1
|
Meyer AC, Neugebauer NM, Zheng G, Crooks PA, Dwoskin LP, Bardo MT. Effects of VMAT2 inhibitors lobeline and GZ-793A on methamphetamine-induced changes in dopamine release, metabolism and synthesis in vivo. J Neurochem 2013; 127:187-98. [PMID: 23875705 PMCID: PMC3795981 DOI: 10.1111/jnc.12373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/29/2013] [Accepted: 07/15/2013] [Indexed: 11/29/2022]
Abstract
Vesicular monoamine transporter-2 (VMAT2) inhibitors reduce methamphetamine (METH) reward in rats. The current study determined the effects of VMAT2 inhibitors lobeline (LOB; 1 or 3 mg/kg) and N-(1,2R-dihydroxylpropyl)-2,6-cis-di(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A; 15 or 30 mg/kg) on METH-induced (0.5 mg/kg, SC) changes in extracellular dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) in the reward-relevant nucleus accumbens (NAc) shell using in vivo microdialysis. The effect of GZ-793A (15 mg/kg) on DA synthesis in tissue also was investigated in NAc, striatum, medial prefrontal cortex and orbitofrontal cortex. In NAc shell, METH produced a time-dependent increase in extracellular DA and decrease in DOPAC. Neither LOB nor GZ-793A alone altered extracellular DA; however, both drugs increased extracellular DOPAC. In combination with METH, LOB did not alter the effects of METH on DA; however, GZ-793A, which has greater selectivity than LOB for inhibiting VMAT2, reduced the duration of the METH-induced increase in extracellular DA. Both LOB and GZ-793A enhanced the duration of the METH-induced decrease in extracellular DOPAC. METH also increased tissue DA synthesis in NAc and striatum, whereas GZ-793A decreased synthesis; no effect of METH or GZ-793A on DA synthesis was found in medial prefrontal cortex or orbitofrontal cortex. These results suggest that selective inhibition of VMAT2 produces a time-dependent decrease in DA release in NAc shell as a result of alterations in tyrosine hydroxylase activity, which may play a role in the ability of GZ-793A to decrease METH reward.
Collapse
Affiliation(s)
- Andrew C. Meyer
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA
| | - Nichole M. Neugebauer
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL 60637, USA
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Linda P. Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Dimatelis JJ, Russell VA, Stein DJ, Daniels WM. The effects of lobeline and naltrexone on methamphetamine-induced place preference and striatal dopamine and serotonin levels in adolescent rats with a history of maternal separation. Metab Brain Dis 2012; 27:351-61. [PMID: 22392627 DOI: 10.1007/s11011-012-9288-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/14/2012] [Indexed: 01/01/2023]
Abstract
Exposure to early life stress has been suggested to increase an individual's vulnerability to methamphetamine (MA) dependence. Although there is no cure for drug dependence, the opioid and vesicular monoamine transporter 2 (VMAT2) systems may be useful targets for treatment insofar as they play pivotal roles in the neurochemistry of addiction. Here we investigated the effects of naltrexone (opioid antagonist) and lobeline (VMAT2 inhibitor) on MA-induced place preference in adolescent rodents subjected to early life trauma (maternal separation, MS) and controls, as well as the effects on dopamine and serotonin levels in the striatum. We found: (1) maternal separation attenuated methamphetamine-induced place preference; (2) lobeline and naltrexone treatment had differential effects on serotonin and dopamine concentrations in the striatum, naltrexone increased serotonin levels in the maternally separated animals. The hypothesized effect of early adversity increasing MA-induced place preference may not be apparent in adolescence. However the data are consistent with the hypothesis that early life stress influences neurochemical pathways that predispose an individual to drug dependence.
