1
|
Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel) 2021; 10:antiox10020313. [PMID: 33669824 PMCID: PMC7923022 DOI: 10.3390/antiox10020313] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are a chemically defined group of reactive molecules derived from molecular oxygen. ROS are involved in a plethora of processes in cells in all domains of life, ranging from bacteria, plants and animals, including humans. The importance of ROS for macrophage-mediated immunity is unquestioned. Their functions comprise direct antimicrobial activity against bacteria and parasites as well as redox-regulation of immune signaling and induction of inflammasome activation. However, only a few studies have performed in-depth ROS analyses and even fewer have identified the precise redox-regulated target molecules. In this review, we will give a brief introduction to ROS and their sources in macrophages, summarize the versatile roles of ROS in direct and indirect antimicrobial immune defense, and provide an overview of commonly used ROS probes, scavengers and inhibitors.
Collapse
|
2
|
Wang LY, Zhao S, Lv GJ, Ma XJ, Zhang JB. Mechanisms of resveratrol in the prevention and treatment of gastrointestinal cancer. World J Clin Cases 2020; 8:2425-2437. [PMID: 32607320 PMCID: PMC7322414 DOI: 10.12998/wjcc.v8.i12.2425] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the leading causes of cancer-related deaths worldwide. According to the Global Cancer Statistics, colorectal cancer is the second leading cause of cancer-related mortality, closely followed by gastric cancer (GC). Environmental, dietary, and lifestyle factors including cigarette smoking, alcohol intake, and genetics are the most important risk factors for GI cancer. Furthermore, infections caused by Helicobacter pylori are a major cause of GC initiation. Despite improvements in conventional therapies, including surgery, chemotherapy, and radiotherapy, the length or quality of life of patients with advanced GI cancer is still poor because of delayed diagnosis, recurrence and side effect. Resveratrol (3, 4, 5-trihydroxy-trans-stilbene; Res), a natural polyphenolic compound, reportedly has various pharmacologic functions including anti-oxidant, anti-inflammatory, anti-cancer, and cardioprotective functions. Many studies have demonstrated that Res also exerts a chemopreventive effect on GI cancer. Research investigating the anti-cancer mechanism of Res for the prevention and treatment of GI cancer has implicated multiple pathways including oxidative stress, cell proliferation, and apoptosis. Therefore, this paper provides a review of the function and molecular mechanisms of Res in the prevention and treatment of GI cancer.
Collapse
Affiliation(s)
- Li-Yan Wang
- Department of Pharmacy, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Shan Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Guo-Jun Lv
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Xiao-Jun Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Jian-Bin Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
3
|
Elliot A, Myllymäki H, Feng Y. Inflammatory Responses during Tumour Initiation: From Zebrafish Transgenic Models of Cancer to Evidence from Mouse and Man. Cells 2020; 9:cells9041018. [PMID: 32325966 PMCID: PMC7226149 DOI: 10.3390/cells9041018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The zebrafish is now an important model organism for cancer biology studies and provides unique and complementary opportunities in comparison to the mammalian equivalent. The translucency of zebrafish has allowed in vivo live imaging studies of tumour initiation and progression at the cellular level, providing novel insights into our understanding of cancer. Here we summarise the available transgenic zebrafish tumour models and discuss what we have gleaned from them with respect to cancer inflammation. In particular, we focus on the host inflammatory response towards transformed cells during the pre-neoplastic stage of tumour development. We discuss features of tumour-associated macrophages and neutrophils in mammalian models and present evidence that supports the idea that these inflammatory cells promote early stage tumour development and progression. Direct live imaging of tumour initiation in zebrafish models has shown that the intrinsic inflammation induced by pre-neoplastic cells is tumour promoting. Signals mediating leukocyte recruitment to pre-neoplastic cells in zebrafish correspond to the signals that mediate leukocyte recruitment in mammalian tumours. The activation state of macrophages and neutrophils recruited to pre-neoplastic cells in zebrafish appears to be heterogenous, as seen in mammalian models, which provides an opportunity to study the plasticity of innate immune cells during tumour initiation. Although several potential mechanisms are described that might mediate the trophic function of innate immune cells during tumour initiation in zebrafish, there are several unknowns that are yet to be resolved. Rapid advancement of genetic tools and imaging technologies for zebrafish will facilitate research into the mechanisms that modulate leukocyte function during tumour initiation and identify targets for cancer prevention.
Collapse
Affiliation(s)
| | | | - Yi Feng
- Correspondence: ; Tel.: +44-(0)131-242-6685
| |
Collapse
|
4
|
Microbial Sensing by Intestinal Myeloid Cells Controls Carcinogenesis and Epithelial Differentiation. Cell Rep 2020; 24:2342-2355. [PMID: 30157428 PMCID: PMC6177233 DOI: 10.1016/j.celrep.2018.07.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/24/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Physiologic microbe-host interactions in the intestine require the maintenance of the microbiota in a luminal compartment through a complex interplay between epithelial and immune cells. However, the roles of mucosal myeloid cells in this process remain incompletely understood. In this study, we identified that decreased myeloid cell phagocytic activity promotes colon tumorigenesis. We show that this is due to bacterial accumulation in the lamina propria and present evidence that the underlying mechanism is bacterial induction of prostaglandin production by myeloid cells. Moreover, we show that similar events in the normal colonic mucosa lead to reductions in Tuft cells, goblet cells, and the mucus barrier of the colonic epithelium. These alterations are again linked to the induction of prostaglandin production in response to bacterial penetration of the mucosa. Altogether, our work highlights immune cell-epithelial cell interactions triggered by the microbiota that control intestinal immunity, epithelial differentiation, and carcinogenesis.
Collapse
|
5
|
Shrivastava R, Shukla N. Attributes of alternatively activated (M2) macrophages. Life Sci 2019; 224:222-231. [PMID: 30928403 DOI: 10.1016/j.lfs.2019.03.062] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023]
Abstract
Macrophages are cells of innate immunity and are derived from circulating monocytes and embryonic yolk sac. They exhibit high plasticity and polarize functionally in response to stimulus triggering it into classically activated M1 macrophages and alternatively activated M2 macrophages. This review summarizes markers of M2 macrophages like transmembrane surface receptors and signaling cascades initiated on their activation; cytokine and chemokine repertoires along with their receptors; and genetic markers and their involvement in immunomodulation. The detailed discussion emphasizes the role of these markers in imparting functional benefits to this subset of macrophages which define their venture in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan 333031, India.
| | - Nidhi Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| |
Collapse
|
6
|
Wu T, Dai Y, Wang W, Teng G, Jiao H, Shuai X, Zhang R, Zhao P, Qiao L. Macrophage targeting contributes to the inhibitory effects of embelin on colitis-associated cancer. Oncotarget 2017; 7:19548-58. [PMID: 26799669 PMCID: PMC4991400 DOI: 10.18632/oncotarget.6969] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/06/2016] [Indexed: 02/06/2023] Open
Abstract
Macrophages are a major component of inflammatory and tumor microenvironment. We previously reported that embelin suppresses colitis-associated tumorigenesis. Here, the role of macrophage targeting in the anti-inflammatory and anti-tumor properties of embelin was investigated. By using colitis-associated cancer (CAC) model, we demonstrated that embelin significantly depleted colon macrophages by blocking their recruitment. Moreover, embelin attenuated M2-like polarization of macrophages within the tumor microenvironment and eliminated their tumor-promoting functions during the development of CAC. Embelin potently inhibited NF-κB signaling in macrophages and decreased the production of key pro-inflammatory cytokines and tumorigenic factors involved in CAC, such as TNFα, IL-6 and COX-2. In addition, embelin directly reduced the polarization of M2 macrophages in vitro even in the presence of Th2 cytokines. These results suggested that targeting macrophages is, at least in part, responsible for the anti-tumor activity of embelin in CAC. Our observations strengthen the rationale for future validation of embelin in the prevention and treatment of CAC
Collapse
Affiliation(s)
- Ting Wu
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Weihong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Guigen Teng
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Hongmei Jiao
- Department of Gerontology, Peking University First Hospital, Beijing 100034, China
| | - Xiaowei Shuai
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Rongxin Zhang
- Research Center of Basic Medical Sciences and Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Peng Zhao
- Department of Colorectal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
7
|
Tóth Š, Jonecová Z, Čurgali K, Maretta M, Šoltés J, Švaňa M, Kalpadikis T, Caprnda M, Adamek M, Rodrigo L, Kruzliak P. Quercetin attenuates the ischemia reperfusion induced COX-2 and MPO expression in the small intestine mucosa. Biomed Pharmacother 2017; 95:346-354. [DOI: 10.1016/j.biopha.2017.08.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
8
|
Hull MA, Cuthbert RJ, Ko CWS, Scott DJ, Cartwright EJ, Hawcroft G, Perry SL, Ingram N, Carr IM, Markham AF, Bonifer C, Coletta PL. Paracrine cyclooxygenase-2 activity by macrophages drives colorectal adenoma progression in the Apc Min/+ mouse model of intestinal tumorigenesis. Sci Rep 2017; 7:6074. [PMID: 28729694 PMCID: PMC5519705 DOI: 10.1038/s41598-017-06253-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/12/2017] [Indexed: 01/29/2023] Open
Abstract
Genetic deletion or pharmacological inhibition of cyclooxygenase (COX)-2 abrogates intestinal adenoma development at early stages of colorectal carcinogenesis. COX-2 is localised to stromal cells (predominantly macrophages) in human and mouse intestinal adenomas. Therefore, we tested the hypothesis that paracrine Cox-2-mediated signalling from macrophages drives adenoma growth and progression in vivo in the ApcMin/+ mouse model of intestinal tumorigenesis. Using a transgenic C57Bl/6 mouse model of Cox-2 over-expression driven by the chicken lysozyme locus (cLys-Cox-2), which directs integration site-independent, copy number-dependent transgene expression restricted to macrophages, we demonstrated that stromal macrophage Cox-2 in colorectal (but not small intestinal) adenomas from cLys-Cox-2 x ApcMin/+ mice was associated with significantly increased tumour size (P = 0.025) and multiplicity (P = 0.025), compared with control ApcMin/+ mice. Transgenic macrophage Cox-2 expression was associated with increased dysplasia, epithelial cell Cox-2 expression and submucosal tumour invasion, as well as increased nuclear β-catenin translocation in dysplastic epithelial cells. In vitro studies confirmed that paracrine macrophage Cox-2 signalling drives catenin-related transcription in intestinal epithelial cells. Paracrine macrophage Cox-2 activity drives growth and progression of ApcMin/+ mouse colonic adenomas, linked to increased epithelial cell β-catenin dysregulation. Stromal cell (macrophage) gene regulation and signalling represent valid targets for chemoprevention of colorectal cancer.
