1
|
Ireland J, Kilian KA. The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity. Matrix Biol Plus 2024; 24:100160. [PMID: 39291079 PMCID: PMC11403269 DOI: 10.1016/j.mbplus.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CM) are a promising source of cardiac cells for disease modelling and regenerative medicine. However, current protocols invariably lead to mixed population of cardiac cell types and often generate cells that resemble embryonic phenotypes. Here we developed a combinatorial approach to assess the importance of extracellular matrix proteins (ECMP) in directing the differentiation of cardiomyocytes from human embryonic stem cells (hESC). We did this by focusing on combinations of ECMP commonly found in the developing heart with a broad goal of identifying combinations that promote maturation and influence chamber specific differentiation. We formulated 63 unique ECMP combinations fabricated from collagen 1, collagen 3, collagen 4, fibronectin, laminin, and vitronectin, presented alone and in combinations, leading to the identification of specific ECMP combinations that promote hESC proliferation, pluripotency, and germ layer specification. When hESC were subjected to a differentiation protocol on the ECMP combinations, it revealed precise protein combinations that enhance differentiation as determined by the expression of cardiac progenitor markers kinase insert domain receptor (KDR) and mesoderm posterior transcription factor 1 (MESP1). High expression of cardiac troponin (cTnT) and the relative expression of myosin light chain isoforms (MLC2a and MLC2v) led to the identification of three surfaces that promote a mature cardiomyocyte phenotype. Action potential morphology was used to assess chamber specificity, which led to the identification of matrices that promote chamber-specific cardiomyocytes. This study provides a matrix-based approach to improve control over cardiomyocyte phenotypes during differentiation, with the scope for translation to cardiac laboratory models and for the generation of functional chamber specific cardiomyocytes for regenerative therapies.
Collapse
Affiliation(s)
- Jake Ireland
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristopher A Kilian
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Goineau S, Gallet L, Froget G. Whole-Cell Configuration of the Patch-Clamp Technique in the hERG Channel Assay. Curr Protoc 2024; 4:e959. [PMID: 38334240 DOI: 10.1002/cpz1.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In vitro electrophysiological safety studies have become an integral part of the drug development process because, in many instances, compound-induced QT prolongation has been associated with a direct block of human ether-a-go-go-related gene (hERG) potassium channels or their native current, the rapidly activating delayed rectifier potassium current (IKr ). Therefore, according to the ICH S7B guideline, the in vitro hERG channel patch-clamp assay is commonly used as an early screen to predict the ability of a compound to prolong the QT interval prior to first-in-human testing. The protocols described in this article are designed to assess the effects of acute or long-term exposure to new chemical entities on the amplitude of IKr in HEK293 cells stably transfected with the hERG channel (whole-cell configuration of the patch-clamp technique). Examples of results obtained with moxifloxacin, terfenadine, arsenic, pentamidine, erythromycin, and sotalol are provided for illustrative purposes. © 2024 Wiley Periodicals LLC. Basic Protocol: Measurement of the acute effects of test items in the hERG channel test Alternate Protocol: Measurement of the long-term effects of test items in the hERG channel test.
Collapse
Affiliation(s)
- Sonia Goineau
- Porsolt Research Center, Le Genest-Saint-Isle, France
| | - Lucie Gallet
- Porsolt Research Center, Le Genest-Saint-Isle, France
| | | |
Collapse
|
3
|
El Harchi A, Hancox JC. hERG agonists pose challenges to web-based machine learning methods for prediction of drug-hERG channel interaction. J Pharmacol Toxicol Methods 2023; 123:107293. [PMID: 37468081 DOI: 10.1016/j.vascn.2023.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Pharmacological blockade of the IKr channel (hERG) by diverse drugs in clinical use is associated with the Long QT Syndrome that can lead to life threatening arrhythmia. Various computational tools including machine learning models (MLM) for the prediction of hERG inhibition have been developed to facilitate the throughput screening of drugs in development and optimise thus the prediction of hERG liabilities. The use of MLM relies on large libraries of training compounds for the quantitative structure-activity relationship (QSAR) modelling of hERG inhibition. The focus on inhibition omits potential effects of hERG channel agonist molecules and their associated QT shortening risk. It is instructive, therefore, to consider how known hERG agonists are handled by MLM. Here, two highly developed online computational tools for the prediction of hERG liability, Pred-hERG and HergSPred were probed for their ability to detect hERG activator drug molecules as hERG interactors. In total, 73 hERG blockers were tested with both computational tools giving overall good predictions for hERG blockers with reported IC50s below Pred-hERG and HergSPred cut-off threshold for hERG inhibition. However, for compounds with reported IC50s above this threshold such as disopyramide or sotalol discrepancies were observed. HergSPred identified all 20 hERG agonists selected as interacting with the hERG channel. Further studies are warranted to improve online MLM prediction of hERG related cardiotoxicity, by explicitly taking into account channel agonism as well as inhibition.
Collapse
Affiliation(s)
- Aziza El Harchi
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
4
|
Midei MG, Darpo B, Ayers G, Brown R, Couderc JP, Daly W, Ferber G, Sager PT, Camm AJ. Electrophysiological and ECG Effects of Perhexiline, a Mixed Cardiac Ion Channel Inhibitor, Evaluated in Nonclinical Assays and in Healthy Subjects. J Clin Pharmacol 2021; 61:1606-1617. [PMID: 34214210 DOI: 10.1002/jcph.1934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022]
Abstract
Perhexiline has been used to treat hypertrophic cardiomyopathy. In addition to its effect on carnitine-palmitoyltransferase-1, it has mixed ion channel effects through inhibition of several cardiac ion currents. Effects on cardiac ion channels expressed in mammalian cells were assayed using a manual patch-clamp technique, action potential duration (APD) was measured in ventricular trabeculae of human donor hearts, and electrocardiogram effects were evaluated in healthy subjects in a thorough QT (TQT) study. Perhexiline blocked several cardiac ion currents at concentrations within the therapeutic range (150-600 ng/mL) with IC50 for hCav1.2 ∼ hERG < late hNav1.5. A significant APD shortening was observed in perhexiline-treated cardiomyocytes. The TQT study was conducted with a pilot part in 9 subjects to evaluate a dosing schedule that would achieve therapeutic and supratherapeutic perhexiline plasma concentrations on days 4 and 6, respectively. Guided by the results from the pilot, 104 subjects were enrolled in a parallel-designed part with a nested crossover comparison for the positive control. Perhexiline caused QTc prolongation, with the largest effect on ΔΔQTcF, 14.7 milliseconds at therapeutic concentrations and 25.6 milliseconds at supratherapeutic concentrations and a positive and statistically significant slope of the concentration-ΔΔQTcF relationship (0.018 milliseconds per ng/mL; 90%CI, 0.0119-0.0237 milliseconds per ng/mL). In contrast, the JTpeak interval was shortened with a negative concentration-JTpeak relationship, a pattern consistent with multichannel block. Further studies are needed to evaluate whether this results in a low proarrhythmic risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Georg Ferber
- Statistik Georg Ferber GmbH, Riehen, Switzerland
| | - Philip T Sager
- Department of Medicine, Cardiovascular Research Institute, Stanford University, Palo Alto, California, USA
| | - A John Camm
- Division of Clinical Sciences, Cardiovascular and Cell Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
5
|
Snyder J, Zhai R, Lackey AI, Sato PY. Changes in Myocardial Metabolism Preceding Sudden Cardiac Death. Front Physiol 2020; 11:640. [PMID: 32612538 PMCID: PMC7308560 DOI: 10.3389/fphys.2020.00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart disease is widely recognized as a major cause of death worldwide and is the leading cause of mortality in the United States. Centuries of research have focused on defining mechanistic alterations that drive cardiac pathogenesis, yet sudden cardiac death (SCD) remains a common unpredictable event that claims lives in every age group. The heart supplies blood to all tissues while maintaining a constant electrical and hormonal feedback communication with other parts of the body. As such, recent research has focused on understanding how myocardial electrical and structural properties are altered by cardiac metabolism and the various signaling pathways associated with it. The importance of cardiac metabolism in maintaining myocardial function, or lack thereof, is exemplified by shifts in cardiac substrate preference during normal development and various pathological conditions. For instance, a shift from fatty acid (FA) oxidation to oxygen-sparing glycolytic energy production has been reported in many types of cardiac pathologies. Compounded by an uncoupling of glycolysis and glucose oxidation this leads to accumulation of undesirable levels of intermediate metabolites. The resulting accumulation of intermediary metabolites impacts cardiac mitochondrial function and dysregulates metabolic pathways through several mechanisms, which will be reviewed here. Importantly, reversal of metabolic maladaptation has been shown to elicit positive therapeutic effects, limiting cardiac remodeling and at least partially restoring contractile efficiency. Therein, the underlying metabolic adaptations in an array of pathological conditions as well as recently discovered downstream effects of various substrate utilization provide guidance for future therapeutic targeting. Here, we will review recent data on alterations in substrate utilization in the healthy and diseased heart, metabolic pathways governing cardiac pathogenesis, mitochondrial function in the diseased myocardium, and potential metabolism-based therapeutic interventions in disease.