Collapse
Affiliation(s)
- J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| | | | | | | |
Collapse
|
3
|
Sajja RK, Rahman S. Neuronal nicotinic receptor ligands modulate chronic nicotine-induced ethanol consumption in C57BL/6J mice. Pharmacol Biochem Behav 2012. [DOI: https://doi.org/10.1016/j.pbb.2012.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Sajja RK, Rahman S. Neuronal nicotinic receptor ligands modulate chronic nicotine-induced ethanol consumption in C57BL/6J mice. Pharmacol Biochem Behav 2012; 102:36-43. [PMID: 22741175 DOI: 10.1016/j.pbb.2012.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alcohol and nicotine are commonly abused drugs in humans and evidence suggests that neuronal nicotinic acetylcholine receptors (nAChRs) in the midbrain dopamine system are common targets for the neurobehavioral interactions between alcohol (ethanol) and nicotine. The present study examined the efficacy of nAChR ligands with different pharmacological profiles such as cytisine, lobeline and dihydro-β-erythroidine (DHβE) to modulate chronic nicotine-induced increase in ethanol intake by C57BL/6J mice, using a two-bottle choice procedure. After establishment of baseline ethanol preference (10%, v/v), animals received daily subcutaneous injections of saline, nicotine (0.4 mg/kg) or different doses of cytisine, lobeline or DHβE 15 min prior to nicotine, for 10 days. Ethanol and water were presented immediately after the last (saline or nicotine) injection and fluid levels were monitored for post 1 h and 2 h treatment. Compared to control, nicotine injection significantly increased mean ethanol intake over 10 days, at both post 1 h and 2 h. Pretreatment with cytisine (0.5, 1.5 or 3.0 mg/kg) or lobeline (4.0 or 10.0 mg/kg) significantly reduced nicotine-induced increase in ethanol intake post 1 h and 2 h, without affecting water consumption. DHβE (0.5 or 2.0 mg/kg) failed to suppress nicotine-induced ethanol intake across 2 h post injection. These results indicate that nAChRmediated signaling is critical in regulating nicotine-induced ethanol drinking behaviors.
Collapse
Affiliation(s)
- Ravi K Sajja
- Department of Pharmaceutical Sciences, South Dakota State University, College of Pharmacy, Brookings, SD 57007, USA
| | | |
Collapse
|
5
|
Sajja RK, Rahman S. Lobeline and cytisine reduce voluntary ethanol drinking behavior in male C57BL/6J mice. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:257-64. [PMID: 21111768 DOI: 10.1016/j.pnpbp.2010.11.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/11/2010] [Accepted: 11/13/2010] [Indexed: 11/20/2022]
Abstract
Brain nicotinic acetylcholine receptors (nAChRs) have been implicated in the rewarding effects of ethanol and other drugs of abuse. The present study examined the effects of two important nicotinic ligands that target nAChRs, on ethanol consumption in drinking-in-the-dark or continuous access two-bottle choice drinking procedures in C57BL/6J mice. Nicotinic alkaloids such as lobeline or cytisine were administered via subcutaneous (s.c.) injections about 25 min before offering ethanol solutions. Pretreatment with lobeline (4 or 10mg/kg, s.c.) or cytisine (1.5 or 3mg/kg, s.c.) significantly reduced ethanol drinking-in-the-dark (g/kg) post 2-h and 4-h treatment, relative to control. In continuous access drinking procedure, pretreatment with lobeline (4 or 10mg/kg, s.c.) significantly reduced ethanol consumption post 1-h, 2-h, 4-h and 12-h treatment and pretreatment with cytisine (0.5, 1.5 or 3mg/kg, s.c.) significantly reduced ethanol consumption across 4-h post treatment, relative to control. Neither lobeline nor cytisine significantly affected water or sucrose solution (10% w/v) intake during drinking-in-the-dark or continuous drinking procedures, relative to control. These findings provide evidence that nAChR-mediated signaling plays a critical role in ethanol drinking behavior in mice and nicotinic ligands have therapeutic potential for cessation of binge-like ethanol drinking and dependence in humans.
