1
|
Borhade N, Pathan AR, Halder S, Karwa M, Dhiman M, Pamidiboina V, Gund M, Deshattiwar JJ, Mali SV, Deshmukh NJ, Senthilkumar SP, Gaikwad P, Tipparam SG, Mudgal J, Dutta MC, Burhan AU, Thakre G, Sharma A, Deshpande S, Desai DC, Dubash NP, Jain AK, Sharma S, Nemmani KVS, Satyam A. NO-NSAIDs. Part 3: Nitric Oxide-Releasing Prodrugs of Non-steroidal Anti-inflammatory Drugs. Chem Pharm Bull (Tokyo) 2012; 60:465-81. [DOI: 10.1248/cpb.60.465] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Namdev Borhade
- Medicinal Chemistry Division, Piramal Life Sciences Limited
| | | | - Somnath Halder
- Medicinal Chemistry Division, Piramal Life Sciences Limited
| | - Manoj Karwa
- Pharmacology Division, Piramal Life Sciences Limited
| | - Mini Dhiman
- Analytical Chemistry Division, Piramal Life Sciences Limited
| | | | | | | | | | | | | | | | | | - Jayesh Mudgal
- Pharmacology Division, Piramal Life Sciences Limited
| | | | | | - Gajanan Thakre
- Medicinal Chemistry Division, Piramal Life Sciences Limited
| | - Ankur Sharma
- Pharmacology Division, Piramal Life Sciences Limited
| | | | | | | | | | - Somesh Sharma
- Pharmacology Division, Piramal Life Sciences Limited
| | | | - Apparao Satyam
- Medicinal Chemistry Division, Piramal Life Sciences Limited
| |
Collapse
|
2
|
Endotoxin-induced activation of equine digital vein endothelial cells: Role of p38 MAPK. Vet Immunol Immunopathol 2009; 129:174-80. [DOI: 10.1016/j.vetimm.2008.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Menzies-Gow NJ, Bailey SR, Berhane Y, Brooks AC, Elliott J. Evaluation of the induction of vasoactive mediators from equine digital vein endothelial cells by endotoxin. Am J Vet Res 2008; 69:349-55. [PMID: 18312133 DOI: 10.2460/ajvr.69.3.349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effect of endotoxin (lipopolysaccharide [LPS]) on vasoactive mediator production by cultured equine digital vein endothelial cells (EDVECs). SAMPLE POPULATION EDVECs obtained from forelimb digital veins of 7 healthy adult horses. PROCEDURES EDVECs were incubated with or without LPS (1 microg/mL) for 0, 2, 4, 6, 22, and 24 hours. The EDVECs were incubated for 18 hours with LPS (10 pg/mL to 1 microg/mL) with or without ibuprofen, cycloheximide, or L-nitroarginine methyl ester. Medium concentrations of prostacyclin, cyclic guanosine monophosphate, endothelin-1, and thromboxane A(2) were determined. Changes in inducible nitric oxide synthase and cyclooxygenase-2 expression were determined. RESULTS LPS stimulated mean 4.2- and 14.1-fold increases in EDVEC prostacyclin and cyclic guanosine monophosphate production, respectively, after 22 hours. These effects were LPS concentration-dependent (LPS concentrations that induced a response halfway between the maximum response and baseline of 1.50 and 1.22 ng/mL, respectively). The LPS-induced cyclic guanosine monophosphate production was significantly inhibited (to basal concentrations) by L-nitroarginine methyl ester, and prostacyclin production was inhibited by cycloheximide and ibuprofen. Production of thromboxane A(2) by EDVECs was not detected. Endothelin-1 accumulated in the medium, but LPS did not enhance its production. Inducible nitric oxide synthase expression in EDVECs was not detected with the available antibodies, whereas LPS stimulated cyclooxygenase-2 expression in a time- and concentration-dependent manner. CONCLUSIONS AND CLINICAL RELEVANCE LPS stimulated vasoactive mediator production by equine endothelial cells, which may play a role in LPS-induced digital hypoperfusion.
Collapse
Affiliation(s)
- Nicola J Menzies-Gow
- Department of Veterinary Clinical Sciences, Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, England
| | | | | | | | | |
Collapse
|
4
|
Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury--a review. J Surg Res 2008; 150:304-30. [PMID: 19040966 DOI: 10.1016/j.jss.2007.12.747] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 10/25/2007] [Accepted: 12/06/2007] [Indexed: 12/15/2022]
Abstract
BACKGROUND Restoration of blood supply to an organ after a critical period of ischemia results in parenchymal injury and dysfunction of the organ referred to as reperfusion injury. Ischemia reperfusion injury is often seen in organ transplants, major organ resections and in shock. Ischemic preconditioning (IPC) is an adaptational response of briefly ischemic tissues which serves to protect against subsequent prolonged ischemic insults and reperfusion injury. Ischemic preconditioning can be mechanical or pharmacological. Direct mechanical preconditioning in which the target organ is exposed to brief ischemia prior to prolonged ischemia has the benefit of reducing ischemia-reperfusion injury (IRI) but its main disadvantage is trauma to major vessels and stress to the target organ. Remote (inter organ) preconditioning is a recent observation in which brief ischemia of one organ has been shown to confer protection on distant organs without direct stress to the organ. AIM To discuss the evidence for remote IPC (RIPC), underlying mechanisms and possible clinical applications of RIPC. METHODS OF SEARCH: A Pubmed search with the keywords "ischemic preconditioning," "remote preconditioning," "remote ischemic preconditioning," and "ischemia reperfusion" was done. All articles on remote preconditioning up to September 2006 have been reviewed. Relevant reference articles from within these have been selected for further discussion. RESULTS Experimental studies have demonstrated that the heart, liver, lung, intestine, brain, kidney and limbs are capable of producing remote preconditioning when subjected to brief IR. Remote intra-organ preconditioning was first described in the heart where brief ischemia in one territory led to protection in other areas. Translation of RIPC to clinical application has been demonstrated by the use of brief forearm ischemia in preconditioning the heart prior to coronary bypass and in reducing endothelial dysfunction of the contra lateral limb. Recently protection of the heart has been demonstrated by remote hind limb preconditioning in children who underwent surgery on cardiopulmonary bypass for congenital heart disease. The RIPC stimulus presumably induces release of biochemical messengers which act either by the bloodstream or by the neurogenic pathway resulting in reduced oxidative stress and preservation of mitochondrial function. Studies have demonstrated endothelial NO, Free radicals, Kinases, Opioids, Catecholamines and K(ATP) channels as the candidate mechanism in remote preconditioning. Experiments have shown suppression of proinflammatory genes, expression of antioxidant genes and modulation of gene expression by RIPC as a novel method of IRI injury prevention. CONCLUSION There is strong evidence to support RIPC. The underlying mechanisms and pathways need further clarification. The effective use of RIPC needs to be investigated in clinical settings.
Collapse
|
5
|
|
6
|
McCord GR, Cracowski JL, Minson CT. Prostanoids contribute to cutaneous active vasodilation in humans. Am J Physiol Regul Integr Comp Physiol 2006; 291:R596-602. [PMID: 16484440 DOI: 10.1152/ajpregu.00710.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The specific mechanisms by which skin blood flow increases in response to a rise in core body temperature via cutaneous active vasodilation are poorly understood. The primary purpose of this study was to determine whether the cyclooxygenase (COX) pathway contributes to active vasodilation during whole body heat stress (protocol 1; n = 9). A secondary goal was to verify that the COX pathway does not contribute to the cutaneous hyperemic response during local heating (protocol 2; n = 4). For both protocols, four microdialysis fibers were placed in forearm skin. Sites were randomly assigned and perfused with 1) Ringer solution (control site); 2) ketorolac (KETO), a COX-1/COX-2 pathway inhibitor; 3) NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor; and 4) a combination of KETO and L-NAME. During the first protocol, active vasodilation was induced using whole body heating with water-perfused suits. The second protocol used local heaters to induce a local hyperemic response. Red blood cell flux (RBC flux) was indexed at all sites using laser-Doppler flowmetry, and cutaneous vascular conductance (CVC; RBC flux/mean arterial pressure) was normalized to maximal vasodilation at each site. During whole body heating, CVC values at sites perfused with KETO (43 +/- 9% CVCmax), L-NAME (35 +/- 9% CVCmax), and combined KETO/L-NAME (22 +/- 8% CVCmax) were significantly decreased with respect to the control site (59 +/- 7% CVCmax) (P < 0.05). Additionally, CVC at the combined KETO/L-NAME site was significantly decreased compared with sites infused with KETO or L-NAME alone (P < 0.05). In the second protocol, the hyperemic response to local heating did not differ between the control site and KETO site or between the L-NAME and KETO/L-NAME site. These data suggest that prostanoids contribute to active vasodilation, but do not play a role during local thermal hyperemia.