Collapse
Affiliation(s)
- Mark A Hull
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom.
| | - Richard J Cuthbert
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - C W Stanley Ko
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Daniel J Scott
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Elizabeth J Cartwright
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Gillian Hawcroft
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Sarah L Perry
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Nicola Ingram
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Ian M Carr
- Section of Translational Medicine, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Alexander F Markham
- Section of Translational Medicine, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Constanze Bonifer
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - P Louise Coletta
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| |
Collapse
|
9
|
Fang M, Li Y, Huang K, Qi S, Zhang J, Zgodzinski W, Majewski M, Wallner G, Gozdz S, Macek P, Kowalik A, Pasiarski M, Grywalska E, Vatan L, Nagarsheth N, Li W, Zhao L, Kryczek I, Wang G, Wang Z, Zou W, Wang L. IL33 Promotes Colon Cancer Cell Stemness via JNK Activation and Macrophage Recruitment. Cancer Res 2017; 77:2735-2745. [PMID: 28249897 DOI: 10.1158/0008-5472.can-16-1602] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/12/2016] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
Abstract
The expression and biological role of IL33 in colon cancer is poorly understood. In this study, we show that IL33 is expressed by vascular endothelial cells and tumor cells in the human colon cancer microenvironment. Administration of human IL33 and overexpression of murine IL33 enhanced human and murine colon cancer cell growth in vivo, respectively. IL33 stimulated cell sphere formation and prevented chemotherapy-induced tumor apoptosis. Mechanistically, IL33 activated core stem cell genes NANOG, NOTCH3, and OCT3/4 via the ST2 signaling pathway, and induced phosphorylation of c-Jun N terminal kinase (JNK) activation and enhanced binding of c-Jun to the promoters of the core stem cell genes. Moreover, IL33 recruited macrophages into the cancer microenvironment and stimulated them to produce prostaglandin E2, which supported colon cancer stemness and tumor growth. Clinically, tumor IL33 expression associated with poor survival in patients with metastatic colon cancer. Thus, IL33 dually targets tumor cells and macrophages and endows stem-like qualities to colon cancer cells to promote carcinogenesis. Collectively, our work reveals an immune-associated mechanism that extrinsically confers cancer cell stemness properties. Targeting the IL33 signaling pathway may offer an opportunity to treat patients with metastatic cancer. Cancer Res; 77(10); 2735-45. ©2017 AACR.
Collapse
Affiliation(s)
- Min Fang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongkui Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Qi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Witold Zgodzinski
- The Second Department of General Surgery, Medical University in Lublin, Lublin, Poland
| | - Marek Majewski
- The Second Department of General Surgery, Medical University in Lublin, Lublin, Poland
| | - Grzegorz Wallner
- The Second Department of General Surgery, Medical University in Lublin, Lublin, Poland
| | | | | | | | | | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University in Lublin, Lublin, Poland
| | - Linda Vatan
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Nisha Nagarsheth
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Wei Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Ilona Kryczek
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Jackstadt R, Sansom OJ. Mouse models of intestinal cancer. J Pathol 2016; 238:141-51. [PMID: 26414675 PMCID: PMC4832380 DOI: 10.1002/path.4645] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Murine models of intestinal cancer are powerful tools to recapitulate human intestinal cancer, understand its biology and test therapies. With recent developments identifying the importance of the tumour microenvironment and the potential for immunotherapy, autochthonous genetically engineered mouse models (GEMMs) will remain an important part of preclinical studies for the foreseeable future. This review will provide an overview of the current mouse models of intestinal cancer, from the Apc(Min/+) mouse, which has been used for over 25 years, to the latest 'state-of-the-art' organoid models. We discuss here how these models have been used to define fundamental processes involved in tumour initiation and the attempts to generate metastatic models, which is the ultimate cause of cancer mortality. Together these models will provide key insights to understand this complex disease and hopefully will lead to the discovery of new therapeutic strategies.
Collapse
|
11
|
Dhall S, Wijesinghe DS, Karim ZA, Castro A, Vemana HP, Khasawneh FT, Chalfant CE, Martins-Green M. Arachidonic acid-derived signaling lipids and functions in impaired healing. Wound Repair Regen 2015; 23:644-56. [PMID: 26135854 DOI: 10.1111/wrr.12337] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022]
Abstract
Very little is known about lipid function during wound healing, and much less during impaired healing. Such understanding will help identify what roles lipid signaling plays in the development of impaired/chronic wounds. We took a lipidomics approach to study the alterations in lipid profile in the LIGHT(-/-) mouse model of impaired healing which has characteristics that resemble those of impaired/chronic wounds in humans, including high levels of oxidative stress, excess inflammation, increased extracellular matrix degradation and blood vessels with fibrin cuffs. The latter suggests excess coagulation and potentially increased platelet aggregation. We show here that in these impaired wounds there is an imbalance in the arachidonic acid (AA) derived eicosonoids that mediate or modulate inflammatory reactions and platelet aggregation. In the LIGHT(-/-) impaired wounds there is a significant increase in enzymatically derived breakdown products of AA. We found that early after injury there was a significant increase in the eicosanoids 11-, 12-, and 15-hydroxyeicosa-tetranoic acid, and the proinflammatory leukotrienes (LTD4 and LTE) and prostaglandins (PGE2 and PGF2α ). Some of these eicosanoids also promote platelet aggregation. This led us to examine the levels of other eicosanoids known to be involved in the latter process. We found that thromboxane (TXA2 /B2 ), and prostacyclins 6kPGF1α are elevated shortly after wounding and in some cases during healing. To determine whether they have an impact in platelet aggregation and hemostasis, we tested LIGHT(-/-) mouse wounds for these two parameters and found that, indeed, platelet aggregation and hemostasis are enhanced in these mice when compared with the control C57BL/6 mice. Understanding lipid signaling in impaired wounds can potentially lead to development of new therapeutics or in using existing nonsteroidal anti-inflammatory agents to help correct the course of healing.
Collapse
Affiliation(s)
- Sandeep Dhall
- Department of Cell Biology and Neuroscience, University of California, Riverside, California.,Department of Bioengineering Interdepartmental Graduate Program, University of California, Riverside, California
| | - Dayanjan Shanaka Wijesinghe
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia.,Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia.,The Massey Cancer Center, Richmond, VA, Virginia Commonwealth University, Richmond, Virginia.,Virginia Commonwealth University Reanimation Engineering Science Center (VCURES)
| | - Zubair A Karim
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Anthony Castro
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Fadi T Khasawneh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Charles E Chalfant
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia.,The Massey Cancer Center, Richmond, VA, Virginia Commonwealth University, Richmond, Virginia.,Virginia Commonwealth University Reanimation Engineering Science Center (VCURES).,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, California.,Department of Bioengineering Interdepartmental Graduate Program, University of California, Riverside, California
| |
Collapse
|
12
|
Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. J Transl Med 2015; 95:296-307. [PMID: 25545478 DOI: 10.1038/labinvest.2014.161] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022] Open
Abstract
Intestinal dysbiosis has been reported in patients with colorectal cancer, and there is a high prevalence of Escherichia coli belonging to B2 phylogroup and producing a genotoxin, termed colibactin. Macrophages are one of the predominant tumor-infiltrating immune cells supporting key processes in tumor progression by producing protumoral factors such as cyclooxygenase-2 (COX-2). Here, we investigated whether B2 E. coli colonizing colon tumors could influence protumoral activities of macrophages. In contrast to commensal or nonpathogenic E. coli strains that were efficiently and rapidly degraded by macrophages at 24 h after infection, colon cancer-associated E. coli were able to resist killing by human THP-1 macrophages, to replicate intracellularly, and to persist inside host cells until at least 72 h after infection. Significant increases in COX-2 expression were observed in macrophages infected with colon cancer E. coli compared with macrophages infected with commensal and nonpathogenic E. coli strains or uninfected cells at 72 h after infection. Induction of COX-2 expression required live bacteria and was not due to colibactin production, as similar COX-2 levels were observed in macrophages infected with the wild-type colon cancer-associated E. coli 11G5 strain or a clbQ mutant unable to produce colibactin. Treatment of macrophages with ofloxacin, an antibiotic with intracellular tropism, efficiently decreased the number of intracellular bacteria and suppressed bacteria-induced COX-2 expression. This study provides new insights into the understanding of how tumor- infiltrating bacteria could influence cancer progression through their interaction with immune cells. Manipulation of microbes associated with tumors could have a deep influence on the secretion of protumoral molecules by infiltrating macrophages.
Collapse
|
13
|
Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. LABORATORY INVESTIGATION; A JOURNAL OF TECHNICAL METHODS AND PATHOLOGY 2014. [PMID: 25545478 DOI: 10.1038/labinvest.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intestinal dysbiosis has been reported in patients with colorectal cancer, and there is a high prevalence of Escherichia coli belonging to B2 phylogroup and producing a genotoxin, termed colibactin. Macrophages are one of the predominant tumor-infiltrating immune cells supporting key processes in tumor progression by producing protumoral factors such as cyclooxygenase-2 (COX-2). Here, we investigated whether B2 E. coli colonizing colon tumors could influence protumoral activities of macrophages. In contrast to commensal or nonpathogenic E. coli strains that were efficiently and rapidly degraded by macrophages at 24 h after infection, colon cancer-associated E. coli were able to resist killing by human THP-1 macrophages, to replicate intracellularly, and to persist inside host cells until at least 72 h after infection. Significant increases in COX-2 expression were observed in macrophages infected with colon cancer E. coli compared with macrophages infected with commensal and nonpathogenic E. coli strains or uninfected cells at 72 h after infection. Induction of COX-2 expression required live bacteria and was not due to colibactin production, as similar COX-2 levels were observed in macrophages infected with the wild-type colon cancer-associated E. coli 11G5 strain or a clbQ mutant unable to produce colibactin. Treatment of macrophages with ofloxacin, an antibiotic with intracellular tropism, efficiently decreased the number of intracellular bacteria and suppressed bacteria-induced COX-2 expression. This study provides new insights into the understanding of how tumor- infiltrating bacteria could influence cancer progression through their interaction with immune cells. Manipulation of microbes associated with tumors could have a deep influence on the secretion of protumoral molecules by infiltrating macrophages.
Collapse
|
14
|
Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol 2014; 5:127. [PMID: 24723924 PMCID: PMC3972476 DOI: 10.3389/fimmu.2014.00127] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/12/2014] [Indexed: 12/12/2022] Open
Abstract
Macrophages are extremely versatile cells that adopt a distinct phenotype in response to a changing microenvironment. Consequently, macrophages are involved in diverse functions, ranging from organogenesis and tissue homeostasis to recognition and destruction of invading pathogens. In cancer, tumor-associated macrophages (TAM) often contribute to tumor progression by increasing cancer cell migration and invasiveness, stimulating angiogenesis, and suppressing anti-tumor immunity. Accumulating evidence suggests that these different functions could be exerted by specialized TAM subpopulations. Here, we discuss the potential underlying mechanisms regulating TAM specialization and elaborate on TAM heterogeneity in terms of their ontogeny, activation state, and intra-tumoral localization. In addition, parallels are drawn between TAM and macrophages in other tissues. Together, a better understanding of TAM diversity could provide a rationale for novel strategies aimed at targeting the most potent tumor-supporting macrophages.
