivin subcellular localization and expression pattern in CML patients and cell lines. Moreover, we highlight the relevance of molecular networks involving survivin for disease progression and treatment resistance. Finally, we discuss the mechanisms accounting for survivin overexpression, as well as novel therapeutic interventions that have been designed to counteract survivin-associated malignancy in CML.
Collapse
Affiliation(s)
- Paula Sabbo Bernardo
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Lauana Greicy Tonon Lemos
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Gabriela Nestal de Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
33
|
Extracellular Vesicles from Human Papilloma Virus-Infected Cervical Cancer Cells Enhance HIV-1 Replication in Differentiated U1 Cell Line. Viruses 2020; 12:v12020239. [PMID: 32098055 PMCID: PMC7077309 DOI: 10.3390/v12020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
In the current study, we hypothesized that extracellular vesicles (EVs) secreted from human papilloma virus (HPV)-infected cervical cancer cells exacerbate human immunodeficiency virus (HIV)-1 replication in differentiated U1 cell line through an oxidative stress pathway. To test the hypothesis, we treated an HIV-1-infected macrophage cell line (U1) with HPV-infected Caski cell culture supernatant (CCS). We observed a significant increase in HIV-1 replication, which was associated with an increase in the expression of cytochrome P450 (CYPs 1A1 and 2A6) in the CCS-treated U1 cells. Furthermore, we isolated EVs from CCS (CCS-EVs), which showed the presence of CYPs (1A1, 2A6), superoxide dismutase 1 (SOD1), and HPV oncoproteins HPV16 E6. CCS-EVs when exposed to the U1 cells also significantly increased HIV-1 replication. Treatment of antioxidant, CYP1A1 and CYP2A6 inhibitors, and chemodietary agents with antioxidant properties significantly reduced the CCS and CCS-EVs mediated HIV-1 replication in U1 cells. Altogether, we demonstrate that cervical cancer cells exacerbate HIV-1 replication in differentiated U1 cell line via transferring CYPs and HPV oncoproteins through EVs. We also show that the viral replication occurs via CYP and oxidative stress pathways, and the viral replication is also reduced by chemodietary agents. This study provides important information regarding biological interactions between HPV and HIV-1 via EVs leading to enhanced HIV-1 replication.
Collapse
|
34
|
Human Papillomavirus and carcinogenesis: Novel mechanisms of cell communication involving extracellular vesicles. Cytokine Growth Factor Rev 2020; 51:92-98. [PMID: 31973992 PMCID: PMC7108386 DOI: 10.1016/j.cytogfr.2019.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
A group of mucosal HPVs are the causative agents of cervical cancer and are associated to other cancers. Certain cutaneous HPVs are involved in the development of cutaneous squamous cell carcinoma. EVs released by HPV+ cells convey a specific cargo of mRNAs and microRNAs. The EV delivery from HPV+ cells to non-infected recipient cells may represent a novel mechanism of tumorigenesis promotion.
A small group of mucosal Human Papillomaviruses are the causative agents of cervical cancer and are also associated with other types of cancers. Certain cutaneous Human Papillomaviruses seem to have a role as co-factors in the UV-induced carcinogenesis of the skin. The main mechanism of the tumorigenesis induced by Human Papillomaviruses is linked to the transforming activity of the viral E6 and E7 oncoproteins. However, other mechanisms, such as the gene expression control by specific microRNAs expression and deregulation of immune inflammatory mediators, may be important in the process of transformation. In this context, the release of Extracellular Vesicles with a specific cargo (microRNAs involved in tumorigenesis, mRNAs of viral oncoproteins, cytokines, chemokines) appears to play a key role.