Collapse
Affiliation(s)
- Gregg R McCord
- Department of Human Physiology, University of Oregon, Eugene, Oregon 97406-1240, USA
| | | | | |
Collapse
|
7
|
Laursen BE, Stankevicius E, Pilegaard H, Mulvany M, Simonsen U. Potential Protective Properties of a Stable, Slow-releasing Nitric Oxide Donor, GEA 3175, in the Lung. ACTA ACUST UNITED AC 2006; 24:247-60. [PMID: 17214601 DOI: 10.1111/j.1527-3466.2006.00247.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO), is known to exert vasodilatory, bronchodilatory, and antiplatelet effects, and quantitative or functional NO deficiency has been implicated in various cardio-vascular and airway diseases. NO donors, which are drugs capable of releasing NO either spontaneously or tissue-dependently, represent a way of increasing NO. Here, we review our current understanding of the NO donor, GEA 3175, 1,2,3,4-oxatriazolium, 3-(3-chloro-2-methylphenyl)-5-[[(methylphenyl)sulphonyl]amino], hydroxide inner salt. GEA 3175 is a mesoionic 3-aryl substituted oxatriazole-5-imine derivative, which is a potent, stable, slow releasing NO donor with important actions in various organ systems. In isolated guinea pig trachea, rat bronchi and bovine and human small bronchioles, GEA 3175 induces potent, long-lasting relaxation. In vivo, in sensitized guinea pigs, GEA 3175 protects against antigen-induced bronchoconstriction. GEA 3175 also exerts potent vasodilatory properties. In isolated human pulmonary arteries, GEA 3175 induces relaxation which is long-lasting and more potent than in airways. In isolated systemic arteries, GEA 3175 is also a potent vasodilator. By intravenous infusion GEA 3175 reduces blood pressure similarly to nitroglycerin. Vascular and bronchiolar relaxations were shown to be mediated via NO dependent pathways. GEA 3175 is also a potent anti-inflammatory agent. Functions of polymorphnuclear cells (PMNs) such as leucotriene B(4) (LTB(4)) - synhesis, chemotaxis and superoxide (O(-) (2)) production are inhibited by GEA 3175. GEA3175 also inhibits upregulation of E-selectin in human umbilical vein endothelial cells (HUVECs) and hence adhesion of neutrophils. Another action of GEA 3175 on the endothelium is inhibition of prostacyclin release. Finally, GEA 3175 has been demonstrated to be an antiplatelet agent. Thrombin-induced platelet aggregation was inhibited by GEA 3175 in a cyclic GMP- and vasodilator-stimulated phosphoprotein (VASP)-phosphorylation-dependent manner. Thus, GEA 3175 has been demonstrated to exert bronchodilatory, pulmonary vasodilatory, antiplatelet as well as anti-inflammatory actions. Given these actions GEA 3175 may represent a potentially useful drug. The exact mechanism whereby GEA 3175 releases NO is, however, still unknown. In addition, most of the studies so far have been performed in isolated tissue preparations. Clearly, further in vivo studies involving animal models are required to clarify safety issues and whether GEA 3175 can be used in the treatment of pulmonary hypertension and/or airway diseases.
Collapse
|
8
|
Tang EHC, Feletou M, Huang Y, Man RYK, Vanhoutte PM. Acetylcholine and sodium nitroprusside cause long-term inhibition of EDCF-mediated contractions. Am J Physiol Heart Circ Physiol 2005; 289:H2434-40. [PMID: 16040712 DOI: 10.1152/ajpheart.00568.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Preliminary studies suggested that previous exposure to acetylcholine (ACh) exerts a delayed inhibition of subsequent contractions mediated by endothelium-derived contracting factor (EDCF). To confirm this long-term inhibitory effect of ACh and to determine whether nitric oxide (NO) mediates the phenomenon, we suspended rings of spontaneously hypertensive rat (SHR) aortas in organ chambers for the recording of isometric force. The rings were incubated in the absence or presence of Nω-nitro-l-arginine methyl ester (l-NAME; inhibitor of NO synthases) or 1 H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ; inhibitor of soluble guanylyl cyclase) before exposure to increasing concentrations of ACh or sodium nitroprusside (SNP) during contractions to phenylephrine. Thereafter, EDCF-mediated contractions to ACh or the calcium ionophore A-23187 were elicited. If the rings were preexposed to ACh or SNP, the subsequent ACh-induced EDCF-mediated contractions were reduced compared with those obtained in rings of the same arteries not previously exposed to either agent. ODQ did not affect the inhibition caused by preexposure to ACh but significantly reduced that caused by preexposure to SNP. Previous exposure to SNP reduced, whereas previous exposure to ACh did not affect, endothelium-dependent contractions to A-23187. Previous exposure to either ACh or SNP did not affect the contractions to the thromboxane mimetic U-46619. Thus ACh and SNP exert delayed inhibition of EDCF-mediated contractions via distinct pathways. The effect of ACh is NO independent and upstream of the increase in calcium concentration that triggers the release of EDCF. The effect of SNP is downstream of the calcium rise and is mainly NO dependent.
Collapse
Affiliation(s)
- Eva H C Tang
- Dept. of Pharmacology, Univ. of Hong Kong, 2/F, Laboratory Block, Faculty of Medicine Bldg., 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
9
|
Hatziefthimiou AA, Karetsi E, Pratzoudis E, Gourgoulianis KI, Molyvdas PA. Resting tension effect on airway smooth muscle: the involvement of epithelium. Respir Physiol Neurobiol 2005; 145:201-8. [PMID: 15705535 DOI: 10.1016/j.resp.2004.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
We studied the influence of resting tension (RT) on rabbit tracheal smooth muscle (TSM) contractions induced by acetylcholine or KCl as well as the role of epithelium and the endogenously produced nitric oxide, prostanoids and endothelin on these responses. The alteration of RT from 0.5 to 2.5 g increased the responsiveness of TSM to KCl. The presence of atropine decreased KCl-induced contractions obtained only at 2.5 g RT. The removal of epithelium increased acetylcholine-induced contractions, only at 2.5 g RT. At 0.5 g RT, the presence of L-NAME had no effect on acetylcholine-induced contractions while indomethacin decreased contractions induced by 10(-3) M acetylcholine. At 2.5 g RT, the presence of L-NAME increased acetylcholine-induced contractions while indomethacin, BQ-123 and BQ-788 had no effect. These results demonstrate that RT affects the responsiveness of TSM differentially, depending on the agonist or integrity of the epithelium. Airway epithelium modulates acetylcholine-induced contractions, only at 2.5 g RT partly via NO release. At 0.5 g RT, the endogenous production of prostanoids by sources other than epithelium modulates the contractility of TSM to acetylcholine.
Collapse
Affiliation(s)
- Apostolia A Hatziefthimiou
- Department of Physiology, Medical School, University of Thessaly, Papakiriazi 22, 41222 Larissa, Greece.
| | | | | | | | | |
Collapse
|
10
|
Li X, Geary GG, Gonzales RJ, Krause DN, Duckles SP. Effect of estrogen on cerebrovascular prostaglandins is amplified in mice with dysfunctional NOS. Am J Physiol Heart Circ Physiol 2004; 287:H588-94. [PMID: 15277199 DOI: 10.1152/ajpheart.01176.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic estrogen treatment increases endothelial vasodilator function in cerebral arteries. Endothelial nitric oxide (NO) synthase (eNOS) is a primary target of the hormone, but other endothelial factors may be modulated as well. In light of possible interactions between NO and prostaglandins, we tested the hypothesis that estrogen treatment increases prostanoid-mediated dilation using NOS-deficient female mouse models, i.e., mice treated with a NOS inhibitor [N(G)-nitro-l-arginine methyl ester (l-NAME)] for 21 days or transgenic mice with the eNOS gene disrupted (eNOS(-/-)). All mice were ovariectomized; some in each group were treated chronically with estrogen. Cerebral blood vessels then were isolated for biochemical and functional analyses. In vessels from control mice, estrogen increased protein levels of eNOS but had no significant effect on cyclooxygenase (COX)-1 protein, prostacyclin production, or constriction of pressurized, middle cerebral arteries to indomethacin, a COX inhibitor. In l-NAME-treated mice, however, cerebrovascular COX-1 levels, prostacyclin production, and constriction to indomethacin, as well as eNOS protein, were all greater in estrogen-treated animals. In vessels from eNOS(-/-) mice, estrogen treatment also increased levels of COX-1 protein and constriction to indomethacin, but no effect on prostacyclin production was detected. Thus cerebral blood vessels of control mice did not exhibit effects of estrogen on the prostacyclin pathway. However, when NO production was dysfunctional, the impact of estrogen on a COX-sensitive vasodilator was revealed. Estrogen has multiple endothelial targets; estrogen effects may be modified by interactions among these factors.