Collapse
Affiliation(s)
- J Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - R Zhai
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A I Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - P Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Ma Y, Wang W, Devarakonda T, Zhou H, Wang XY, Salloum FN, Spiegel S, Fang X. Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Sci Rep 2020; 10:1450. [PMID: 31996743 PMCID: PMC6989517 DOI: 10.1038/s41598-020-58334-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
Fatty acid oxidation (FAO) is a key bioenergetic pathway often dysregulated in diseases. The current knowledge on FAO regulators in mammalian cells is limited and sometimes controversial. Previous FAO analyses involve nonphysiological culture conditions or lack adequate quantification. We herein described a convenient and quantitative assay to monitor dynamic FAO activities of mammalian cells in physiologically relevant settings. The method enabled us to assess various molecular and pharmacological modulators of the FAO pathway in established cell lines, primary cells and mice. Surprisingly, many previously proposed FAO inhibitors such as ranolazine and trimetazidine lacked FAO-interfering activity. In comparison, etomoxir at low micromolar concentrations was sufficient to saturate its target proteins and to block cellular FAO function. Oxfenicine, on the other hand, acted as a partial inhibitor of FAO. As another class of FAO inhibitors that transcriptionally repress FAO genes, antagonists of peroxisome proliferator-activated receptors (PPARs), particularly that of PPARα, significantly decreased cellular FAO activity. Our assay also had sufficient sensitivity to monitor upregulation of FAO in response to environmental glucose depletion and other energy-demanding cues. Altogether this study provided a reliable FAO assay and a clear picture of biological properties of potential FAO modulators in the mammalian system.
Collapse
Affiliation(s)
- Yibao Ma
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Wei Wang
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Teja Devarakonda
- Internal Medicine/Cardiology Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Huiping Zhou
- Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Xiang-Yang Wang
- Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Fadi N Salloum
- Internal Medicine/Cardiology Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Sarah Spiegel
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Xianjun Fang
- Departments of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA.
| |
Collapse
|
7
|
Callaghan NI, Hadipour-Lakmehsari S, Lee SH, Gramolini AO, Simmons CA. Modeling cardiac complexity: Advancements in myocardial models and analytical techniques for physiological investigation and therapeutic development in vitro. APL Bioeng 2019; 3:011501. [PMID: 31069331 PMCID: PMC6481739 DOI: 10.1063/1.5055873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies, heart failure, and arrhythmias or conduction blockages impact millions of patients worldwide and are associated with marked increases in sudden cardiac death, decline in the quality of life, and the induction of secondary pathologies. These pathologies stem from dysfunction in the contractile or conductive properties of the cardiomyocyte, which as a result is a focus of fundamental investigation, drug discovery and therapeutic development, and tissue engineering. All of these foci require in vitro myocardial models and experimental techniques to probe the physiological functions of the cardiomyocyte. In this review, we provide a detailed exploration of different cell models, disease modeling strategies, and tissue constructs used from basic to translational research. Furthermore, we highlight recent advancements in imaging, electrophysiology, metabolic measurements, and mechanical and contractile characterization modalities that are advancing our understanding of cardiomyocyte physiology. With this review, we aim to both provide a biological framework for engineers contributing to the field and demonstrate the technical basis and limitations underlying physiological measurement modalities for biologists attempting to take advantage of these state-of-the-art techniques.
Collapse
Affiliation(s)
| | | | | | | | - Craig A. Simmons
- Author to whom correspondence should be addressed: . Present address: Ted Rogers Centre for Heart
Research, 661 University Avenue, 14th Floor Toronto, Ontario M5G 1M1, Canada. Tel.:
416-946-0548. Fax: 416-978-7753
| |
Collapse
|
8
|
Shah RR, Stonier PD. Withdrawal of prenylamine: perspectives on pharmacological, clinical and regulatory outcomes following the first QT-related casualty. Ther Adv Drug Saf 2018; 9:475-493. [PMID: 30364900 PMCID: PMC6199680 DOI: 10.1177/2042098618780854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
Prenylamine, an antianginal agent marketed since early 1960, became the first casualty of QT interval related proarrhythmias in 1988 when it was withdrawn from the market. The period of its synthesis and marketing is of particular interest since it antedated, first, any serious clinical safety concern regarding drug-induced prolongation of the QT interval which was, in fact, believed to be an efficient antiarrhythmic mechanism; second, the first description of torsade de pointes as a unique proarrhythmia, typically associated with prolonged QT interval; and third, the discovery and recognition of calcium antagonism as an important cardiovascular therapeutic strategy. This review, 30 years almost to the day following its withdrawal, provides interesting perspectives on clinical, pharmacological and regulatory outcomes that followed. Prenylamine underscored torsadogenic potential of other early antianginal drugs on the market at that time and identified QT-related proarrhythmias as a much wider major public health issue of clinical and regulatory concern. This resulted in various guidelines for early identification of this potentially fatal risk. Application of these guidelines would have readily identified its proarrhythmic potential. Prenylamine also emphasized differences in drug responses between men and women which subsequently galvanized extensive research into sex-related differences in pharmacology. More importantly, however, investigations into the mechanisms of its action paved the way to developing modern safe and effective calcium antagonists that are so widely used today in cardiovascular pharmacotherapy.
Collapse
Affiliation(s)
- Rashmi R. Shah
- Pharmaceutical Consultant, 8 Birchdale, Gerrards
Cross, Buckinghamshire, UK
| | - Peter D. Stonier
- Institute of Pharmaceutical Science, Faculty of
Life Sciences & Medicine, King’s College, London, UK
| |
Collapse
|
9
|
van Bavel JJA, Vos MA, van der Heyden MAG. Cardiac Arrhythmias and Antiarrhythmic Drugs: An Autophagic Perspective. Front Physiol 2018. [PMID: 29527175 PMCID: PMC5829447 DOI: 10.3389/fphys.2018.00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Degradation of cellular material by lysosomes is known as autophagy, and its main function is to maintain cellular homeostasis for growth, proliferation and survival of the cell. In recent years, research has focused on the characterization of autophagy pathways. Targeting of autophagy mediators has been described predominantly in cancer treatment, but also in neurological and cardiovascular diseases. Although the number of studies is still limited, there are indications that activity of autophagy pathways increases under arrhythmic conditions. Moreover, an increasing number of antiarrhythmic and non-cardiac drugs are found to affect autophagy pathways. We, therefore, suggest that future work should recognize the largely unaddressed effects of antiarrhythmic agents and other classes of drugs on autophagy pathway activation and inhibition.