Collapse
Affiliation(s)
- Ravi K Sajja
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | | |
Collapse
|
6
|
Anand A, Srivastava N, Raj H, Vijayan V. Influence of codeine on lobeline-induced respiratory reflexes and sensations and on ventilation with exercise in healthy subjects. Respir Physiol Neurobiol 2011; 175:169-75. [DOI: 10.1016/j.resp.2010.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/03/2010] [Accepted: 11/03/2010] [Indexed: 11/28/2022]
|
7
|
Beckmann JS, Siripurapu KB, Nickell JR, Horton DB, Denehy ED, Vartak A, Crooks PA, Dwoskin LP, Bardo MT. The novel pyrrolidine nor-lobelane analog UKCP-110 [cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] inhibits VMAT2 function, methamphetamine-evoked dopamine release, and methamphetamine self-administration in rats. J Pharmacol Exp Ther 2010; 335:841-51. [PMID: 20805303 DOI: 10.1124/jpet.110.172742] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both lobeline and lobelane attenuate methamphetamine self-administration in rats by decreasing methamphetamine-induced dopamine release via interaction with vesicular monoamine transporter-2 (VMAT2). A novel derivative of nor-lobelane, cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-110), and its trans-isomers, (2R,5R)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-111) and (2S,5S)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-112), were evaluated for inhibition of [(3)H]dihydrotetrabenazine binding and [(3)H]dopamine uptake by using a rat synaptic vesicle preparation to assess VMAT2 interaction. Compounds were evaluated for inhibition of [(3)H]nicotine and [(3)H]methyllycaconitine binding to assess interaction with the major nicotinic receptor subtypes. In addition, compounds were evaluated for inhibition of methamphetamine-evoked endogenous dopamine release by using striatal slices. The most promising compound, UKCP-110, was evaluated for its ability to decrease methamphetamine self-administration and methamphetamine discriminative stimulus cues and for its effect on food-maintained operant responding. UKCP-110, UKCP-111, and UKCP-112 inhibited [(3)H]dihydrotetrabenazine binding (K(i) = 2.66 ± 0.37, 1.05 ± 0.10, and 3.80 ± 0.31 μM, respectively) and had high potency inhibiting [(3)H]dopamine uptake (K(i) = 0.028 ± 0.001, 0.046 ± 0.008, 0.043 ± 0.004 μM, respectively), but lacked affinity at nicotinic receptors. Although the trans-isomers did not alter methamphetamine-evoked dopamine release, UKCP-110 inhibited (IC(50) = 1.8 ± 0.2 μM; I(max) = 67.18 ± 6.11 μM) methamphetamine-evoked dopamine release. At high concentrations, UKCP-110 also increased extracellular dihydroxyphenylacetic acid. It is noteworthy that UKCP-110 decreased the number of methamphetamine self-infusions, while having no effect on food-reinforced behavior or the methamphetamine stimulus cue. Thus, UKCP-110 represents a new lead in the development of novel pharmacotherapies for the treatment of methamphetamine abuse.
Collapse
Affiliation(s)
- Joshua S Beckmann
- Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky 40536-0082, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bell RL, Eiler BJ, Cook JB, Rahman S. Nicotinic receptor ligands reduce ethanol intake by high alcohol-drinking HAD-2 rats. Alcohol 2009; 43:581-92. [PMID: 20004336 DOI: 10.1016/j.alcohol.2009.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/24/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are implicated in the reinforcing effects of many drugs of abuse, including ethanol. The present study examined the efficacy of cytisine, a nAChR partial agonist, and lobeline, a putative nAChR antagonist, on the maintenance of ethanol drinking by HAD-2 rats. Adult male HAD-2 rats were given access to ethanol (15 and 30%, with ad libitum access to water and food) 22 h/day for 12 weeks, beginning at 60 days of age, after which cytisine (0.0, 0.5, and 1.5 mg/kg) was tested for 3 consecutive days. The rats were given an 18-day washout period and were then tested with lobeline (0.0, 1.0, and 5.0 mg/kg) for 3 consecutive days. Ethanol intake was measured at 1, 4, and 22 h postinjection. Rats were injected intraperitoneally just before lights out (1200 h). There was a significant main effect of cytisine treatment on the second test day, with the 1.5 mg/kg dose significantly reducing ethanol intake at the 1- and 4-h time-points, relative to saline, and the 0.5 mg/kg dose inducing a significant reduction at the 4-h time-point. Conversely, lobeline treatment resulted in significant main effects of treatment for all three time-points within each test day, with the 5.0 mg/kg dose significantly reducing ethanol intake, relative to saline, at each time-point within each test day. These findings provide further evidence that activity at the nAChR influences ethanol intake and is a promising target for pharmacotherapy development for the treatment of alcohol dependence and relapse.