Collapse
Affiliation(s)
- Eva Van Overmeire
- Myeloid Cell Immunology Laboratory, VIB , Brussels , Belgium ; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels , Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Laboratory, VIB , Brussels , Belgium ; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels , Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Laboratory, VIB , Brussels , Belgium ; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels , Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB , Brussels , Belgium ; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels , Belgium
| | - Adelaida Sarukhan
- Myeloid Cell Immunology Laboratory, VIB , Brussels , Belgium ; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels , Belgium ; Institut national de la santé et de la recherche médicale , Paris , France
| |
Collapse
|
15
|
Cherukuri DP, Ishikawa TO, Chun P, Catapang A, Elashoff D, Grogan TR, Bugni J, Herschman HR. Targeted Cox2 gene deletion in intestinal epithelial cells decreases tumorigenesis in female, but not male, ApcMin/+ mice. Mol Oncol 2013; 8:169-77. [PMID: 24268915 DOI: 10.1016/j.molonc.2013.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 01/03/2023] Open
Abstract
Mice heterozygous for mutations in the adenomatous polyposis coli gene (Apc(+/-) mice) develop intestinal neoplasia. Apc(+/-) tumor formation is thought to be dependent on cyclooxygenase 2 (COX2) expression; both pharmacologic COX2 inhibition and global Cox2 gene deletion reduce the number of intestinal tumors in Apc(+/-) mice. COX2 expression is reported in epithelial cells, fibroblasts, macrophages and endothelial cells of Apc(+/-) mouse polyps. However, the cell type(s) in which COX2 expression is required for Apc(+/-) tumor induction is not known. To address this question, we developed Apc(Min/+) mice in which the Cox2 gene is specifically deleted either in intestinal epithelial cells or in myeloid cells. There is no significant difference in intestinal polyp number between Apc(Min/+) mice with a targeted Cox2 gene deletion in myeloid cells and their control littermate Apc(Min/+) mice. In contrast, Apc(Min/+) mice with a targeted Cox2 deletion in intestinal epithelial cells have reduced intestinal tumorigenesis when compared to their littermate control Apc(Min/+) mice. However, two gender-specific effects are notable. First, female Apc(Min/+) mice developed more intestinal tumors than male Apc(Min/+) mice. Second, targeted intestinal epithelial cell Cox2 deletion decreased tumorigenesis in female, but not in male, Apc(Min/+) mice. Considered in the light of pharmacologic studies and studies with global Cox2 gene knockout mice, our data suggest that (i) intrinsic COX2 expression in intestinal epithelial cells plays a gender-specific role in tumor development in Apc(Min/+) mice, and (ii) COX2 expression in cell type(s) other than intestinal epithelial cells also modulates intestinal tumorigenesis in Apc(Min/+) mice, by a paracrine process.
Collapse
Affiliation(s)
- Durga P Cherukuri
- Department of Molecular and Medical Pharmacology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tomo-O Ishikawa
- Department of Molecular and Medical Pharmacology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Patrick Chun
- Department of Molecular and Medical Pharmacology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Art Catapang
- Department of Molecular and Medical Pharmacology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - James Bugni
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Harvey R Herschman
- Department of Molecular and Medical Pharmacology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Hedin L, Rask K, Zhu Y, Wickman A, Wang W, Brevinge H, Thörn M, Pontén F, Sundfeldt K. Role of prostaglandins in colorectal tumorigenesis: Localization and expression of COX-1, COX-2, microsomal Prostaglandin E Synthase-1 and the EP2 receptor. AVICENNA 2013. [DOI: 10.5339/avi.2013.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Background: Prostaglandins, in particular prostaglandin E2 (PGE2), are elevated in adenomas and colorectal cancers (CRC). Experimental and epidemiological studies have demonstrated reduced incidence of adenomas and CRC by inhibitors of prostanoid synthesis (NSAIDs). This study aimed to characterize the expression and localization of key enzymes/receptors for PGE2 synthesis in adenomas and CRC in comparison to normal colon. Methods: Immunoblotting and immunohistochemistry were used for semi-quantitative and qualitative analysis of COX-1, COX-2, mPGES-1 and the EP2 receptor in biopsies from patients undergoing resection of adenomas or surgery for CRC (Dukes' A-C). Normal colon served as control for the corresponding tumor in each of the CRC patients. Results: COX-1 was decreased significantly in all groups of CRC (Dukes' A-C) compared to normal colon. In contrast, COX-2 was increased, but only in the combined group of CRC. Microsomal PGES-1 was increased in CRC (Duke's B), and EP2 was augmented in adenomas and CRC. The localization was predominantly epithelial in normal colon and in adenomas, while in CRC both epithelial- and stromal expression was demonstrated. Conclusions: The results support the PGE2- pathway, with epithelial- stromal interactions, in the evolvement of adenomas and in the progression of CRC. Co-expression of COX-1 and COX-2 is in line with the preventive effects of non-specific NSAIDs on adenoma formation. The decrease of COX-1, in combination with an increase of COX-2, favors the potential use of selective COX-2 inhibitors as an adjunct therapy in CRC.
Collapse
Affiliation(s)
- Lars Hedin
- 1The Primary Health Care Center, Sandvaktaregtan 15, 296 35 Åhus, Sweden
| | - Katarina Rask
- 2Center for Physiology and Bio-Imaging (CPI), The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yihong Zhu
- 3Department of Obstetrics and Gynecology, The Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Wickman
- 2Center for Physiology and Bio-Imaging (CPI), The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wanzhong Wang
- 4Department of Urology, The Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Brevinge
- 5Department of Surgery, The Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Thörn
- 6Department of Surgery, Stockholm South General Hospital, 118 83 Stockholm, Sweden
| | - Fredrik Pontén
- 7Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Karin Sundfeldt
- 3Department of Obstetrics and Gynecology, The Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Jiang L, Yang S, Yin H, Fan X, Wang S, Yao B, Pozzi A, Chen X, Harris RC, Zhang MZ. Epithelial-specific deletion of 11β-HSD2 hinders Apcmin/+ mouse tumorigenesis. Mol Cancer Res 2013; 11:1040-50. [PMID: 23741059 DOI: 10.1158/1541-7786.mcr-13-0084-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) promotes colorectal tumorigenesis. Glucocorticoids are endogenous and potent COX-2 inhibitors, and their local actions are downregulated by 11β-hydroxysteroid dehydrogenase type II (11β-HSD2)-mediated metabolism. Previously, it was reported that 11β-HSD2 is increased in human colonic and Apc(min/+) mouse intestinal adenomas and correlated with increased COX-2, and 11β-HSD2 inhibition suppressed the COX-2 pathway and decreased tumorigenesis. Because 11β-HSD2 is expressed in Apc(min/+) mouse intestinal adenoma stromal and epithelial cells, Apc(min/+) mice were generated with selective deletion of 11β-HSD2 in intestinal epithelial cells (Vil-Cre-HSD2(-/-) Apc(min/+)). Deletion of 11β-HSD2 in intestinal epithelia led to marked inhibition of Apc(min/+) mouse intestinal tumorigenesis. Immunostaining indicated decreased 11β-HSD2 and COX-2 expression in adenoma epithelia, whereas stromal COX-2 expression was intact in Vil-Cre-HSD2(-/-) Apc(min/+) mice. In Vil-Cre-HSD2(-/-) Apc(min/+) mouse intestinal adenomas, both p53 and p21 mRNA and protein were increased, with a concomitant decrease in pRb, indicating glucocorticoid-mediated G1-arrest. Further study revealed that REDD1 (regulated in development and DNA damage responses 1), a novel stress-induced gene that inhibits mTOR signaling, was increased, whereas the mTOR signaling pathway was inhibited. Therefore, in Vil-Cre-HSD2(-/-) Apc(min/+) mice, epithelial cell 11β-HSD2 deficiency leads to inhibition of adenoma initiation and growth by attenuation of COX-2 expression, increased cell-cycle arrest, and inhibition of mTOR signaling as a result of increased tumor intracellular active glucocorticoids. IMPLICATIONS Inhibition of 11β-HSD2 may represent a novel approach for colorectal cancer chemoprevention by increasing tumor glucocorticoid activity, which in turn inhibits tumor growth by multiple pathways.
Collapse
Affiliation(s)
- Li Jiang
- Departments of Medicine and Cancer Biology, S-3206, MCN, Vanderbilt University Medical Center, Nashville, TN 37232.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Feng Y, Renshaw S, Martin P. Live imaging of tumor initiation in zebrafish larvae reveals a trophic role for leukocyte-derived PGE₂. Curr Biol 2012; 22:1253-9. [PMID: 22658594 PMCID: PMC3398414 DOI: 10.1016/j.cub.2012.05.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/10/2012] [Accepted: 05/02/2012] [Indexed: 01/01/2023]
Abstract
Epidemiology studies and clinical trials have suggested that the use of non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, can significantly reduce the incidence of and mortality associated with many cancers [1–3], and upregulation of the COX2-PGE2 pathway in tumor microenvironments might drive several aspects of cancer progression [4–6]. For these reasons, the mechanisms linking COX blockade and cancer prevention have long been an area of active investigation [7]. During carcinogenesis, COX-2 is expressed both by malignant epithelial cells [8, 9] and by tumor-associated stromal cells, including macrophages [10–12], but the observation that NSAIDs are most effective in cancer prevention in APCmin/+ mice if the mice are treated from conception [13] suggests that the COX-2/PGE2 pathway might also be critical at the earliest stages of tumor development. In this study we take advantage of the translucency and genetic tractability of zebrafish larvae to investigate the involvement of inflammatory cells at cancer initiation, when transformed cells first arise in tissues. We previously showed that innate immune cells supply early transformed cells with proliferative cues [14] and, by using complementary pharmacological and genetic experiments, we now show that prostaglandin E2 (PGE2) is the trophic signal required for this expansion of transformed cells. Our in vivo observations at these early stages of cancer initiation provide a potential mechanistic explanation for why long-term use of low doses of NSAIDs, including aspirin, might reduce cancer onset.