Collapse
Affiliation(s)
- Joanne J A van Bavel
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
10
|
George CH, Mitchell AN, Preece R, Bannister ML, Yousef Z. Pleiotropic mechanisms of action of perhexiline in heart failure. Expert Opin Ther Pat 2016; 26:1049-59. [PMID: 27455171 DOI: 10.1080/13543776.2016.1211111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The re-purposing of the anti-anginal drug perhexiline (PHX) has resulted in symptomatic improvements in heart failure (HF) patients. The inhibition of carnitine palmitoyltransferase-1 (CPT-1) has been proposed as the primary mechanism underlying the therapeutic benefit of PHX. This hypothesis is contentious. AREAS COVERED We reviewed the primary literature and patent landscape of PHX from its initial development in the 1960s through to its emergence as a drug beneficial for HF. We focused on its physico-chemistry, molecular targets, tissue accumulation and clinical dosing. EXPERT OPINION Dogma that the beneficial effects of PHX are due primarily to potent myocardial CPT-1 inhibition is not supported by the literature and all available evidence point to it being extremely unlikely that the major effects of PHX occur via this mechanism. In vivo PHX is much more likely to be an inhibitor of surface membrane ion channels and also to have effects on other components of cellular metabolism and reactive oxygen species (ROS) generation across the cardiovascular system. However, the possibility that minor effects of PHX on CPT-1 underpin disproportionately large effects on myocardial function cannot be entirely excluded, especially given the massive accumulation of the drug in heart tissue.
Collapse
Affiliation(s)
- Christopher H George
- a Wales Heart Research Institute, School of Medicine , Cardiff University , Cardiff , UK
| | - Alice N Mitchell
- a Wales Heart Research Institute, School of Medicine , Cardiff University , Cardiff , UK
| | - Ryan Preece
- a Wales Heart Research Institute, School of Medicine , Cardiff University , Cardiff , UK
| | - Mark L Bannister
- a Wales Heart Research Institute, School of Medicine , Cardiff University , Cardiff , UK
| | - Zaheer Yousef
- a Wales Heart Research Institute, School of Medicine , Cardiff University , Cardiff , UK
| |
Collapse
|
11
|
Schyman P, Liu R, Wallqvist A. General Purpose 2D and 3D Similarity Approach to Identify hERG Blockers. J Chem Inf Model 2016; 56:213-22. [DOI: 10.1021/acs.jcim.5b00616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Patric Schyman
- DoD Biotechnology
High Performance
Computing Software Applications Institute, Telemedicine and Advanced
Technology Research Center, U.S. Army Medical Research and Materiel Command, 2405 Whittier Drive, Frederick, Maryland 21702, United States
| | - Ruifeng Liu
- DoD Biotechnology
High Performance
Computing Software Applications Institute, Telemedicine and Advanced
Technology Research Center, U.S. Army Medical Research and Materiel Command, 2405 Whittier Drive, Frederick, Maryland 21702, United States
| | - Anders Wallqvist
- DoD Biotechnology
High Performance
Computing Software Applications Institute, Telemedicine and Advanced
Technology Research Center, U.S. Army Medical Research and Materiel Command, 2405 Whittier Drive, Frederick, Maryland 21702, United States
| |
Collapse
|
12
|
Speract, a sea urchin egg peptide that regulates sperm motility, also stimulates sperm mitochondrial metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:415-26. [PMID: 26772728 DOI: 10.1016/j.bbabio.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Sea urchin sperm have only one mitochondrion, that in addition to being the main source of energy, may modulate intracellular Ca(2+) concentration ([Ca(2+)]i) to regulate their motility and possibly the acrosome reaction. Speract is a decapeptide from the outer jelly layer of the Strongylocentrotus purpuratus egg that upon binding to its receptor in the sperm, stimulates sperm motility, respiration and ion fluxes, among other physiological events. Altering the sea urchin sperm mitochondrial function with specific inhibitors of this organelle, increases [Ca(2+)]i in an external Ca(2+) concentration ([Ca(2+)]ext)-dependent manner (Ardón, et al., 2009. BBActa 1787: 15), suggesting that the mitochondrion is involved in sperm [Ca(2+)]i homeostasis. To further understand the interrelationship between the mitochondrion and the speract responses, we measured mitochondrial membrane potential (ΔΨ) and NADH levels. We found that the stimulation of sperm with speract depolarizes the mitochondrion and increases the levels of NADH. Surprisingly, these responses are independent of external Ca(2+) and are due to the increase in intracellular pH (pHi) induced by speract. Our findings indicate that speract, by regulating pHi, in addition to [Ca(2+)]i, may finely modulate mitochondrial metabolism to control motility and ensure that sperm reach the egg and fertilize it.
Collapse
|
13
|
Kratz JM, Schuster D, Edtbauer M, Saxena P, Mair CE, Kirchebner J, Matuszczak B, Baburin I, Hering S, Rollinger JM. Experimentally validated HERG pharmacophore models as cardiotoxicity prediction tools. J Chem Inf Model 2014; 54:2887-901. [PMID: 25148533 DOI: 10.1021/ci5001955] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The goal of this study was to design, experimentally validate, and apply a virtual screening workflow to identify novel hERG channel blockers. The hERG channel is an important antitarget in drug development since cardiotoxic risks remain as a major cause of attrition. A ligand-based pharmacophore model collection was developed and theoretically validated. The seven most complementary and suitable models were used for virtual screening of in-house and commercially available compound libraries. From the hit lists, 50 compounds were selected for experimental validation through bioactivity assessment using patch clamp techniques. Twenty compounds inhibited hERG channels expressed in HEK 293 cells with IC50 values ranging from 0.13 to 2.77 μM, attesting to the suitability of the models as cardiotoxicity prediction tools in a preclinical stage.
Collapse
Affiliation(s)
- Jadel M Kratz
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , 88.040-900 Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gillie DJ, Novick SJ, Donovan BT, Payne LA, Townsend C. Development of a high-throughput electrophysiological assay for the human ether-à-go-go related potassium channel hERG. J Pharmacol Toxicol Methods 2013; 67:33-44. [DOI: 10.1016/j.vascn.2012.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/02/2012] [Accepted: 10/18/2012] [Indexed: 01/03/2023]
|
15
|
Hausammann GJ, Heitkamp T, Matile H, Gsell B, Thoma R, Schmid G, Frasson D, Sievers M, Hennig M, Grütter MG. Generation of an antibody toolbox to characterize hERG. Biochem Biophys Res Commun 2012; 431:70-5. [PMID: 23277102 DOI: 10.1016/j.bbrc.2012.12.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/28/2022]
Abstract
The human ether-a-go-go related gene (hERG) potassium channel plays a major role in the repolarization of the cardiac action potential. Inhibition of the hERG function by mutations or a wide variety of pharmaceutical compounds cause long QT syndrome and lead to potentially lethal arrhythmias. For detailed insights into the structural and biochemical background of hERG function and drug binding, the purification of recombinant protein is essential. Because the hERG channel is a challenging protein to purify, fast and easy techniques to evaluate different expression, solubilization and purification conditions are of primary importance. Here, we describe the generation of a set of 12 monoclonal antibodies against hERG. Beside their suitability in western blot, immunoprecipitation and immunostaining, these antibodies were used to establish a sandwich ELISA for the detection and relative quantification of hERG in different expression systems. Furthermore, a Fab fragment was used in fluorescence size exclusion chromatography to determine the oligomeric state of hERG after solubilization. These new tools can be used for a fast and efficient screening of expression, solubilization and purification conditions.