Collapse
|
35
|
Nahand JS, Moghoofei M, Salmaninejad A, Bahmanpour Z, Karimzadeh M, Nasiri M, Mirzaei HR, Pourhanifeh MH, Bokharaei‐Salim F, Mirzaei H, Hamblin MR. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. Int J Cancer 2020; 146:305-320. [PMID: 31566705 PMCID: PMC6999596 DOI: 10.1002/ijc.32688] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is the fourth most common cause of cancer death in women. The most important risk factor for the development of CC is cervical infection with human papilloma virus (HPV). Inflammation is a protective strategy that is triggered by the host against pathogens such as viral infections that acts rapidly to activate the innate immune response. Inflammation is beneficial if it is brief and well controlled; however, if the inflammation is excessive or it becomes of chronic duration, it can produce detrimental effects. HPV proteins are involved, both directly and indirectly, in the development of chronic inflammation, which is a causal factor in the development of CC. However, other factors may also have a potential role in stimulating chronic inflammation. MicroRNAs (miRNAs) (a class of noncoding RNAs) are strong regulators of gene expression. They have emerged as key players in several biological processes, including inflammatory pathways. Abnormal expression of miRNAs may be linked to the induction of inflammation that occurs in CC. Exosomes are a subset of extracellular vesicles shed by almost all types of cells, which can function as cargo transfer vehicles. Exosomes contain proteins and genetic material (including miRNAs) derived from their parent cells and can potentially affect recipient cells. Exosomes have recently been recognized to be involved in inflammatory processes and can also affect the immune response. In this review, we discuss the role of HPV proteins, miRNAs and exosomes in the inflammation associated with CC.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Nasiri
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Farah Bokharaei‐Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
36
|
Patras L, Banciu M. Intercellular Crosstalk Via Extracellular Vesicles in Tumor Milieu as Emerging Therapies for Cancer Progression. Curr Pharm Des 2019; 25:1980-2006. [DOI: 10.2174/1381612825666190701143845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
:Increasing evidence has suggested that extracellular vesicles (EV) mediated bidirectional transfer of functional molecules (such as proteins, different types of RNA, and lipids) between cancer cells and tumor stromal cells (immune cells, endothelial cells, fibroblasts, stem cells) and strongly contributed to the reinforcement of cancer progression. Thus, intercellular EV-mediated signaling in tumor microenvironment (TME) is essential in the modulation of all processes that support and promote tumor development like immune suppression, angiogenesis, invasion and metastasis, and resistance of tumor cells to anticancer treatments.:Besides EV potential to revolutionize our understanding of the cancer cell-stromal cells crosstalk in TME, their ability to selectively transfer different cargos to recipient cells has created excitement in the field of tumortargeted delivery of specific molecules for anticancer treatments. Therefore, in tight connection with previous findings, this review brought insight into the dual role of EV in modulation of TME. Thus, on one side EV create a favorable phenotype of tumor stromal cells for tumor progression; however, as a future new class of anticancer drug delivery systems EV could re-educate the TME to overcome main supportive processes for malignancy progression.
Collapse
Affiliation(s)
- Laura Patras
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
37
|
Martínez-García D, Pérez-Hernández M, Korrodi-Gregório L, Quesada R, Ramos R, Baixeras N, Pérez-Tomás R, Soto-Cerrato V. The Natural-Based Antitumor Compound T21 Decreases Survivin Levels through Potent STAT3 Inhibition in Lung Cancer Models. Biomolecules 2019; 9:biom9080361. [PMID: 31412593 PMCID: PMC6724027 DOI: 10.3390/biom9080361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide; hence novel treatments for this malignancy are eagerly needed. Since natural-based compounds represent a rich source of novel chemical entities in drug discovery, we have focused our attention on tambjamines, natural compounds isolated from marine invertebrates that have shown diverse pharmacological activities. Based on these structures, we have recently identified the novel indole-based tambjamine analog 21 (T21) as a promising antitumor agent, which modulates the expression of apoptotic proteins such as survivin. This antiapoptotic protein plays an important role in carcinogenesis and chemoresistance. In this work, we have elucidated the molecular mechanism by which the anticancer compound T21 exerts survivin inhibition and have validated this protein as a therapeutic target in different lung cancer models. T21 was able to reduce survivin protein levels in vitro by repressing its gene expression through the blockade of Janus kinase/Signal Transducer and Activator of Transcription-3 (JAK/STAT3)/survivin signaling pathway. Interestingly, this occurred even when the pathway was overstimulated with its ligand interleukin 6 (IL-6), which is frequently overexpressed in lung cancer patients who show poor clinical outcomes. Altogether, these results show T21 as a potent anticancer compound that effectively decreases survivin levels through STAT3 inhibition in lung cancer, appearing as a promising therapeutic drug for cancer treatment.