Collapse
Affiliation(s)
- Xiangduan Li
- Department of Pharmacology, College of Medicine, Univ. of California, Irvine, CA 92697-4625, USA
| | | | | | | | | |
Collapse
|
11
|
Jain NK, Patil CS, Kartasasmita RE, Decker M, Lehmann J, Kulkarni SK. Pharmacological studies on nitro-naproxen (naproxen-2-nitrooxyethylester). Drug Dev Res 2004. [DOI: 10.1002/ddr.10337] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Oliver JJ, Eppel GA, Rajapakse NW, Evans RG. Lipoxygenase and cyclo-oxygenase products in the control of regional kidney blood flow in rabbits. Clin Exp Pharmacol Physiol 2003; 30:812-9. [PMID: 14678242 DOI: 10.1046/j.1440-1681.2003.03916.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The aim of the present study was to examine the roles of cyclo-oxygenase (COX)- and lipoxygenase (LOX)-dependent arachidonate signalling cascades in the control of regional kidney blood flow. 2. In pentobarbitone-anaesthetized rabbits treated with NG-nitro-l-arginine and glyceryl trinitrate to 'clamp' nitric oxide, we determined the effects of ibuprofen (a COX inhibitor) and esculetin (a LOX inhibitor) on resting systemic and renal haemodynamics and responses to renal arterial infusions of vasoconstrictors. 3. Ibuprofen increased mean arterial pressure (14 +/- 5%) and reduced medullary laser Doppler flux (MLDF; 26 +/- 6%) when administered with esculetin. A similar pattern of responses was observed when ibuprofen was given alone, although the reduction in MLDF was not statistically significant. Esculetin tended to increase renal blood flow (RBF; 16 +/- 7%) and MLDF (28 +/- 13%) when given alone, but not when combined with ibuprofen. 4. After vehicle, renal arterial infusions of noradrenaline, angiotensin II and endothelin-1 reduced RBF and cortical laser Doppler flux (CLDF), but not MLDF. In contrast, renal arterial [Phe2,Ile3,Orn8]-vasopressin reduced MLDF but not RBF or CLDF. Ibuprofen alone did not significantly affect these responses. Esculetin, when given alone, but not when combined with ibuprofen, enhanced noradrenaline-induced renal vasoconstriction. In contrast, esculetin did not significantly affect responses to [Phe2,Ile3,Orn8]-vasopressin, angiotensin II or endothelin-1. 5. We conclude that COX products contribute to the maintenance of arterial pressure and renal medullary perfusion under 'nitric oxide clamp' conditions, but not to renal haemodynamic responses to the vasoconstrictors we tested. Lipoxygenase products may blunt noradrenaline-induced vasoconstriction, but our observations may, instead, reflect LOX-independent effects of esculetin.
Collapse
Affiliation(s)
- Jeremy J Oliver
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
13
|
Miceli F, Tringali G, Tropea A, Minici F, Orlando MT, Lanzone A, Navarra P, Apa R. The effects of nitric oxide on prostanoid production and release by human umbilical vein endothelial cells. Life Sci 2003; 73:2533-42. [PMID: 12967678 DOI: 10.1016/s0024-3205(03)00659-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human umbilical vein endothelial cells (HUVEC) express and synthesize both constitutive and inducible nitric oxide synthase (NOS) and cyclo-oxygenase (COX) enzymes, and have been extensively used as an in vitro model to investigate the role of these enzymes in the patho-physiology of placenta-fetal circulation. In this study we investigated the role of NO in regulating prostanoid production and release from HUVEC. Both untreated and IL-1beta-treated HUVEC were exposed to various NOS inhibitors and NO donors in short-term (1 or 3 hours) experiments, and the effects on prostanoid production were evaluated through the measurement of prostaglandins (PG) I2, E2 and F2alpha released in the incubation medium. We found that the inhibition of inducible NOS but not endothelial NOS antagonizes the IL-1beta-induced increase in PGI2 release. However, NOS inhibitors do not modify baseline PGI2 production. Pharmacological levels of NO, obtained with various NO donors, inhibit basal and IL-1beta-stimulated PG release.
Collapse
Affiliation(s)
- Fiorella Miceli
- Department of Obstetrics and Gynecology, Catholic University Medical School, Largo Francesco Vito 1, 00168 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lacza Z, Dézsi L, Káldi K, Horváth EM, Sándor P, Benyó Z. Prostacyclin-mediated compensatory mechanism in the coronary circulation during acute NO synthase blockade. Life Sci 2003; 73:1141-9. [PMID: 12818722 DOI: 10.1016/s0024-3205(03)00427-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) in contrast to most prostanoids, plays a major role in the maintenance of coronary arterial tone under physiological conditions. However, in case of endothelial damage or other NO-depleting situations the importance of other vasodilating mechanisms may be increased. The aim of the present study was to investigate the crosstalk between the L-arginine - NO and the prostanoid systems in isolated rat hearts. Coronary flow and cardiac dynamics were measured in a standard Langendorff perfusion system. Application of indomethacin in the perfusion media failed to change coronary flow. Administration of L-NA, however, significantly decreased coronary flow by 24.8 +/- 2.3% (p < 0.01 vs. untreated control). In the presence of indomethacin, L-NA decreased coronary flow to an even greater extent by 35.8 +/- 5.2% (p < 0.05 vs. L-NA alone). Treatment of the preparations with L-NA or indomethacin failed to change cardiac work, coapplication of both drugs together, however, decreased cardiac work by 45 +/- 11% (p < 0.05 vs. untreated control). Heart rate remained constant throughout the experimental period and did not differ significantly between the treatment groups. The prostacyclin content of the effluent from the L-NA treated hearts was significantly higher than that of controls. We conclude that in case of decreased NO levels in the coronary circulation, arterial tone is maintained by prostacyclin production.
Collapse
Affiliation(s)
- Zsombor Lacza
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Ulloi út 78/a, H-1082 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The nitric oxide releasing derivative of acetaminophen (nitroacetaminophen) exhibits potent anti-inflammatory and anti-nociceptive activity in a variety of animal models. On a mol for mol basis nitroacetaminophen is some 3-20 times more potent than acetaminophen. Nitroacetaminophen exhibits little or no hepatotoxicity following administration in rat or mouse and indeed protects against the hepatotoxic activity of acetaminophen. Nitroacetaminophen does not affect blood pressure or heart rate of anaesthetised rats but has similar potency to acetaminophen as an anti-pyretic agent. The enhanced anti-inflammatory and anti-nociceptive activity of nitroacetaminophen and the reduced hepatotoxicity in these animal models is likely to be secondary to the slow release of nitric oxide from the molecule. As yet the precise molecular mechanism(s) underlying these actions of nitroacetaminophen are not clear. Evidence for inhibition of cytokine-directed formation of pro-inflammatory molecule production (e.g. COX-2, iNOS) by an effect on the NF-kappaB transduction system and/or nitrosylation (and thence inhibition) of caspase enzyme activity has been reported. Data described in this review indicate that the profile of pharmacological activity of nitroacetaminophen and acetaminophen are markedly different. The possibility that nitroacetaminophen could be an attractive alternative to acetaminophen in the clinic is discussed.
Collapse
Affiliation(s)
- P K Moore
- Centre for Cardiovascular Biology and Medicine, School of Biomedical Sciences, King's College, University of London, Guys Campus, Hodgkin Building, London SE1 1UL, UK.
| | | |
Collapse
|
16
|
Ribeiro ML, Cella M, Farina M, Franchi A. Crosstalk between nitric oxide synthase and cyclooxygenase metabolites in the estrogenized rat uterus. Prostaglandins Leukot Essent Fatty Acids 2003; 68:285-90. [PMID: 12628224 DOI: 10.1016/s0952-3278(03)00008-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, we investigated the effect of nitric oxide (NO) and prostaglandins (PGs) on the production of arachidonate and L-arginine metabolites. We found that in the estrogenized rat uterus lipopolysaccharide (LPS) 5mg/kg induced NO and PGs synthesis simultaneously. The uteri were incubated with different doses of an NO donor: NP 300 and 600 microM. The results indicate that both doses of NP produce a significant increase (P<0.01) in all prostanoids evaluated. The stimulatory effect was completely reversed by the addition of 2 microg/ml of hemoglobin (Hb), an NO scavenger. However, NOS inhibitor, N(G)-L-monomethyl arginine had no effect on basal prostanoid production. We also studied NO synthesis in the presence of different PGs concentration. We found that PGF(2alpha) and PGD(2) were capable of reversing LPS stimulation on NO synthesis (P<0.05), in all the doses evaluated. On the other hand, PGE(2) 10(-10) and 10(-9)M potentated LPS effect (P<0.001). These results suggest that in the estrogenized rat uterus, the synthesis of cyclooxygenase metabolites is positively regulated by NO, while NO synthesis regulation depends on the PGs evaluated.
