1
|
Elbaz M, Roul G, Andriantsitohaina R. Provinols™, a Polyphenolic Extract of Red Wine, Inhibits In-Stent Neointimal Growth in Cholesterol-Fed Rabbit. Pharmaceutics 2024; 16:1311. [PMID: 39458640 PMCID: PMC11510810 DOI: 10.3390/pharmaceutics16101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Epidemiological studies indicate a potential correlation between the consumption of polyphenols and a reduced risk of developing cardiovascular disorders. The present study investigates the potential of a red wine polyphenol oral extract, Provinols™, to reduce neointimal hyperplasia following angioplasty in a hypercholesterolemic rabbit model. Methods: New Zealand white rabbits were fed 1% cholesterol-enriched chow for a period of eight weeks prior to the induction of iliac balloon injury and subsequent stent placement. Following the implantation of the stent, Provinols™ (20 mg/kg/day) or an identical placebo was administered orally for a period of four weeks in a randomized manner. Twenty-eight days following the stenting procedure, the arteries were harvested after euthanasia and subjected to histology assignment analysis. Results: The administration of Provinols™ did not result in a statistically significant change in either blood pressure or plasma cholesterol levels. However, Provinols™ treatment led to a notable reduction in the growth of the intima within the stented area, as well as a reduction in the thickness and surface area of the intima. It is of note that treatment with Provinols™ was associated with a reduction in the accumulation of fat within the arteries and a diminished inflammatory response to injury. Conclusions: The findings demonstrate that oral administration of Provinols™ has the potential to reduce in-stent neointimal growth and lipid deposition, likely due to its anti-inflammatory properties in iliac arteries from hypercholesterolemic rabbits. Additionally, these findings provide an evidence-based rationale for the potential therapeutic benefits of plant-derived polyphenols in the prevention of restenosis associated with stent placement.
Collapse
Affiliation(s)
- Meyer Elbaz
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France;
| | - Gérald Roul
- Unité Fonctionnelle Dédiée à L’insuffisance Cardiaque, Pôle Médical et Chirurgical des Maladies Cardio-Vasculaires, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
| | - Ramaroson Andriantsitohaina
- PhyMedExp, University of Montpellier, Inserm, CNRS, 371 Avenue du Doyen G. Giraud, CEDEX 5, 34295 Montpellier, France
| |
Collapse
|
2
|
Szczygieł D, Szczygieł M, Łaś A, Elas M, Zuziak R, Płonka BK, Płonka PM. Spin Trapping of Nitric Oxide by Hemoglobin and Ferrous Diethyldithiocarbamate in Model Tumors Differing in Vascularization. Int J Mol Sci 2024; 25:4172. [PMID: 38673758 PMCID: PMC11049848 DOI: 10.3390/ijms25084172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Animal tumors serve as reasonable models for human cancers. Both human and animal tumors often reveal triplet EPR signals of nitrosylhemoglobin (HbNO) as an effect of nitric oxide formation in tumor tissue, where NO is complexed by Hb. In search of factors determining the appearance of nitrosylhemoglobin (HbNO) in solid tumors, we compared the intensities of electron paramagnetic resonance (EPR) signals of various iron-nitrosyl complexes detectable in tumor tissues, in the presence and absence of excess exogenous iron(II) and diethyldithiocarbamate (DETC). Three types of murine tumors, namely, L5178Y lymphoma, amelanotic Cloudman S91 melanoma, and Ehrlich carcinoma (EC) growing in DBA/2 or Swiss mice, were used. The results were analyzed in the context of vascularization determined histochemically using antibodies to CD31. Strong HbNO EPR signals were found in melanoma, i.e., in the tumor with a vast amount of a hemorrhagic necrosis core. Strong Fe(DETC)2NO signals could be induced in poorly vascularized EC. In L5178Y, there was a correlation between both types of signals, and in addition, Fe(RS)2(NO)2 signals of non-heme iron-nitrosyl complexes could be detected. We postulate that HbNO EPR signals appear during active destruction of well-vascularized tumor tissue due to hemorrhagic necrosis. The presence of iron-nitrosyl complexes in tumor tissue is biologically meaningful and defines the evolution of complicated tumor-host interactions.
Collapse
Affiliation(s)
- Dariusz Szczygieł
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Małgorzata Szczygieł
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Anna Łaś
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Martyna Elas
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Roxana Zuziak
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
- Department of Chemistry and Biochemistry, Institute for Basic Sciences, University of Physical Education, 31-571 Krakow, Poland
| | - Beata K Płonka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Przemysław M Płonka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| |
Collapse
|
3
|
Maurotti S, Pujia R, Ferro Y, Mare R, Russo R, Coppola A, Gazzaruso C, Montalcini T, Pujia A, Paone S, Mollace V, Mazza E. A nutraceutical with Citrus bergamia and Cynara cardunculus improves endothelial function in adults with non-alcoholic fatty liver disease. Nutrition 2024; 118:112294. [PMID: 38042043 DOI: 10.1016/j.nut.2023.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE Polyphenol intake may prevent hepatic steatosis and cardiovascular disease by potentially improving endothelial function. The purposes of this study are to investigate the association between fatty liver disease and endothelial dysfunction and to test the effects of a nutraceutical containing extracts made from Citrus bergamia and Cynara cardunculus on peripheral vascular endothelial function in adults with liver steatosis. METHODS We analyzed data from 32 individuals with hepatic steatosis and endothelial dysfunction (reactive hyperemia index ≤ 1.67). Sixteen subjects took 1 capsule/d (300 mg/d) containing Cynara cardunculus extract and bergamot polyphenol fraction, while the other 16 subjects matched for age, sex, and body mass index took 1 capsule/d of placebo (maltodextrin) for 12 wk. All anthropometric parameters were assessed at baseline and after 12 wk as were lipids, glucose, and reactive hyperemia index using an EndoPAT 2000. RESULTS The mean age was 52 ± 9 y. The mean reactive hyperemia index was 1.15 ± 0.4. After 12 wk, we found a greater increase in reactive hyperemia index in the participants taking the nutraceutical rather than placebo (0.58 ± 0.5 versus 0.13 ± 0.5; P = 0.02, respectively). The stepwise multivariable analysis confirmed a positive association between reactive hyperemia index change and the nutraceutical treatment (B = 0.38; P = 0.025) and negative association with reactive hyperemia index values at baseline (B = -0.81; P < 0.001). No association was found between the reduction in the amount of intrahepatic fat and the improvement of endothelial function (B = 0.002; P = 0.56). CONCLUSIONS A nutraceutical containing bergamot and artichoke extracts improves peripheral vascular endothelial function in adults with hepatic steatosis and early phase of atherosclerosis.
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Roberta Pujia
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy.
| | - Rosario Mare
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Raffaella Russo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Adriana Coppola
- Diabetes and Endocrine-Metabolic Diseases Unit, Istituto Clinico Beato Matteo, Gruppo Ospedaliero San Donato, Vigevano, Italy
| | - Carmine Gazzaruso
- Diabetes and Endocrine-Metabolic Diseases Unit, Istituto Clinico Beato Matteo, Gruppo Ospedaliero San Donato, Vigevano, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Sara Paone
- Institute of Research for Food Safety & Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Elisa Mazza
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
4
|
Iqbal I, Wilairatana P, Saqib F, Nasir B, Wahid M, Latif MF, Iqbal A, Naz R, Mubarak MS. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023; 28:6403. [PMID: 37687232 PMCID: PMC10490098 DOI: 10.3390/molecules28176403] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Fruits, vegetables, and other food items contain phytochemicals or secondary metabolites which may be considered non-essential nutrients but have medicinal importance. These dietary phytochemicals exhibit chemopreventive and therapeutic effects against numerous diseases. Polyphenols are secondary metabolites found in vegetables, fruits, and grains. These compounds exhibit several health benefits such as immune modulators, vasodilators, and antioxidants. This review focuses on recent studies on using dietary polyphenols to treat cardiovascular disorders, atherosclerosis, and vascular endothelium deficits. We focus on exploring the safety of highly effective polyphenols to ensure their maximum impact on cardiac abnormalities and discuss recent epidemiological evidence and intervention trials related to these properties. Kaempferol, quercetin, and resveratrol prevent oxidative stress by regulating proteins that induce oxidation in heart tissues. In addition, polyphenols modulate the tone of the endothelium of vessels by releasing nitric oxide (NO) and reducing low-density lipoprotein (LDL) oxidation to prevent atherosclerosis. In cardiomyocytes, polyphenols suppress the expression of inflammatory markers and inhibit the production of inflammation markers to exert an anti-inflammatory response. Consequently, heart diseases such as strokes, hypertension, heart failure, and ischemic heart disease could be prevented by dietary polyphenols.