Collapse
Affiliation(s)
- David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, 09001 Burgos, Spain
| | - Ricard Ramos
- Department of Thoracic Surgery and University of Barcelona, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Núria Baixeras
- Department of Pathology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
38
|
Khawar MB, Abbasi MH, Siddique Z, Arif A, Sheikh N. An Update on Novel Therapeutic Warfronts of Extracellular Vesicles (EVs) in Cancer Treatment: Where We Are Standing Right Now and Where to Go in the Future. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9702562. [PMID: 31428232 PMCID: PMC6683766 DOI: 10.1155/2019/9702562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/03/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-bounded vesicles that are believed to be produced and secreted by presumably all cell types under physiological and pathological conditions, including tumors. EVs are very important vehicles in intercellular communications for both shorter and longer distances and are able to deliver a wide range of cargos including proteins, lipids, and various species of nucleic acids effectively. EVs have been emerging as a novel biotherapeutic platform to efficiently deliver therapeutic cargos to treat a broad range of diseases including cancer. This vast potential of drug delivery lies in their abilities to carry a variety of cargos and their ease in crossing the biological membranes. Similarly, their presence in a variety of body fluids makes them a potential biomarker for early diagnosis, prognostication, and surveillance of cancer. Here, we discuss the relatively least and understudied aspects of EV biology and tried to highlight the obstacles and limitations in their clinical applications and also described most of the new warfronts to beat cancer at multiple stages. However, much more challenges still remain to evaluate EV-based therapeutics, and we are very much hopeful that the current work prompts further discovery.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muddasir Hassan Abbasi
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Zerwa Siddique
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Amin Arif
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
39
|
Siveen KS, Raza A, Ahmed EI, Khan AQ, Prabhu KS, Kuttikrishnan S, Mateo JM, Zayed H, Rasul K, Azizi F, Dermime S, Steinhoff M, Uddin S. The Role of Extracellular Vesicles as Modulators of the Tumor Microenvironment, Metastasis and Drug Resistance in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11060746. [PMID: 31146452 PMCID: PMC6628238 DOI: 10.3390/cancers11060746] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, with high morbidity and mortality rates. A number of factors including modulation of the tumor microenvironment, high metastatic capability, and resistance to treatment have been associated with CRC disease progression. Recent studies have documented that tumor-derived extracellular vesicles (EVs) play a significant role in intercellular communication in CRC via transfer of cargo lipids, proteins, DNA and RNAs to the recipient tumor cells. This transfer influences a number of immune-related pathways leading to activation/differentiation/expression of immune cells and modulation of the tumor microenvironment that plays a significant role in CRC progression, metastasis, and drug resistance. Furthermore, tumor-derived EVs are secreted in large amounts in biological fluids of CRC patients and as such the expression analysis of EV cargoes have been associated with prognosis or response to therapy and may be a source of therapeutic targets. This review aims to provide a comprehensive insight into the role of EVs in the modulation of the tumor microenvironment and its effects on CRC progression, metastasis, and drug resistance. On the other hand, the potential role of CRC derived EVs as a source of biomarkers of response and therapeutic targets will be discussed in detail to understand the dynamic role of EVs in CRC diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Kodappully S Siveen
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Eiman I Ahmed
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Abdul Q Khan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Kirti S Prabhu
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Shilpa Kuttikrishnan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Jericha M Mateo
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Hatem Zayed
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Kakil Rasul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Fouad Azizi
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Martin Steinhoff
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
- Weill Cornell-Medicine, Doha P.O. Box 24811, Qatar.