Collapse
Affiliation(s)
- Yi Feng
- School of Biochemistry and School of Physiology & Pharmacology, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
19
|
The inflammatory network in the gastrointestinal tumor microenvironment: lessons from mouse models. J Gastroenterol 2012; 47:97-106. [PMID: 22218775 DOI: 10.1007/s00535-011-0523-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
Accumulating evidence has indicated that inflammatory responses are important for cancer development. Epidemiological studies have shown that regular use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of colon cancer development. Subsequently, mouse genetic studies have shown that cyclooxygenase (COX)-2, one of the target molecules of NSAIDs, and its downstream product, prostaglandin E(2) (PGE(2)), play an important role in gastrointestinal tumorigenesis. Bacterial infection stimulates the Toll-like receptor (TLR)/MyD88 pathway in tumor tissues, which leads to the induction of COX-2 in stromal cells, including macrophages. Induction of the COX-2/PGE(2) pathway in tumor stroma is important for the development and maintenance of an inflammatory microenvironment in gastrointestinal tumors. In such a microenvironment, tumor-associated macrophages express proinflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-6, and these cytokines, respectively, activate the nuclear factor (NF)-κB and Stat3 transcription factors in epithelial cells, as well as in stromal cells. Recent mouse studies have uncovered the role of such an inflammatory network in the promotion of gastrointestinal tumor development. Genetically engineered and chemically induced mouse tumor models which mimic sporadic or inflammation-associated tumorigenesis were used in these studies. In this review article, we focus on mouse genetic studies using these tumor models, which have contributed to the elucidation of the molecular mechanisms associated with the inflammatory network in gastrointestinal tumors, and we also discuss the role of each pathway in cancer development. The involvement of immune cells such as macrophages, mast cells, and regulatory T cells in tumor promotion is also discussed.
Collapse
|
20
|
Thiel A, Narko K, Heinonen M, Hemmes A, Tomasetto C, Rio MC, Haglund C, Mäkelä TP, Ristimäki A. Inhibition of cyclooxygenase-2 causes regression of gastric adenomas in trefoil factor 1 deficient mice. Int J Cancer 2011; 131:1032-41. [PMID: 22034055 DOI: 10.1002/ijc.27331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/04/2011] [Indexed: 12/13/2022]
Abstract
Cyclooxygenase-2 (Cox-2) expression is a marker of reduced survival in gastric cancer patients, and inhibition of Cox-2 suppresses gastrointestinal carcinogenesis in experimental animal models. To investigate the role of Cox-2 in gastric carcinogenesis in vivo, we utilized trefoil factor 1 (Tff1) deficient mice, which model the neoplastic process of the stomach by developing gastric adenomas with full penetrance. These tumors express Cox-2 protein and mRNA, and we have now investigated the effects of genetic deletion of the mouse Cox-2 gene [also known as prostaglandin-endoperoxide synthase 2 (Ptgs2)] and a Cox-2 selective drug celecoxib. Our results show that genetic deletion of Cox-2 in the Tff1 deleted background resulted in reduced adenoma size and ulceration with a chronic inflammatory reaction at the site of the adenoma. To characterize the effect of Cox-2 inhibition in more detail, mice that had already developed an adenoma were fed with celecoxib for 8-14 weeks, which resulted in disruption of the adenoma that ranged from superficial erosion to deep ulcerated destruction accompanied with chronic inflammation. Importantly, mice fed with celecoxib for 16 weeks, followed by control food for 9 weeks, redeveloped a complete adenoma with no detectable inflammatory process. Finally, we determined the identity of the Cox-2 expressing cells and found them to be fibroblasts. Our results show that inhibition of Cox-2 is sufficient to reversibly disrupt gastric adenomas in mice.
Collapse
Affiliation(s)
- Alexandra Thiel
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and Genome-Scale Biology, Research Program Unit, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Mononuclear phagocytes often function as control switches of the immune system, securing the balance between pro- and anti-inflammatory reactions. For this purpose and depending on the activating stimuli, these cells can develop into different subsets: proinflammatory classically activated (M1) or anti-inflammatory alternatively activated (M2) macrophages. The expression of the nuclear peroxisome proliferator-activated receptors (PPARs) is regulated by M1- or M2-inducing stimuli, and these receptors are generally considered to counteract inflammatory M1 macrophages, while actively promoting M2 activation. This is of importance in a tumor context, where M1 are important initiators of inflammation-driven cancers. As a consequence, PPAR agonists are potentially usefull for inhibiting the early phases of tumorigenesis through their antagonistic effect on M1. In more established tumors, the macrophage phenotype is more diverse, making it more difficult to predict the outcome of PPAR agonism. Overall, in our view current knowledge provides a sound basis for the clinical evaluation of PPAR ligands as chemopreventive agents in chronic inflammation-associated cancer development, while cautioning against the unthoughtful application of these agents as cancer therapeutics.
Collapse
|
22
|
Nakanishi Y, Nakatsuji M, Seno H, Ishizu S, Akitake-Kawano R, Kanda K, Ueo T, Komekado H, Kawada M, Minami M, Chiba T. COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 2011; 32:1333-9. [PMID: 21730361 DOI: 10.1093/carcin/bgr128] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Macrophages are a major component of tumor stroma. Tumor-associated macrophages (TAMs) show anti- (M1) or protumor (M2) functions depending on the cytokine milieu of the tumor microenvironment. Cyclooxygenase-2 (COX-2) is constitutively expressed in a variety of tumors including colorectal cancer. TAMs are known to be a major source of COX-2 in human and mice intestinal tumors. COX-2 inhibitor reduces the number and size of intestinal adenomas in familial adenomatous polyposis patients and Apc(Min/+) mice. Although COX-2 inhibitor is thought to regulate cancer-related inflammation, its effect on TAM phenotype remains unknown. Here, we examined the effects of COX-2 inhibition on TAM phenotype and cytokine expression both in vivo and in vitro. Firstly, the selective COX-2 inhibitor celecoxib changed the TAM phenotype from M2 to M1, in proportion to the reduction in number of Apc(Min/+) mouse polyps. Concomitantly, the expression of M1-related cytokine interfron (IFN)-γ was significantly upregulated by celecoxib, although the M2-related cytokines interleukin (IL)-4, IL-13 and IL-10 were not significantly altered. Secondly, IFN-γ treatment attenuated M2 phenotype of mouse peritoneal macrophages and oriented them to M1 even in the presence of M2-polarizing cytokines such as IL-4, IL-13 and IL-10. Thus, our results suggest that COX-2 inhibition alters TAM phenotype in an IFN-γ-dependent manner and subsequently may reduce intestinal tumor progression.
Collapse
Affiliation(s)
- Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Banu NA, Daly RS, Buda A, Moorghen M, Baker J, Pignatelli M. Reduced tumour progression and angiogenesis in 1,2-dimethylhydrazine mice treated with NS-398 is associated with down-regulation of cyclooxygenase-2 and decreased beta-catenin nuclear localisation. ACTA ACUST UNITED AC 2011; 18:1-8. [PMID: 21679035 DOI: 10.3109/15419061.2011.586754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cyclooxygenase (COX)-2 is a key molecular target of colon cancer prevention. However, the mechanisms by which COX-2 inhibitors confer protective effects against tumour development are not completely understood. The aim of this study was to elucidate the effects of NS-398 in the 1,2-dimethylhydrazine (DMH) mouse model with respect to alteration in the expression of COX-2 and E-cadherin-catenin complex. Alterations in cell proliferation, apoptosis, and vascular density were investigated. NS-398 showed reduced COX-2 immunoreactivity in adenomas with a decrease in vascular density in non-dysplastic mucosa. Adenomas revealed increased E-cadherin and beta-catenin reactivity. NS-398 reduced the percentages of tumour cells with nuclear localisation of beta-catenin and cyclin D1. Bromodeoxyuridine (BrdUrd) index in adenomas was significantly higher in untreated animals. NS-398 resulted in significant increase in apoptosis in adenomas. Our results suggest a protective role of NS-398 on tumour development associated with reduced COX-2 expression, reduced vascular density and perturbation of beta-catenin signalling pathway.
Collapse
Affiliation(s)
- Nahida A Banu
- Division of Histopathology, School of Cellular and Molecular Medicine, Medical Sciences Building and Bristol Royal Infirmary, University Hospitals, Bristol NHS Foundation Trust, University of Bristol , UK
| | | | | | | | | | | |
Collapse
|
24
|
Heijmans J, Büller NV, Muncan V, van den Brink GR. Role of mast cells in colorectal cancer development, the jury is still out. Biochim Biophys Acta Mol Basis Dis 2010; 1822:9-13. [PMID: 21146606 DOI: 10.1016/j.bbadis.2010.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/22/2010] [Accepted: 12/01/2010] [Indexed: 12/11/2022]
Abstract
The link between inflammation and colorectal cancer development is becoming increasingly clear. It had long been recognized that patients with inflammatory bowel disease are at an increased risk of colon cancer. Evidence from experimental animals now also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. Here we discuss the interaction between the immune system and the adenoma to carcinoma sequence with a special emphasis on the role of mast cells which may play a key role in adenoma development. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- J Heijmans
- Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Koçkaya EA, Selmanoğlu G, Kısmet K, Akay MT. Pathological and biochemical effects of therapeutic and supratherapeutic doses of celecoxib in Wistar albino male rats. Drug Chem Toxicol 2010; 33:410-4. [DOI: 10.3109/01480540903575691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Meyer SE, Waltz SE, Goss KH. The Ron receptor tyrosine kinase is not required for adenoma formation in Apc(Min/+) mice. Mol Carcinog 2009; 48:995-1004. [PMID: 19452510 DOI: 10.1002/mc.20551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ron receptor tyrosine kinase is overexpressed in approximately half of all human colon cancers. Increased Ron expression positively correlates with tumor progression, and reduction of Ron levels in human colon adenocarcinoma cells reverses their tumorigenic properties. Nearly all colon tumors demonstrate loss of the adenomatous polyposis coli (APC) tumor suppressor, an early initiating event, subsequently leading to beta-catenin stabilization. To understand the role of Ron in early stage intestinal tumorigenesis, we generated Apc-mutant (Apc(Min/+)) mice with and without Ron signaling. Interestingly, we report here that significantly more Apc(Min/+) Ron-deficient mice developed higher tumor burden than Apc(Min/+) mice with wild-type Ron. Even though baseline levels of intestinal crypt proliferation were increased in the Apc(Min/+) Ron-deficient mice, loss of Ron did not influence tumor size or histological appearance of the Apc(Min/+) adenomas, nor was beta-catenin localization changed compared to Apc(Min/+) mice with Ron. Together, these data suggest that Ron may be important in normal intestinal tissue homeostasis, but that the expression of this receptor is not required for the formation and growth of adenomas in Apc(Min/+) mice.