Collapse
|
9
|
Bell RL, Eiler BJ, Cook JB, Rahman S. Nicotinic receptor ligands reduce ethanol intake by high alcohol–drinking HAD-2 rats. Alcohol 2009. [DOI: https://doi.org/10.1016/j.alcohol.2009.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Harrod SB, Van Horn ML. Sex differences in tolerance to the locomotor depressant effects of lobeline in periadolescent rats. Pharmacol Biochem Behav 2009; 94:296-304. [PMID: 19766134 PMCID: PMC2766100 DOI: 10.1016/j.pbb.2009.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/12/2009] [Accepted: 09/09/2009] [Indexed: 12/31/2022]
Abstract
Lobeline is being tested in clinical trials as a pharmacotherapy for methamphetamine abuse and attention deficit hyperactivity disorder. Preclinical research demonstrates that lobeline produces locomotor hypoactivity apart from its therapeutic effects; however, the hypothesis that there are sex differences in hypoactivity or in the development of tolerance to its locomotor depressant effects has not been investigated. Periadolescent rats were injected with saline to determine baseline locomotor activity. Animals received saline or lobeline (1.0-10mg/kg) daily for 7 consecutive days (post natal days 29-35), and were challenged with saline 24h later to assess baseline activity. Lobeline produced hypoactivity in total horizontal activity and center distance travelled. Tolerance developed to the lobeline-induced hypoactivity and sex differences in lobeline tolerance were observed on both measures. Females acquired tolerance to lobeline 5.6 mg/kg at a slower rate than males. Saline challenge revealed a linear dose-dependent trend of hyperactivity on both measures, which indicates that rats exhibited altered locomotor behavior 24h after the final lobeline treatment. These findings demonstrate sex differences in the hypoactive response to lobeline prior to puberty and suggest that females may experience more locomotor depressant effects than males. Chronic lobeline may induce hyperactivity following cessation of treatment.
Collapse
Affiliation(s)
- Steven B Harrod
- Department of Psychology, University of South Carolina, United States.
| | | |
Collapse
|
11
|
The involvement of nicotinic receptor subtypes in the locomotor activity and analgesia induced by methamphetamine in mice. Behav Pharmacol 2009; 20:623-30. [DOI: 10.1097/fbp.0b013e328331ba5b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
D'hoedt D, Bertrand D. Nicotinic acetylcholine receptors: an overview on drug discovery. Expert Opin Ther Targets 2009; 13:395-411. [DOI: 10.1517/14728220902841045] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Neugebauer NM, Harrod SB, Stairs DJ, Crooks PA, Dwoskin LP, Bardo MT. Lobelane decreases methamphetamine self-administration in rats. Eur J Pharmacol 2007; 571:33-8. [PMID: 17612524 PMCID: PMC2104779 DOI: 10.1016/j.ejphar.2007.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/29/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Lobelane, a minor alkaloid of Lobelia inflata and a synthetic, des-oxy analog of lobeline, has good affinity for the vesicular monoamine transporter and the dopamine transporter. The current study examined the ability of lobelane to specifically decrease methamphetamine self-administration. Rats were trained on a fixed ratio 5 schedule of reinforcement to self-administer methamphetamine (0.05 mg/kg/infusion, i.v.) or to respond for sucrose pellets. Upon reaching stable responding, rats were pretreated with lobelane (0.1, 1, 3, 5.6, or 10 mg/kg, s.c.) or saline, 15 min prior to the operant session. To assess the effect of repeated lobelane on methamphetamine self-administration, rats were pretreated with lobelane (5.6 or 10 mg/kg, s.c.) for 7 sessions. Behavioral specificity was further investigated by assessing the effects of lobelane (0.1, 1, 3, 5, or 10 mg/kg, s.c.) or saline on locomotor activity. Within the dose range tested, lobelane dose-dependently decreased methamphetamine self-administration, while having no effect on sucrose-maintained responding. Locomotor activity was decreased following only the highest dose of lobelane (10 mg/kg). Across repeated pretreatments, tolerance developed to the effect of lobelane on methamphetamine self-administration, demonstrating that the ability of lobelane to specifically decrease methamphetamine self-administration is a transient effect. Thus, taken together, the results show that although lobelane interacts with the pharmacological targets believed to be responsible for its ability to decrease methamphetamine self-administration, removal of the oxygen functionalities from the lobeline molecule may have afforded a compound with an altered pharmacokinetic and/or pharmacodynamic profile.