Collapse
Affiliation(s)
- Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Fatima Saqib
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Bushra Nasir
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Ahmar Iqbal
- Department of General Surgery, Shanxi Medical University, Jinzhong 030600, China;
| | - Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | | |
Collapse
|
5
|
Hounguè U, Villette C, Tokoudagba JM, Chaker AB, Remila L, Auger C, Heintz D, Gbaguidi FA, Schini-Kerth VB. Carissa edulis Vahl (Apocynaceae) extract, a medicinal plant of Benin pharmacopoeia, induces potent endothelium-dependent relaxation of coronary artery rings involving nitric oxide. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154370. [PMID: 35977457 DOI: 10.1016/j.phymed.2022.154370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hypertension is a major cardiovascular risk factor that affects most countries including those of Africa. Although Carissa edulis Vahl, Diodia scandens Sw. and Cleome gynandra L. are traditionally used in Benin as antihypertensive treatments with some efficacy mentioned by the local population, their biological activity on the cardiovascular system remains poorly studied. AIM The study investigated the vasoreactivity of the plants and assessed the underlying mechanisms using isolated arteries. STUDY DESIGN Aqueous-ethanolic extracts of aerial parts of C. edulis, D. scandens and C. gynandra were prepared by maceration before being subjected to multi-step liquid-liquid fractionation with solvents of increasing polarity. The vasoreactivity of the extracts and fractions were assessed on isolated porcine coronary artery and rat aorta using organ chambers, the role of nitric oxide (NO) using NG-nitro-L-arginine (NO synthase inhibitor), prostanoids using indomethacin (cyclooxygenases inhibitor) and endothelium-dependent hyperpolarization using TRAM-34 plus UCL 1684 (inhibitors of calcium-dependent K+ channels), and the vascular uptake of polyphenols using Neu reagent. RESULTS The aqueous-ethanolic crude extract of C. edulis (CECE) induced potent relaxations that were exclusively endothelium-dependent and more pronounced than those to D. scandens and C. gynandra. The n-butanolic fraction of C. edulis (CEBF) was more active than the cyclohexane, dichloromethane, and ethyl acetate fractions. The relaxation induced by CECE and CEBF were inhibited by NG-nitro-L-arginine and affected neither by TRAM-34 plus UCL 1684 nor by indomethacin. CEBF induced sustained endothelium-dependent relaxations for at least 60 min, and inhibited, in a concentration-dependent manner, contractions to KCl, CaCl2, U46619 and serotonin in rings with endothelium. Analysis of CEBF by LCHRMS indicated the presence of polyphenols, terpenes, and alkaloids. Exposure of coronary artery and aorta rings to CEBF caused the accumulation of polyphenols predominantly in the endothelium. CONCLUSION C. edulis leaf extract induced pronounced endothelium-dependent relaxations and inhibited contractile responses by stimulating the endothelial formation of NO. LCHRMS analysis of the most active fraction, the butanolic fraction, revealed the presence of numerous compounds including polyphenols, terpenes, and alkaloids. The polyphenols of CEBF accumulated preferentially in the endothelium of the arterial wall. Thus, these observations support the folkloric use of C. edulis in hypertension.
Collapse
Affiliation(s)
- Ursula Hounguè
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France; Medicinal Organic Chemistry Laboratory, Faculty of Health Sciences, University of Abomey-Calavi, Cotonou, Benin.
| | - Claire Villette
- CNRS, Plant Imaging and Mass Spectrometry (PIMS), IBMP, University of Strasbourg, Strasbourg, France.
| | - Jean-Marie Tokoudagba
- Medicinal Organic Chemistry Laboratory, Faculty of Health Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Ahmed B Chaker
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Lamia Remila
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.
| | - Dimitri Heintz
- CNRS, Plant Imaging and Mass Spectrometry (PIMS), IBMP, University of Strasbourg, Strasbourg, France.
| | - Fernand A Gbaguidi
- Medicinal Organic Chemistry Laboratory, Faculty of Health Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Valérie B Schini-Kerth
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Loh YC, Oo CW, Tew WY, Wen X, Wei X, Yam MF. The predominance of endothelium-derived relaxing factors and beta-adrenergic receptor pathways in strong vasorelaxation induced by 4-hydroxybenzaldehyde in the rat aorta. Biomed Pharmacother 2022; 150:112905. [PMID: 35421787 DOI: 10.1016/j.biopha.2022.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022] Open
Abstract
4-hydroxybenzaldehyde (4HB), known as ρ-hydroxybenzaldehyde, is commonly present in traditional Chinese medicine herb, most frequently used for hypertension treatment. This research aims to determine the potency of 4HB's vasorelaxant action. In the study, the vasodilation effect of 4HB was evaluated using in vitro isolated rat aortic rings assay. The aortic rings were pre-incubated with respective antagonists before being pre-contracted with phenylephrine (PE) and challenged with various concentrations of 4HB for mechanistic action studies. Rmax (maximal vasodilation) and pEC50 (negative logarithm of half-maximal effective concentration) values of each experiment were determined for comparison purposes. 4HB caused vasodilation on endothelium-intact aortic rings which pre-contracted with PE (pEC50 = 3.53 ± 0.05, Rmax = 100.95 ± 4.25%) or potassium chloride (pEC50 = 2.96 ± 0.13, Rmax = 72.13 ± 4.93%). The vasodilation effect of 4HB was significantly decreased in the absence of an endothelium (pEC50 = 2.21 ± 0.25, Rmax = 47.96 ± 4.16%). The atropine, 4-aminopyridine, Nω-nitro-L-arginine methyl ester, glibenclamide, and propranolol significantly reduced the vasorelaxation effect of 4HB. Besides that, 4HB blocked the voltage-operated calcium channel (VOCC) and regulated the intracellular Ca2+ release from the sarcoplasmic reticulum (SR) in the aortic ring. Thus, the results indicated that 4HB exerted its vasodilatory effect via cGMP and β2 pathways, M3-dependent PLC/IP3 pathways, and potassium and calcium channels.
Collapse
Affiliation(s)
- Yean Chun Loh
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China; Department of Organic Chemistry, School of Chemical Sciences, UniversitiSains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chuan Wei Oo
- Department of Organic Chemistry, School of Chemical Sciences, UniversitiSains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Wan Yin Tew
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Xu Wen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China
| | - Xu Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China
| | - Mun Fei Yam
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
7
|
Kudo R, Yuui K, Kasuda S. Endothelium-Independent Relaxation of Vascular Smooth Muscle Induced by Persimmon-Derived Polyphenol Phytocomplex in Rats. Nutrients 2021; 14:nu14010089. [PMID: 35010964 PMCID: PMC8746468 DOI: 10.3390/nu14010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
The vasorelaxant effect of polyphenols is well known, and the mortality rate due to coronary artery disease is low in people who consume polyphenol-containing foods. We aimed to elucidate the mechanism by which polyphenols derived from persimmon juice (PJ) and persimmon leaves (PLs) induce vasorelaxation and suppress vasocontraction in the superior mesenteric arteries isolated from male Sprague Dawley rats. Vasocontraction was induced with 1 µM phenylephrine, and polyphenol-induced vasorelaxation was expressed as a percentage of the previous tone induced by phenylephrine. PJ powder (100 mg/L) induced higher levels of vasorelaxation (mean ± standard error of the mean, 88.6% ± 4.4%) than PLs powder (1 g/L; 72.0% ± 10.8%). Nitric oxide pathway inhibitors (NG-nitro-L-arginine methyl ester + carboxy-PTIO) did not affect persimmon-derived polyphenol-induced vasorelaxation, whereas potassium chloride, tetraethylammonium, and potassium-channel inhibitors did. Vasorelaxation was endothelium independent with both extracts. Phenylephrine-induced vasocontraction was suppressed by pretreatment with PJ and PLs powder, even when inositol triphosphate-mediated Ca2+ release and extracellular Ca2+ influx were inhibited. These results suggest that persimmon-derived polyphenol phytocomplex cause vasorelaxation and inhibit vasocontraction through hyperpolarization of smooth muscle cells. Persimmon-derived polyphenols may be able to prevent cardiovascular diseases caused by abnormal contraction of blood vessels.
Collapse
Affiliation(s)
- Risa Kudo
- Correspondence: ; Tel.: +81-744-29-8843
| | | | | |
Collapse
|
8
|
Trettel G, Bertoncini CRA, Lima-Landman MT. The mechanisms of calcium mobilization by procyanidins, flavonols and flavonoids from Cecropia glaziovii Sneth in pulmonary endothelial cell cultures endorse its popular use as vasodilator phytomedicine. Biomed Pharmacother 2021; 144:112231. [PMID: 34610498 DOI: 10.1016/j.biopha.2021.112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022] Open
Abstract
The hypotensive and antihypertensive activities of the aqueous extract (AE) and butanolic fraction (ButF) isolated from Cecropia glaziovii Sneth have been demonstrated in previous studies in animal models. This study aimed to evaluate the molecular mechanism of action responsible for the vasodilatory effect of procyanidins, flavanols, and flavonoids found in C. glaziovii in endothelial cell culture. For this purpose, we analyzed the effect of procyanidin B2 and B3 compounds, catechin, epicatechin, orientin, isoorientin, and isovitexin in the mobilization of Ca2+ in rat endothelial cell cultures. Parallel associations with different antagonists were examined by considering the following in vivo hypotensive mechanisms: blockage of L-type calcium channels, action on β-2 adrenergic receptors, and vasodilation via the nitric oxide pathway. All measurements of calcium mobilization were carried out by using the fluorescence measurement methodology in a Flexstation M3 spectrophotometer. The results indicate that some of the compounds have mixed actions, acting through different calcium mobilization pathways. The mobilization induced by such compounds significantly decreased when they were incubated with their corresponding antagonists. Taken together, our data suggest that the beneficial effects seen with the popular use of Cecropia glaziovii Sneth in pathological conditions, such as systemic arterial hypertension, seem to be related to the plant's hypotensive effect, very probably promoted by the actions of flavonols, flavonoids, and procyanidins, by different pathways of calcium mobilization.