Collapse
Affiliation(s)
- Sara E Meyer
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
27
|
Backshall A, Alferez D, Teichert F, Wilson ID, Wilkinson RW, Goodlad RA, Keun HC. Detection of metabolic alterations in non-tumor gastrointestinal tissue of the Apc(Min/+) mouse by (1)H MAS NMR spectroscopy. J Proteome Res 2009; 8:1423-30. [PMID: 19159281 DOI: 10.1021/pr800793w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we have used metabolic profiling (metabolomics/metabonomics) via high resolution magic angle spinning (HRMAS) and solution state (1)H NMR spectroscopy to characterize small bowel and colon tissue from the Apc(Min/+) mouse model of early gastrointestinal (GI) tumorigenesis. Multivariate analysis indicated the presence of metabolic differences between the morphologically normal/non-tumor tissue from approximately 10 week-old Apc(Min/+) mice and their wild-type litter mates. The metabolic profile of isolated lamina propria and epithelial cells from the same groups could also be discriminated on the basis of genotype. Accounting for systematic variation in individual metabolite levels across different anatomical regions of the lower GI tract, the metabolic phenotype of Apc(Min/+) lamina propria tissue was defined by significant increases in the phosphocholine/glycerophosphocholine ratio (PC/GPC, +21%) and decreases in GPC (-25%) and the gut-microbial cometabolite dimethylamine (DMA, -40%) relative to wild type. In the whole tissue, elevated lactate (+15%) and myo-inositol (+19%) levels were detected. As the metabolic changes occurred in non-tumor tissue from animals of very low tumor burden (<2 polyps/animal), they are likely to represent the specific consequence of reduced Apc function and very early events in tumorigenesis. The observed increase in PC/GPC ratio has been previously reported with immortalisation and malignant transformation of cells and is consistent with the role of Apc as a tumor suppressor. Phospholipase A2, which hydrolyses phosphatidylcholine to Acyl-GPC, is a known modifier gene of the model phenotype (Mom1), and altered expression of choline phospholipid enzymes has been reported in gut tissue from Apc(Min/+) mice. These results indicate the presence of a metabolic phenotype associated with "field cancerization", highlighting potential biomarkers for monitoring disease progression, for early evaluation of response to chemoprevention, and for predicting the severity of the polyposis phenotype in the Apc(Min/+) model.
Collapse
Affiliation(s)
- Alexandra Backshall
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Iguchi G, Chrysovergis K, Lee SH, Baek SJ, Langenbach R, Eling TE. A reciprocal relationship exists between non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) and cyclooxygenase-2. Cancer Lett 2009; 282:152-8. [PMID: 19375854 DOI: 10.1016/j.canlet.2009.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/15/2022]
Abstract
Non-steroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) and COX-2 are involved in cellular processes such as inflammation, apoptosis, and tumorigenesis. To address the relationship between COX-2 and NAG-1 expression, we investigated the expression of NAG-1 and COX-2 in normal and tumor tissue from human patients, Apc(Min/+) mice, and COX-2(-/-) mice. While COX-2 expression is highly induced in tumor tissue, NAG-1 expression is reduced. Furthermore, PGE(2) reduces NAG-1 while celebrex induces NAG-1 expression. The results suggest that a possible inverse relationship exists between the expression of NAG-1 and COX-2 in tumor formation of colon tissue.
Collapse
Affiliation(s)
- Genzo Iguchi
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, RTP, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
29
|
Yang K, Popova NV, Yang WC, Lozonschi I, Tadesse S, Kent S, Bancroft L, Matise I, Cormier RT, Scherer SJ, Edelmann W, Lipkin M, Augenlicht L, Velcich A. Interaction of Muc2 and Apc on Wnt signaling and in intestinal tumorigenesis: potential role of chronic inflammation. Cancer Res 2008; 68:7313-22. [PMID: 18794118 DOI: 10.1158/0008-5472.can-08-0598] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatic mutations of the adenomatous polyposis coli (APC) gene are initiating events in the majority of sporadic colon cancers. A common characteristic of such tumors is reduction in the number of goblet cells that produce the mucin MUC2, the principal component of intestinal mucus. Consistent with these observations, we showed that Muc2 deficiency results in the spontaneous development of tumors along the entire gastrointestinal tract, independently of deregulated Wnt signaling. To dissect the complex interaction between Muc2 and Apc in intestinal tumorigenesis and to elucidate the mechanisms of tumor formation in Muc2(-/-) mice, we crossed the Muc2(-/-) mouse with two mouse models, Apc(1638N/+) and Apc(Min/+), each of which carries an inactivated Apc allele. The introduction of mutant Muc2 into Apc(1638N/+) and Apc(Min/+) mice greatly increased transformation induced by the Apc mutation and significantly shifted tumor development toward the colon as a function of Muc2 gene dosage. Furthermore, we showed that in compound double mutant mice, deregulation of Wnt signaling was the dominant mechanism of tumor formation. The increased tumor burden in the distal colon of Muc2/Apc double mutant mice was similar to the phenotype observed in Apc(Min/+) mice that are challenged to mount an inflammatory response, and consistent with this, gene expression profiles of epithelial cells from flat mucosa of Muc2-deficient mice suggested that Muc2 deficiency was associated with low levels of subclinical chronic inflammation. We hypothesize that Muc2(-/-) tumors develop through an inflammation-related pathway that is distinct from and can complement mechanisms of tumorigenesis in Apc(+/-) mice.
Collapse
Affiliation(s)
- Kan Yang
- Strang Cancer Center at New York Blood Bank, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 2008; 118:560-70. [PMID: 18219394 DOI: 10.1172/jci32453] [Citation(s) in RCA: 443] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 11/28/2007] [Indexed: 12/11/2022] Open
Abstract
The inflammatory bowel disease ulcerative colitis (UC) frequently progresses to colon cancer. To understand the mechanisms by which UC patients develop colon carcinomas, we used a mouse model of the disease whereby administration of azoxymethane (AOM) followed by repeated dextran sulfate sodium (DSS) ingestion causes severe colonic inflammation and the subsequent development of multiple tumors. We found that treating WT mice with AOM and DSS increased TNF-alpha expression and the number of infiltrating leukocytes expressing its major receptor, p55 (TNF-Rp55), in the lamina propria and submucosal regions of the colon. This was followed by the development of multiple colonic tumors. Mice lacking TNF-Rp55 and treated with AOM and DSS showed reduced mucosal damage, reduced infiltration of macrophages and neutrophils, and attenuated subsequent tumor formation. WT mice transplanted with TNF-Rp55-deficient bone marrow also developed significantly fewer tumors after AOM and DSS treatment than either WT mice or TNF-Rp55-deficient mice transplanted with WT bone marrow. Furthermore, administration of etanercept, a specific antagonist of TNF-alpha, to WT mice after treatment with AOM and DSS markedly reduced the number and size of tumors and reduced colonic infiltration by neutrophils and macrophages. These observations identify TNF-alpha as a crucial mediator of the initiation and progression of colitis-associated colon carcinogenesis and suggest that targeting TNF-alpha may be useful in treating colon cancer in individuals with UC.
Collapse
Affiliation(s)
- Boryana K Popivanova
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Baltgalvis KA, Berger FG, Peña MMO, Davis JM, Carson JA. Effect of exercise on biological pathways in ApcMin/+ mouse intestinal polyps. J Appl Physiol (1985) 2008; 104:1137-43. [PMID: 18239078 DOI: 10.1152/japplphysiol.00955.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many epidemiological studies have demonstrated that level of exercise is associated with reduced colorectal cancer risk. Treadmill training can decrease Apc(Min/+) mouse intestinal polyp number and size, but the mechanisms remain unclear. Understanding the molecular changes in the tumor following exercise training may provide insight on the mechanism by which exercise decreases Apc(Min/+) mouse polyp formation and growth. The purpose of this study was to determine if exercise can modulate Apc(Min/+) mouse intestinal polyp cellular signaling related to tumor formation and growth. Male Apc(Min/+) mice were randomly assigned to control (n = 20) or exercise (n = 20) treatment groups. Exercised mice ran on a treadmill at a moderate intensity (18 m/min, 60 min, 6 days/wk, 5% grade) for 9 wk. Polyps from Apc(Min/+) mice were used to quantify markers of polyp inflammation, apoptosis, and beta-catenin signaling. Exercise decreased the number of macrophages in polyps by 35%. Related to apoptosis, exercise decreased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells by 73% in all polyps. Bax protein expression in polyps was decreased 43% by exercise. beta-Catenin phosphorylation was elevated 3.3-fold in polyps from exercised mice. Moderate-intensity exercise training alters cellular pathways in Apc(Min/+) mouse polyps, and these changes may be related to the exercise-induced reduction in polyp formation and growth.
Collapse
Affiliation(s)
- Kristen A Baltgalvis
- Univ. of South Carolina, Dept. of Exercise Science, Rm. 405A Public Health Research Bldg., 921 Assembly St., Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
32
|
Blanc V, Henderson JO, Newberry RD, Xie Y, Cho SJ, Newberry EP, Kennedy S, Rubin DC, Wang HL, Luo J, Davidson NO. Deletion of the AU-rich RNA binding protein Apobec-1 reduces intestinal tumor burden in Apc(min) mice. Cancer Res 2007; 67:8565-73. [PMID: 17875695 DOI: 10.1158/0008-5472.can-07-1593] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The RNA-specific cytidine deaminase apobec-1 is an AU-rich RNA binding protein that binds the 3' untranslated region (UTR) of cyclooxygenase-2 (Cox-2) mRNA and stabilizes its turnover in vitro. Cox-2 overexpression accompanies intestinal adenoma formation in both humans and mice. Evidence from both genetic deletion studies as well as from pharmacologic inhibition has implicated Cox-2 in the development of intestinal adenomas in experimental animals and in adenomas and colorectal cancer in humans. Here, we show that small intestinal adenoma formation is dramatically reduced in compound Apc(min/+) apobec-1(-/-) mice when compared with the parental Apc(min/+) strain. This reduced tumor burden was found in association with increased small intestinal apoptosis and reduced proliferation in small intestinal crypt-villus units from compound Apc(min/+) apobec-1(-/-) mice. Intestinal adenomas from compound Apc(min/+) apobec-1(-/-) mice showed a <2-fold increase in Cox-2 mRNA abundance and reduced prostaglandin E(2) content compared with adenomas from the parental Apc(min/+) strain. In addition, there was reduced expression in adenomas from compound Apc(min/+) apobec-1(-/-) mice of other mRNAs (including epidermal growth factor receptor, peroxisome proliferator-activated receptor delta, prostaglandin receptor EP4, and c-myc), each containing the apobec-1 consensus binding site within their 3'-UTR. Adenovirus-mediated apobec-1 introduction into HCA-7 (colorectal cancer) cells showed a dose-dependent increase in Cox-2 protein and stabilization of endogenous Cox-2 mRNA. These findings suggest that deletion of apobec-1, by modulating expression of AU-rich RNA targets, provides an important mechanism for attenuating a dominant genetic restriction point in intestinal adenoma formation.