Collapse
Affiliation(s)
| | - Steven B. Harrod
- University of South Carolina, Department of Psychology, Columbia, South Carolina
| | - Dustin J. Stairs
- Department of Psychology, University of Kentucky, Lexington, Kentucky
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky
| | - Linda P. Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky
| | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
14
|
Tatsuta T, Kitanaka N, Kitanaka J, Morita Y, Takemura M. Lobeline Attenuates Methamphetamine-induced Stereotypy in Adolescent Mice. Neurochem Res 2006; 31:1359-69. [PMID: 17053968 DOI: 10.1007/s11064-006-9180-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 09/20/2006] [Indexed: 10/24/2022]
Abstract
In this study, we investigated the effects of lobeline, an alkaloid constituent of Indian tobacco, on methamphetamine (METH)-induced stereotypy in male ICR mice (41-50 days old), an animal model for amphetamine psychosis. After a single administration of METH (10 mg/kg, i.p.), mice showed an initial short-lasting hyperlocomotion and subsequent stereotyped behaviors with a plateau level 25 min after drug challenge. Pretreatment with lobeline (3.0-30 mg/kg, i.p.) 15 min prior to the drug challenge significantly decreased the intensity of stereotypy and increased its latency to onset in a dose-dependent manner, especially 20 min after the drug challenge. In saline challenge groups, the doses of lobeline examined did not affect spontaneous locomotion nor induced any stereotyped behaviors. High-performance liquid chromatography analysis revealed that the range of lobeline doses examined except 30 mg/kg did not affect apparent monoamine turnover in the cerebral cortex, the region of the striatum and nucleus accumbens, and the region of the thalamus and hypothalamus of the mice 20 and 60 min after the drug challenge. These results suggested that the inhibitory effect of lobeline (3.0-10 mg/kg) on METH-induced stereotypy was not attributed to the change in the apparent monoamine turnover.
Collapse
Affiliation(s)
- Tomohiro Tatsuta
- Department of Pharmacology, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | |
Collapse
|
15
|
Rahman S, Zhang J, Corrigall WA. Local perfusion of nicotine differentially modulates somatodendritic dopamine release in the rat ventral tegmental area after nicotine preexposure. Neurochem Res 2004; 29:1687-93. [PMID: 15453263 DOI: 10.1023/b:nere.0000035803.64724.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We examined the effects of nicotine perfusion into the ventral tegmental area (VTA) on extracellular dopamine (DA) levels in rats using in vivo microdialysis. Local perfusion with nicotine for 80 min (10-100 microM) modestly increased (approximately 105-131% of basal) the extracellular DA levels in the VTA of rats that had been pretreated with saline for 5 days. In animals that had been pretreated with nicotine for 5 days (0.3 mg/kg, s.c.), perfusion with nicotine for 80 min (10-100 microM) dose-dependently increased the extracellular DA levels in the VTA of rats and did so to a greater extent than in saline-pretreated animals (125-171% of basal). Co-perfusion through the dialysis probe with 100 microM mecamylamine, a nonselective nicotinic acetylcholine receptor (nAChR) antagonist, or 100 microM dihydro-beta-erythroidine, a high affinity and competitive nAChR antagonist, attenuated the enhancement of extracellular DA levels produced by 100 microM nicotine alone. These results suggest that local nicotine challenge potentiated the somatodendritic DA release after nicotine preexposure by stimulation of high-affinity nAChRs in the VTA.