Collapse
Affiliation(s)
- Georg J Hausammann
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Goineau S, Legrand C, Froget G. Whole‐Cell Configuration of the Patch‐Clamp Technique in the hERG Channel Assay to Predict the Ability of a Compound to Prolong QT Interval. ACTA ACUST UNITED AC 2012; Chapter 10:Unit 10.15.. [DOI: 10.1002/0471141755.ph1015s57] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Tan Y, Chen Y, You Q, Sun H, Li M. Predicting the potency of hERG K+ channel inhibition by combining 3D-QSAR pharmacophore and 2D-QSAR models. J Mol Model 2011; 18:1023-36. [DOI: 10.1007/s00894-011-1136-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/23/2011] [Indexed: 02/06/2023]
|
18
|
Jang JW, Song CM, Choi KH, Cho YS, Baek DJ, Shin KJ, Pae AN. In silico Analysis on hERG Channel Blocking Effect of a Series of T-type Calcium Channel Blockers. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.1.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Grilo LS, Carrupt PA, Abriel H. Stereoselective Inhibition of the hERG1 Potassium Channel. Front Pharmacol 2010; 1:137. [PMID: 21833176 PMCID: PMC3153011 DOI: 10.3389/fphar.2010.00137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022] Open
Abstract
A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1) channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom) is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.
Collapse
Affiliation(s)
- Liliana Sintra Grilo
- School of Pharmaceutical Sciences, University of Geneva, University of LausanneGeneva, Switzerland
- Department of Clinical Research, University of BernBern, Switzerland
| | - Pierre-Alain Carrupt
- School of Pharmaceutical Sciences, University of Geneva, University of LausanneGeneva, Switzerland
| | - Hugues Abriel
- Department of Clinical Research, University of BernBern, Switzerland
| |
Collapse
|
20
|
Fernandez SF, Tandar A, Boden WE. Emerging medical treatment for angina pectoris. Expert Opin Emerg Drugs 2010; 15:283-98. [DOI: 10.1517/14728210903544482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Hidaka S, Yamasaki H, Ohmayu Y, Matsuura A, Okamoto K, Kawashita N, Takagi T. Nonlinear classification of hERG channel inhibitory activity by unsupervised classification method. J Toxicol Sci 2010; 35:393-9. [DOI: 10.2131/jts.35.393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | - Akiko Matsuura
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kousuke Okamoto
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Norihito Kawashita
- Graduate School of Pharmaceutical Sciences, Osaka University
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University
- Research Collaboration Center on Emerging and Re-emerging Infections
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University
- Research Collaboration Center on Emerging and Re-emerging Infections
| |
Collapse
|
22
|
ZHAO JINGTING, HILL ADAMP, VARGHESE ANTHONY, COOPER ANTONYA, SWAN HEIKKI, LAITINEN-FORSBLOM PÄIVIJ, REES MARKI, SKINNER JONATHANR, CAMPBELL TERENCEJ, VANDENBERG JAMIEI. Not All hERG Pore Domain Mutations Have a Severe Phenotype: G584S Has an Inactivation Gating Defect with Mild Phenotype Compared to G572S, Which Has a Dominant Negative Trafficking Defect and a Severe Phenotype. J Cardiovasc Electrophysiol 2009; 20:923-30. [DOI: 10.1111/j.1540-8167.2009.01468.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Polak S, Wiśniowska B, Brandys J. Collation, assessment and analysis of literature in vitro data on hERG receptor blocking potency for subsequent modeling of drugs' cardiotoxic properties. J Appl Toxicol 2009; 29:183-206. [PMID: 18988205 DOI: 10.1002/jat.1395] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The assessment of the torsadogenic potency of a new chemical entity is a crucial issue during lead optimization and the drug development process. It is required by the regulatory agencies during the registration process. In recent years, there has been a considerable interest in developing in silico models, which allow prediction of drug-hERG channel interaction at the early stage of a drug development process. The main mechanism underlying an acquired QT syndrome and a potentially fatal arrhythmia called torsades de pointes is the inhibition of potassium channel encoded by hERG (the human ether-a-go-go-related gene). The concentration producing half-maximal block of the hERG potassium current (IC(50)) is a surrogate marker for proarrhythmic properties of compounds and is considered a test for cardiac safety of drugs or drug candidates. The IC(50) values, obtained from data collected during electrophysiological studies, are highly dependent on experimental conditions (i.e. model, temperature, voltage protocol). For the in silico models' quality and performance, the data quality and consistency is a crucial issue. Therefore the main objective of our work was to collect and assess the hERG IC(50) data available in accessible scientific literature to provide a high-quality data set for further studies.
Collapse
Affiliation(s)
- Sebastian Polak
- Toxicology Department, Faculty of Pharmacy, Medical Collage, Jagiellonian University, Poland.
| | | | | |
Collapse
|
24
|
WANG XJ, YANG Q, YIN DL, CHEN YD, YOU QD. A Pharmacophore Modeling Study of Drugs Inducing Cardiotoxic Side Effects. CHINESE J CHEM 2008. [DOI: 10.1002/cjoc.200890380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Perrin MJ, Kuchel PW, Campbell TJ, Vandenberg JI. Drug Binding to the Inactivated State Is Necessary but Not Sufficient for High-Affinity Binding to Human Ether-à-go-go-Related Gene Channels. Mol Pharmacol 2008; 74:1443-52. [DOI: 10.1124/mol.108.049056] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Abstract
Perhexiline, 2-(2,2-dicyclohexylethyl)piperidine, was originally developed as an anti-anginal drug in the 1970s. Despite its success, its use diminished due to the occurrence of poorly understood side effects including neurotoxicity and hepatotoxicity in a small proportion of patients. Recently, perhexiline's mechanism of action and the molecular basis of its toxicity have been elucidated. Perhexiline reduces fatty acid metabolism through the inhibition of carnitine palmitoyltransferase, the enzyme responsible for mitochondrial uptake of long-chain fatty acids. The corresponding shift to greater carbohydrate utilization increases myocardial efficiency (work done per unit oxygen consumption) and this oxygen-sparing effect explains its antianginal efficacy. Perhexiline's side effects are attributable to high plasma concentrations occurring with standard doses in patients with impaired metabolism due to CYP2D6 mutations. Accordingly, dose modification in these poorly metabolizing patients identified through therapeutic plasma monitoring can eliminate any significant side effects. Herein we detail perhexiline's pharmacology with particular emphasis on its mechanism of action and its side effects. We discuss how therapeutic plasma monitoring has led to perhexiline's safe reintroduction into clinical practice and how recent clinical data attesting to its safety and remarkable efficacy led to a renaissance in its use in both refractory angina and chronic heart failure. Finally, we discuss the application of pharmacogenetics in combination with therapeutic plasma monitoring to potentially broaden perhexiline's use in heart failure, aortic stenosis, and other cardiac conditions.