Collapse
Affiliation(s)
- M L Ribeiro
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO, CONICET), Serrano 669, 3rd floor, CP (C1414DEM), Bs As, Argentina.
| | | | | | | |
Collapse
|
17
|
Kankuri E, Vaali K, Korpela R, Paakkari I, Vapaatalo H, Moilanen E. Effects of a COX-2 preferential agent nimesulide on TNBS-induced acute inflammation in the gut. Inflammation 2003. [PMID: 11820457 DOI: 10.1023/a: 1012860509440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In inflammatory bowel disease, increased production of prostaglandins by cyclooxygenase-2 (COX-2) contributes to bowel dysfunction, inflammatory edema, and hyperemia suggesting that inhibitors of COX-2 may have beneficial effect in gut inflammation. We compared the effects of nimesulide, a preferential COX-2 inhibitor, with those of indomethacin, acetylsalicylic acid (ASA), and dexamethasone in a 24-h model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in the rat. TNBS-induced colitis was associated with enhanced COX-2 expression in the gut and increased circulating concentrations of PGE2 metabolite (PGEM). Treatment with nimesulide (10 mg/kg), indomethacin (10 mg/kg), or dexamethasone (1 mg/kg) reduced plasma PGEM concentrations and edema in the inflamed bowel. In addition, nimesulide and dexamethasone treatments decreased neutrophil infiltration into the inflamed colon mucosa. ASA (10 mg/kg) did not have a significant effect on any of these measures of inflammation. None of the studied drugs reduced the size of inflammatory mucosal lesions in the colon. In TNBS-induced acute inflammation of the colon, nimesulide reduced the formation of inflammatory edema, probably by a mechanism related to inhibition of PGE2 production by COX-2 pathway. In addition, nimesulide inhibited neutrophil infiltration into inflamed mucosa mimicking the action of dexamethasone.
Collapse
Affiliation(s)
- E Kankuri
- Institute of Biomedicine, Pharmacology, University of Helsinki, Biomedicum, Finland
| | | | | | | | | | | |
Collapse
|
18
|
Morioka N, Inoue A, Hanada T, Kumagai K, Takeda K, Ikoma K, Hide I, Tamura Y, Shiomi H, Dohi T, Nakata Y. Nitric oxide synergistically potentiates interleukin-1 beta-induced increase of cyclooxygenase-2 mRNA levels, resulting in the facilitation of substance P release from primary afferent neurons: involvement of cGMP-independent mechanisms. Neuropharmacology 2002; 43:868-76. [PMID: 12384172 DOI: 10.1016/s0028-3908(02)00143-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We previously demonstrated that cultured rat dorsal root ganglion (DRG) cells respond to stimulation with interleukin-1 beta (IL-1 beta) by releasing substance P (SP), and this response is regulated via the cyclooxygenase (COX)-2 pathway. In this study, to ascertain the interaction between nitric oxide (NO) and prostaglandins in primary afferent neurons, we investigated the effect of NO on the IL-1 beta-induced release of SP in cultured DRG cells. An NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), did not in itself evoke SP release. However, it potentiated the IL-1 beta-induced release of SP. Similarly, while SNAP did not elicit the expression of COX-2 mRNA, it potentiated the expression induced by IL-1 beta in cultured DRG cells, and this potentiation was significantly suppressed by the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO). Moreover, SNAP also potentiated the expression of COX-2 protein induced by IL-1 beta in cultured DRG cells. The stimulatory effect of SNAP on the IL-1 beta-induced release of SP was completely inhibited on co-incubation with a selective COX-2 inhibitor, NS-398. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ), a potent inhibitor of soluble guanylate cyclase, did not suppress, and a membrane-permeable cGMP analogue, 8-Br-cGMP, did not mimic the stimulatory effects of SNAP in DRG cells. These results suggest that in cultured DRG cells, NO potentiates the IL-1 beta-induced increase in COX-2 expression via a soluble guanylate cyclase-cGMP-independent pathway, resulting in facilitation of SP release. The interaction between NO and COX in primary afferent neurons might contribute to the change in nociceptive perception in inflammatory hyperalgesia.
Collapse
Affiliation(s)
- N Morioka
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rajapakse NW, Oliver JJ, Evans RG. Nitric oxide in responses of regional kidney blood flow to vasoactive agents in anesthetized rabbits. J Cardiovasc Pharmacol 2002; 40:210-9. [PMID: 12131550 DOI: 10.1097/00005344-200208000-00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To determine whether differential release of nitric oxide underlies the diversity of regional kidney blood flow responses to vasoactive agents, this study examined how nitric oxide synthase blockade with IV N(G)-nitro-L-arginine (L-NNA), and also IV L-NNA plus co-infusion of glyceryl trinitrate, affected responses to renal arterial boluses and infusions of vasoactive agents. L-NNA, but not vehicle, or L-NNA plus glyceryl trinitrate, increased mean arterial pressure (35%) and reduced renal blood flow (20%), cortical perfusion (11%), and medullary perfusion (54%). L-NNA plus glyceryl trinitrate, but not L-NNA alone, blunted renal vasodilatation in response to boluses of bradykinin and acetylcholine, abolished increased medullary perfusion after bolus angiotensin II, and enhanced reductions in medullary perfusion, and to a lesser extent those in renal blood flow and cortical perfusion, during norepinephrine infusion. Neither L-NNA, nor L-NNA plus glyceryl trinitrate, affected responses to infusions of angiotensin II, [Phe(2),Ile(3),Orn(8)]-vasopressin, or endothelin-1. The data indicate roles for nitric oxide in angiotensin II-induced increases in medullary perfusion and in protecting medullary perfusion from norepinephrine-induced vasoconstriction. However, differential engagement of nitric oxide synthase cannot completely account for the diversity of responses of regional kidney perfusion to vasoactive agents. Effects of nitric oxide synthase blockade on renal vascular responses to vasoactive agents were revealed only when glyceryl trinitrate was co-infused to restore resting nitrergic vasodilator tone. This may reflect interactions between nitric oxide and other vasodilator mediators, in modulating renal hemodynamic responses to vasoactive agents.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Department of Physiology, PO Box 13F, Monash University, Melbourne, Victoria 3800, Australia.
| | | | | |
Collapse
|
20
|
Beierwaltes WH. Cyclooxygenase-2 products compensate for inhibition of nitric oxide regulation of renal perfusion. Am J Physiol Renal Physiol 2002; 283:F68-72. [PMID: 12060588 DOI: 10.1152/ajprenal.00364.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclooxygenase (COX)-2 is in the macula densa, cosegregating with neuronal nitric oxide synthase (nNOS). It is hypothesized that in response to acute inhibition of NOS, the influence of COX-2-derived prostanoids is exaggerated, compensating for renal vasoconstriction. Blood pressure (BP) and renal blood flow (RBF) were measured after selective COX-2 inhibition with NS-398 followed by NOS inhibition with L-nitro arginine methyl ester (L-NAME) or after L-NAME followed by NS-398. BP was 106 +/- 4 mmHg and was unaffected by NS-398. L-NAME after NS-398 increased BP by 27 +/- 2 mmHg, decreased RBF by one-half, and doubled renal vascular resistance (RVR; P < 0.001). Initial L-NAME increased BP by 26 +/- 3 mmHg (P < 0.001) and decreased RBF by 44% (P < 0.001), doubling RVR. After L-NAME, NS-398 induced a further 7 +/- 3-mmHg rise in BP (P < 0.05), decreased RBF by 20% (P < 0.025), and increased RVR by 23% (P < 0.01). The constrictor response to COX-2 inhibition after L-NAME could not be duplicated by either selective nNOS inhibition or NOS-independent renal vasoconstriction. Acute NOS inhibition unmasked renal vasoconstriction with COX-2 inhibition, suggesting that the influence of COX-2-derived vasodilator eicosanoids is exaggerated to maintain renal perfusion, compensating for the acute loss of NO.