Collapse
Affiliation(s)
- Gabriella Trettel
- Department of Pharmacology, Federal University of São Paulo, Brazil; Department of Gynaecology, Federal University of São Paulo.
| | - Clelia Rejane Antonio Bertoncini
- CEDEME, Centre of Development of Experimental Models for Medicine and Biology, Federal University of São Paulo, Brazil; Department of Gynaecology, Federal University of São Paulo.
| | | |
Collapse
|
9
|
Bioactive Compounds and Nanodelivery Perspectives for Treatment of Cardiovascular Diseases. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioactive compounds are comprised of small quantities of extra nutritional constituents providing both health benefits and enhanced nutritional value, based on their ability to modulate one or more metabolic processes. Plant-based diets are being thoroughly researched for their cardiovascular properties and effectiveness against cancer. Flavonoids, phytoestrogens, phenolic compounds, and carotenoids are some of the bioactive compounds that aim to work in prevention and treating the cardiovascular disease in a systemic manner, including hypertension, atherosclerosis, and heart failure. Their antioxidant and anti-inflammatory properties are the most important characteristics that make them favorable candidates for CVDs treatment. However, their low water solubility and stability results in low bioavailability, limited accessibility, and poor absorption. The oral delivery of bioactive compounds is constrained due to physiological barriers such as the pH, mucus layer, gastrointestinal enzymes, epithelium, etc. The present review aims to revise the main bioactive compounds with a significant role in CVDs in terms of preventive, diagnostic, and treatment measures. The advantages of nanoformulations and novel multifunctional nanomaterials development are described in order to overcome multiple obstacles, including the physiological ones, by summarizing the most recent preclinical data and clinical trials reported in the literature. Nanotechnologies will open a new window in the area of CVDs with the opportunity to achieve effective treatment, better prognosis, and less adverse effects on non-target tissues.
Collapse
|
10
|
Sharifi-Rad J, Quispe C, Shaheen S, El Haouari M, Azzini E, Butnariu M, Sarac I, Pentea M, Ramírez-Alarcón K, Martorell M, Kumar M, Docea AO, Cruz-Martins N, Calina D. Flavonoids as potential anti-platelet aggregation agents: from biochemistry to health promoting abilities. Crit Rev Food Sci Nutr 2021; 62:8045-8058. [PMID: 33983094 DOI: 10.1080/10408398.2021.1924612] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular ailments are the number one cause of mortalities throughout the globe with 17.9 million deaths per year. Platelet activation and aggregation play a crucial role in the pathogenesis of arterial diseases, including acute coronary syndrome, acute myocardial infarction, cerebrovascular transient ischemia, unstable angina, among others. Flavonoids-rich plant extracts are gaining interest for treating the heart-related problems due to safe nature of these herbal extracts. Consumption of plant-food-derived bioactives, particularly flavonoids, has shown antithrombotic, and cardiovascular protective effects due to its anti-platelet activity. Preclinical and clinical trials have proven that flavonoid-rich plant extracts are protective against the cardiac ailments through anti-platelet aggregation activity. This review aims to highlight the anti-platelet aggregation potential of flavonoids with a key emphasis on the therapeutic efficacy in humans. The mechanism of flavonoids in preventing and treating cardiovascular diseases is also highlighted based on preclinical and clinical experimental trials. Further studies are the need of time for exploring the exact molecular mechanism of flavonoids as anti-platelet aggregation agents for treating heart-related problems.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | | | - Mohammed El Haouari
- Centre Régional des Métiers de l'Education et de la Formation/Région: Fès-Meknès (Antenne de Taza), Taza Gare, Morocco.,Laboratoire Matériaux, Substances Naturelles, Environnement et Modélisation (LMSNEM), Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Taza Gare, Morocco
| | - Elena Azzini
- Centre for Research on Food and Nutrition, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timis, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timis, Romania
| | - Marius Pentea
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timis, Romania
| | - Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
11
|
Protective Effects of Polyphenols against Ischemia/Reperfusion Injury. Molecules 2020; 25:molecules25153469. [PMID: 32751587 PMCID: PMC7435883 DOI: 10.3390/molecules25153469] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality across the world. It manifests as an imbalance between blood demand and blood delivery in the myocardium, which leads to cardiac ischemia and myocardial necrosis. While it is not easy to identify the first pathogenic cause of MI, the consequences are characterized by ischemia, chronic inflammation, and tissue degeneration. A poor MI prognosis is associated with extensive cardiac remodeling. A loss of viable cardiomyocytes is replaced with fibrosis, which reduces heart contractility and heart function. Recent advances have given rise to the concept of natural polyphenols. These bioactive compounds have been studied for their pharmacological properties and have proven successful in the treatment of cardiovascular diseases. Studies have focused on their various bioactivities, such as their antioxidant and anti-inflammatory effects and free radical scavenging. In this review, we summarized the effects and benefits of polyphenols on the cardiovascular injury, particularly on the treatment of myocardial infarction in animal and human studies.
Collapse
|
12
|
Mechanisms involved in the endothelium-dependent vasodilatory effect of an ethyl acetate fraction of Cyathea phalerata Mart. in isolated rats’ aorta rings. J Tradit Complement Med 2020; 10:360-365. [PMID: 32695653 PMCID: PMC7365778 DOI: 10.1016/j.jtcme.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
The species Cyathea phalerata Mart. is a tree fern, commonly known as “xaxim”, which is found in tropical and subtropical areas of Brazil. The present study investigated the mechanisms related with the vasorelaxant effects of an Ethyl Acetate Fraction (EAF) obtained from C. phalerata in rats’ thoracic aorta rings. In pre-contracted vessels, EAF (0.1–1000 μg/mL) caused a concentration-dependent relaxation. The endothelium denudation, the nitric oxide (NO) synthase and guanylyl cyclase inhibitor reduced the vasodilation, indicating the participation of NO/cGMP pathway in its effect. The relaxation of EAF was abolished in the absence of extracellular Ca2+ and was significantly decreased in the presence of Ca2+ entry blocker, suggesting that Ca2+ influx plays an important role in EAF effect and probably in eNOS activity. However, the PI3K/Akt pathway is not responsible for eNOS phosphorylation/activation. The vasodilator effect of EAF was partially inhibited by KCl 40 mM and almost totally abolished with L-NOARG + KCl 40 mM, indicating also the role of hyperpolarization in its effect. Calcium activated K+ channels are not involved in the EAF-induced hyperpolarization. The COX inhibitor, indomethacin, slightly reduced the vasodilation induced by EAF. In addition, EAF did not alter the relaxant effects of NO-donor, indicating that the relaxant activity cannot be attributed to free radical-scavenging properties. In conclusion, the present study showed that the EAF, causes an endothelium-dependent vasorelaxant effect in aorta that mainly involves the NO-cGMP pathway, hyperpolarization and prostanoids. The vasorelaxant activity of EAF can be attributed to the occurrence of polyphenol compounds. An ethyl acetate fraction obtained from Cyathea phalerata induces vasodilatation. EAF induced relaxation by an endothelium-dependent mechanism. EAF increases the NO production and hyperpolarization that evoke vasodilation.
Collapse
|
13
|
Taguchi K, Tano I, Kaneko N, Matsumoto T, Kobayashi T. Plant polyphenols Morin and Quercetin rescue nitric oxide production in diabetic mouse aorta through distinct pathways. Biomed Pharmacother 2020; 129:110463. [PMID: 32768953 DOI: 10.1016/j.biopha.2020.110463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic vascular complications are associated with endothelial dysfunction. Various plant-derived polyphenols benefit cardiovascular function by protecting endothelial nitric oxide (NO) production through as yet unclear mechanisms. This study compared the effects of two structurally similar polyphenols, Morin (MO) and Quercetin (QU), on endothelial function in isolated aorta from control and streptozotocin (STZ)-induced diabetic mice. Vascular function under treatment with MO, QU, and various signaling pathway modulators was measured by isometric tension in an organ bath system, NO production by chemical assay and HPLC, and changes in protein signaling factor expression or activity by western blotting (WB). Both polyphenols acted as potent vasodilators and this effect was associated with increased phosphorylation of Akt and endothelial NO synthase (eNOS). An Akt inhibitor blocked MO- and QU-induced vasorelaxation as well as Akt phosphorylation. However, inhibitors of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK) suppressed only QU-induced vasorelaxation, NO production, and AMPK phosphorylation. These results suggested that plant polyphenols MO and QU both promote eNOS-mediated NO production and vasodilation in diabetic aorta, MO via Akt pathway activation and QU via PI3K/Akt and AMPK pathway activation. Elucidation of these pathways may define effective therapeutic targets for diabetic vascular dysfunction.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ikumi Tano
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Nozomu Kaneko
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
14
|
Yamagata K. Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease. Curr Pharm Des 2020; 25:2443-2458. [PMID: 31333108 DOI: 10.2174/1381612825666190722100504] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies have shown that intake of polyphenols through the consumption of vegetables and fruits reduces the risk of Cardiovascular Disease (CVD) by potentially influencing endothelial cell function. OBJECTIVE In this review, the effects and molecular mechanisms of plant polyphenols, particularly resveratrol, epigallocatechin gallate (EGCG), and quercetin, on endothelial functions, and their putative protective effects against CVD are described. METHODS Epidemiologic studies examined the effect of the CVD risk of vegetables and the fruit. Furthermore, studies within vitro models investigated the underlying molecular mechanisms of the action of the flavonoid class of polyphenols. These findings help elucidate the effect of polyphenols on endothelial function and CVD risk reduction. RESULTS Epidemiologic and in vitro studies have demonstrated that the consumption of vegetables and fruits decreases the incidence of CVDs. Furthermore, it has also been indicated that dietary polyphenols are inversely related to the risk of CVD. Resveratrol, EGCG, and quercetin prevent oxidative stress by regulating the expression of oxidase and the antioxidant enzyme genes, contributing to the prevention of stroke, hypertension, heart failure, and ischemic heart disease. CONCLUSION High intake of dietary polyphenols may help prevent CVD. Polyphenols inhibit endothelial dysfunction and induce vascular endothelium-dependent vascular relaxation viz. redox regulation and nitric oxide production. The polyphenol-induced healthy endothelial cell function may be related to CVD prevention.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Laboratory of Molecular Health Science of Food, Department of Food Science & Technology, Nihon University (NUBS), 1866 Kameino, Fujisawa, Kanagawa, 252-8510, Japan
| |
Collapse
|
15
|
Loh YC, Chan SY, Tew WY, Oo CW, Yam MF. New flavonoid-based compound synthesis strategy for antihypertensive drug development. Life Sci 2020; 249:117512. [PMID: 32145305 DOI: 10.1016/j.lfs.2020.117512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 12/27/2022]
Abstract
Hypertension is one of the leading causes of mortality in relation to the cardiovascular conditions and easily the most overlooked and poorly managed disease in mankind. With well over 200 drugs available in the market globally, there is still an urgency to search for antihypertensive alternatives due to the subpar efficacy and unwarranted side effects of the current choices. Present studies reported over 250 types of plant-derived compounds were being investigated for potential pharmacological effects on the vasculature in the last 3 decades. There were numerous literatures that claimed various compounds exhibiting vasorelaxant properties to a certain extent with low numbers of these compounds being successfully adapted into the current medicinal practice for treatment of hypertension. The issue is the scarcity of reviews that summarizes the discovery of this field and the lack of thorough comparison of these compounds to identify which of these vasodilators should be the next face of hypertension management. Thus, this review is aiming towards identifying the relationship between a major class of plant-derived compounds, flavonoid's activity as a vasodilator with their signalling pathways and their structural characteristics according to their vasorelaxant properties. Interestingly, we found that both nitric oxide and voltage-operated calcium channels pathways, and two of the flavonoid's structural characteristics play crucial roles in eliciting strong vasorelaxant effects. We have faith that the insights of this review will serve as a reference for those researching similar topics in the future and potentially lead to the development of more promising antihypertensive alternative.