- Weill Cornell University, New York, NY 10065, USA.
| | - Shahab Uddin
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| |
Collapse
|
40
|
Stobiecka M, Ratajczak K, Jakiela S. Toward early cancer detection: Focus on biosensing systems and biosensors for an anti-apoptotic protein survivin and survivin mRNA. Biosens Bioelectron 2019; 137:58-71. [PMID: 31078841 DOI: 10.1016/j.bios.2019.04.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
The development of biosensors for cancer biomarkers has recently been expanding rapidly, offering promising biomedical applications of these sensors as highly sensitive, selective, and inexpensive bioanalytical tools that can provide alternative methodology to that afforded by the advanced hyphenated-instrumental techniques. In this review, we focus particularly on the detection of a member of the inhibitor of apoptosis proteins (IAP) family, protein survivin (Sur), a ubiquitous re-organizer of the cell life cycle with the ability to inhibit the apoptosis and induce an enhanced proliferation leading to the unimpeded cancer growth and metastasis. Herein, we critically evaluate the progress in the development of novel biosensing systems and biosensors for the detection of two survivin (Sur) biomarkers: the Sur protein and its messenger RNA (Sur mRNA), including immunosensors, electrochemical piezo- and impedance-sensors, electrochemi-luminescence biosensors, genosensors based on oligonucleotide molecular beacons (MBs) with fluorescent or electrochemical transduction, as well as the microfluidic and related analytical platforms based on solution chemistry. The in-situ applications of survivin biomarkers' detection technologies to equip nanocarriers of the controlled drug delivery systems with MB-based fluorescence imaging capability, apoptosis control, and mitigation of the acquired drug resistance are also presented and critically evaluated. Finally, we turn the attention to the application of biosensors for the analysis of Sur biomarkers in exosomes and circulating tumor cells for a non-invasive liquid biopsy. The prospect of a widespread screening for early cancers, based on inexpensive point-of-care testing using biosensors and multiplex biosensor arrays, as a means of reducing the high cancer fatality rate, is discussed.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland.
| | - Katarzyna Ratajczak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland.
| |
Collapse
|
41
|
Galloway NR, Ball KF, Stiff T, Wall NR. Yin Yang 1 (YY1): Regulation of Survivin and Its Role In Invasion and Metastasis. Crit Rev Oncog 2019; 22:23-36. [PMID: 29604934 DOI: 10.1615/critrevoncog.2017020836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite significant clinical and basic science advancements, cancer remains a devastating disease that affects people of all ages, races, and backgrounds. The pathogenesis of cancer has recently been described to result from eight biological capabilities or hallmarks and two enabling characteristics. These eight hallmarks are: deregulation of cellular energetics, avoiding immune destruction, enabling replicative immortality, inducing angiogenesis, sustaining proliferative signaling, evading growth suppressors, resisting cell death, and activating invasion and metastasis. The enabling characteristics are: genome instability and mutation and tumor-promoting inflammation. Survivin, the fourth most common transcript found in cancer cells, is a protein that is thought to be involved in the enhanced proliferation, survival, and metastasis and possibly other key hallmarks of cancer cells. Understanding how this gene is turned on and off is vitally important for attempt improving cancer management and therapy. Our work has identified a novel transcriptional regulator of survivin called Yin Yang 1 (YY1), which has been observed to activate some gene promoters and repress others and is gaining increasing interest as a target of cancer therapy. Our work shows for the first time that YY1 represses survivin transcription by physically interacting with the survivin promoter. Furthermore, YY1 appears to contribute to basal survivin transcriptional activity, indicating that disruption of its binding may in part contribute to survivin overexpression after cellular stress events including chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nicholas R Galloway
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Kathryn F Ball
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - TessaRae Stiff
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Nathan R Wall
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| |
Collapse
|
42
|
Ferguson Bennit HR, Gonda A, McMullen JRW, Kabagwira J, Wall NR. Peripheral Blood Cell Interactions of Cancer-Derived Exosomes Affect Immune Function. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2019; 12:29-35. [PMID: 29603062 PMCID: PMC6529483 DOI: 10.1007/s12307-018-0209-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/26/2018] [Indexed: 12/21/2022]
Abstract
Cancer-derived exosomes are constitutively produced and secreted into the blood and biofluids of their host patients providing a liquid biopsy for early detection and diagnosis. Given their ubiquitous nature, cancer exosomes influence biological mechanisms that are beneficial to the tumor cells where they are produced and the microenvironment in which these tumors exist. Accumulating evidence suggests that exosomes transport proteins, lipids, DNA, mRNA, miRNA and long non coding RNA (lncRNA) for the purpose of cell-cell and cell-extracellular communication. These exosomes consistently reflect the status as well as identity of their cell of origin and as such may conceivably be affecting the ability of a functional immune system to recognize and eliminate cancer cells. Recognizing and mapping the pathways in which immune suppression is garnered through these tumor derived exosome (TEX) may lead to treatment strategies in which specific cell membrane proteins or receptors may be targeted, allowing for immune surveillance to once again help with the treatment of cancer. This Review focuses on how cancer exosomes interact with immune cells in the blood.