Collapse
Affiliation(s)
- Houman Ashrafian
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | | | |
Collapse
|
27
|
Kim CS, Lee N, Son SJ, Lee KS, Kim HS, Kwak YG, Chae SW, Lee SD, Jeon BH, Park JB. Inhibitory effects of coronary vasodilator papaverine on heterologously-expressed HERG currents in Xenopus oocytes. Acta Pharmacol Sin 2007; 28:503-10. [PMID: 17376289 DOI: 10.1111/j.1745-7254.2007.00507.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To characterize the effects of papaverine on HERG channels expressed in Xenopus oocytes as well as cardiac action potential in rabbit ventricular myocytes. METHODS Conventional microelectrodes were used to record action potential in rabbit ventricular myocytes. HERG currents were recorded by 2-electrode voltage clamp technique in Xenopus oocytes injected with HERG cRNA. RESULTS Papaverine increased the cardiac action potential duration in rabbit ventricular myocytes. It blocked heterologously-expressed HERG currents in a concentration-dependent manner (IC50 71.03+/-4.75 micromol/L, NH 0.80, n=6), whereas another phosphodiesterase inhibitor, theophylline (500 micromol/L), did not. The blockade of papaverine on HERG currents was not voltage-dependent. The slope conductance measured as a slope of the fully activated HERG current-voltage curves decreased from 78.03+/-4.25 muS of the control to 56.84+/-5.33, 36.06+/-6.53, and 27.09+/-5.50 microS (n=4) by 30, 100, and 300 micromol/L of papaverine, respectively. Papaverine (100 micromol/L) caused a 9 mV hyperpolarizing shift in the voltage-dependence of steady-state inactivation, but there were no changes in the voltage-dependence of HERG current activation. Papaverine blocked HERG channels in the closed, open, and inactivated states. CONCLUSION These results showed that papaverine blocked HERG channels in a voltage- and state-independent manner, which may most likely be the major mechanism of papaverine-induced cardiac arrhythmia reported in humans.
Collapse
Affiliation(s)
- Cuk-seong Kim
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 301131, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ekins S, Balakin KV, Savchuk N, Ivanenkov Y. Insights for Human Ether-a-Go-Go-Related Gene Potassium Channel Inhibition Using Recursive Partitioning and Kohonen and Sammon Mapping Techniques. J Med Chem 2006; 49:5059-71. [PMID: 16913696 DOI: 10.1021/jm060076r] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human ether-a-go-go related gene (hERG) can be inhibited by marketed drugs, and this inhibition may lead to QT prolongation and possibly fatal cardiac arrhythmia. We have collated literature data for 99 diverse hERG inhibitors to generate Kohonen maps, Sammon maps, and recursive partitioning models. Our aim was to investigate whether these computational models could be used either individually or together in a consensus approach to predict the binding of a prospectively selected test set of 35 diverse molecules and at the same time to offer further insights into hERG inhibition. The recursive partitioning model provided a quantitative prediction, which was markedly improved when Tanimoto similarity was included as a filter to remove molecules from the test set that were too dissimilar to the training set (r2 = 0.83, Spearman rho = 0.75, p = 0.0003 for the 18 remaining molecules, >0.77 similarity). This model was also used to screen and prioritize a database of drugs, recovering several hERG inhibitors not used in model building. The mapping approaches used molecular descriptors required for hERG inhibition that were not reported previously and in particular highlighted the importance of molecular shape. The Sammon map model provided the best qualitative classification of the test set (95% correct) compared with the Kohonen map model (81% correct), and this result was also superior to the consensus approach. This study illustrates that patch clamping data from various literature sources can be combined to generate valid models of hERG inhibition for prospective predictions.
Collapse
Affiliation(s)
- Sean Ekins
- ACT LLC, 601 Runnymede Avenue, Jenkintown, Pennsylvania 19046, USA.
| | | | | | | |
Collapse
|
29
|
Vasilyev D, Merrill T, Iwanow A, Dunlop J, Bowlby M. A novel method for patch-clamp automation. Pflugers Arch 2006; 452:240-7. [PMID: 16596408 DOI: 10.1007/s00424-005-0029-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 10/19/2005] [Accepted: 11/10/2005] [Indexed: 11/28/2022]
Abstract
An increasing demand of the pharmaceutical industry for automated electrophysiological stations for ion channel drug discovery has recently resulted in the development of several commercial platforms for secondary and safety screening of ion channel modulators. These commercial systems have demonstrated an enhanced throughput, however, often at the expense of some quality-sensitive aspects of traditional patch-clamp recordings. To improve data quality and content, we have developed a patch-clamp robot that fully automates manual patch-clamp recordings, including patch pipette handling, gigaseal formation, obtaining whole-cell or perforated-cell configuration, drug application, and data acquisition. Utilization of glass micropipettes results in high-quality electrophysiological recordings with an overall success rate of about 30% in perforated-cell mode. A fast drug application system with low volume requirements (1-1.5 ml) allows the study of ligand-gated ion channels on a millisecond scale. As proof-of-concept, we present two assays developed for voltage-gated human ether-a-go-go-related and ligand-gated alpha(7) nicotinic receptor ion channels. The system throughput was a single concentration-response curve every 30-40 min or 12-17 6-point concentration-response curves daily, representing a significant improvement of typical manual patch-clamp throughput. This system represents an efficient method for patch-clamp automation without the need for a complex and expensive electrophysiological set-up for cell visualization.
Collapse
Affiliation(s)
- D Vasilyev
- Discovery Neuroscience, Wyeth Research, CN 8000, Princeton, NJ 08543-8000, USA.
| | | | | | | | | |
Collapse
|
30
|
Yoshida K, Niwa T. Quantitative Structure−Activity Relationship Studies on Inhibition of HERG Potassium Channels. J Chem Inf Model 2006; 46:1371-8. [PMID: 16711756 DOI: 10.1021/ci050450g] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human ether-a-go-go-related gene (HERG) protein forms the ion channel responsible for the rapidly acting delayed rectifier potassium current, I(Kr), and its blockade is a significant contributor to prolongation of the QT interval. Using descriptors which have clear physicochemical meanings and are familiar to medicinal chemists, we have carried out 2D-quantitative structure-activity relationship (2D-QSAR) studies on 104 HERG channel blockers with diverse structures collected from the literature, and we have formulated interpretable models to guide chemical-modification studies and virtual screening. Statistically significant descriptors were selected by a genetic algorithm, and the final model included the octanol/water partition coefficient, topological polar surface area, diameter, summed surface area of atoms with partial charges from -0.25 to -0.20, and an indicator variable representing the experimental conditions. The statistics were r = 0.839, r2 = 0.704, q2 = 0.671, s = 0.763, and F = 46.6. The correspondence of the molecular determinants derived from the 2D-QSAR models with the 3D structural characteristics of the putative binding site in a homology-modeled HERG channel is also discussed.
Collapse
Affiliation(s)
- Katsumi Yoshida
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd. 14, Kisshoin, Kyoto 601-8550, Japan
| | | |
Collapse
|
31
|
Shah RR, Hondeghem LM. Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm 2005; 2:758-72. [PMID: 15992736 DOI: 10.1016/j.hrthm.2005.03.023] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Accepted: 03/27/2005] [Indexed: 01/10/2023]
Abstract
QT interval prolongation is so frequently associated with torsades de pointes (TdP) that it has come to be recognized as a surrogate marker of this unique tachyarrhythmia. However, not only does TdP not always follow QT interval prolongation, but TdP can occur even in the absence of a prolonged QT interval. Worse still, even shortening of the QT interval may be associated with serious arrhythmias (particularly ventricular tachycardia [VT] and ventricular fibrillation [VF]). It appears increasingly probable that the distinction between various ventricular tachyarrhythmias may be arbitrary, and drug-induced TdP, polymorphic VT, VT, catecholaminergic polymorphic VT, and VF may represent discrete entities within a spectrum of drug-induced proarrhythmia. Although they are differentiated by the coupling interval and the duration of QT interval, they appear to share a common substrate: a set of disturbances of repolarization characterized by Triangulation, Reverse use dependency, electrical Instability of the action potential, and Dispersion (TRIaD). It is becoming increasingly evident that augmentation of TRIaD, rather than changes in the duration of QT interval, provides the proarrhythmic substrate. In contrast, when not associated with an increase of TRIaD, QT interval prolongation can be an antiarrhythmic property. Electrophysiologically, augmentation of TRIaD can be explained by inhibition of hERG (human ether-a-go-go related gene) channel. Because drug-induced disturbances in repolarization commonly result from inhibition of hERG channels or I(Kr), hERG blockade and the resulting prolongation of QT interval are important properties of a drug to be studied. However, these need only be a concern if associated with TRIaD. More significantly, TRIaD so often precedes prolongation of action potential duration or QT interval and ventricular tachyarrhythmias that it should be considered a marker of proarrhythmia until proven otherwise, even in the absence of QT interval prolongation. Detecting drug-induced augmentation of TRIaD may offer an additional, more sensitive, and accurate indicator of the broader proarrhythmic potential of a drug than may QT interval prolongation alone.