Collapse
Affiliation(s)
- Yean Chun Loh
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Sock Ying Chan
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Wan Yin Tew
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chuan Wei Oo
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
16
|
Legeay S, Trân K, Abatuci Y, Faure S, Helesbeux JJ. Novel Insights into the Mode of Action of Vasorelaxant Synthetic Polyoxygenated Chalcones. Int J Mol Sci 2020; 21:ijms21051609. [PMID: 32111098 PMCID: PMC7084244 DOI: 10.3390/ijms21051609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
Polyphenols consumption has been associated with a lower risk of cardiovascular diseases (CVDs) notably through nitric oxide (NO)- and estrogen receptor α (ERα)-dependent pathways. Among polyphenolic compounds, chalcones have been suggested to prevent endothelial dysfunction and hypertension. However, the involvement of both the NO and the ERα pathways for the beneficial vascular effects of chalcones has never been demonstrated. In this study, we aimed to identify chalcones with high vasorelaxation potential and to characterize the signaling pathways in relation to ERα signaling and NO involvement. The evaluation of vasorelaxation potential was performed by myography on wild-type (WT) and ERα knock-out (ERα-KO) mice aorta in the presence or in absence of the eNOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME). Among the set of chalcones that were synthesized, four (3, 8, 13 and 15) exhibited a strong vasorelaxant effect (more than 80% vasorelaxation) while five compounds (6, 10, 11, 16, 17) have shown a 60% relief of the pre-contraction and four compounds (12, 14, 18, 20) led to a lower vasorelaxation. We were able to demonstrate that the vasorelaxant effect of two highly active chalcones was either ERα-dependent and NO-independent or ERα-independent and NO-dependent. Thus some structure-activity relationships (SAR) were discussed for an optimized vasorelaxant effect.
Collapse
Affiliation(s)
- Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 Rue Larrey, 49100 Angers, France;
- Correspondence: ; Tel.: +33-(0)2-44-68-85-32
| | - Kien Trân
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers CEDEX 01, France; (K.T.); (Y.A.); (J.-J.H.)
| | - Yannick Abatuci
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers CEDEX 01, France; (K.T.); (Y.A.); (J.-J.H.)
| | - Sébastien Faure
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 Rue Larrey, 49100 Angers, France;
| | - Jean-Jacques Helesbeux
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers CEDEX 01, France; (K.T.); (Y.A.); (J.-J.H.)
| |
Collapse
|
17
|
Legeay S, Trân K, Abatuci Y, Justiniano H, Lugnier C, Duval O, Helesbeux JJ, Faure S. Design, Synthesis, Pharmacological Evaluation and Vascular Effects of Delphinidin Analogues. Curr Pharm Des 2019; 24:5580-5589. [PMID: 30727871 DOI: 10.2174/1381612825666190206144913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Among polyphenolic compounds suggested to prevent cardiovascular diseases (CVDs) and to explain the "French paradox", the anthocyanidin delphinidin (Dp) has been reported to support at least partly the vascular beneficial effects of dietary polyphenolic compounds including those from fruits and related products as red wine. It has also been highlighted that Dp interacts directly with the active site of estrogen receptor α (ERα), leading to activation of endothelial NO synthase (eNOS) pathway thus contributing to the prevention of endothelial dysfunction in mice aorta. However, anthocyanidins have very low bioavailability and despite a well described in vitro efficacy, the very high hydrophilicity and physicochemical instability of Dp might explain the lack of in vivo reported effects. OBJECTIVE The aim of this study was to identify new Dp analogues with increased lipophilicity and vasorelaxation potential by a chemical modulation of its structure and to characterize the signaling pathway notably in relation with ERα signaling and nitric oxide (NO) production. METHOD OCH3-substituted delphinidin analogues were obtained through the coupling of the corresponding acetophenones with substituted benzaldehydes. Prediction of resorption of the flavylium derivatives was performed with the calculated logP and induction of vasorelaxation was performed by myography on WT and ERαKO mice thoracic aorta rings and compared to Dp. NO production was evaluated in vitro on human primary endothelial cells. RESULTS Eight Dp analogues were synthesized including four new flavylium derivatives. Two compounds (9 and 11) showed a strong increase of vasorelaxation potential and a theoretically increased bioavailability compared to Dp. Interestingly, 9 and 11 induced increased O2 - or NO endothelial production respectively and revealed a novel NO-dependent ERα-independent relaxation compared to Dp. We suggested that this mechanism may be at least in part supported by the inhibition of vascular cyclic nucleotide phosphodiesterase (PDEs). CONCLUSION The current study demonstrated that pharmacomodulation of the Dp backbone by replacement of OH groups by OCH3 groups of the A and B rings led to the identification and characterization of two compounds (9 and 11) with enhanced physio-chemical properties that could be associated to higher permeability capability and pharmacological activity for the prevention of CVDs compared to Dp.
Collapse
Affiliation(s)
- Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| | - Kien Trân
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Yannick Abatuci
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Hélène Justiniano
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Universite de Strasbourg, Illkirch, France
| | - Claire Lugnier
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Universite de Strasbourg, Illkirch, France
| | - Olivier Duval
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| | - Jean-Jacques Helesbeux
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Sébastien Faure
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| |
Collapse
|
18
|
Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of Red Wine Consumption on Cardiovascular Health. Curr Med Chem 2019; 26:3542-3566. [PMID: 28521683 DOI: 10.2174/0929867324666170518100606] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks. METHODS This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: "red wine, cardiovascular, alcohol" in combination with "polyphenols, heart failure, infarction". RESULTS Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the "French paradox". Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk. CONCLUSION Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.,IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.,IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
19
|
Chenopodium ambrosioides induces an endothelium-dependent relaxation of rat isolated aorta. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:115-124. [PMID: 30738772 DOI: 10.1016/j.joim.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aims to evaluate the vasodilatory effect of Chenopodium ambrosioides on the isolated rat aorta, and to explore its mechanism of action. METHODS The vasorelaxant effect and the mode of action of various extracts from the leaves of C. ambrosioides were evaluated on thoracic aortic rings isolated from Wistar rats. In addition, ethyl acetate and methanol fractions were analyzed, using thin-layer chromatography and high-performance liquid chromatography techniques, for their polyphenolic content. RESULTS The various active extracts of C. ambrosioides at four concentrations (10-3, 10-2, 10-1 and 1 mg/mL) relaxed the contraction elicited by phenylephrine, in a concentration-dependent manner. This effect seems to be endothelium-dependent, since the vasodilatory effect was entirely absent in denuded aortic rings. The vasorelaxant effect of the methanol fraction (MF) of C. ambrosioides at 1 mg/mL was also inhibited by atropine and tetraethylammonium. This effect remained unchanged by Nω-nitro-l-arginine methyl ester hydrochloride and glibenclamide. The preliminary phytochemical analysis showed that the leaves of C. ambrosioides are rich in phenolic and flavonoid derivatives. CONCLUSION These results suggest that the MF of C. ambrosioides produces an endothelium-dependent relaxation of the isolated rat aorta, which is thought to be mediated mainly through stimulation of the muscarinic receptors, and probably involving the opening of Ca2+-activated potassium channels.
Collapse
|
20
|
Finn-Sell SL, Cottrell EC, Greenwood SL, Dilworth MR, Cowley EJ, Sibley CP, Wareing M. Pomegranate Juice Supplementation Alters Utero-Placental Vascular Function and Fetal Growth in the eNOS -/- Mouse Model of Fetal Growth Restriction. Front Physiol 2018; 9:1145. [PMID: 30154737 PMCID: PMC6103006 DOI: 10.3389/fphys.2018.01145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/30/2018] [Indexed: 11/21/2022] Open
Abstract
The eNOS−/− mouse provides a well-characterized model of fetal growth restriction (FGR) with altered uterine and umbilical artery function and reduced utero- and feto-placental blood flow. Pomegranate juice (PJ), which is rich in antioxidants and bioactive polyphenols, has been posited as a beneficial dietary supplement to promote cardiovascular health. We hypothesized that maternal supplementation with PJ will improve uterine and umbilical artery function and thereby enhance fetal growth in the eNOS−/− mouse model of FGR. Wild type (WT, C57Bl/6J) and eNOS−/− mice were supplemented from E12.5-18.5 with either PJ in their drinking water or water alone. At E18.5 uterine (UtA) and umbilical (UmbA) arteries were isolated for study of vascular function, fetuses and placentas were weighed and fetal biometric measurements taken. PJ supplementation significantly increased UtA basal tone (both genotypes) and enhanced phenylephrine-induced contraction in eNOS−/− but not WT mice. Conversely PJ significantly reduced UtA relaxation in response to both acetylcholine (Ach) and sodium nitroprusside (SNP), endothelium dependent and independent vasodilators respectively from WT but not eNOS−/− mice. UmbA sensitivity to U46619-mediated contraction was increased by PJ supplementation in WT mice; PJ enhanced contraction and relaxation of UmbA to Ach and SNP respectively in both genotypes. Contrary to our hypothesis, the changes in artery function induced by PJ were not associated with an increase in fetal weight. However, PJ supplementation reduced litter size and fetal abdominal and head circumference in both genotypes. Collectively the data do not support maternal PJ supplementation as a safe or effective treatment for FGR.