Collapse
Affiliation(s)
- Heather R Ferguson Bennit
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Department Basic Science and Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Amber Gonda
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Department of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - James R W McMullen
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Department Basic Science and Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Janviere Kabagwira
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Department Basic Science and Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nathan R Wall
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
- Department Basic Science and Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
- Center for Health Disparities Research & Molecular Medicine, Loma Linda University, 11085 Campus Street, Mortensen Hall, Room 162, Loma Linda, CA, 92350, USA.
| |
Collapse
|
43
|
Maacha S, Bhat AA, Jimenez L, Raza A, Haris M, Uddin S, Grivel JC. Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 2019; 18:55. [PMID: 30925923 PMCID: PMC6441157 DOI: 10.1186/s12943-019-0965-7] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment represents a complex network, in which tumor cells not only communicate with each other but also with stromal and immune cells. Current research has demonstrated the vital role of the tumor microenvironment in supporting tumor phenotype via a sophisticated system of intercellular communication through direct cell-to-cell contact or by classical paracrine signaling loops of cytokines or growth factors. Recently, extracellular vesicles have emerged as an important mechanism of cellular interchange of bioactive molecules. Extracellular vesicles isolated from tumor and stromal cells have been implicated in various steps of tumor progression, such as proliferation, angiogenesis, metastasis, and drug resistance. Inhibition of extracellular vesicles secretion, and thus of the transfer of oncogenic molecules, holds promise for preventing tumor growth and drug resistance. This review focuses on the role of extracellular vesicles in modulating the tumor microenvironment by addressing different aspects of the bidirectional interactions among tumor and tumor-associated cells. The contribution of extracellular vesicles to drug resistance will also be discussed as well as therapeutic strategies targeting extracellular vesicles production for the treatment of cancer.
Collapse
Affiliation(s)
- Selma Maacha
- Division of Translational Medicine, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Ajaz A Bhat
- Division of Translational Medicine, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Haris
- Division of Translational Medicine, Sidra Medicine, PO BOX 26999, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jean-Charles Grivel
- Division of Translational Medicine, Sidra Medicine, PO BOX 26999, Doha, Qatar.