Collapse
Affiliation(s)
- Rashmi R Shah
- Medicines and Healthcare Products Regulatory Agency, London, UK.
| | | |
Collapse
|
32
|
Wible BA, Hawryluk P, Ficker E, Kuryshev YA, Kirsch G, Brown AM. HERG-Lite®: A novel comprehensive high-throughput screen for drug-induced hERG risk. J Pharmacol Toxicol Methods 2005; 52:136-45. [PMID: 15950494 DOI: 10.1016/j.vascn.2005.03.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Direct block of I(Kr) by non-antiarrhythmic drugs (NARDs) is a major cause of QT prolongation and torsades de pointes (TdP), and has made the hERG potassium channel a major target of drug safety programs in cardiotoxicity. Block of hERG currents is not the only way that drugs can adversely impact the repolarizing current I(Kr), however. We have shown recently that two drugs in clinical use do not block hERG but produce long QT syndrome (LQTS) and TdP by inhibiting trafficking of hERG to the cell surface. To address the need for an inexpensive, rapid, and comprehensive assay to predict both types of hERG risk early in the drug development process, we have developed a novel antibody-based chemiluminescent assay called HERG-Lite. METHODS HERG-Lite monitors the expression of hERG at the cell surface in two different stable mammalian cell lines. One cell line acts as a biosensor for drugs that inhibit hERG trafficking, while the other predicts hERG blockers based on their ability to act as pharmacological chaperones. In this study, we have validated the HERG-Lite assay using a panel of 100 drugs: 50 hERG blockers and 50 nonblockers. RESULTS HERG-Lite correctly predicted hERG risk for all 100 test compounds with no false positives or negatives. All 50 hERG blockers were detected as drugs with hERG risk in the HERG-Lite assay, and fell into two classes: B (for blocker) and C (for complex; block and trafficking inhibition). DISCUSSION HERG-Lite is the most comprehensive assay available for predicting drug-induced hERG risk. It accurately predicts both channel blockers and trafficking inhibitors in a rapid, cost-effective manner and is a valuable non-clinical assay for drug safety testing.
Collapse
|
33
|
Diaz GJ, Daniell K, Leitza ST, Martin RL, Su Z, McDermott JS, Cox BF, Gintant GA. The [3H]dofetilide binding assay is a predictive screening tool for hERG blockade and proarrhythmia: Comparison of intact cell and membrane preparations and effects of altering [K+]o. J Pharmacol Toxicol Methods 2005; 50:187-99. [PMID: 15519905 DOI: 10.1016/j.vascn.2004.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 04/06/2004] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The human ether-a-go-go-related gene (hERG) encodes a potassium channel responsible for the cardiac delayed rectifier current (IKr) involved in ventricular repolarization. Drugs that block hERG have been associated with QT interval prolongation and serious, sometimes fatal, cardiac arrhythmias (including torsade de pointes). While displacement of [3H]dofetilide, a potent methanesulfonanilide hERG blocker, from cells heterologously expressing hERG has been suggested as a screening assay, questions have been raised about its predictive value. METHODS To validate the utility of this assay as a screening tool, we performed a series of saturation and competition binding studies using [3H]dofetilide as ligand and either intact cells or membrane preparations from HEK 293 cells stably transfected with hERG K+ channels. The object of these experiments was to (1) compare binding Ki values for 22 hERG blockers using intact cells or membrane homogenates to determine whether maintaining cell integrity enhanced assay reliability; (2) evaluate the ability of different K+ concentrations (2, 5, 10, 20, and 60 mM) to modulate hERG binding; and (3) to establish the predictive value of the assay by comparing Ki values from binding studies at 5 and 60 mM [K+]o to functional IC50 values for hERG current block using 56 structurally diverse drugs. RESULTS We found (a) comparable Ki values in the intact cell and isolated membrane binding assays, although there were some differences in rank order; (b) increasing [K+]o lowered the Kd and increased the Bmax for [3H]dofetilide, particularly in the membrane assay; and (c) good correlation between binding Ki values and functional IC50 values for hERG current block. DISCUSSION In conclusion, increasing K+ concentrations results in an increase in both [3H]dofetilide affinity for hERG and available binding sites, particularly when using membrane homogenates. There are no meaningful differences between Ki values when comparing intact cell versus membrane assay, neither are there meaningful trends with increasing [K+]o within assays. There is good correlation between binding Ki values and functional (whole-cell patch clamp) IC50 values at both 5 and 60 mM K+ concentrations (R2 values of .824 and .863, respectively). The simplicity, predictability, and adaptability to high-throughput platforms make the [3H]dofetilide membrane binding assay a useful tool for screening and ranking compounds for their potential to block the hERG K+ channel.
Collapse
Affiliation(s)
- Gilbert J Diaz
- Department of Integrative Pharmacology, R46R, AP9-1, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6119, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sorota S, Zhang XS, Margulis M, Tucker K, Priestley T. Characterization of a hERG Screen Using the IonWorks HT: Comparison to a hERG Rubidium Efflux Screen. Assay Drug Dev Technol 2005; 3:47-57. [PMID: 15798395 DOI: 10.1089/adt.2005.3.47] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The introduction of parallel patch clamp instruments offers the promise of moderate-throughput, high-fidelity voltage clamp for drug screening assays. One such device, the IonWorks HT (Molecular Devices, Sunnyvale, CA), was evaluated and compared to conventional human ethera- go-go-related gene (hERG) patch clamp data and an alternative functional screen based on rubidium flux. Data generated by the IonWorks HT and rubidium assays were compared to determine if either offered superior predictive value compared to conventional patch clamp. Concentration-effect curves for a panel of known hERG blockers were shifted to higher concentrations on the IonWorks HT compared to conventional voltage clamp determinations. The magnitude of the potency shifts was compound-specific and ranged from no shift (e.g., quinidine) to over 200-fold (astemizole). When the extreme value for astemizole was disregarded, the potency shift for 13 other known reference standards was 12-fold or less, with an average shift of fivefold. The same subset of compounds in the rubidium efflux assay exhibited an average potency shift of 12-fold. To provide a simulation of how the IonWorks HT assay might perform in a single concentration screening mode, a panel of test compounds was evaluated. The IonWorks HT screen did not outperform the rubidium efflux screen in predicting conventional voltage clamp measurements. The most likely explanation appears to rest with variable and compound-specific potency shifts in the IonWorks HT assay. The variable potency shifts make it difficult to select a screening concentration that meets the criterion of a high positive predictive value while avoiding false-positives.