Collapse
Affiliation(s)
- Sarah L Finn-Sell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth J Cowley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
21
|
Oak MH, Auger C, Belcastro E, Park SH, Lee HH, Schini-Kerth VB. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic Biol Med 2018; 122:161-170. [PMID: 29548794 DOI: 10.1016/j.freeradbiomed.2018.03.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Epidemiological studies have indicated that regular intake of polyphenol-rich diets such as red wine and tea, are associated with a reduced risk of cardiovascular diseases. The beneficial effect of polyphenol-rich products has been attributable, at least in part, to their direct action on the endothelial function. Indeed, polyphenols from tea, grapes, cacao, berries, and plants have been shown to activate endothelial cells to increase the formation of potent vasoprotective factors including nitric oxide (NO) and to delay endothelial ageing. Moreover, intake of such polyphenol-rich products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in Humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that polyphenols are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Min-Ho Oak
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Hyun-Ho Lee
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
22
|
Boon EAJ, Croft KD, Shinde S, Hodgson JM, Ward NC. The acute effect of coffee on endothelial function and glucose metabolism following a glucose load in healthy human volunteers. Food Funct 2018; 8:3366-3373. [PMID: 28858362 DOI: 10.1039/c7fo00926g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A diet rich in plant polyphenols has been suggested to reduce the incidence of cardiovascular disease and type 2 diabetes mellitus, in part, via improvements in endothelial function. Coffee is a rich source of phenolic compounds including the phenolic acid, chlorogenic acid (CGA). The aim of the study was to investigate the effect of coffee as a whole beverage on endothelial function, blood pressure and blood glucose concentration. Twelve healthy men and women were recruited to a randomised, placebo-controlled, cross-over study, with three treatments tested: (i) 18 g of ground caffeinated coffee containing 300 mg CGA in 200 mL of hot water, (ii) 18 g of decaffeinated coffee containing 287 mg CGA in 200 mL of hot water, and (iii) 200 mL of hot water (control). Treatment beverages were consumed twice, two hours apart, with the second beverage consumed simultaneously with a 75 g glucose load. Blood pressure was recorded and the finger prick glucose test was performed at time = 0 and then every 30 minutes up to 2 hours. Endothelial function, assessed using flow-mediated dilatation (FMD) of the brachial artery, was measured at 1 hour and a blood sample taken at 2 hours to measure plasma nitrate/nitrite and 5-CGA concentrations. The FMD response was significantly higher in the caffeinated coffee group compared to both decaffeinated coffee and water groups (P < 0.001). There was no significant difference in the FMD response between decaffeinated coffee and water. Blood glucose concentrations and blood pressure were not different between the three treatment groups. In conclusion, the consumption of caffeinated coffee resulted in a significant improvement in endothelial function, but there was no evidence for benefit regarding glucose metabolism or blood pressure. Although the mechanism has yet to be elucidated the results suggest that coffee as a whole beverage may improve endothelial function, or that caffeine is the component of coffee responsible for improving FMD.
Collapse
Affiliation(s)
- Evan A J Boon
- Schools of Medicine and Biomedical Science, University of Western Australia, Perth, Western Australia.
| | | | | | | | | |
Collapse
|
23
|
Abusnina A, Lugnier C. Therapeutic potentials of natural compounds acting on cyclic nucleotide phosphodiesterase families. Cell Signal 2017; 39:55-65. [PMID: 28754627 DOI: 10.1016/j.cellsig.2017.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
Intracellular cyclic AMP and/or cyclic GMP are characterized in the 1960th. These second messengers, hydrolysed specifically by cyclic nucleotide phosphodiesterase (PDE), play a major role in intracellular signalling. Natural products have been a rich source of drug discovery, Theophylline and Methylxanthine originated from tea leaves used for asthma treatment, whereas, Papaverine, a natural isoquinolein originated from Papaver somniferum traditionally used in impotency, altogether as caffeine where firstly described as PDE-inhibiting compounds. Since that time, the knowledge in PDE field has been drastically increased, allowing the design and development of new therapeutic drugs acting against different pathologies in the nanomolar range. During this period some natural compounds have been identified as PDE inhibitors and used in that context to investigate their therapeutic potential effects. The aim of this literature review is to point out the reported data and demonstrating the contribution of natural characterized molecules as PDE inhibitors in various pathologies that can open new fields of research for drug discovery, notably in epigenetic regulation.
Collapse
|
24
|
Novakovic A, Marinko M, Jankovic G, Stojanovic I, Milojevic P, Nenezic D, Kanjuh V, Yang Q, He GW. Endothelium-dependent vasorelaxant effect of procyanidin B2 on human internal mammary artery. Eur J Pharmacol 2017; 807:75-81. [DOI: 10.1016/j.ejphar.2017.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023]
|
25
|
Díaz-de-Cerio E, Rodríguez-Nogales A, Algieri F, Romero M, Verardo V, Segura-Carretero A, Duarte J, Galvez J. The hypoglycemic effects of guava leaf ( Psidium guajava L.) extract are associated with improving endothelial dysfunction in mice with diet-induced obesity. Food Res Int 2017; 96:64-71. [DOI: 10.1016/j.foodres.2017.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 01/22/2023]
|
26
|
Takashima M, Kanamori Y, Kodera Y, Morihara N, Tamura K. Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 24:56-61. [PMID: 28160862 DOI: 10.1016/j.phymed.2016.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Clinical trials have shown that aged garlic extract (AGE) is effective in reducing blood pressure of hypertensive patients. However, the mechanisms involved remain to be elucidated. PURPOSE The aim of the present study was to investigate the vasorelaxant effect of AGE on the aorta and its mechanism of action in order to clarify the blood pressure-lowering action of AGE. METHODS The vasorelaxant effect was evaluated in isolated rat aortic rings. After aortic rings were contracted by 3 × 10-6M norepinephrine (NE) for 30min, AGE and other test drugs were added to the aortic rings. All results were expressed as percentages of the maximal NE-induced contraction. RESULTS AGE induced the concentration-dependent vasorelaxation of isolated rat aortic rings that had been precontracted with norepinephrine. The effect of AGE was severely impaired in aortic rings lacking endothelium. In addition, the effect of AGE was inhibited by a nitric oxide synthase (NOS) inhibitor and a nitric oxide (NO) scavenger. Moreover, AGE treatment of aorta significantly increased the NO production. When various constituents of AGE were tested, the vasorelaxation of aorta was observed only in the presence of L-arginine, a substrate of NOS. CONCLUSION AGE causes endothelium-dependent vasorelaxation of aorta via stimulation of NO production and that L-arginine in AGE serves as a key agent for NOS-mediated NO production.
Collapse
Affiliation(s)
- Miyuki Takashima
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., 1624 Shimokotachi, Koda-cho, Akitakata, Hiroshima 739-1195, Japan.
| | - Yuta Kanamori
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., 1624 Shimokotachi, Koda-cho, Akitakata, Hiroshima 739-1195, Japan
| | - Yukihiro Kodera
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., 1624 Shimokotachi, Koda-cho, Akitakata, Hiroshima 739-1195, Japan
| | - Naoaki Morihara
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., 1624 Shimokotachi, Koda-cho, Akitakata, Hiroshima 739-1195, Japan
| | - Koichi Tamura
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., 1624 Shimokotachi, Koda-cho, Akitakata, Hiroshima 739-1195, Japan
| |
Collapse
|
27
|
Leonetti D, Soleti R, Clere N, Vergori L, Jacques C, Duluc L, Dourguia C, Martínez MC, Andriantsitohaina R. Estrogen Receptor α Participates to the Beneficial Effect of Red Wine Polyphenols in a Mouse Model of Obesity-Related Disorders. Front Pharmacol 2017; 7:529. [PMID: 28119607 PMCID: PMC5222790 DOI: 10.3389/fphar.2016.00529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 01/25/2023] Open
Abstract
Red wine polyphenol extracts (polyphenols) ameliorate cardiovascular and metabolic disorders associated with obesity. Previously, we demonstrated that the alpha isoform of estrogen receptor (ERα) triggers the vascular protection of polyphenols. Here, we investigated the contribution of ERα on the effects of polyphenols on cardiovascular and metabolic alterations associated with obesity. We used ovariectomized wild type or ERα-deficient mice receiving standard (SD) or western (WD) diets, or SD and WD containing polyphenols (SD+polyphenols and WD+polyphenols, respectively) over a 12-week period. Body weight was measured during treatment. Echocardiography examination was performed before sacrifice. Blood and tissues were sampled for biochemical and functional analysis with respect to nitric oxide (NO•) and oxidative stress. Vascular reactivity and liver mitochondrial complexes were analyzed. In WD-fed mice, polyphenols reduced adiposity, plasma triglycerides and oxidative stress in aorta, heart, adipose and liver tissues and enhanced NO• production in aorta and liver. ERα deletion prevented or reduced the beneficial effects of polyphenols, especially visceral adiposity, aortic and liver oxidative stresses and NO• bioavailability. ERα deletion, however, had no effect on polyphenol's ability to decrease the fat accumulation and oxidative stress of subcutaneous adipose tissue. Also, ERα deletion did not modify the decrease of ROS levels induced by polyphenols treatment in the visceral adipose tissue and heart from WD-fed mice. Dietary supplementation of polyphenols remarkably attenuates features of metabolic syndrome; these effects are partially mediated by ERα-dependent mechanisms. This study demonstrates the therapeutic potential of this extract in metabolic and cardiovascular alterations linked to excessive energy intake.