| |
Collapse
|
44
|
Hadi LM, Yaghini E, Stamati K, Loizidou M, MacRobert AJ. Therapeutic enhancement of a cytotoxic agent using photochemical internalisation in 3D compressed collagen constructs of ovarian cancer. Acta Biomater 2018; 81:80-92. [PMID: 30267880 DOI: 10.1016/j.actbio.2018.09.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 01/19/2023]
Abstract
Photochemical internalisation (PCI) is a method for enhancing delivery of drugs to their intracellular target sites of action. In this study we investigated the efficacy of PCI using a porphyrin photosensitiser and a cytotoxic agent on spheroid and non-spheroid compressed collagen 3D constructs of ovarian cancer versus conventional 2D culture. The therapeutic responses of two human carcinoma cell lines (SKOV3 and HEY) were compared using a range of assays including optical imaging. The treatment was shown to be effective in non-spheroid constructs of both cell lines causing a significant and synergistic reduction in cell viability measured at 48 or 96 h post-illumination. In the larger spheroid constructs, PCI was still effective but required higher saporin and photosensitiser doses. Moreover, in contrast to the 2D and non-spheroid experiments, where comparable efficacy was found for the two cell lines, HEY spheroid constructs were found to be more susceptible to PCI and a lower dose of saporin could be used. PCI treatment was observed to induce death principally by apoptosis in the 3D constructs compared to the mostly necrotic cell death caused by PDT. At low oxygen levels (1%) both PDT and PCI were significantly less effective in the constructs. STATEMENT OF SIGNIFICANCE: Assessment of new drugs or delivery systems for cancer therapy prior to conducting in vivo studies often relies on the use of conventional 2D cell culture, however 3D cancer constructs can provide more physiologically relevant information owing to their 3D architecture and the presence of an extracellular matrix. This study investigates the efficacy of Photochemical Internalisation mediated drug delivery in 3D constructs. In 3D cultures, both oxygen and drug delivery to the cells are limited by diffusion through the extracellular matrix unlike 2D models, and in our model we have used compressed collagen constructs where the density of collagen mimics physiological values. These 3D constructs are therefore well suited to studying drug delivery using PCI. Our study highlights the potential of these constructs for identifying differences in therapeutic response to PCI of two ovarian carcinoma lines.
Collapse
|
45
|
Lapitz A, Arbelaiz A, Olaizola P, Aranburu A, Bujanda L, Perugorria MJ, Banales JM. Extracellular Vesicles in Hepatobiliary Malignancies. Front Immunol 2018; 9:2270. [PMID: 30369925 PMCID: PMC6194158 DOI: 10.3389/fimmu.2018.02270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Primary hepatobiliary malignancies include a heterogeneous group of cancers with dismal prognosis, among which hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and hepatoblastoma (HB) stand out. These tumors mainly arise from the malignant transformation of hepatocytes, cholangiocytes (bile duct epithelial cells) or hepatoblasts (embryonic liver progenitor cells), respectively. Early diagnosis, prognosis prediction and effective therapies are still a utopia for these diseases. Extracellular vesicles (EVs) are small membrane-enclosed spheres secreted by cells and present in biological fluids. They contain multiple types of biomolecules, such as proteins, RNA, DNA, metabolites and lipids, which make them a potential source of biomarkers as well as regulators of human pathobiology. In this review, the role of EVs in the pathogenesis of hepatobiliary cancers and their potential usefulness as disease biomarkers are highlighted. Moreover, the therapeutic value of EV regulation is discussed and future directions on basic and clinical research are indicated.
Collapse
Affiliation(s)
- Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Aitziber Aranburu
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,"Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas" (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,"Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas" (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,"Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas" (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
46
|
Gonda A, Kabagwira J, Senthil GN, Ferguson Bennit HR, Neidigh JW, Khan S, Wall NR. Exosomal survivin facilitates vesicle internalization. Oncotarget 2018; 9:34919-34934. [PMID: 30405884 PMCID: PMC6201849 DOI: 10.18632/oncotarget.26182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
Survivin, a member of the inhibitor of apoptosis (IAP) protein family plays a significant role in cell fate and function. It is significantly overexpressed in tumor cells and has been identified in most cancer cell types. A novel extracellular population has recently been identified and its function is still unknown. Emerging evidence continues to shed light on the important role the tumor microenvironment (TME) has on tumor survival and progression. This new population of survivin has been seen to enhance the tumor phenotype when internalized by recipient cells. In this paper, we sought to better understand the mechanism by which survivin is taken up by cancer cells and the possible role it plays in this phenomenon. We isolated the exosomal carriers of extracellular survivin and using a lipophilic stain, PKH67, we tracked their uptake with immunofluorescence and flow cytometry. We found that by blocking exosomal survivin, exosome internalization is reduced, signifying a novel function for this protein. We also discovered that the common membrane receptors, transferrin receptor, endothelin B receptor, insulin receptor alpha, and membrane glucocorticoid receptor all facilitate exosomal internalization. This understanding further clarifies the protein-protein interactions in the TME that may influence tumor progression and identifies additional potential chemotherapeutic targets.