Collapse
Affiliation(s)
- William H Beierwaltes
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan 48202-2689, USA.
| |
Collapse
|
21
|
Mathy-Hartert M, Deby-Dupont GP, Reginster JYL, Ayache N, Pujol JP, Henrotin YE. Regulation by reactive oxygen species of interleukin-1beta, nitric oxide and prostaglandin E(2) production by human chondrocytes. Osteoarthritis Cartilage 2002; 10:547-55. [PMID: 12127835 DOI: 10.1053/joca.2002.0789] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To determine the effects of two drugs, N-monomethyl-L-arginine (L-NMMA) and N-acetylcysteine (NAC), on interleukin-1beta (IL-1beta), nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production by human chondrocytes. The effect of aceclofenac (ACECLO), a non-steroidal antiinflammatory drug (NSAID), was also examined. METHODS Human chondrocytes were enzymatically isolated from osteoarthritic knee cartilage and then maintained in culture in suspension for 48h in the absence or in the presence of lipopolysaccharide (LPS) (10 microg/ml), L-NMMA (0.5mM), NAC (1mM) or ACECLO (6.10(-6)M). IL-1beta and PGE(2) productions were quantified by specific immunoassays. Nitrite was measured in the culture supernatants by a spectrophotometric method based upon the Griess reaction. Cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS) and IL-1beta gene expressions were quantified by transcription of mRNA followed by real time and quantitative polymerase chain reaction. COX-2 protein expression was analysed by Western blot. RESULTS LPS markedly increased the expression of IL-1beta, iNOS and COX-2 genes. In parallel, NO(2) and PGE(2) amounts found in the culture supernatants were significantly enhanced whereas IL-1beta was immunologically undetectable. The addition of L-NMMA (0.5mM) fully blocked LPS-induced NO production but greatly increased PGE(2) production, suggesting a negative effect of NO on PGE(2) synthesis. Inversely, NO production was stimulated by NAC while PGE(2) production was not affected. Interestingly, NAC increased the IL-1beta and iNOS mRNA levels but did not significantly modify COX-2 mRNA expression. L-NMMA did not significantly affect the expression of IL-1beta, iNOS and COX-2. The amount of COX-2 protein did not change in the presence of the antioxidants. Finally, ACECLO fully blocked the production of PGE(2) by chondrocytes without affecting the levels of COX-2 mRNA. CONCLUSIONS The stimulation of IL-1beta, NO and PGE(2) production by LPS is differentially controlled by reactive oxygen species (ROS). In fact, L-NMMA and NAC have different mechanisms of action on the regulation of NO and PGE(2) productions. L-NMMA fully inhibits NO but increases PGE(2) production whereas NAC up-regulates NO but does not modify PGE(2) synthesis. The stimulating effect of L-NMMA on PGE(2) production is not controlled at the transcriptional level. These findings suggest that antioxidant therapy could have different effects according to the oxygen radical species targeted.
Collapse
|
22
|
Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ. Nitric oxide donors: chemical activities and biological applications. Chem Rev 2002; 102:1091-134. [PMID: 11942788 DOI: 10.1021/cr000040l] [Citation(s) in RCA: 972] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peng George Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ding Z, Gödecke A, Schrader J. Contribution of cytochrome P450 metabolites to bradykinin-induced vasodilation in endothelial NO synthase deficient mouse hearts. Br J Pharmacol 2002; 135:631-8. [PMID: 11834610 PMCID: PMC1573164 DOI: 10.1038/sj.bjp.0704472] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have characterized the contribution of endothelial nitric oxide synthase (eNOS), cyclo-oxygenase (COX) and cytochrome P450 (CYP450) to the bradykinin (BK)- induced vasodilation in isolated hearts from wildtype (WT) and eNOS deficient mice (eNOS-/-). The endothelium-dependent vasodilation by bradykinin (BK, 1 microM) was significantly lower in eNOS-/- hearts than that in WT hearts (+247% and +325% of basal flow, respectively), while there was no difference in the endothelium-independent vasodilation by adenosine. In WT hearts, the BK-induced vasodilation was markedly attenuated following inhibition of NOS with ETU (10 microM) but not after COX inhibition with diclofenac (3 microM) (P<0.01). In line with this finding, Bk did not increase the cardiac prostacyclin release as measured by ELISA for 6-keto-PGF1alpha in the coronary venous effluent. In eNOS-/- hearts, the flow response to BK was insensitive to both NOS and COX inhibition. The NOS/COX-independent vasodilatory factor which remained under L-NMMA+DF application was almost completely eliminated by either clotrimazole (3 microM), miconazole (0.5 microM) or 17-ODYA (1 microM), suggesting that it was a metabolite of CPY450 enzymes. Sulfaphenazole (10 microM), a CYP450 2C inhibitor, exerted only a minimal inhibitory effect. In eNOS-/- hearts the effect of CYP450 inhibitors on the BK response was significantly more pronounced than in WT hearts, indicating an enhanced contribution of CYP450 enzymes. These findings suggest that in isolated mouse hearts the BK-induced vasodilation is mediated by NO and CYP450 metabolites but not by prostaglandins. The CYP450 dependent vasodilator was was functionally up-regulated in eNOS-/- hearts and thus likely to compensate for the loss of eNOS in the coronary circulation.
Collapse
Affiliation(s)
- Zhaoping Ding
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Author for correspondence:
| | - Jürgen Schrader
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-Universitüt Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Kankuri E, Vaali K, Korpela R, Paakkari I, Vapaatalo H, Moilanen E. Effects of a COX-2 preferential agent nimesulide on TNBS-induced acute inflammation in the gut. Inflammation 2001; 25:301-10. [PMID: 11820457 DOI: 10.1023/a:1012860509440] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In inflammatory bowel disease, increased production of prostaglandins by cyclooxygenase-2 (COX-2) contributes to bowel dysfunction, inflammatory edema, and hyperemia suggesting that inhibitors of COX-2 may have beneficial effect in gut inflammation. We compared the effects of nimesulide, a preferential COX-2 inhibitor, with those of indomethacin, acetylsalicylic acid (ASA), and dexamethasone in a 24-h model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in the rat. TNBS-induced colitis was associated with enhanced COX-2 expression in the gut and increased circulating concentrations of PGE2 metabolite (PGEM). Treatment with nimesulide (10 mg/kg), indomethacin (10 mg/kg), or dexamethasone (1 mg/kg) reduced plasma PGEM concentrations and edema in the inflamed bowel. In addition, nimesulide and dexamethasone treatments decreased neutrophil infiltration into the inflamed colon mucosa. ASA (10 mg/kg) did not have a significant effect on any of these measures of inflammation. None of the studied drugs reduced the size of inflammatory mucosal lesions in the colon. In TNBS-induced acute inflammation of the colon, nimesulide reduced the formation of inflammatory edema, probably by a mechanism related to inhibition of PGE2 production by COX-2 pathway. In addition, nimesulide inhibited neutrophil infiltration into inflamed mucosa mimicking the action of dexamethasone.
Collapse
Affiliation(s)
- E Kankuri
- Institute of Biomedicine, Pharmacology, University of Helsinki, Biomedicum, Finland
| | | | | | | | | | | |
Collapse
|
25
|
Basini G, Tamanini C. Interrelationship between nitric oxide and prostaglandins in bovine granulosa cells. Prostaglandins Other Lipid Mediat 2001; 66:179-202. [PMID: 11577782 DOI: 10.1016/s0090-6980(01)00156-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is well recognized that prostaglandins of the E (PGE) and F (PGF) series play an important role in ovarian physiology; in addition, nitric oxide (NO) has been recently demonstrated to be an important mediator of granulosa cell function. There is now evidence for a biologic relationship between PGs and the NO biosynthetic pathway. The aim of this study was to investigate the relationship between NO and PGE2 and PGF2alpha in bovine granulosa cells. Granulosa cells collected from small (<5mm) and large (>8mm) follicles were treated with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) or with indomethacin, an inhibitor of PGs synthesis, and PGE2 and PGF2alpha were quantified; in addition, the effects of PGE2 PGF2alpha and indomethacin on steroidogenesis and NO production were determined. The highest concentration of SNAP inhibited (P < 0.001) PGE2 production in cells from both kinds of follicles, while the lowest dose was effective only in cells from small follicles. The highest concentration of SNAP inhibited and stimulated (P < 0.001) PGF2alpha production in cells from small and large follicles, respectively. Progesterone (P4) production was stimulated by PGE2 and inhibited by PGF2alpha (P < 0.001) in cells from both types of follicles. Estradiol 17beta (E2) secretion was inhibited in cells from small and stimulated in those from large follicles by PGE2 (P < 0.05), while PGF2alpha was stimulatory in cells from both kinds of follicles (P < 0.001). P4 production by cells from small follicles was inhibited and stimulated by those from large follicles by indomethacin (P < 0.001), which also increased E2 output in cells from small follicles (P < 0.001). NO production was inhibited by both PGE2 and PGF2alpha except at the lowest concentration, which was stimulatory (P < 0.001). Indomethacin stimulated (P < 0.001) NO production. Taken together, the present data suggest a cross-talk between NO and PGs biosynthetic pathways, which needs to be further clarified.