Collapse
Affiliation(s)
- S Rahman
- Smoking and Nicotine Dependence Research, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario M5S 2S1, Canada.
| | | | | |
Collapse
|
16
|
Bevins RA, Eurek S, Besheer J. Timing of conditioned responding in a nicotine locomotor conditioning preparation: manipulations of the temporal arrangement between context cues and drug administration. Behav Brain Res 2004; 159:135-43. [PMID: 15795007 DOI: 10.1016/j.bbr.2004.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/18/2004] [Accepted: 10/20/2004] [Indexed: 11/25/2022]
Abstract
Using a locomotor conditioning preparation, we examined whether manipulating time between exposure to distinct environmental cues and nicotine administration affected conditioned responding. Rats that received nicotine (0.42 mg/kg base) immediately before placement in an environment for 30 min on eight separate occasions displayed hyperactivity relative to controls in a subsequent injection/drug-free test. This conditioned hyperactivity was weaker if nicotine was administered 15 min before environment exposure. Conditioning was not evidenced when nicotine was administered 15 min after placement or upon removal from the environment. In a follow-up experiment, rats received 45 min in the environment; nicotine was administered 15 min after placement. This group showed conditioning that was localized to the last two-thirds of a 45 min test indicating that a 15 min delay did not prevent conditioning given 30 min of environment/nicotine overlap. This apparent timing of conditioned responding was not due to increasing environment exposure to 45 min. Further, a state-dependent environmental familiarization account of locomotor hyperactivity during testing was eliminated by the finding that rats displayed temporally specific increases in activity on the test day despite the fact that the context was previously experienced without drug for 15 min on eight consecutive days.
Collapse
Affiliation(s)
- Rick A Bevins
- Department of Psychology, 238 Burnett Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| | | | | |
Collapse
|
17
|
Lim DY, Kim YS, Miwa S. Influence of lobeline on catecholamine release from the isolated perfused rat adrenal gland. Auton Neurosci 2004; 110:27-35. [PMID: 14766322 DOI: 10.1016/j.autneu.2003.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 08/12/2003] [Accepted: 10/14/2003] [Indexed: 11/17/2022]
Abstract
It has been shown that lobeline (alpha-lobeline) is a lipophilic, nonpyridine, naturally occurring alkaloid obtained from Indian tobacco, Lobelia inflata. The present study was attempted to investigate the effect of lobeline on secretion of catecholamines (CA) evoked by ACh, high K(+), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP) and (3-(m-chloro-phenyl-carbamoyl-oxy)-2-butynyl trimethyl ammonium chloride (McN-A-343) from the isolated perfused rat adrenal gland and to establish the mechanism of its action. l-Lobeline (30-300 microM) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32 x 10(-3) M), DMPP (10(-4) M for 2 min) and McN-A-343 (10(-4) M for 2 min). However, lower dose of lobeline did not affect CA secretion by high K(+) (5.6 x 10(-2) M), higher dose of it reduced greatly CA secretion of high K(+). l-Lobeline itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands loaded with lobeline (100 microM), CA secretory response evoked by methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5-carboxylate (Bay-K-8644), an activator of L-type Ca(2+) channels was markedly inhibited while CA secretion by cyclopiazonic acid, an inhibitor of cytoplasmic Ca(2+)-ATPase was not affected. However, nicotine (30 microM), given into the adrenal gland for 60 min, initially rather enhanced CA secretory responses evoked by ACh (5.32 x 10(-3) M) and high K(+) (5.6 x 10(-2) M) followed by great inhibition later, while responses evoked by DMPP (10(-4) M for 2 min) and McN-A-343 (10(-4) M for 2 min) were greatly inhibited. Taken together, these results suggest that lobeline inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors. Lobeline at lower dose does not affect that by membrane depolarization, but at larger dose inhibits that. It is thought that this inhibitory effect of lobeline may be mediated by blocking the calcium influx into the rat adrenal medullary chromaffin cells without the inhibition of Ca(2+) release from the cytoplasmic calcium store, which is relevant to its nicotinic antagonistic activity. It also seems that there is a difference in the mode of action between nicotine and lobeline in rat adrenomedullary CA secretion.