Collapse
Affiliation(s)
- Amber Gonda
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, 92350, USA
- Department of Basic Sciences, Division of Anatomy, Loma Linda University, Loma Linda, California, 92350, USA
| | - Janviere Kabagwira
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, 92350, USA
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, 92350, USA
| | - Girish N. Senthil
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, 92350, USA
| | - Heather R. Ferguson Bennit
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, 92350, USA
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, 92350, USA
| | - Jonathan W. Neidigh
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, 92350, USA
| | - Salma Khan
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, 92350, USA
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, 92350, USA
| | - Nathan R. Wall
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, 92350, USA
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, 92350, USA
| |
Collapse
|
47
|
SAHA and cisplatin sensitize gastric cancer cells to doxorubicin by induction of DNA damage, apoptosis and perturbation of AMPK-mTOR signalling. Exp Cell Res 2018; 370:283-291. [PMID: 29959912 DOI: 10.1016/j.yexcr.2018.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022]
Abstract
Chemotherapy remains the most prescribed anti-cancer therapy, despite patients suffering severe side effects and frequently developing chemoresistance. These complications can be partially overcome by combining different chemotherapeutic agents that target multiple biological pathways. However, selecting efficacious drug combinations remains challenging. We previously used fission yeast Schizosaccharomycespombe as a surrogate model to predict drug combinations, and showed that suberoylanilide hydroxamic acid (SAHA) and cisplatin can sensitise gastric adenocarcinoma cells toward the cytotoxic effects of doxorubicin. Yet, how this combination undermines cell viability is unknown. Here, we show that SAHA and doxorubicin markedly enhance the cleavage of two apoptosis markers, caspase 3 and poly-ADP ribose polymerase (PARP-1), and increase the phosphorylation of γH2AX, a marker of DNA damage. Further, we found a prominent reduction in Ser485 phosphorylation of AMP-dependent protein kinase (AMPK), and reductions in its target mTOR and downstream ribosomal protein S6 phosphorylation. We show that SAHA contributes most of the effect, as confirmed using another histone deacetylase inhibitor, trichostatin A. Overall, our results show that the combination of SAHA and doxorubicin can induce apoptosis in gastric adenocarcinoma in a synthetically lethal manner, and that fission yeast offers an efficient tool for identifying potent drug combinations against human cancer cells.
Collapse
|
48
|
McMullen JRW, Selleck M, Wall NR, Senthil M. Peritoneal carcinomatosis: limits of diagnosis and the case for liquid biopsy. Oncotarget 2018; 8:43481-43490. [PMID: 28415645 PMCID: PMC5522163 DOI: 10.18632/oncotarget.16480] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/15/2017] [Indexed: 12/28/2022] Open
Abstract
Peritoneal Carcinomatosis (PC) is a late stage manifestation of several gastrointestinal malignancies including appendiceal, colorectal, and gastric cancer. In PC, tumors metastasize to and deposit on the peritoneal surface and often leave patients with only palliative treatment options. For colorectal PC, median survival is approximately five months, and palliative systemic therapy is able to extend this to approximately 12 months. However, cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) with a curative intent is possible in some patients with limited tumor burden. In well-selected patients undergoing complete cytoreduction, median survival has been reported as high as 63 month. Identifying patients earlier who are either at risk for, or who have recently developed PC may provide them with additional treatment options such as CRS/HIPEC. PC is diagnosed late by imaging findings or often times during an invasive procedures such as laparoscopy or laparotomy. In order to improve the outcomes of PC patients, a minimally invasive, accurate, and specific PC screening method needs to be developed. By utilizing circulating PC biomarkers in the serum of patients, a “liquid biopsy,” may be able to be generated to allow a tailored treatment plan and early intervention. Exosomes, stable patient-derived nanovesicles present in blood, urine, and many other bodily fluids, show promise as a tool for the evaluation of labile biomarkers. If liquid biopsies can be perfected in PC, manifestations of this cancer may be more effectively treated, thus offering improved survival.