Collapse
Affiliation(s)
- Valerie Blanc
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ravoori S, Feng Y, Neale JR, Jeyabalan J, Srinivasan C, Hein DW, Gupta RC. Dose-dependent reduction of 3,2'-dimethyl-4-aminobiphenyl-derived DNA adducts in colon and liver of rats administered celecoxib. Mutat Res 2007; 638:103-9. [PMID: 17950762 DOI: 10.1016/j.mrfmmm.2007.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 08/06/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
Abstract
Colon cancer is second leading cause of cancer-related deaths in Western countries. Diet and smoking, which contain aromatic and heterocyclic amines, are major risk factors for colon cancer. Colorectal cancers have a natural history of long latency and therefore provide ample opportunities for effective chemoprevention. 3,2'-Dimethyl-4-aminobiphenyl (DMABP) is an experimental aromatic amine that causes cancer in rat colon and serves as an experimental model for arylamine and heterocyclic amine mutagens derived from diet and smoking. In this study, we investigated the effects of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor on DMABP-induced DNA adduct formation in rat liver and colon. Male F-344 rats (5-week old) were provided free access to modified AIN-76A rat chow containing 0 (control), 500, 1000, or 1500 ppm celecoxib. Two weeks later, the rats received a subcutaneous injection of 100mg/kg DMABP in peanut oil. Two days after DMABP treatment, the rats were killed and DMABP-derived adducts were analyzed in colon and liver DNA by butanol extraction-mediated (32)P-postlabeling. Two major DNA adducts, identified as dG-C8-DMABP and dG-N(2)-DMABP, were detected in liver and colon of rats treated with DMABP. These DNA adducts were diminished approximately 35-40% with 500 ppm and 65-70% with 1,000 ppm celecoxib. In the colon, no further decline in DNA adducts was observed at 1500 ppm. The same DMABP-DNA adducts also were detected in the liver and were also diminished by celecoxib treatment. The reduction in DMABP-DNA adduct levels in celecoxib-treated animals provides further support for celecoxib as a chemopreventive agent for colorectal cancer.
Collapse
Affiliation(s)
- Srivani Ravoori
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | | | | | | | | | | | | |
Collapse
|
34
|
Inoue T, Murano M, Abe Y, Morita E, Murano N, Yasumoto S, Toshina K, Nishikawa T, Maemura K, Hirata I, Katsu KI. Therapeutic effect of nimesulide on colorectal carcinogenesis in experimental murine ulcerative colitis. J Gastroenterol Hepatol 2007; 22:1474-81. [PMID: 17716351 DOI: 10.1111/j.1440-1746.2007.04866.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Patients with ulcerative colitis (UC) exhibit an increased risk for the development of cancer of the colon and rectum. Cyclooxygenase (COX)-2 inhibitors are known to suppress sporadic colorectal cancer, but it is unknown whether selective COX-2 inhibitors exhibit a preventive effect in UC-associated neoplasia. This study investigated the preventive effect of nimesulide, a selective COX-2 inhibitor, on colorectal carcinogenesis in an experimental model of murine UC. METHODS Chronic colitis was induced in mice by administration of four cycles of dextran sulfate sodium (DSS) (each cycle: 5% DSS for 7 days and then distilled water for 14 days). The mice were killed 120 days after the completion of the fourth cycle. The mice were divided into the following five groups: group A served as a disease control; group B received a diet mixed with 400 p.p.m. of nimesulide during the whole period; group C received nimesulide during the four cycles of DSS administration (active phase); group D received nimesulide for 120 days from the end of the fourth cycle (remission phase); group E received no agents including DSS and served as a normal control. RESULTS The incidence of dysplasia and/or cancer was 28%, 15%, 11.8%, 6.7% and 0% in groups A-E, respectively. In group D, nimesulide significantly suppressed the occurrence of dysplasia and/or cancer (P < 0.05). Strong COX-2 expression was detected by immunohistochemistry in cancer and dysplastic lesions while diffusely weak COX-2 expression was also found in the residual colon (i.e. lesion-free colon). The mucosal concentration of prostaglandin E(2) was significantly lower in groups B and D than in group A. CONCLUSIONS The administration of the selective COX-2 inhibitor nimesulide (especially during the remission phase) exerts a suppressive effect on the development of dysplasia and/or cancer in a murine model of DSS-induced colitis. These findings may have relevance to long-standing UC in humans.
Collapse
Affiliation(s)
- Takuya Inoue
- Second Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Matheus ME, Violante FDA, Garden SJ, Pinto AC, Fernandes PD. Isatins inhibit cyclooxygenase-2 and inducible nitric oxide synthase in a mouse macrophage cell line. Eur J Pharmacol 2007; 556:200-6. [PMID: 17141756 DOI: 10.1016/j.ejphar.2006.10.057] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/27/2006] [Accepted: 10/30/2006] [Indexed: 11/29/2022]
Abstract
Isatin is a versatile compound with a diversity of effects. We designed to investigate the inhibitory effect of isatin derivatives on lipopolysaccharide/interferon-gamma-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins, production of prostaglandin E(2) (PGE(2)), nitric oxide (NO), tumor necrosis factor (TNF-alpha), and their capacity to scavenge NO. Isatins inhibit TNF-alpha production and iNOS and COX-2 protein expression resulting on reduced levels of NO and PGE(2). Our results indicate isatin and it derivatives as inhibitors of iNOS and COX-2 enzymes, which might be used as anti-inflammatory and antitumoral agents.
Collapse
Affiliation(s)
- Maria Eline Matheus
- Department of Basic and Clinical Pharmacology, ICB, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
36
|
Gumurdulu D, Erdogan S, Kayaselcuk F, Seydaoglu G, Parsak CK, Demircan O, Tuncer I. Expression of COX-2, PCNA, Ki-67 and p53 in gastrointestinal stromal tumors and its relationship with histopathological parameters. World J Gastroenterol 2007; 13:426-31. [PMID: 17230613 PMCID: PMC4065899 DOI: 10.3748/wjg.v13.i3.426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of Cyclooxygenase-2 (COX-2), proliferating cell nuclear antigen (PCNA), Ki-67 and p53 in gastrointestinal stromal tumors (GISTs) and its relationship with histopathological parameters.
METHODS: Twenty-five GISTs were examined by light microscopy and immunohistochemistry. c-kit, CD34, SMA, S-100 protein, COX-2, PCNA, Ki-67 and p53 were detected immunohistochemically and the relationship was evaluated among histopathologic parameters such as mitotic index (MI), tumor grade, tumor size, COX-2, PCNA, Ki-67 and p53.
RESULTS: COX-2 protein expression was found in 19 of 25 (76%) of the tumors, and expression was noted in the cytoplasm of the tumor cells. p53 was significantly related to MI and tumor grade but no relationship was found between COX-2, proliferation markers and MI, tumor grade and tumor size.
CONCLUSION: COX-2 is expressed in most GISTs and it may play an important role in the proliferation and progression of these tumors or a useful marker to identify GIST. Although immunohistochemical assessment of p53 can be used for distinguishing the risk groups of GISTs, tumor size and mitotic rate should be considered at the same time.
Collapse
Affiliation(s)
- Derya Gumurdulu
- Department of Pathology of Affiliated Hospital, Faculty of Medicine, Cukurova University, Adana 01330, Turkey.
| | | | | | | | | | | | | |
Collapse
|
37
|
Rakoff-Nahoum S. Why cancer and inflammation? THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2006; 79:123-30. [PMID: 17940622 PMCID: PMC1994795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Central to the development of cancer are genetic changes that endow these "cancer cells" with many of the hallmarks of cancer, such as self-sufficient growth and resistance to anti-growth and pro-death signals. However, while the genetic changes that occur within cancer cells themselves, such as activated oncogenes or dysfunctional tumor suppressors, are responsible for many aspects of cancer development, they are not sufficient. Tumor promotion and progression are dependent on ancillary processes provided by cells of the tumor environment but that are not necessarily cancerous themselves. Inflammation has long been associated with the development of cancer. This review will discuss the reflexive relationship between cancer and inflammation with particular focus on how considering the role of inflammation in physiologic processes such as the maintenance of tissue homeostasis and repair may provide a logical framework for understanding the connection between the inflammatory response and cancer.
Collapse
|
38
|
Munday JS, Brennan MM, Kiupel M. Altered expression of beta-catenin, E-cadherin, cycloxygenase-2, and p53 protein by ovine intestinal adenocarcinoma cells. Vet Pathol 2006; 43:613-21. [PMID: 16966438 DOI: 10.1354/vp.43-5-613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Around 1.6% of sheep in New Zealand develop small-intestinal adenocarcinomas. These neoplasms typically develop widespread metastases. The common development of these neoplasms and their subsequent behavior suggests that sheep could be a useful animal model of human colonic cancer. However, for an animal model of human disease to be relevant, similar genetic mutations should be present. Genetic mutations within human colonic cancers frequently result in expression of cycloxygenase-2 (COX-2), loss of membranous expression of beta-catenin and E-cadherin, and accumulation of p53 protein within the neoplastic cells. Immunohistochemistry was used to investigate the presence of these 4 proteins within 26 ovine intestinal adenocarcinomas. Loss of membranous beta-catenin reactivity was observed in 14 of 26 ovine intestinal adenocarcinomas (54%). The loss of membranous beta-catenin reactivity was accompanied by cytoplasmic and nuclear reactivity in 2 neoplasms. Loss of E-cadherin was observed within 8 of 26 neoplasms (31%). Neoplastic cell expression of COX-2 was observed in 12 of 26 neoplasms (46%), whereas cells within 3 of 26 neoplasms (11%) contained visible p53 protein. In conclusion, all 4 proteins that commonly have altered expression in human colonic cancers were also altered in a proportion of the ovine intestinal adenocarcinomas. These results provide additional evidence that sheep could be useful for the study of human colonic cancer.
Collapse
Affiliation(s)
- J S Munday
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
39
|
Eisinger AL, Nadauld LD, Shelton DN, Peterson PW, Phelps RA, Chidester S, Stafforini DM, Prescott SM, Jones DA. The adenomatous polyposis coli tumor suppressor gene regulates expression of cyclooxygenase-2 by a mechanism that involves retinoic acid. J Biol Chem 2006; 281:20474-82. [PMID: 16699180 DOI: 10.1074/jbc.m602859200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in the adenomatous polyposis coli (APC) gene result in uncontrolled proliferation of intestinal epithelial cells and are associated with the earliest stages of colorectal carcinogenesis. Cyclooxygenase-2 (COX-2) is elevated in human colorectal cancers and plays an important role in colorectal tumorigenesis; however, the mechanisms by which APC mutations result in increased COX-2 expression remain unclear. We utilized APC mutant zebrafish and human cancer cells to investigate how APC modulates COX-2 expression. We report that COX-2 is up-regulated in APC mutant zebrafish because of a deficiency in retinoic acid biosynthesis. Treatment of both APC mutant zebrafish and human carcinoma cell lines with retinoic acid significantly reduces COX-2 expression. Retinoic acid regulates COX-2 levels by a mechanism that involves participation of the transcription factor C/EBP-beta. APC mutant zebrafish express higher levels of C/EBP-beta than wild-type animals, and retinoic acid supplementation reduces C/EBP-beta expression to basal levels. Both morpholino knockdown of C/EBP-beta in APC mutant zebrafish and silencing of C/EBP-beta using small interfering RNA in HT29 colon cancer cells robustly decrease COX-2 expression. Our findings support a sequence of events in which mutations in APC result in impaired retinoic acid biosynthesis, elevated levels of C/EBP-beta, up-regulation of COX-2, increased prostaglandin E(2) accumulation, and activation of Wnt target genes.