Collapse
Affiliation(s)
- Steve Sorota
- Department of Neurobiology, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA. steve.sorota@ spcorp.com
| | | | | | | | | |
Collapse
|
35
|
Bains W, Basman A, White C. HERG binding specificity and binding site structure: evidence from a fragment-based evolutionary computing SAR study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:205-33. [PMID: 15288759 DOI: 10.1016/j.pbiomolbio.2003.09.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We describe the application of genetic programming, an evolutionary computing method, to predicting whether small molecules will block the HERG cardiac potassium channel. Models based on a molecular fragment-based descriptor set achieve an accuracy of 85-90% in predicting whether the IC(50) of a 'blind' set of compounds is <1 microM. Analysis of the models provides a 'meta-SAR', which predicts a pharmacophore of two hydrophobic features, one preferably aromatic and one preferably nitrogen-containing, with a protonatable nitrogen asymmetrically situated between them. Our experience of the approach suggests that it is robust, and requires limited scientist input to generate valuable predictive results and structural understanding of the target.
Collapse
Affiliation(s)
- William Bains
- Amedis Pharmaceuticals, Unit 162 Cambridge Science Park, Milton Road, Cambridge, UK
| | | | | |
Collapse
|
36
|
Philpott A, Chandy S, Morris R, Horowitz JD. Development of a regimen for rapid initiation of perhexiline therapy in acute coronary syndromes. Intern Med J 2004; 34:361-3. [PMID: 15228400 DOI: 10.1111/j.1445-5994.2004.00624.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perhexiline is a prophylactic anti-anginal agent that ameliorates the metabolic basis for myocardial ischaemia and is increasingly used in the management of acute coronary syndromes. No intravenous preparation is available and usual oral loading regimens require 2-3 days to achieve therapeutic drug levels. Two patients presenting to hospital with single-dose over-dosage of perhexiline (6500 mg and 1000 mg, respectively) provided a basis for examining the safety of large single dosage of perhexiline and associated time-course of drug levels. Neither patient had previously taken perhexiline. Peak plasma perhexiline concentrations occurred within 12 h of ingestion and were 2.58 and 0.50 mg/L, respectively (therapeutic range 0.15-0.60 mg/L). The first patient developed transient nausea and vomiting; the second patient had no adverse effects. Subsequently, a series of 10 patients with acute coronary syndromes received an 800-mg loading dose. Peak concentrations occurred within 12 h postdose; the mean levels achieved were 0.40 +/- 0.16 mg/L (standard error of the mean). No serious adverse effects were seen. Two patients reported transient nausea or vomiting within 24 h of the loading dose. The utility of this rapid loading regimen for incremental suppression of myocardial ischaemia remains to be assessed.
Collapse
Affiliation(s)
- A Philpott
- Department of Cardiology and Clinical Pharmacology, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
37
|
Torres AM, Bansal PS, Sunde M, Clarke CE, Bursill JA, Smith DJ, Bauskin A, Breit SN, Campbell TJ, Alewood PF, Kuchel PW, Vandenberg JI. Structure of the HERG K+ channel S5P extracellular linker: role of an amphipathic alpha-helix in C-type inactivation. J Biol Chem 2003; 278:42136-48. [PMID: 12902341 DOI: 10.1074/jbc.m212824200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HERG K+ channel has very unusual kinetic behavior that includes slow activation but rapid inactivation. These features are critical for normal cardiac repolarization as well as in preventing lethal ventricular arrhythmias. Mutagenesis studies have shown that the extracellular peptide linker joining the fifth transmembrane domain to the pore helix is critical for rapid inactivation of the HERG K+ channel. This peptide linker is also considerably longer in HERG K+ channels, 40 amino acids, than in most other voltage-gated K+ channels. In this study we show that a synthetic 42-residue peptide corresponding to this linker region of the HERG K+ channel does not have defined structural elements in aqueous solution; however, it displays two well defined helical regions when in the presence of SDS micelles. The helices correspond to Trp585-Ile593 and Gly604-Tyr611 of the channel. The Trp585-Ile593 helix has distinct hydrophilic and hydrophobic surfaces. The Gly604-Tyr611 helix corresponds to an N-terminal extension of the pore helix. Electrophysiological studies of HERG currents following application of exogenous S5P peptides show that the amphipathic helix in the S5P linker interacts with the pore region of the channel in a voltage-dependent manner.
Collapse
Affiliation(s)
- Allan M Torres
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Torres AM, Bansal P, Alewood PF, Bursill JA, Kuchel PW, Vandenberg JI. Solution structure of CnErg1 (Ergtoxin), a HERG specific scorpion toxin. FEBS Lett 2003; 539:138-42. [PMID: 12650941 DOI: 10.1016/s0014-5793(03)00216-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The three-dimensional structure of chemically synthesized CnErg1 (Ergtoxin), which specifically blocks HERG (human ether-a-go-go-related gene) K+ channels, was determined by nuclear magnetic resonance spectroscopy. CnErg1 consists of a triple-stranded beta-sheet and an alpha-helix, as is typical of K+ channel scorpion toxins. The peptide structure differs from the canonical structures in that the first beta-strand is shorter and is nearer to the second beta-strand rather than to the third beta-strand on the C-terminus. There is also a large hydrophobic patch on the surface of the toxin, surrounding a central lysine residue, Lys13. We postulate that this hydrophobic patch is likely to form part of the binding surface of the toxin.
Collapse
Affiliation(s)
- Allan M Torres
- School of Molecular and Microbial Biosciences, University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Cheng CS, Alderman D, Kwash J, Dessaint J, Patel R, Lescoe MK, Kinrade MB, Yu W. A high-throughput HERG potassium channel function assay: an old assay with a new look. Drug Dev Ind Pharm 2002; 28:177-91. [PMID: 11926362 DOI: 10.1081/ddc-120002451] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this paper, we describe an assay using radioactive rubidium (86Rb) efflux to screen functional human ether-a go-go-related gene (HERG) K+ channels in a high-throughput screening (HTS) format. This assay offers an alternative way to examine junctional interactions between chemical compounds and HERG K+ channels. Follow-up experiments and discussions were carried out to address a variety of factors that affect potency evaluation within the Rb efflux assay. Factors that can affect the assay results, such as assay time, efflux rate, and compound blocking kinetics, are discussed in detail. Our results provide some explanations for the variances of the assay results and offer some guidelines for using the Rb efflux assay to evaluate compound interactions with HERG K+ channels in the pharmaceutical industry.
Collapse
Affiliation(s)
- Charles S Cheng
- Department of Molecular Biology, Neurogen Corporation, Branford, Connecticut 06405, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ekins S, Crumb WJ, Sarazan RD, Wikel JH, Wrighton SA. Three-dimensional quantitative structure-activity relationship for inhibition of human ether-a-go-go-related gene potassium channel. J Pharmacol Exp Ther 2002; 301:427-34. [PMID: 11961040 DOI: 10.1124/jpet.301.2.427] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The protein product of the human ether-a-go-go gene (hERG) is a potassium channel that when inhibited by some drugs may lead to cardiac arrhythmia. Previously, a three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophore model was constructed using Catalyst with in vitro inhibition data for antipsychotic agents. The rationale of the current study was to use a combination of in vitro and in silico technologies to further test the pharmacophore model and qualitatively predict whether molecules are likely to inhibit this potassium channel. These predictions were assessed with the experimental data using the Spearman's rho rank correlation. The antipsychotic-based hERG inhibitor model produced a statistically significant Spearman's rho of 0.71 for 11 molecules. In addition, 15 molecules from the literature were used as a further test set and were also well ranked by the same model with a statistically significant Spearman's rho value of 0.76. A Catalyst General hERG pharmacophore model was generated with these literature molecules, which contained four hydrophobic features and one positive ionizable feature. Linear regression of log-transformed observed versus predicted IC(50) values for this training set resulted in an r(2) value of 0.90. The model based on literature data was evaluated with the in vitro data generated for the original 22 molecules (including the antipsychotics) and illustrated a significant Spearman's rho of 0.77. Thus, the Catalyst 3D-QSAR approach provides useful qualitative predictions for test set molecules. The model based on literature data therefore provides a potentially valuable tool for discovery chemistry as future molecules may be synthesized that are less likely to inhibit hERG based on information provided by a pharmacophore for the inhibition of this potassium channel.