Collapse
Affiliation(s)
- G Basini
- Istituto di Fisiologia Veterinaria, Università di Parma, Italy
| | | |
Collapse
|
26
|
Eligini S, Habib A, Lebret M, Créminon C, Lévy-Toledano S, Maclouf J. Induction of cyclo-oxygenase-2 in human endothelial cells by SIN-1 in the absence of prostaglandin production. Br J Pharmacol 2001; 133:1163-71. [PMID: 11487528 PMCID: PMC1572869 DOI: 10.1038/sj.bjp.0704163] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) regulates cyclo-oxygenase (COX) activity in various cell systems and reports conflict in regard to its stimulatory versus inhibitory role. Incubation of human umbilical vein endothelial cells (HUVEC) with SIN-1 (3-morpholinosydnonimine), a donor of NO, resulted in a rapid and dose-dependent increase in the expression of COX-2 as analysed by Western and Northern blotting. Incubation of HUVEC with SIN-1 and interleukine (IL)-1alpha resulted in increased induction of COX-2 compared with IL-1alpha alone and corresponded to an additive effect. The COX-2 induction was dependent on a de novo synthesis since cycloheximide, an inhibitor of protein synthesis, blocked the enzyme expression. The increase in COX-2 expression was not accompanied by a corresponding change in prostaglandin (PG) production. However, the COX activity was partially recovered when immunoprecipitated COX-2 was incubated with arachidonic acid and haematin. Peroxynitrite, a highly reactive nitrogen molecule derived from the interaction of NO and superoxide anion, significantly increased COX-2 expression. Under these conditions and within the limit of detection of the antibody, selective antibody for nitrotyrosine failed to detect nitrated COX-2 in immunoprecipitated COX-2 when cells where incubated with SIN-1 or SIN-1+IL-1alpha. Ro 31-8220, a specific inhibitor of protein kinase (PK) C, blocked the induction of COX-2. Also, SB203580, the selective inhibitor of p38 MAP kinase, strongly blocked the induction of COX-2 by SIN-1 in the presence or absence of IL-1alpha, whereas the MEK-1 inhibitor, PD 98059, affected it to a lesser extent. These data demonstrate that SIN-1 induces COX-2 in HUVEC in the absence of PG formation and suggest a complex regulation of COX-2 expression and PG formation by NO in endothelial cells.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Cell Line
- Cyclooxygenase 2
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Imidazoles/pharmacology
- Interleukin-1/pharmacology
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Membrane Proteins
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Molsidomine/analogs & derivatives
- Molsidomine/pharmacology
- Nitrates/pharmacology
- Precipitin Tests
- Prostaglandin-Endoperoxide Synthases/genetics
- Prostaglandin-Endoperoxide Synthases/metabolism
- Prostaglandins/biosynthesis
- Pyridines/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Time Factors
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Sonia Eligini
- U 348 INSERM, I.F.R.6 Circulation-Paris 7, Hôpital Lariboisère 75475 Paris cedex 10. France
| | - Aïda Habib
- U 348 INSERM, I.F.R.6 Circulation-Paris 7, Hôpital Lariboisère 75475 Paris cedex 10. France
- Author for correspondence: .
| | - Marilyne Lebret
- U 348 INSERM, I.F.R.6 Circulation-Paris 7, Hôpital Lariboisère 75475 Paris cedex 10. France
| | - Christophe Créminon
- CEA, Service de Pharmacologie et d'Immunologie. Département de Recherche Médicale, 91191 Gif sur Yvette
| | - Sylviane Lévy-Toledano
- U 348 INSERM, I.F.R.6 Circulation-Paris 7, Hôpital Lariboisère 75475 Paris cedex 10. France
| | - Jacques Maclouf
- U 348 INSERM, I.F.R.6 Circulation-Paris 7, Hôpital Lariboisère 75475 Paris cedex 10. France
| |
Collapse
|
27
|
Chen JX, Berry LC, Christman BW, Tanner M, Myers PR, Meyrick BO. NO regulates LPS-stimulated cyclooxygenase gene expression and activity in pulmonary artery endothelium. Am J Physiol Lung Cell Mol Physiol 2001; 280:L450-7. [PMID: 11159028 DOI: 10.1152/ajplung.2001.280.3.l450] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We examined whether nitric oxide (NO) inhibits prostanoid synthesis through actions on cyclooxygenase (COX) gene expression and activity. Bovine pulmonary artery endothelial cells were pretreated for 30 min with the NO donors 1 mM S-nitroso-N-acetylpenicillamine (SNAP), 0.5 mM sodium nitroprusside (SNP), or 0.2 microM spermine NONOate; controls included cells pretreated with either 1 mM N-acetyl-D-penicillamine or the NO synthase (NOS) inhibitor 1 mM N(G)-nitro-L-arginine methyl ester with and without addition of lipopolysaccharide (LPS; 0.1 microg/ml) for 8 h. COX-1 and COX-2 gene and protein expression were examined by RT-PCR and Western analysis, respectively; prostanoid measurements were made by gas chromatography-mass spectrometry, and COX activity was studied after a 30-min incubation with 30 microM arachidonic acid. LPS induced COX-2 gene and protein expression and caused an increase in COX activity and an eightfold increase in 6-keto-PGF(1alpha) release. LPS-stimulated COX-2 gene expression was decreased by approximately 50% by the NO donors. In contrast, LPS caused a significant reduction in COX-1 gene expression and treatment with NO donors had little effect. SNAP, SNP, and NONOate significantly suppressed LPS-stimulated COX activity and 6-keto-PGF(1alpha) release. Our data indicate that increased generation of NO attenuates LPS-stimulated COX-2 gene expression and activity, whereas inhibition of endogenous NOS has little effect.
Collapse
Affiliation(s)
- J X Chen
- Department of Pathology, Center for Lung Research, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
28
|
al-Swayeh OA, Futter LE, Clifford RH, Moore PK. Nitroparacetamol exhibits anti-inflammatory and anti-nociceptive activity. Br J Pharmacol 2000; 130:1453-6. [PMID: 10928944 PMCID: PMC1572245 DOI: 10.1038/sj.bjp.0703509] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nitroparacetamol (NCX-701) is a newly synthesized nitric oxide-releasing derivative of paracetamol. Following i.p. administration, nitroparacetamol inhibits carrageenan-induced hindpaw oedema formation (ED(50), 169.4 micromol kg(-1)) and mechanical hyperalgesia (ED(50), 156 micromol kg(-1)) in the rat. In contrast, the parent compound, paracetamol, exhibits no significant anti-oedema activity in this model (ED(50)>1986 micromol kg(-1), i.p. ) and is markedly less potent than nitroparacetamol as an inhibitor of carrageenan-mediated hyperalgesia (ED(50), 411.6 micromol kg(-1), i.p.). In a second model of nociception (inhibition of acetic acid induced abdominal constrictions in the mouse), nitroparacetamol administered orally (ED(50), 24.8 micromol kg(-1)), was again considerably more potent than paracetamol (ED(50), 506 micromol kg(-1), p.o.). Thus, compared with paracetamol, nitroparacetamol not only exhibits augmented antinociceptive activity in both rat and mouse but, intriguingly, is also anti-inflammatory over a similar dose range.