Collapse
MESH Headings
- (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride/pharmacology
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Acetylcholine/metabolism
- Acetylcholine/pharmacology
- Adrenal Medulla/drug effects
- Adrenal Medulla/metabolism
- Animals
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Catecholamines/metabolism
- Chromaffin Cells/drug effects
- Chromaffin Cells/metabolism
- Dimethylphenylpiperazinium Iodide/pharmacology
- Dose-Response Relationship, Drug
- In Vitro Techniques
- Lobeline/pharmacology
- Male
- Muscarinic Agonists/pharmacology
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacology
- Perfusion
- Potassium/metabolism
- Potassium/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
Collapse
Affiliation(s)
- Dong-Yoon Lim
- Department of Pharmacology, College of Medicine, Chosun University, Gwangju 501-759, South Korea.
| | | | | |
Collapse
|
18
|
Dwoskin LP, Crooks PA. A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse. Biochem Pharmacol 2002; 63:89-98. [PMID: 11841781 DOI: 10.1016/s0006-2952(01)00899-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lobeline, an alkaloidal constituent of Lobelia inflata LINN., has a long history of therapeutic usage ranging from emetic and respiratory stimulant to tobacco smoking cessation agent. Although classified as both an agonist and an antagonist at nicotinic receptors, lobeline has no structural resemblance to nicotine, and structure--function relationships do not suggest a common pharmacophore. Lobeline inhibits nicotine-evoked dopamine release and [3H]nicotine binding, thus acting as a potent antagonist at both alpha3beta2(*) and alpha4beta2(*) neuronal nicotinic receptor subtypes. However, lobeline does not release dopamine from its presynaptic terminal, but appears to induce the metabolism of dopamine intraneuronally. Reevaluation of the mechanism by which lobeline alters dopamine function reveals that its primary mechanism is inhibition of dopamine uptake and promotion of dopamine release from the storage vesicles within the presynaptic terminal, via an interaction with the tetrabenazine-binding site on the vesicular monoamine transporter (VMAT2). Thus, lobeline appears to perturb the fundamental mechanisms of dopamine storage and release. Based on its neurochemical mechanism, the ability of lobeline to functionally antagonize the neurochemical and behavioral effects of the psychostimulants amphetamine and methamphetamine was examined. Lobeline was found to inhibit the amphetamine-induced release of dopamine in vitro, and amphetamine-induced hyperactivity, drug discrimination, and self-administration. However, lobeline does not support self-administration in rats, suggesting a lack of addiction liability. Thus, lobeline may reduce the abuse liability of these psychostimulants. The development of lobeline and lobeline analogs with targeted selectivity at VMAT2 represents a novel class of therapeutic agents having good potential as efficacious treatments for methamphetamine abuse.