Collapse
Affiliation(s)
- James R W McMullen
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Matthew Selleck
- Department of Surgery, Division of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Nathan R Wall
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Maheswari Senthil
- Department of Surgery, Division of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| |
Collapse
|
49
|
Survivin-Based Treatment Strategies for Squamous Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19040971. [PMID: 29587347 PMCID: PMC5979467 DOI: 10.3390/ijms19040971] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Survivin, an anti-apoptotic molecule abundantly expressed in most human neoplasms, has been reported to contribute to cancer initiation and drug resistance in a wide variety of human tumors. Efficient downregulation of survivin can sensitize tumor cells to various therapeutic interventions, generating considerable efforts in its validation as a new target in cancer therapy. This review thoroughly analyzes up-to-date information on the potential of survivin as a therapeutic target for new anticancer treatments. The literature dealing with the therapeutic targeting of survivin will be reviewed, discussing specifically squamous cell carcinomas (SCCs), and with emphasis on the last clinical trials. This review gives insight into the recent developments undertaken in validating various treatment strategies that target survivin in SCCs and analyze the translational possibility, identifying those strategies that seem to be the closest to being incorporated into clinical practice. The most recent developments, such as dominant-negative survivin mutants, RNA interference, anti-sense oligonucleotides, small-molecule inhibitors, and peptide-based immunotherapy, seem to be helpful for effectively downregulating survivin expression and reducing tumor growth potential, increasing the apoptotic rate, and sensitizing tumor cells to chemo- and radiotherapy. However, selective and efficient targeting of survivin in clinical trials still poses a major challenge.
Collapse
|
50
|
Khan S, Simpson J, Lynch JC, Turay D, Mirshahidi S, Gonda A, Sanchez TW, Casiano CA, Wall NR. Racial differences in the expression of inhibitors of apoptosis (IAP) proteins in extracellular vesicles (EV) from prostate cancer patients. PLoS One 2017; 12:e0183122. [PMID: 28981528 PMCID: PMC5628787 DOI: 10.1371/journal.pone.0183122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022] Open
Abstract
African-American men with prostate cancer typically develop more aggressive tumors than men from other racial/ethnic groups, resulting in a disproportionately high mortality from this malignancy. This study evaluated differences in the expression of inhibitors of apoptosis proteins (IAPs), a known family of oncoproteins, in blood-derived exosomal vesicles (EV) between African-American and European-American men with prostate cancer. The ExoQuick™ method was used to isolate EV from both plasma and sera of African-American (n = 41) and European-American (n = 31) men with prostate cancer, as well as from controls with no cancer diagnosis (n = 10). EV preparations were quantified by acetylcholinesterase activity assays, and assessed for their IAP content by Western blotting and densitometric analysis. Circulating levels of the IAP Survivin were evaluated by ELISA. We detected a significant increase in the levels of circulating Survivin in prostate cancer patients compared to controls (P<0.01), with the highest levels in African-American patients (P<0.01). African-American patients with prostate cancer also contained significantly higher amounts of EVs in their plasma (P<0.01) and sera (P<0.05) than European-American patients. In addition, EVs from African-American patients with prostate cancer contained significantly higher amounts of the IAPs Survivin (P<0.05), XIAP (P<0.001), and cIAP-2 (P<0.01) than EVs from European-American patients. There was no significant correlation between expression of IAPs and clinicopathological parameters in the two patient groups. Increased expression of IAPs in EVs from African-American patients with prostate cancer may influence tumor aggressiveness and contribute to the mortality disparity observed in this patient population. EVs could serve as reservoirs of novel biomarkers and therapeutic targets that may have clinical utility in reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Salma Khan
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Jennifer Simpson
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - James C. Lynch
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - David Turay
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Saied Mirshahidi
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
- Cancer Center and Biospecimen Laboratory, Loma Linda University School of Medicine, Loma Linda, California
| | - Amber Gonda
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Tino W. Sanchez
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Carlos A. Casiano
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Nathan R. Wall
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|