Collapse
Affiliation(s)
- O A al-Swayeh
- Department of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - L E Futter
- Messengers and Signalling Group, School of Biomedical Sciences, King' College London, Hodgkin Building, Guy' Campus, London SE1 9RT
| | - R H Clifford
- Messengers and Signalling Group, School of Biomedical Sciences, King' College London, Hodgkin Building, Guy' Campus, London SE1 9RT
| | - P K Moore
- Messengers and Signalling Group, School of Biomedical Sciences, King' College London, Hodgkin Building, Guy' Campus, London SE1 9RT
- Author for correspondence:
| |
Collapse
|
29
|
Bloodsworth A, O'Donnell VB, Freeman BA. Nitric oxide regulation of free radical- and enzyme-mediated lipid and lipoprotein oxidation. Arterioscler Thromb Vasc Biol 2000; 20:1707-15. [PMID: 10894807 DOI: 10.1161/01.atv.20.7.1707] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regulation of nonenzymatic and enzymatic lipid oxidation reactions by nitric oxide (.NO) is potent and pervasive and reveals novel non-cGMP-dependent reactivities for this free radical inflammatory and signal transduction mediator.NO and its metabolites stimulate and inhibit lipid peroxidation reactions, modulate enzymatically catalyzed lipid oxidation, complex with lipid-reactive metals, and alter proinflammatory gene expression. Through these mechanisms,.NO can regulate nonenzymatic lipid oxidation and the production of inflammatory and vasoactive eicosanoids by prostaglandin endoperoxide synthase and lipoxygenase. The accumulation of macrophages and oxidized low density lipoprotein within the vascular wall can also be modulated by.NO. A key determinant of the pro-oxidant versus oxidant-protective influences of.NO is the underlying oxidative status of tissue. When.NO is in excess of surrounding oxidants, lipid oxidation and monocyte margination into the vascular wall are attenuated, producing antiatherogenic effects. However, when endogenous tissue rates of oxidant production are accelerated or when tissue oxidant defenses become depleted,.NO gives rise to secondary oxidizing species that can increase membrane and lipoprotein lipid oxidation as well as foam cell formation in the vasculature, thus promoting proatherogenic effects. In summary,.NO is a multifaceted molecule capable of reacting via multiple pathways to modulate lipid oxidation reactions, thereby impacting on tissue inflammatory reactions.
Collapse
Affiliation(s)
- A Bloodsworth
- Department of Anesthesiology, The Center for Free Radical Biology University of Alabama at Birmingham, 35233, USA
| | | | | |
Collapse
|
30
|
Zamora R, Vodovotz Y, Billiar TR. Inducible Nitric Oxide Synthase and Inflammatory Diseases. Mol Med 2000. [DOI: 10.1007/bf03401781] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
31
|
Kosonen O, Kankaanranta H, Uotila J, Moilanen E. Inhibition by nitric oxide-releasing compounds of E-selectin expression in and neutrophil adhesion to human endothelial cells. Eur J Pharmacol 2000; 394:149-56. [PMID: 10771047 DOI: 10.1016/s0014-2999(00)00141-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of two chemically unrelated nitric oxide (NO)-releasing compounds were studied on adhesion molecule expression in and neutrophil adhesion to human umbilical vein endothelial cells. Incubation of confluent monolayers of endothelial cells with increasing concentrations of lipopolysaccharide stimulated the adhesion of polymorphonuclear leukocytes to endothelial cells. Flow cytometric analysis showed that lipopolysaccharide treatment upregulated the expression of adhesion molecules E-selectin and intercellular adhesion molecule-1 (ICAM-1) in human umbilical vein endothelial cells. A novel NO-releasing compound GEA 3175 (1,2,3, 4-oxatriazolium, -3-(3-chloro-2-methylphenyl)-5-[[(4-methylphenyl)sulfonyl]amino]-, hydroxide inner salt) inhibited lipopolysaccharide-induced adhesion being more potent than the earlier known NO donor S-nitroso-N-acetylpenicillamine. The increased E-selectin expression induced by lipopolysaccharide was significantly attenuated by the two NO donors tested whereas ICAM-1 expression remained unaltered. The present data show that NO donors inhibit E-selectin expression in and neutrophil adhesion to lipopolysaccharide-stimulated vascular endothelial cells. Thus, by inhibiting leukocyte adhesion NO donors may reduce leukocyte infiltration and leukocyte-mediated tissue injury in inflammation and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- O Kosonen
- Medical School, University of Tampere FIN-33014, Tampere, Finland
| | | | | | | |
Collapse
|
32
|
Perez Martinez S, Farina M, Ogando D, Ribeiro ML, Gimeno M, Franchi AM. Nitric oxide inhibits prostanoid synthesis in the rat oviduct. Prostaglandins Leukot Essent Fatty Acids 2000; 62:239-42. [PMID: 10882188 DOI: 10.1054/plef.2000.0149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have studied the effect of nitric oxide (NO) on the production of arachidonic acid ([14C]-AA) metabolites in the rat oviduct. The basal synthesis of eicosanoids was measured by the conversion of ([14C]-AA) to the different radiolabeled products of cyclooxygenase (COX). The oviducts incubated for 1 h with the labeled substrate of COX were able to convert 3.3 +/- 0.3% of ([14C]-AA) to 6-ceto-PGF1alpha, 10.7 +/- 1.0% to PGF2alpha, 13.5 +/- 1.2% to PGE2 and 6.3 +/- 0.5% to TXB2. The tissues were incubated with different doses of two NO donors: SIN-1 and Spermine NONOate. The results indicated that SIN-1 produces a significant decrease (50%; P < 0.05) in all prostanoids evaluated in a dose-response fashion. The inhibitory effect was completely reversed by addition of 20 microg/ml of hemoglobin (Hb), a NO scavenger. The addition of Spermine NONOate to the incubation medium diminished significantly (65%) the synthesis of COX metabolites suggesting that NO acts by inhibiting COX activity in the rat oviduct. However, NOS inhibitors, N(G)-L-arginine-methyl-ester (L-NAME) nd N(G)-L-monomethyl-arginine (L-NMMA) had no effect on basal production of the prostanoids. These results indicate that in the rat oviduct the synthesis of COX metabolites is negatively regulated by nitric oxide.
Collapse
Affiliation(s)
- S Perez Martinez
- Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
33
|
Onodera M, Mano Y, Murota S. Differential effects of nitric oxide on the activity of prostaglandin endoperoxide H synthase-1 and -2 in vascular endothelial cells. Prostaglandins Leukot Essent Fatty Acids 2000; 62:161-7. [PMID: 10841038 DOI: 10.1054/plef.2000.0136] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A number of studies have demonstrated that prostacyclin and nitric oxide (NO) regulate blood pressure, blood flow and platelet aggregation. In this paper, we have examined the possible relationship between NO and prostaglandin endoperoxide H synthase (PGHS)-1 and -2 activities in cultured bovine aortic endothelial cells. In the non-activated condition endothelial cells expressed PGHS-1 activity alone. When these cells were pretreated with aspirin to inactivate their PGHS-1 and then activated by serum and phorbol ester (TPA) for 6 h, the cells expressed PGHS-2 activity alone. The PGHS activity was assessed by the generation of 6-ketoprostaglandin F1alpha (6-ketoPGF1alpha), a stable metabolite of prostacyclin, after the treatment of these cells with arachidonic acid. The simultaneous addition of NOC-7, a NO donor, with arachidonic acid did not affect the production of 6-ketoPGF1alpha in PGHS-1 expressed cells, but attenuated it in PGHS-2-expressed cells. The inhibitory effect of NOC-7 on PGHS-2 activity was dose dependent, and the different effects of NOC-7 on the activities of PGHS isozymes were also observed in other NO donors. To confirm the different effect of NO on PGHS isozymes demonstrated in the cultured endothelial cells, we carried out an ex vivo perfusion assay in aorta isolated from normal and lipopolysaccharide (LPS)-treated rats. In the aortae isolated from normal rats, where dominant expression of PGHS-1 was expected, the NO donor did not affect the PGHS activity, while in aortae isolated from LPS-treated rats, where PGHS-2 was dominantly expressed, the NO donor dramatically inhibited the PGHS activity, suggesting that NO suppressed PGHS-2 activity alone. The inhibitory effect of NO on PGHS-2 activity was not mediated by cyclic GMP (cGMP), since (a) methylene blue, an inhibitor of soluble guanylate cyclase did not abolish the inhibitory effect of the NO donor on PGHS-2 activity, and (b) 8-Br-cGMP, a permeable cGMP analogue, failed to mimic the effect of NO donors. These data suggest that the effect of NO on prostacyclin production in endothelial cells was dependent on the expression rate of PGHS-1 and PGHS-2 in the cells.