Collapse
Affiliation(s)
- Linda P Dwoskin
- College of Pharmacy, University of Kentucky, Rose Street, Lexington, KY 40536-0082, USA.
| | | |
Collapse
|
19
|
Miller DK, Crooks PA, Dwoskin LP. Lobeline inhibits nicotine-evoked [(3)H]dopamine overflow from rat striatal slices and nicotine-evoked (86)Rb(+) efflux from thalamic synaptosomes. Neuropharmacology 2000; 39:2654-62. [PMID: 11044735 DOI: 10.1016/s0028-3908(00)00140-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study evaluated the interaction of lobeline with neuronal nicotinic acetylcholine receptors using two in vitro assays, [(3)H] overflow from [(3)H]dopamine ([(3)H]DA)-preloaded rat striatal slices and (86)Rb(+) efflux from rat thalamic synaptosomes. To assess agonist interactions, the effect of lobeline was determined and compared to S(-)-nicotine. To assess antagonist interactions, the ability of lobeline to inhibit the effect of S(-)-nicotine was determined. Both S(-)-nicotine (0.1-1 microM) and lobeline (>1.0 microM) evoked [(3)H] overflow from superfused [(3)H]DA-preloaded striatal slices. However, lobeline-evoked [(3)H] overflow is mecamylamine-insensitive, indicating that this response is not mediated by nicotinic receptors. Moreover, at concentrations (<1.0 microM) which did not evoke [(3)H] overflow, lobeline inhibited S(-)-nicotine (0.1-10 microM)-evoked [(3)H] overflow, shifting the S(-)-nicotine concentration-response curve to the right. S(-)-Nicotine (30 nM-300 microM) increased (EC(50) value=0.2 microM) (86)Rb(+) efflux from thalamic synaptosomes. In contrast, lobeline (1 nM-10 microM) did not evoke (86)Rb(+) efflux, and the lack of intrinsic activity indicates that lobeline is not an agonist at this nicotinic receptor subtype. Lobeline completely inhibited (IC(50) value=0.7 microM) (86)Rb(+) efflux evoked by 1 microM S(-)-nicotine, a concentration which maximally stimulated (86)Rb(+) efflux. Thus, the results of these in vitro experiments demonstrate that lobeline inhibits the effects of S(-)-nicotine, and suggest that lobeline acts as a nicotinic receptor antagonist.
Collapse
Affiliation(s)
- D K Miller
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | | | | |
Collapse
|
20
|
Flammia D, Dukat M, Damaj MI, Martin B, Glennon RA. Lobeline: structure-affinity investigation of nicotinic acetylcholinergic receptor binding. J Med Chem 1999; 42:3726-31. [PMID: 10479304 DOI: 10.1021/jm990286m] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(-)Lobeline (1) and (-)nicotine (2) bind at neuronal nicotinic cholinergic (nACh) receptors with high affinity (K(i) = 4 and 2 nM, respectively). Previous attempts to determine whether lobeline fits the currently accepted nicotinic pharmacophore model have led to suggestions that the carbonyl function, rather than the hydroxyl group, is a major contributor to binding. Interestingly, however, it has never been empirically demonstrated that either oxygen function is actually required for interaction with the receptor. In the present investigation we systematically examined a number of abbreviated analogues of lobeline and found that removal of either one or both oxygen functions reduces the affinity of lobeline by at least 25-fold; furthermore, oxidation of the (-)lobeline hydroxyl group (to afford lobelanine) or reduction of the carbonyl group (to afford lobelanidine) also resulted in decreased affinity. Although it is likely that both oxygen functions contribute to the high affinity of (-)lobeline at nACh receptors, it is concluded that the presence of both oxygen functions is not a requirement for binding; that is, replacement of the (-)lobeline hydroxyl group with a chloro group had no effect on affinity. Another finding of the present investigation is that removal of either one or both oxygen functions of lobeline results in compounds that retain the analgesic activity and potency of (-)lobeline, indicating that there is no direct relationship between neuronal nicotinic cholinergic (primarily alpha(4)beta(2) type) receptor affinity and spinal analgesia as measured in the tail-flick assay.
Collapse
Affiliation(s)
- D Flammia
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, USA
| | | | | | | | | |
Collapse
|