Collapse
Affiliation(s)
- Daniela Leonetti
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Raffaella Soleti
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Nicolas Clere
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Luisa Vergori
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Caroline Jacques
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Lucie Duluc
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Catherine Dourguia
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Maria C Martínez
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Ramaroson Andriantsitohaina
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'AngersAngers, France; Centre Hospitalier Universitaire d'AngersAngers, France
| |
Collapse
|
28
|
Forte M, Conti V, Damato A, Ambrosio M, Puca AA, Sciarretta S, Frati G, Vecchione C, Carrizzo A. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7364138. [PMID: 27651855 PMCID: PMC5019908 DOI: 10.1155/2016/7364138] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.
Collapse
Affiliation(s)
- Maurizio Forte
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| | - Valeria Conti
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Antonio Damato
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| | | | - Annibale A. Puca
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
- IRCCS Multimedica, Milan, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Carmine Vecchione
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Albino Carrizzo
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| |
Collapse
|
29
|
Paganini Stein FL, Schmidt B, Furlong EB, Souza-Soares LA, Soares MCF, Vaz MRC, Muccillo Baisch AL. Vascular Responses to Extractable Fractions of Ilex paraguariensis in Rats Fed Standard and High-Cholesterol Diets. Biol Res Nurs 2016; 7:146-56. [PMID: 16267376 DOI: 10.1177/1099800405280521] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors investigated the vasorelaxant properties of the aqueous (Aq-EF) and acid n-butanolic (acn-BuOH) extractable fractions from Ilex paraguariensis leaves. Perfusion pressure was evaluated using isolated and perfused mesenteric arterial beds (MABs) from rats fed hypercholesterolemic and standard diets. Extract-induced vasorelaxation in the presence and absence of various inhibitors was examined following precontraction of the MABs with methoxamine (30 μM) solution. In hypercholesterolemic-diet rats, relaxation in intact MABs was significantly decreased with ac-n-BuOH-EF bolus (300, 600, 900 μg) in comparison to those in standard-diet rats. After the endothelium was stripped from the MABs, the vascular responses to ac-n-BuOH-EF and 900 μg bolus of Aq-EF were significantly changed. Treatment of the MABs with an inhibitor of nitric oxide synthase, NG -nitro-L-arginine methylester hydrochloride (L-NAME, 10 mM), did not change either ac-n-BuOH-EF- or Aq-EF-induced vasodilation except for the 900 g bolus of Aq-EF. The guanilate cyclase inhibitor methylene blue (100 μM) did not affect vasodilation for either fraction in the MABs from the hypercholesterolemic-diet rats. The chronic oral administration of I. paraguariensis extract in hypercholesterolemic-diet rats resulted in a significant reduction in serum levels of cholesterol and triglycerides. These results suggest that I. paraguariensis ac-n-BuOH-EF and Aq-EF induce vasodilation in standard-diet rats in a dose-dependent manner and that the hypercholesterolemic diet substantially reduced the effect of ac-n-BuOH-EF on precontracted MABs.
Collapse
Affiliation(s)
- Fabiana L Paganini Stein
- Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada, Fundação Universidade Federal do Rio Grande, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Auger C, Said A, Nguyen PN, Chabert P, Idris-Khodja N, Schini-Kerth VB. Potential of Food and Natural Products to Promote Endothelial and Vascular Health. J Cardiovasc Pharmacol 2016; 68:11-8. [PMID: 26974893 DOI: 10.1097/fjc.0000000000000382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial dysfunction is now well established as a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors including nitric oxide (NO) and endothelium-dependent hyperpolarization, and an increased level of oxidative stress involving several prooxidant enzymes such as NADPH oxidase and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Preclinical studies have indicated that polyphenol-rich food and food-derived products such as grape-derived products, black and red berries, green and black teas and cocoa, and omega-3 fatty acids can trigger activating pathways in endothelial cells promoting an increased formation of nitric oxide and endothelium-dependent hyperpolarization. Moreover, intake of such food-derived products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that different types of food and natural products are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
31
|
Yorulmaz O O, Ertug PU, Karabulut E, Kumcu EK, Singirik E, Secilmis MA. Dose-dependent Differential Mechanism of Quercetin-induced
Vasodilatations in Isolated Perfused Rat Mesenteric Vascular Bed. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.379.386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Alves Filho FDC, Cavalcanti PMDS, Passaglia RDCAT, Ballejo G. Long-lasting endothelium-dependent relaxation of isolated arteries caused by an extract from the bark of Combretum leprosum. EINSTEIN-SAO PAULO 2016; 13:395-403. [PMID: 26466063 PMCID: PMC4943785 DOI: 10.1590/s1679-45082015ao3242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/24/2015] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To describe and to characterize the relaxing effect of an extract of the bark of Combretum leprosum on isolated arterial rings from different animals. METHODS Rings (3 to 4mm) from rabbit, rat, or porcine arteries rings were suspended in an organ bath (Krebs, 37°C, 95%O2/5%CO2) to record isometric contractions. After the stabilization period (2 to 3 hours) contractions were induced by the addition of phenylephrine (0.1 to 0.3µM) or U46619 (10 to 100nM), and Combretum leprosum extract was added on the plateau of the contractions. Experiments were performed to determine the potency, duration, reversibility, and to get insights on the potential mechanism involved in extract-induced relaxations. RESULTS In all rings tested, Combretumleprosum extract (1.5μg/mL) was able to cause relaxations, which were strictly endothelium-dependent. In rabbit or rat thoracic aorta rings, the relaxations were reversed by vitamin B12a or L-NG-nitroarginine. In porcine right coronary arteries and rabbit abdominal aorta, extract caused both L-NG-nitroarginine-sensitive and L-NG-nitroarginine-resistant relaxations. In rabbit thoracic aorta, the extract was relatively potent (EC50=0.20µg/mL) and caused relaxations; intriguingly the endothelium continued to produce relaxing factors for a long period after removing the extract. The magnitude of extract-induced relaxations was significantly reduced in the absence of extracellular Ca2+; in addition, the TRPs channels blocker ruthenium red (10µM) was able to revert extract-induced relaxations. Phytochemical analyses indicated that the extract was rich in polyphenol-like reacting substances. CONCLUSIONS Combretum leprosum extract contains bioactive compounds capable of promoting Ca2+-dependent stimulation of endothelial cells which results in a prolonged production of relaxing factors.
Collapse
Affiliation(s)
| | | | | | - Gustavo Ballejo
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Abstract
As flavonols are present in fruits and vegetables, they are consumed in considerable amounts in the diet. There is growing evidence that the well-recognized antioxidant, anti-inflammatory, and vasorelaxant actions of flavonols may, at least in part, result from modulation of biochemical signaling pathways and kinases. It is well established that diabetes is associated with increased cardiovascular morbidity and mortality. Despite clinical management of blood glucose levels, diabetes often results in cardiovascular disease. There is good evidence that endothelial dysfunction contributes significantly to the progression of diabetic cardiovascular diseases. This review describes the biological actions of flavonols that may ameliorate adverse cardiovascular events in diabetes. We discuss evidence that flavonols may be developed as novel pharmacological agents to prevent diabetes-induced vascular dysfunction.
Collapse
|
34
|
Evidence for Grape, Wine and Tea Polyphenols as Modulators of Atherosclerosis and Ischemic Heart Disease in Humans. ACTA ACUST UNITED AC 2015. [DOI: 10.1300/j133v03n03_04] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Khan NQ, Patel B, Kang SS, Dhariwal SK, Husain F, Wood EG, Pothecary MR, Corder R. Regulation of vascular endothelial function by red wine procyanidins: implications for cardiovascular health. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.10.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Kline LW, Karpinski E. The Resveratrol-induced Relaxation of Cholecystokinin Octapeptide- or KCl-induced Tension in Male Guinea Pig Gallbladder Strips Is Mediated Through L-type Ca2+Channels. J Neurogastroenterol Motil 2015; 21:62-8. [PMID: 25537678 PMCID: PMC4288087 DOI: 10.5056/jnm14093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 11/26/2022] Open
Abstract
Background/Aims Resveratrol (3,5,4′-trihydroxystilbene) is a polyphenolic compound (stilbene) and a phytoalexin. The purpose of this study was to determine the mechanism which mediated the resveratrol-induced relaxation of cholecystokinin octapeptide- or KCl-induced tension in male guinea pig gallbladder strips. Methods Gallbladder strips were prepared and suspended in in vitro chambers filled with Krebs-Henseleit solution. The strips were attached to force displacement transducers, and the changes in tension were recorded on a polygraph. All reagents were added directly into the chambers. Results To determine if intracellular Ca2+ release mediated the resveratrol-induced relaxation of cholecystokinin octapeptide-induced tension, 2-aminoethoxydiphenylborane (2-APB) was used. 2-APB significantly (P < 0.01) decreased the amount of RSVL-induced relaxation. To determine if protein kinase A (PKA) mediated the resveratrol-induced relaxation, PKA inhibitor 14-22 amide myristolated (PKA-IM) was used. PKA-IM had no effect on resveratrol-induced relaxation. Neither KT5823, NG-methyl-L-arginine acetate salt, a nitric oxide synthase inhibitor, nor fulvestrant had a significant effect on the amount of resveratrol-induced relaxation. Genistein, a protein tyrosine kinase inhibitor, significantly (P < 0.01) increased the RSVL-induced relaxation. To determine if protein kinase C mediated the RSVL-induced relaxation, the protein kinase C inhibitors bisindolymaleimide IV and chelerythrine Cl- were used together, and a significant (P < 0.05) increase in resveratrol-induced relaxation was observed. The pretreatment of the strips with resveratrol significantly (P < 0.001) decreased the amount of KCl- and cholecystokinin octapep-tide-induced tension. Conclusions Resveratrol-induced relaxation is mediated by its effects on L-type Ca2+ channels and intracellular Ca2+ release.