Collapse
Affiliation(s)
- Sean Ekins
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN, USA.
| | | | | | | | | |
Collapse
|
41
|
Tie H, Walker BD, Singleton CB, Bursill JA, Wyse KR, Campbell TJ, Valenzuela SM, Breit SN. Clozapine and sudden death. J Clin Psychopharmacol 2001; 21:630-2. [PMID: 11763021 DOI: 10.1097/00004714-200112000-00023] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Witchel HJ, Hancox JC. Familial and acquired long qt syndrome and the cardiac rapid delayed rectifier potassium current. Clin Exp Pharmacol Physiol 2000; 27:753-66. [PMID: 11022966 DOI: 10.1046/j.1440-1681.2000.03337.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Long QT syndrome (LQTS) is a cardiac disorder characterized by syncope, seizures and sudden death; it can be congenital, idiopathic, or iatrogenic. 2. Long QT syndrome is so-named because of the connection observed between the distinctive polymorphic ventricular tachycardia torsade de pointes and prolongation of the QT interval of the electrocardiogram, reflecting abnormally slowed ventricular action potential (AP) repolarization. Acquired LQTS has many similar clinical features to congenital LQTS, but typically affects older individuals and is often associated with specific pharmacological agents. 3. A growing number of drugs associated with QT prolongation and its concomitant risks of arrhythmia and sudden death have been shown to block the 'rapid' cardiac delayed rectifier potassium current (IKr) or cloned channels encoded by the human ether-a-go-go-related gene (HERG; the gene believed to encode native IKr). Because IKr plays an important role in ventricular AP repolarization, its inhibition would be expected to result in prolongation of both the AP and QT interval of the electrocardiogram. 4. The drugs that produce acquired LQTS are structurally heterogeneous, including anti-arrhythmics, such as quinidine, non-sedating antihistamines, such as terfenadine, and psychiatric drugs, such as haloperidol. In addition to heterogeneity in their structure, the electrophysiological characteristics of HERG/IKr inhibition differ between agents. 5. Here, clinical observations are associated with cellular data to correlate acquired LQTS with the IKr/HERG potassium (K+) channel. One strategy for developing improved compounds in those drug classes that are currently associated with LQTS could be to design drug structures that preserve clinical efficacy but are modified to avoid pharmacological interactions with IKr. Until such time, awareness of the QT-prolongation risk of particular agents is important for the clinician.
Collapse
Affiliation(s)
- H J Witchel
- Department of Physiology and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, United Kingdom.
| | | |
Collapse
|
43
|
Tie H, Walker BD, Singleton CB, Valenzuela SM, Bursill JA, Wyse KR, Breit SN, Campbell TJ. Inhibition of HERG potassium channels by the antimalarial agent halofantrine. Br J Pharmacol 2000; 130:1967-75. [PMID: 10952689 PMCID: PMC1572249 DOI: 10.1038/sj.bjp.0703470] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Halofantrine is a widely used antimalarial agent which has been associated with prolongation of the 'QT interval' of the electrocardiogram (ECG), torsades de pointes and sudden death. Whilst QT prolongation is consistent with halofantrine-induced increases in cardiac ventricular action potential duration, the cellular mechanism for these observations has not been previously reported. The delayed rectifier potassium channel, I(Kr), is a primary site of action of drugs causing QT prolongation and is encoded by the human-ether-a-go-go-related gene (HERG). We examined the effects of halofantrine on HERG potassium channels stably expressed in Chinese hamster ovary (CHO-K1) cells. Halofantrine blocked HERG tail currents elicited on repolarization to -60 mV from +30 mV with an IC(50) of 196.9 nM. The therapeutic plasma concentration range for halofantrine is 1.67-2.98 microM. Channel inhibition by halofantrine exhibited time-, voltage- and use-dependence. Halofantrine did not alter the time course of channel activation or deactivation, but inactivation was accelerated and there was a 20 mV hyperpolarizing shift in the mid-activation potential of steady-state inactivation. Block was enhanced by pulses that render channels inactivated, and channel blockade increased with increasing duration of depolarizing pulses. We conclude that HERG channel inhibition by halofantrine is the likely underlying cellular mechanism for QT prolongation. Our data suggest preferential binding of halofantrine to the open and inactivated channel states.
Collapse
Affiliation(s)
- H Tie
- Department of Medicine, University of New South Wales, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ulens C, Tytgat J. Redox state dependency of HERGS631C channel pharmacology: relation to C-type inactivation. FEBS Lett 2000; 474:111-5. [PMID: 10828461 DOI: 10.1016/s0014-5793(00)01586-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The S631C mutation in human ether-à-go-go-related gene (HERG) channels has previously been reported to disrupt C-type inactivation and ion-selectivity when Cys-631 is in the oxidized state. In this study, we report the relation between pharmacology and C-type inactivation for HERGS631C channels. We demonstrate that HERGS631C in its reduced state is fully blocked by 1 microM astemizole, terfenadine and dofetilide, similar to wild-type HERG channels. In contrast, oxidized HERGS631C is insensitive for these blockers. Our results suggest that an interaction with HERG channels in the inactivated state might be a common mechanism to a variety of drugs known to block HERG channels with high affinity.
Collapse
Affiliation(s)
- C Ulens
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Van Evenstraat 4, 3000, Leuven, Belgium
| | | |
Collapse
|
45
|
|
46
|
|
47
|
Walker BD, Singleton CB, Bursill JA, Wyse KR, Valenzuela SM, Qiu MR, Breit SN, Campbell TJ. Inhibition of the human ether-a-go-go-related gene (HERG) potassium channel by cisapride: affinity for open and inactivated states. Br J Pharmacol 1999; 128:444-50. [PMID: 10510456 PMCID: PMC1571630 DOI: 10.1038/sj.bjp.0702774] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1999] [Revised: 05/10/1999] [Accepted: 06/16/1999] [Indexed: 11/08/2022] Open
Abstract
1 Cisapride is a prokinetic agent which has been associated with QT prolongation, torsades de pointes and cardiac arrest. The cellular mechanism for these observations is high affinity blockade of IKr (encoded by HERG). 2 In a chronic transfection model using CHO-K1 cells, cisapride inhibited HERG tail currents after a step to +25 mV with similar potency at room and physiological temperatures (IC50 16. 4 nM at 20-22 degrees C and 23.6 nM at 37 degrees C). 3 Channel inhibition exhibited time-, voltage- and frequency-dependence. In an envelope of tails test, channel blockade increased from 27+/-8% after a 120 ms depolarizing step to 50+/-4% after a 1.0 s step. These findings suggested affinity for open and/or inactivated channel states. 4 Inactivation was significantly accelerated by cisapride in a concentration-dependent manner and there was a small (-7 mV) shift in the voltage dependence of steady state inactivation. 5 Channel blockade by cisapride was modulated by [K+]o, with a 26% reduction in the potency of channel blockade when [K+]o was increased from 1 to 10 mM. 6 In conclusion, HERG channel inhibition by cisapride exhibits features consistent with open and inactivated state binding and is sensitive to external potassium concentration. These features may have significant clinical implications with regard to the mechanism and treatment of cisapride-induced proarrhythmia.
Collapse
Affiliation(s)
- B D Walker
- Department of Medicine, University of New South Wales, Victor Chang Cardiac Research Institute, St Vincent's Hospital, Sydney, Australia.
| | | | | | | | | | | | | | | |
Collapse
|