Collapse
Affiliation(s)
- Annie L Eisinger
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tunstall RG, Sharma RA, Perkins S, Sale S, Singh R, Farmer PB, Steward WP, Gescher AJ. Cyclooxygenase-2 expression and oxidative DNA adducts in murine intestinal adenomas: Modification by dietary curcumin and implications for clinical trials. Eur J Cancer 2006; 42:415-21. [PMID: 16387490 DOI: 10.1016/j.ejca.2005.10.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 10/17/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
The natural polphenol, curcumin, retards the growth of intestinal adenomas in the Apc(Min+) mouse model of human familial adenomatous polyposis. In other preclinical models, curcumin downregulates the transcription of the enzyme cyclooxygenase-2 (COX-2) and decreases levels of two oxidative DNA adducts, the pyrimidopurinone adduct of deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). We have studied COX-2 protein expression and oxidative DNA adduct levels in intestinal adenoma tissue from Apc(Min+) mice to try and differentiate between curcumin's direct pharmacodynamic effects and indirect effects via its inhibition of adenoma growth. Mice received dietary curcumin (0.2%) for 4 or 14 weeks. COX-2 protein, M1dG and 8-oxo-dG levels were measured by Western blot, immunochemical assay and liquid chromatography-mass spectrometry, respectively. In control Apc(Min+) mice, the levels of all three indices measured in adenoma tissue were significantly higher than levels in normal mucosa. Lifetime administration of curcumin reduced COX-2 expression by 66% (P = 0.01), 8-oxo-dG levels by 24% (P < 0.05) and M1dG levels by 39% (P < 0.005). Short-term feeding did not affect total adenoma number or COX-2 expression, but decreased M1dG levels by 43% (P < 0.01). COX-2 protein levels related to adenoma size. These results demonstrate the utility of measuring these oxidative DNA adduct levels to show direct antioxidant effects of dietary curcumin. The effects of long-term dietary curcumin on COX-2 protein levels appear to reflect retardation of adenoma development.
Collapse
Affiliation(s)
- R G Tunstall
- Cancer Biomarkers and Prevention Group, Departments of Cancer Studies and Biochemistry, University of Leicester, Leicester LE2 7LX, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tanaka S, Tatsuguchi A, Futagami S, Gudis K, Wada K, Seo T, Mitsui K, Yonezawa M, Nagata K, Fujimori S, Tsukui T, Kishida T, Sakamoto C. Monocyte chemoattractant protein 1 and macrophage cyclooxygenase 2 expression in colonic adenoma. Gut 2006; 55:54-61. [PMID: 16085694 PMCID: PMC1856393 DOI: 10.1136/gut.2004.059824] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Cyclooxygenase 2 (COX-2) expression in subepithelial macrophages of colorectal adenoma has been suggested as the first in a series of steps leading to colorectal tumorigenesis. We tested the hypothesis that chemokines released from human colorectal adenoma epithelium might be involved in COX-2 expression in macrophages of the lamina propria. METHODS Endoscopic samples of sporadic colorectal adenomas were tested by enzyme linked immunosorbent assay for chemokines involved in macrophage chemotaxis. Localisation of adenoma macrophage chemoattractant protein 1 (MCP-1) and COX-2 were determined by immunohistochemistry. The effects of MCP-1, in the presence or absence of celecoxib, on COX-2 expression, and prostaglandin (PG) E(2) and vascular endothelial growth factor (VEGF) release, were examined in human macrophages isolated from peripheral blood. RESULTS MCP-1 levels were markedly higher in adenoma with mild-moderate dysplasia (129.7 (19.9) pg/mg protein) and severe dysplasia (227.9 (35.4) pg/mg protein) than in normal colonic mucosa (55.8 (4.2) pg/mg protein). Other chemokine levels, macrophage inflammatory proteins (MIP)-1alpha and MIP-1beta, and the chemokine regulated on activation of normal T cell expressed and secreted (RANTES) did not vary significantly between adenoma and normal mucosa. MCP-1 levels in both adenoma and normal colonic mucosa increased significantly three hours after tissue cultivation in vitro. MCP-1 immunoreactivity was restricted to the adenoma epithelium, with no reactivity seen in adjacent normal epithelial cells. MCP-1 stimulated COX-2 expression and PGE(2) and VEGF release in human macrophages. Celecoxib, a selective COX-2 inhibitor, inhibited MCP-1-induced PGE(2) and VEGF release in macrophages. Addition of exogenous PGE(2) reversed this inhibitory effect on VEGF release, suggesting that MCP-1 in adenoma epithelial cells might be involved in COX-2 expression and subsequent macrophage activation. CONCLUSIONS MCP-1 in colorectal adenoma epithelial cells might be involved in macrophage migration and COX-2 expression, leading to the subsequent development of colonic adenoma.
Collapse
Affiliation(s)
- S Tanaka
- Third Department of Internal Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tanaka T, Kohno H, Suzuki R, Hata K, Sugie S, Niho N, Sakano K, Takahashi M, Wakabayashi K. Dextran sodium sulfate strongly promotes colorectal carcinogenesis in Apc(Min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer 2005; 118:25-34. [PMID: 16049979 DOI: 10.1002/ijc.21282] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mouse model for familial adenomatous polyposis, Apc(Min/+) mouse, contains a truncating mutation in the Apc gene and spontaneously develops numerous adenomas in the small intestine but few in the large bowel. Our study investigated whether dextran sodium sulfate (DSS) treatment promotes the development of colonic neoplasms in Apc(Min/+) mice. Apc(Min/+) and Apc+/+ mice of both sexes were exposed to 2% dextran sodium sulfate in drinking water for 7 days, followed by no further treatment for 4 weeks. Immunohistochemistry for cyclooxygenase-2, inducible nitric oxide synthase, beta-catenin, p53, and nitrotyrosine, and mutations of beta-catenin and K-ras and loss of wild-type allele of the Apc gene in the colonic lesions were examined. Sequential observation of female Apc(Min/+) mice that received DSS was also performed up to week 5. At week 5, numerous colonic neoplasms developed in male and female Apc(Min/+) mice but did not develop in Apc+/+ mice. Adenocarcinomas developed in Apc(Min/+) mice that received DSS showed loss of heterozygosity of Apc and no mutations in the beta-catenin and K-ras genes. The treatment also significantly increased the number of small intestinal polyps. Sequential observation revealed increase in the incidences of colonic neoplasms and dysplastic crypts in female Apc(Min/+) mice given DSS. DSS treatment increased inflammation scores, associated with high intensity staining of beta-catenin, cyclooxygenase-2, inducible nitric oxide synthase and nitrotyrosine. Interestingly, strong nuclear staining of p53 was specifically observed in colonic lesions of Apc(Min/+) mice treated with DSS. Our results suggest a strong promotion effect of DSS in the intestinal carcinogenesis of Apc(Min/+) mice. The findings also suggest that strong oxidative/nitrosative stress caused by DSS-induced inflammation may contribute to the colonic neoplasms development.
Collapse
Affiliation(s)
- Takuji Tanaka
- Department of Oncologic Pathology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Erkinheimo TL, Sivula A, Lassus H, Heinonen M, Furneaux H, Haglund C, Butzow R, Ristimäki A. Cytoplasmic HuR expression correlates with epithelial cancer cell but not with stromal cell cyclooxygenase-2 expression in mucinous ovarian carcinoma. Gynecol Oncol 2005; 99:14-9. [PMID: 16126263 DOI: 10.1016/j.ygyno.2005.04.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 04/07/2005] [Accepted: 04/18/2005] [Indexed: 11/25/2022]
Abstract
UNLABELLED Cyclooxygenase-2 (COX-2) expression has been found to associate with poor prognosis in several types of carcinomas. HuR is an mRNA stability protein and it regulates the expression of COX-2. OBJECTIVES AND METHODS We analyzed the expression of COX-2 and HuR in 64 mucinous ovarian carcinoma specimens by immunohistochemistry. RESULTS In mucinous tumors, high COX-2 protein expression was found in epithelial cancer cells in 39% (22/56) and in stromal cells in 24% (13/55) of the specimens. The expression of COX-2 in cancer cells correlated with high grade (P = 0.0285), but stromal COX-2 expression had no correlation with any clinical parameter tested. Cytoplasmic HuR protein expression was observed in cancer cells in 47% (27/57) and in stromal cells in 7% (4/56) of the mucinous tumors, and it correlated with COX-2 expression in the cancer cells (P = 0.0162) but not in the stroma. CONCLUSION Our results support the hypothesis that cytoplasmic HuR is connected to COX-2 expression in ovarian carcinoma, but that its role is restricted to the transformed epithelial cancer cells.
Collapse
|
44
|
Hull MA, Faluyi OO, Ko CWS, Holwell S, Scott DJ, Cuthbert RJ, Poulsom R, Goodlad R, Bonifer C, Markham AF, Coletta PL. Regulation of stromal cell cyclooxygenase-2 in the Apc Min/+ mouse model of intestinal tumorigenesis. Carcinogenesis 2005; 27:382-91. [PMID: 16219637 DOI: 10.1093/carcin/bgi236] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyclooxygenase-2 (Cox-2) is expressed predominantly by stromal cells in intestinal adenomas from the Apc(Min/+) mouse model of familial adenomatous polyposis. We investigated the mechanistic basis of stromal cell Cox-2 expression in Apc(Min/+) mouse adenomas, as well as Cox-2 expression and activity in histologically normal (HN) Apc(Min/+) mouse intestine, in order to gain further insights into regulation of Cox-2 as a potential chemoprevention target. Upregulation of Cox-2 in intestinal tumours is not an intrinsic feature of Apc(Min/+) macrophages as bone marrow-derived Apc(Min/+) macrophages did not exhibit an abnormality in Cox-2 expression or activity. Intestinal permeability to lactulose or mannitol was similar in Apc(Min/+) mice and wild-type littermates, implying that macrophage activation by luminal antigen is unlikely to explain stromal cell Cox-2 induction. Moreover, stromal cells exhibited differential expression of Cox-2 and inducible nitric oxide synthase, suggesting 'alternative' (M2) rather than 'classical' (M1) macrophage activation. Flow cytometric sorting of isolated stromal mononuclear cells (SMNCs), on the basis of M-lysozyme and specific macrophage marker expression, demonstrated that macrophages, neutrophils and non-myelomonocytic cells all contributed to lamina propria prostaglandin (PG) E(2) synthesis. However, the majority of PGE(2) synthesis by macrophages was via a Cox-2-dependent pathway compared with predominant Cox-1-derived PGE(2) production by non-myelomonocytic cells. SMNCs from HN Apc(Min/+) intestinal mucosa exhibited similar levels of Cox-2 mRNA and protein, but produced more Cox-2-derived PGE(2) than wild-type cells at 70 days of age. There was an age-dependent decline in PGE(2) synthesis by Apc(Min/+) SMNCs, despite tumour progression. These data suggest that other Cox-2-independent factors also control PGE(2) levels during Apc(Min/+) mouse intestinal tumorigenesis. Regulation of macrophage Cox-2 expression and other steps in PGE(2) synthesis (e.g. PGE synthase) are valid targets for novel chemoprevention strategies that could minimize or avoid systemic COX-2 inhibition.