Collapse
Affiliation(s)
- Loren W Kline
- Departments of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Edward Karpinski
- Departments of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Martínez-Fernández L, Pons Z, Margalef M, Arola-Arnal A, Muguerza B. Regulation of vascular endothelial genes by dietary flavonoids: structure-expression relationship studies and the role of the transcription factor KLF-2. J Nutr Biochem 2014; 26:277-84. [PMID: 25542418 DOI: 10.1016/j.jnutbio.2014.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/18/2022]
Abstract
Physiological concentrations (1 μM) of 15 flavonoids were evaluated in human umbilical vein endothelial cells in the presence of hydrogen peroxide (H₂O₂) for their ability to affect endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression in order to establish the structural basis of their bioactivity. Flavonoid effects on eNOS transcription factor Krüpple like factor-2 (KLF-2) expression were also evaluated. All studied flavonoids appeared to be effective compounds for counteracting the oxidative stress-induced effects on vascular gene expression, indicating that flavonoids are an excellent source of functional endothelial regulator products. Notably, the more effective flavonoids for KLF-2 up-regulation resulted in the highest values for eNOS expression, showing that the increment of eNOS expression would take place through KLF-2 induction. Structure-activity relationship studies showed that the combinations of substructures on flavonoid skeleton that regulate eNOS expression are made up of the following elements: glycosylation and hydroxylation of C-ring, double bond C2=C3 at C-ring, methoxylation and hydroxylation of B-ring, ketone group in C4 at C-ring and glycosylation in C7 of A-ring, while flavonoid features involved in the reduction of vasoconstrictor ET-1 expression are as follows: double bond C2=C3 at C-ring glycosylation in C7 of A-ring and ketone group in C4 of C-ring.
Collapse
Affiliation(s)
- Leyre Martínez-Fernández
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007 Spain
| | - Zara Pons
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007 Spain
| | - Maria Margalef
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007 Spain
| | - Anna Arola-Arnal
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007 Spain.
| | - Begoña Muguerza
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007 Spain; Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Avinguda Universitat, 1, 43204 Reus, Catalonia, Spain
| |
Collapse
|
38
|
Chalopin M, Soleti R, Benameur T, Tesse A, Faure S, Martínez MC, Andriantsitohaina R. Red wine polyphenol compounds favor neovascularisation through estrogen receptor α-independent mechanism in mice. PLoS One 2014; 9:e110080. [PMID: 25299185 PMCID: PMC4192547 DOI: 10.1371/journal.pone.0110080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022] Open
Abstract
Red wine polyphenol compounds (RWPC) exert paradoxical effects depending on the dose on post-ischemic neovascularisation. Low dose RWPC (0.2 mg/kg/day) is pro-angiogenic, whereas high dose (20 mg/kg/day) is anti-angiogenic. We recently reported that the endothelial effect of RWPC is mediated through the activation of a redox-sensitive pathway, mitochondrial biogenesis and the activation of α isoform of the estrogen receptor (ERα). Here, we investigated the implication of ERα on angiogenic properties of RWPC. Using ovariectomized mice lacking ERα treated with high dose of RWPC after hindlimb ischemia, we examined blood flow reperfusion, vascular density, nitric oxide (NO) production, expression and activation of proteins involved in angiogenic process and muscle energy sensing network. As expected, high dose of RWPC treatment reduced both blood flow and vascular density in muscles of mice expressing ERα. These effects were associated with reduced NO production resulting from diminished activity of eNOS. In the absence of RWPC, ERα deficient mice showed a reduced neo-vascularisation associated with a decreased NO production. Surprisingly in mice lacking ERα, high dose of RWPC increased blood flow and capillary density in conjunction with increased NO pathway and production as well as VEGF expression. Of particular interest is the activation of Sirt-1, AMPKα and PGC-1α/β axis in ischemic hindlimb from both strains. Altogether, the results highlight a pro-angiogenic property of RWPC via an ERα-independent mechanism that is associated with an up-regulation of energy sensing network. This study brings a corner stone of a novel pathway for RWPC to correct cardiovascular diseases associated with failed neovascularisation.
Collapse
Affiliation(s)
- Matthieu Chalopin
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Raffaella Soleti
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Tarek Benameur
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Angela Tesse
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Sébastien Faure
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | | | - Ramaroson Andriantsitohaina
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
- Centre Hospitalier Universitaire d’Angers, Angers, France
- * E-mail:
| |
Collapse
|
39
|
Karaarslan K, Abud B, Albayrak G, Aykut K, Ergür BU, Silistreli E. The effect of resveratrol on intimal hyperplasia and endothelial proliferation of rabbit carotid artery anastomosis. Interact Cardiovasc Thorac Surg 2014; 20:15-20. [PMID: 25269652 DOI: 10.1093/icvts/ivu316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES We assessed the effect of resveratrol on intimal hyperplasia and endothelial proliferation after its use for carotid artery anastomosis in rabbits. METHODS Fourteen New Zealand-type male rabbits, weighing a mean of 2-3 kg were selected randomly. Their right carotid arteries were transected and anastomosed side by side using 8/0 polypropylene. The rabbits were divided into two groups with seven in each group. While the rabbits in the first group were accepted as the Control group, the rabbits in the second group were given resveratrol (1 mg/kg/day) for 14 days intravenously. At the end of the 28th day, all the carotid artery segments that were transected and anastomosed and the left carotid arteries that did not undergo surgery were removed and evaluated histologically. RESULTS The results of histological evaluation were as follows: lumen diameter (P <0.001) and lumen area (P <0.05) of the Resveratrol group were larger than those of the Control group, intimal thickness (P <0.05) and media thickness of the Resveratrol group (P = 0.04) were thinner than those of the Control group, and intima/media ratio of the Control group was found to be greater than that of the Resveratrol group (P = 0.002). CONCLUSIONS Resveratrol can prevent intimal hyperplasia and endothelial proliferation following surgical anastomosis.
Collapse
Affiliation(s)
- Kemal Karaarslan
- Department of Cardiovascular Surgery, Izmir Tepecik Research and Education Hospital, Izmir, Turkey
| | - Burcin Abud
- Department of Cardiovascular Surgery, Izmir Tepecik Research and Education Hospital, Izmir, Turkey
| | - Gökhan Albayrak
- Department of Cardiovascular Surgery, İzmir University Medical Park Hospital, Izmir, Turkey
| | - Koray Aykut
- Department of Cardiovascular Surgery, İzmir University Medical Park Hospital, Izmir, Turkey
| | - Bekir Ugur Ergür
- Department of Histology, Dokuz Eylül University Hospital, Izmir, Turkey
| | - Erdem Silistreli
- Department of Cardiovascular Surgery, Dokuz Eylül University Hospital, Izmir, Turkey
| |
Collapse
|
40
|
Byun EB, Sung NY, Yang MS, Song DS, Byun EH, Kim JK, Park JH, Song BS, Lee JW, Park SH, Byun MW, Kim JH. Procyanidin C1 causes vasorelaxation through activation of the endothelial NO/cGMP pathway in thoracic aortic rings. J Med Food 2014; 17:742-8. [PMID: 24971771 DOI: 10.1089/jmf.2013.2978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to clarify the efficacy of procyanidin C1 (Pro C1) for modulating vascular tone. Pro C1 induced a potent vasorelaxant effect on phenylephrine-constricted endothelium-intact thoracic aortic rings, but had no effect on denuded thoracic aortic rings. Moreover, Pro C1 caused a significant increase in nitric oxide (NO) production in endothelial cells. Pro C1-induced vasorelaxation and Pro C1-induced NO production were significantly decreased in the presence of a nonspecific potassium channel blocker (tetraethylammonium chloride [TEA]), an endothelial NO synthase inhibitor (N(G)-monomethyl-L-arginine [L-NMMA]), and a store-operated calcium entry inhibitor (2-aminoethyl diphenylborinate [2-APB]). Pro C1-induced vasorelaxation was also completely abolished by an inhibitor of soluble guanyl cyclase, which suggests that the Pro C1 effects observed involved cyclic guanosine monophosphate (cGMP) production. Interestingly, Pro C1 significantly enhanced basal cGMP levels. Taken together, these results indicate that Pro C1-induced vasorelaxation is associated with the activation of the calcium-dependent NO/cGMP pathway, involving potassium channel activation. Thus, Pro C1 may represent a novel and potentially therapeutically relevant compound for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Eui-Baek Byun
- 1 Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chang HC, Tai YT, Cherng YG, Lin JW, Liu SH, Chen TL, Chen RM. Resveratrol attenuates high-fat diet-induced disruption of the blood-brain barrier and protects brain neurons from apoptotic insults. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3466-3475. [PMID: 24694235 DOI: 10.1021/jf403286w] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The blood-brain barrier (BBB) maintains brain microenvironment. Our previous study showed that oxidized low-density lipoprotein (oxLDL) can damage the BBB by inducing apoptosis of cerebrovascular endothelial cells. This study was aimed at evaluating the effects of resveratrol on high-fat diet-induced insults to the BBB and brain neurons. Exposure of mice to a high-fat diet for 8 weeks increased levels of serum total cholesterol (146 ± 13) and LDL (68 ± 8), but resveratrol decreased such augmentations (119 ± 6; 45 ± 8). Permeability assays showed that a high-fat diet induced breakage of the BBB (88 ± 21). Meanwhile, resveratrol alleviated this interruption (16 ± 6). Neither resveratrol nor a high-fat diet caused the death of cerebrovascular endothelial cells. Instead, exposure to a high-fat diet disrupted the polymerization of occludin and zonula occludens (ZO)-1, but resveratrol significantly attenuated those injuries. Neither a high-fat diet nor resveratrol changed the levels of occludin or ZO-1 in brain tissues. Resveratrol protected brain neurons against high-fat diet-induced caspase-3 activation and genomic DNA fragmentation. This study shows that resveratrol can attenuate the high-fat diet-induced disruption of the BBB via interfering with occludin and ZO-1 tight junctions, and protects against apoptotic insults to brain neurons.