Collapse
Affiliation(s)
- M Onodera
- Department of Cellular Physiological Chemistry, Graduate School, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
34
|
Kosonen O, Kankaanranta H, Malo-Ranta U, Moilanen E. Nitric oxide-releasing compounds inhibit neutrophil adhesion to endothelial cells. Eur J Pharmacol 1999; 382:111-7. [PMID: 10528145 DOI: 10.1016/s0014-2999(99)00581-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present work, we demonstrated that chemically different nitric oxide (NO)-releasing compounds inhibit tumor necrosis factor alpha (TNF-alpha)-induced polymorphonuclear leukocyte adhesion to endothelial cells in vitro. Two mesoionic oxatriazole derivatives GEA 3162 (1,2,3,4-oxatriazolium,5-amino-3(3, 4-dichlorophenyl)-chloride) and GEA 3175 (1,2,3,4-oxatriazolium, -3-(3-chloro-2-methylphenyl)-5-[[(4-methylphenyl)sulfonyl]amino]-, hydroxide inner salt) were compared to the earlier-known NO donor SIN-1 (3-morpholino-sydnonimine). GEA 3162 (3-10 microM) and GEA 3175 (10-30 microM) inhibited human polymorphonuclear leukocyte adhesion to B(4) endothelial cells in a dose-dependent manner being more potent than SIN-1. In the present model, leukocytes rather than endothelial cells seemed to be the target of the effect of NO. Flow cytometric analysis showed that NO-releasing compounds did not alter TNF-alpha induced CD11/CD18 surface expression in polymorphonuclear leukocytes. The inhibitory action of NO-releasing compounds on adhesion paralleled with the increased synthesis of cGMP in polymorphonuclear leukocytes. Analogues of cGMP inhibited polymorphonuclear leukocyte adhesion indicating a role for cGMP in the action of NO donors. The results suggest that exogenous NO in the form of NO-releasing compounds inhibits polymorphonuclear leukocyte adhesion to endothelial cells, which may be implicated in the regulation of leukocyte migration and leukocyte-mediated tissue injury.
Collapse
Affiliation(s)
- O Kosonen
- Medical School, University of Tampere, P.O. Box 607, FIN-33101, Tampere, Finland
| | | | | | | |
Collapse
|
35
|
Asmawi MZ, Moilanen E, Annala K, Rahkonen P, Kankaanranta H. Effects of nitric oxide donors GEA 3162 and SIN-1 on ethanol-induced gastric ulceration in rats. Eur J Pharmacol 1999; 378:123-7. [PMID: 10478572 DOI: 10.1016/s0014-2999(99)00455-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Low doses of the intragastrically (i.g.) administered nitric oxide (NO) donors, 1,2,3,4-oxatriazolium,5-amino-3-(3,4-dichlorophenyl)-chloride (GEA 3162; 0.3 mg/kg) and 3-morpholino-sydnonimine (SIN-1; 1 mg/kg), inhibited gastric ulceration induced by ethanol (94%) in anesthetized rats. In contrast, higher doses of these NO donors administered i.g. exacerbated the damage. When administered intravenously, the NO donors had no effect on ethanol-induced gastric lesions although a clear blood pressure-lowering effect was seen. Neither the inhibition nor the exacerbation of ulceration was correlated with changes in blood pressure or prostaglandin E2 release from the mucosal tissue. The relatively small difference between the gastroprotective and damaging doses suggests that orally administered NO donors, especially in the case of GEA 3162, may have a narrow gastric safety margin.
Collapse
Affiliation(s)
- M Z Asmawi
- Medical School, University of Tampere, Finland
| | | | | | | | | |
Collapse
|
36
|
Siragy HM, Senbonmatsu T, Ichiki T, Inagami T, Carey RM. Increased renal vasodilator prostanoids prevent hypertension in mice lacking the angiotensin subtype-2 receptor. J Clin Invest 1999; 104:181-8. [PMID: 10411547 PMCID: PMC408474 DOI: 10.1172/jci6063] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The angiotensin subtype-1 (AT(1)) receptor mediates renal prostaglandin E(2) (PGE(2)) production, and pharmacological blockade of the angiotensin subtype-2 (AT(2)) receptor potentiates the action of angiotensin II (Ang II) to increase PGE(2) levels. We investigated the role of the AT(2) receptor in prostaglandin metabolism in mice with targeted deletion of the AT(2) receptor gene. Mice lacking the AT(2) receptor (AT(2)-null) had normal blood pressure that was slightly elevated compared with that of wild-type (WT) control mice. AT(2)-null mice had higher renal interstitial fluid (RIF) 6-keto-PGF(1alpha) (a stable hydrolysis product of prostacyclin [PGI(2)]) and PGE(2) levels than did WT mice, and had similar increases in PGE(2) and 6-keto-PGF(1alpha) in response to dietary sodium restriction and Ang II infusion. In contrast, AT(2)-null mice had lower PGF(2alpha) levels compared with WT mice during basal conditions and in response to dietary sodium restriction or infusion of Ang II. RIF cAMP was markedly higher in AT(2)-null mice than in WT mice, both during basal conditions and during sodium restriction or Ang II infusion. AT(1) receptor blockade with losartan decreased PGE(2), PGI(2), and cAMP to levels observed in WT mice. To determine whether increased vasodilator prostanoids prevented hypertension in AT(2)-null mice, we treated AT(2)-null and WT mice with indomethacin for 14 days. PGI(2), PGE(2), and cAMP were markedly decreased in both WT and AT(2)-null mice. Blood pressure increased to hypertensive levels in AT(2)-null mice but was unchanged in WT. These results demonstrate that in the absence of the AT(2) receptor, increased vasodilator prostanoids protect against the development of hypertension.
Collapse
Affiliation(s)
- H M Siragy
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
37
|
Goodwin DC, Landino LM, Marnett LJ. Effects of nitric oxide and nitric oxide-derived species on prostaglandin endoperoxide synthase and prostaglandin biosynthesis. FASEB J 1999; 13:1121-36. [PMID: 10385604 DOI: 10.1096/fasebj.13.10.1121] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prostaglandins and NO. are important mediators of inflammation and other physiological and pathophysiological processes. Continuous production of these molecules in chronic inflammatory conditions has been linked to development of autoimmune disorders, coronary artery disease, and cancer. There is mounting evidence for a biological relationship between prostanoid biosynthesis and NO. biosynthesis. Upon stimulation, many cells express high levels of nitric oxide synthase (NOS) and prostaglandin endoperoxide synthase (PGHS). There are reports of stimulation of prostaglandin biosynthesis in these cells by direct interaction between NO. and PGHS, but this is not universally observed. Clarification of the role of NO. in PGHS catalysis has been attempted by examining NO. interactions with purified PGHS, including binding to its heme prosthetic group, cysteines, and tyrosyl radicals. However, a clear picture of the mechanism of PGHS stimulation by NO. has not yet emerged. Available studies suggest that NO. may only be a precursor to the molecule that interacts with PGHS. Peroxynitrite (from O2.-+NO.) reacts directly with PGHS to activate prostaglandin synthesis. Furthermore, removal of O2.- from RAW 267.4 cells that produce NO. and PGHS inhibits prostaglandin biosynthesis to the same extent as NOS inhibitors. This interaction between reactive nitrogen species and PGHS may provide new approaches to the control of inflammation in acute and chronic settings.
Collapse
Affiliation(s)
- D C Goodwin
- Department of Biochemistry, A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
38
|
Kankuri E, Asmawi MZ, Korpela R, Vapaatalo H, Moilanen E. Induction of iNOS in a rat model of acute colitis. Inflammation 1999; 23:141-52. [PMID: 10213270 DOI: 10.1023/a:1020241028723] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Induction of colitis by 2,4,6-Trinitrobenzenesulphonic acid (TNB) in the rat is a widely used experimental model of inflammatory bowel disease. Action of TNB as a hapten, induces colitis involving infiltration of colonic mucosa by neutrophils and macrophages and increased production of inflammatory mediators. The aim of the present study was to measure nitric oxide synthase (NOS) activity and characterize relations between inducible NOS (iNOS) activity and other signs of inflammation in TNB-induced colitis. A profound and sustained increase in the activity of iNOS was found in the colon. The activity of NOS in the spleen was also increased, but remained at low levels as compared to those in colon. No increases in plasma nitrite + nitrate concentrations were found suggesting local rather than systemic induction of iNOS. The increase in iNOS activity in the colon was preceded by macroscopic inflammatory lesions, like hyperemia, ulcerations and edema formation as well as neutrophil accumulation in the gastric mucosa and increased circulating concentrations of PGE2 metabolite (PGEM). Concentrations of PGEM in the plasma and myeloperoxidase activity (MPO; marker of neutrophil infiltration) in the gut declined in 48h whereas increased iNOS activity and the macroscopic inflammatory lesions remained over the 72h follow-up period. The results demonstrate increased local iNOS activity in TNB-Induced colitis mimicking the situation in human inflammatory bowel disease.
Collapse
Affiliation(s)
- E Kankuri
- University of Helsinki, Institute of Biomedicine, Department of Pharmacology and Toxicology, Finland
| | | | | | | | | |
Collapse
|