Collapse
Affiliation(s)
- M A Hull
- Molecular Medicine Unit, University of Leeds, Leeds LS9 7TF, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tatsu K, Hayashi S, Shimada I, Matsui K. Cyclooxygenase-2 in sporadic colorectal polyps: Immunohistochemical study and its importance in the early stages of colorectal tumorigenesis. Pathol Res Pract 2005; 201:427-33. [PMID: 16136748 DOI: 10.1016/j.prp.2005.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cyclooxygenase-2 (COX-2) is one of the important targets for the chemoprevention of colorectal cancer by non-steroidal anti-inflammatory drugs (NSAIDs). To evaluate the role of COX-2 in early stages of colorectal tumorigenesis, we immunohistochemically investigated the frequency and localization of COX-2 in sporadic colorectal polyps that showed various histology using a commercially available monoclonal antibody. A total of 105 colorectal polyps were examined. These included 33 low-grade adenomas (LGAs), 28 high-grade adenomas (HGAs), 32 HGAs with p53 overexpression (HGAs-p53), and 12 cases of carcinoma in adenoma (CIA). Regarding the immunohistochemical expression of p53, MIB-1, and CD63, histological classification was made for each case. COX-2 was expressed in neoplastic epithelial cells and interstitial macrophages that were distributed mainly in the superficial areas of polyps. COX-2 labeling indices (LIs) were 8.2% in LGAs, 6.3% in HGAs, 0.9% in HGAs-p53, and 0.6% in the carcinomatous components of CIAs. COX-2 LIs were significantly higher in adenomas, including LGAs and HGAs, than in HGAs-p53 and CIAs (p < 0.001). Within CIAs, significantly higher COX-2 LIs were obtained in the adenomatous components than in the carcinomatous components (p < 0.05). The size of polyps was not correlated with COX-2 expression irrespective of their histology. The results show that COX-2 might be involved in early stages of colorectal tumorigenesis. Colorectal adenomas could be a target for the chemopreventive strategy irrespective of their sizes.
Collapse
Affiliation(s)
- Kazuhito Tatsu
- Department of Legal Medicine, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama, Japan 930-0194
| | | | | | | |
Collapse
|
46
|
Hao CY, Moore DH, Wong P, Bennington JL, Lee NM, Chen LC. Alteration of gene expression in macroscopically normal colonic mucosa from individuals with a family history of sporadic colon cancer. Clin Cancer Res 2005; 11:1400-7. [PMID: 15746039 DOI: 10.1158/1078-0432.ccr-04-1942] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We have shown that the expression of several genes associated with human colon cancer is altered in the morphologically normal colonic mucosa (MNCM) of APC(min) mice and humans with colon cancers. To determine whether these alterations also occur in the MNCM of individuals who have not developed colon cancer but are at high risk of doing so, we measured gene expression in the MNCM of individuals with a family history of colon cancer. METHODS Expression of 16 genes in the MNCM of 12 individuals with a first-degree relative with sporadic colon cancer and 16 normal controls were measured by quantitative reverse transcription-PCR. All subjects tested had normal colonoscopic examinations. Biopsy samples of MNCM were obtained from the ascending, transverse, descending, and rectosigmoid regions of the colon (2-8 biopsy samples were obtained from each region). RESULTS Relative to normal controls, the expression of several genes, including PPAR-gamma, SAA1, and IL-8 were significantly altered in the macroscopically normal rectosigmoid mucosa from individuals with a family history of colon cancer. CONCLUSIONS Molecular abnormalities that precede the appearance of adenomatous polyp are present in the MNCM of individuals who have a family history of colon cancer. This observation raises the possibility of screening for individuals who are at an increased risk of developing colon cancer by analysis of gene expression in rectosigmoid biopsy samples. To assess this possibility, prospective studies will be needed to determine whether or not altered gene expression is associated with the subsequent development of adenomatous polyps and/ or colonic carcinomas.
Collapse
Affiliation(s)
- Chun-Yi Hao
- California Pacific Medical Center Research Institute, 475 Brannen Street, San Francisco, CA 94107, USA
| | | | | | | | | | | |
Collapse
|
47
|
Liu ESL, Shin VY, Ye YN, Luo JC, Wu WKK, Cho CH. Cyclooxygenase-2 in cancer cells and macrophages induces colon cancer cell growth by cigarette smoke extract. Eur J Pharmacol 2005; 518:47-55. [PMID: 15993407 DOI: 10.1016/j.ejphar.2005.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/12/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Cigarette smoking, cyclooxygenase-2 (COX-2) and macrophages are independently associated with colorectal cancer. In the present study, cigarette smoke ethanol extract was applied to colon cancer cells (SW1116) or indirectly via activated macrophages (THP-1 cells) to attest their effects on cancer cell proliferation and tumor growth both in vitro and in vivo. Ethanol extract induced COX-2 expression in SW1116 and THP-1 cells. Combination of THP-1 pre-incubated medium and ethanol extract further potentiated COX-2 expression and proliferation of SW1116 cells. Tumor growth in nude mice was positively associated with the medium and/or ethanol extract treatments, together with the up-regulation of cell proliferation and angiogenesis, and down-regulation of apoptosis. Application of a COX-2 inhibitor (SC236) reduced tumor growth as well as cell proliferation and angiogenesis. These actions are partially depended on the decrease of COX-2 expression. Taken together, inhibition of COX-2 activity may have significant implication to prevent colon cancer in smokers.
Collapse
Affiliation(s)
- Edgar S L Liu
- Department of Pharmacology, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
48
|
Haworth R, Oakley K, McCormack N, Pilling A. Differential expression of COX-1 and COX-2 in the gastrointestinal tract of the rat. Toxicol Pathol 2005; 33:239-45. [PMID: 15902967 DOI: 10.1080/01926230590906512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of this study was to use immunohistochemistry with morphometry to investigate COX-1 and COX-2 expression in the normal rat gastrointestinal (GI) tract and examine if sites of ulceration previously observed with long-term COX-2 inhibitor administration in mice correlate with differential COX-1/COX-2 expression. COX-2 positive cells were observed predominantly in the apical lamina propria of intestinal villi with fewer cells in the mucosal epithelium. The highest level of COX-2 expression was observed at the ileocaecal junction (ICJ). COX-2 expression was also present in parasympathetic ganglia of the submucosa and muscularis. In the stomach, the highest grade of COX-2 expression was observed in the apical lamina propria of the fundus adjacent to the junctional ridge. In contrast, COX-1 positive cells within the lamina propria were evenly distributed along the GI tract but were present in higher numbers than COX-2 positive cells. The mean level of COX-1 expression at the ICJ was not significantly different from the ileum and caecum. Evidence that the highest level of COX-2 expression in normal rats is located on the ileal side of the ICJ provides the first mechanism to explain spontaneous ulceration and perforation of the distal ileum in COX-2 -/- animals.
Collapse
Affiliation(s)
- Richard Haworth
- Department of Pathology, Safety Assessment, GlaxoSmithKline Research and Development Ltd., Ware, Herts SG12 0DP, United Kingdom.
| | | | | | | |
Collapse
|
49
|
Sale S, Tunstall RG, Ruparelia KC, Potter GA, Steward WP, Gescher AJ. Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans 3,4,5,4'-tetramethoxystilbene (DMU-212) on adenoma development in the Apc(Min+) mouse and cyclooxygenase-2 in human-derived colon cancer cells. Int J Cancer 2005; 115:194-201. [PMID: 15688382 DOI: 10.1002/ijc.20884] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Naturally occurring molecules with putative cancer chemopreventive properties such as the phytoalexin resveratrol (3,5,4'-trihydroxystilbene) are lead molecules that guide the design of novel agents with improved pharmacologic properties. The synthetic resveratrol analog 3,4,5,4'-tetramethoxystilbene (DMU-212) has been shown to possess stronger antiproliferative properties in human colon cancer cells than resveratrol. We tested the hypothesis that DMU-212 is also a more potent inhibitor of adenoma development in the Apc(Min+) mouse, a model of human intestinal carcinogenesis. Apc(Min+) mice received either stilbene derivative with the diet (0.2%), and adenomas were counted after experiments were terminated. Resveratrol and DMU-212 decreased adenoma load by 27% and 24%, respectively, compared to untreated controls. Cyclooxygenase (COX) enzymes are important mechanistic targets of resveratrol, and we investigated whether DMU-212 interferes with the expression and activity of COX in human colon cells. Incubation of HCA-7 cancer cells for 24-96 hr with either stilbene derivative (1-50 microM) decreased prostaglandin E-2 (PGE-2) production, but only resveratrol decreased COX-2 protein expression. In mice, which received either stilbene derivative (0.2%) for 3 weeks with their diet, PGE-2 levels in the intestinal mucosa were reduced by between 45% and 62% compared to mice on control diet. While resveratrol inhibited enzyme activity in purified COX preparations, DMU-212 failed to do so. The PGE-2 decrease seen with DMU-212 in cells and in vivo is probably mediated via its metabolites. The results suggest that alteration of the resveratrol molecule to generate DMU-212 does not abrogate its ability to decrease adenoma number in Apc(Min+) mice or to interfere with PGE-2 generation in cells.
Collapse
Affiliation(s)
- Stewart Sale
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Cyclooxygenase (COX), a key enzyme in the prostanoid biosynthetic pathway, has received considerable attention due to its role in human cancers. Observational and randomized controlled studies in many different population cohorts and settings have demonstrated protective effects of nonsteroidal anti-inflammatory drugs (NSAIDs; the inhibitors of COX activity) for colorectal cancers (CRCs). COX-2, the inducible isoform of cyclooxygenase, is overexpressed in early and advanced CRC tissues, which portends a poor prognosis. Experimental studies have thus identified important mechanisms and pathways by which COX-2 plays an important role in carcinogenesis. Selective COX-2 inhibitors have been approved for use as adjunctive therapy for patients with familial polyposis. The role of COX-2 inhibitors is currently being evaluated for use in wider populations.
Collapse
Affiliation(s)
- Joanne R Brown
- The Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | | |
Collapse
|