Collapse
Affiliation(s)
- Huai-Chia Chang
- Graduate Institute of Medical Sciences, Taipei Medical University; Comprehensive Cancer Center of Taipei Medical University , Taipei 11031, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
Silva ATD, Lima EMD, Caliman IF, Porto LLS, Nascimento AMD, Kalil IC, Lenz D, Bissoli NS, Endringer DC, Andrade TUD. Hypotensive effect and endothelium-dependent vascular action of leaves of Alpinia purpurata (Vieill) K. Schum. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aims of this study were to evaluate the chemical profile, vascular reactivity, and acute hypotensive effect (AHE) of the ethanolic extract of leaves of Alpinia purpurata (Vieill) K. Schum (EEAP). Its chemical profile was evaluated using HPLC-UV, ICP-OES, and colorimetric quantification of total flavonoids and polyphenols. The vascular reactivity of the extract was determined using the mesenteric bed isolated from WKY. AHE dose-response curves were obtained for both EEAP and inorganic material isolated from AP (IAP) in WKY and SHR animals. Cytotoxic and mutagenic safety levels were determined by the micronucleus test. Rutin-like flavonoids were quantified in the EEAP (1.8 ± 0.03%), and the total flavonoid and polyphenol ratios were 4.1 ± 1.8% and 5.1 ± 0.3%, respectively. We observed that the vasodilation action of EEAP was partially mediated by nitric oxide (·NO). The IAP showed the presence of calcium (137.76 ± 4.08 μg mg-1). The EEAP and IAP showed an AHE in WKY and SHR animals. EEAP did not have cytotoxic effects or cause chromosomic alterations. The AHE shown by EEAP could result from its endothelium-dependent vascular action. Rutin-like flavonoids, among other polyphenols, could contribute to these biological activities, and the calcium present in EEAP could act in a synergistic way.
Collapse
|
43
|
Antibodies against the second extracellular loop of β1-adrenergic receptors induce endothelial dysfunction in conductance and resistance arteries of the Wistar rat. Int Immunopharmacol 2014; 19:308-16. [DOI: 10.1016/j.intimp.2014.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/13/2013] [Accepted: 01/31/2014] [Indexed: 11/23/2022]
|
44
|
Abstract
The endothelium, a highly active structure, regulates vascular homeostasis through the release of numerous vasoactive factors that control vascular tone and vascular smooth cell proliferation. A larger number of medicinal plants and their isolated chemical constituents have been shown to beneficially affect the endothelium. For example, flavonoids in black tea, green tea, and concord grape cause a vasodilation possibly through their antioxidant properties. Allicin, a by-product of the enzyme alliinase, has been proposed to be the main active metabolite and responsible for most of the biological activities of garlic, including a dose-dependent dilation on the isolated coronaries. Thymoquinone, the principal phytochemical compound found in the volatile oil of the black seed, and the hawthorn extract have also been shown to improve aging-related impairment of endothelium-dependent relaxations in animal models. In this review, the effect of some of the natural products, including Camellia sinensis (black tea and green tea), Vitis labrusca (concord grape), Allium sativum (garlic), and Nigella sativa (black seed) and Crataegus ssp (hawthorn extract), is explored. The molecular mechanisms behind these potential therapeutic effects are also discussed.
Collapse
|
45
|
Kaufeld AM, Pertz HH, Kolodziej H. 2,3-cis-procyanidins elicit endothelium-dependent relaxation in porcine coronary arteries via activation of the PI3/Akt kinase signaling pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9609-9616. [PMID: 24032351 DOI: 10.1021/jf402460m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polyphenols including procyanidins have been reported to reduce the risk of cardiovascular diseases. However, polyphenolic extracts represent complex mixtures, and detailed information on their chemical composition is commonly lacking. The aim of this study was to investigate the potential of a highly purified and chemically defined 2,3-cis-procyanidin sample (di- to hexameric [4β,8]-linked oligomers) from Nelia meyeri to relax coronary arteries and to get insight into the underlying mechanisms. The procyanidins produced a concentration-dependent relaxation in endothelium-intact vascular rings by activation of the NO and endothelium-derived hyperpolarizing factor (EDHF)-signaling pathway via PI3/Akt kinase in a redox-sensitive manner, with O2(-) as key species predominantly produced by xanthine oxidase and NADPH oxidase. Our observations in tissue bath studies were confirmed by Western blotting; 2,3-cis-procyanidins induced phosphorylation of eNOS and Akt in a ROS-dependent manner. These findings provide a basis for comparing the relaxant response and mode of action with that of structurally related proanthocyanidins. Our results may contribute to a better understanding of the potential link between the beneficial effects of proanthocyanidins on vascular health and their broad distribution in many fruits, natural food sources, and foodstuffs.
Collapse
Affiliation(s)
- Aurica M Kaufeld
- Institute of Pharmacy, Pharmaceutical Biology, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
| | | | | |
Collapse
|
46
|
Olaleye MT, Crown OO, Akinmoladun AC, Akindahunsi AA. Rutin and quercetin show greater efficacy than nifedipin in ameliorating hemodynamic, redox, and metabolite imbalances in sodium chloride-induced hypertensive rats. Hum Exp Toxicol 2013; 33:602-8. [PMID: 24064906 DOI: 10.1177/0960327113504790] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rutin and quercetin were investigated for their effects on blood pressure and antioxidant defense system of rats fed with 8% sodium chloride-supplemented diet (high salt diet) for 6 weeks. Animals fed with high salt diet demonstrated an increase in systolic, diastolic, pulse, and mean arterial blood pressures (p < 0.05) as well as lipid peroxidation but decreases in the activities of antioxidant enzymes compared with control group. Groups post-treated with rutin and quercetin for 2 weeks showed significant reversals in the values of these indices compared with the group fed with only the high salt diet but not post-treated. The high salt diet also led to significant increase in serum glucose, urea, creatinine, triglycerides, low-density-lipoprotein, and total cholesterol concentrations. Treatment with rutin and quercetin ameliorated the effects of high salt diet on these biochemical indices. The reference standard, nifedipin was less effective than rutin and quercetin. The results of this study highlight the risk of high salt consumption on cardiovascular health and the potent antioxidant and antihypertensive property of rutin and quercetin.
Collapse
Affiliation(s)
- M T Olaleye
- Phytomedicine, Drug Metabolism and Toxicology Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - O O Crown
- Phytomedicine, Drug Metabolism and Toxicology Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - A C Akinmoladun
- Phytomedicine, Drug Metabolism and Toxicology Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - A A Akindahunsi
- Phytomedicine, Drug Metabolism and Toxicology Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
47
|
Vasodilator compounds derived from plants and their mechanisms of action. Molecules 2013; 18:5814-57. [PMID: 23685938 PMCID: PMC6270466 DOI: 10.3390/molecules18055814] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 04/24/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022] Open
Abstract
The present paper reviews vasodilator compounds isolated from plants that were reported in the past 22 years (1990 to 2012) and the different mechanisms of action involved in their vasodilator effects. The search for reports was conducted in a comprehensive manner, intending to encompass those metabolites with a vasodilator effect whose mechanism of action involved both vascular endothelium and arterial smooth muscle. The results obtained from our bibliographic search showed that over half of the isolated compounds have a mechanism of action involving the endothelium. Most of these bioactive metabolites cause vasodilation either by activating the nitric oxide/cGMP pathway or by blocking voltage-dependent calcium channels. Moreover, it was found that many compounds induced vasodilation by more than one mechanism. This review confirms that secondary metabolites, which include a significant group of compounds with extensive chemical diversity, are a valuable source of new pharmaceuticals useful for the treatment and prevention of cardiovascular diseases.
Collapse
|
48
|
Quiñones M, Guerrero L, Suarez M, Pons Z, Aleixandre A, Arola L, Muguerza B. Low-molecular procyanidin rich grape seed extract exerts antihypertensive effect in males spontaneously hypertensive rats. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.01.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Duluc L, Jacques C, Soleti R, Iacobazzi F, Simard G, Andriantsitohaina R. Modulation of mitochondrial capacity and angiogenesis by red wine polyphenols via estrogen receptor, NADPH oxidase and nitric oxide synthase pathways. Int J Biochem Cell Biol 2013; 45:783-91. [DOI: 10.1016/j.biocel.2013.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/29/2012] [Accepted: 01/08/2013] [Indexed: 02/02/2023]
|
50
|
Alhosin M, Anselm E, Rashid S, Kim JH, Madeira SVF, Bronner C, Schini-Kerth VB. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a. PLoS One 2013; 8:e57883. [PMID: 23533577 PMCID: PMC3606366 DOI: 10.1371/journal.pone.0057883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|