1
|
Zou Z, Pan S, Sun C, Wei J, Xu Y, Xiao K, Zhao J, Gu R. AM1241 inhibits chondrocyte inflammation and ECM degradation through the Nrf2/HO-1 and NF-κB pathways and alleviates osteoarthritis in mice. Mol Med 2025; 31:9. [PMID: 39794700 PMCID: PMC11721480 DOI: 10.1186/s10020-024-01012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND This study aimed to investigate the impact of AM1241 on lipopolysaccharide (LPS)-induced chondrocyte inflammation in mice and its potential mechanism for improving osteoarthritis (OA). METHODS The OA mice model was established employing the refined Hulth method. The impact of different concentrations of AM1241 on mice chondrocyte activity was detected using CCK-8. Changes in the levels of LPS-induced inflammatory factors and cartilage extracellular matrix (ECM) degradation in chondrocytes were determined by western blot, RT-qPCR, ELISA, and immunofluorescence assays, respectively. The specific action modes and binding sites of AM1241 with NEMO/IκB kinases (IKKs) in the NF-κB pathway and Keap1 protein in the Nrf2 pathway were predicted via molecular docking and molecular dynamics simulation, and the NF-κB and Nrf2 pathways were detected using western blot and immunofluorescence. In vivo, the impact of AM1241 on OA mice was analyzed through safranin-fast green staining, IHC staining, Mankin score, and microCT. RESULTS AM1241 inhibited the levels of LPS-induced transforming growth factor-β (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), matrix metalloproteinase-13 (MMP-13), and a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5) and diminished the degradation of type II collagen and Aggrecan. For the mechanism, AM1241 regulated the NF-kB and Nrf2/HO-1 signaling pathways by binding to NEMO/IKKβ and Keap1 target proteins and suppressed the activation of the NF-κB signaling pathway by activating the Nrf2 in chondrocytes. In vivo, AM1241 inhibited bone anabolism, mitigated articular cartilage hyperplasia and wear, and reduced the Mankin score in mice, thereby hindering the development of OA. CONCLUSION AM1241 inhibited activation of the NF-κB signaling pathway via activating Nrf2. It suppressed the expression of inflammation factors and the degradation of ECM in vitro, and improved OA in mice in vivo, suggesting its potential as an effective drug candidate for the treatment of OA. The remarkable efficacy of AM1241 in alleviating murine OA positions it as a potential therapeutic strategy in the clinical management of OA diseases.
Collapse
Affiliation(s)
- Zhuan Zou
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Songmu Pan
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Changzheng Sun
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiyong Wei
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kaizhen Xiao
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Jinmin Zhao
- School of Basic Medical Sciences, Guangxi Medical University, No. 22, Shuangyou Road, Qingxiu District, Nanning, Guangxi, 530021, China.
| | - Ronghe Gu
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China.
- School of Basic Medical Sciences, Guangxi Medical University, No. 22, Shuangyou Road, Qingxiu District, Nanning, Guangxi, 530021, China.
| |
Collapse
|
2
|
Geng Q, Liu B, Fan D, Cao Z, Li L, Lu P, Lin L, Yan L, Xiong Y, He X, Lu J, Chen P, Lu C. Strictosamide ameliorates LPS-induced acute lung injury by targeting ERK2 and mediating NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117593. [PMID: 38113987 DOI: 10.1016/j.jep.2023.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) ranks among the deadliest pulmonary diseases, significantly impacting mortality and morbidity. Presently, the primary treatment for ALI involves supportive therapy; however, its efficacy remains unsatisfactory. Strictosamide (STR), an indole alkaloid found in the Chinese herbal medicine Nauclea officinalis (Pierre ex Pit.) Merr. & Chun (Wutan), has been found to exhibit numerous pharmacological properties, particularly anti-inflammatory effects. AIM OF THE STUDY This study aimes to systematically identify and validate the specific binding proteins targeted by STR and elucidate its anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced ALI. MATERIALS AND METHODS Biotin chemical modification, protein microarray analysis and network pharmacology were conducted to screen for potential STR-binding proteins. The binding affinity was assessed through surface plasmon resonance (SPR), cellular thermal shift assay (CETSA) and molecular docking, and the anti-inflammatory mechanism of STR in ALI treatment was assessed through in vivo and in vitro experiments. RESULTS Biotin chemical modification, protein microarray and network pharmacology identified extracellular-signal-regulated kinase 2 (ERK2) as the most important binding proteins among 276 candidate STR-interacting proteins and nuclear factor-kappaB (NF-κB) pathway was one of the main inflammatory signal transduction pathways. Using SPR, CETSA, and molecular docking, we confirmed STR's affinity for ERK2. In vitro and in vivo experiments demonstrated that STR mitigated inflammation by targeting ERK2 to modulate the NF-κB signaling pathway in LPS-induced ALI. CONCLUSIONS Our findings indicate that STR can inhibit the NF-κB signaling pathway to attenuate LPS-induced inflammation by targeting ERK2 and decreasing phosphorylation of ERK2, which could be a novel strategy for treating ALI.
Collapse
Affiliation(s)
- Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Danping Fan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Beijing, 100700, PR China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yibai Xiong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Peng Chen
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Beijing, 100700, PR China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
3
|
Han S, Li S, Li J, He J, Wang QQ, Gao X, Yang S, Li J, Yuan R, Zhong G, Gao H. Hederasaponin C inhibits LPS-induced acute kidney injury in mice by targeting TLR4 and regulating the PIP2/NF-κB/NLRP3 signaling pathway. Phytother Res 2023; 37:5974-5990. [PMID: 37778741 DOI: 10.1002/ptr.8014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Acute kidney injury (AKI) is a common clinical condition associated with increased incidence and mortality rates. Hederasaponin C (HSC) is one of the main active components of Pulsatilla chinensis (Bunge) Regel. HSC possesses various pharmacological activities, including anti-inflammatory activity. However, the protective effect of HSC against lipopolysaccharide (LPS)-induced AKI in mice remains unclear. Therefore, we investigated the protective effect of HSC against LPS-induced renal inflammation and the underlying molecular mechanisms. Herein, using MTT and LDH assays to assess both cell viability and LDH activity; using dual staining techniques to identify different cell death patterns; conducting immunoblotting, QRT-PCR, and immunofluorescence analyses to evaluate levels of protein and mRNA expression; employing immunoblotting, molecular docking, SPR experiments, and CETSA to investigate the interaction between HSC and TLR4; and studying the anti-inflammatory effects of HSC in the LPS-induced AKI. The results indicate that HSC inhibits the expression of TLR4 and the activation of NF-κB and PIP2 signaling pathways, while simultaneously suppressing the activation of the NLRP3 inflammasome. In animal models, HSC ameliorated LPS-induced AKI and diminished inflammatory response and the level of renal injury markers. These findings suggest that HSC has potential as a therapeutic agent to mitigate sepsis-related AKI.
Collapse
Affiliation(s)
- Shan Han
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Siyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jilang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jia He
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Qin-Qin Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiang Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Guoyue Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
4
|
Kammala AK, Mosebarger A, Radnaa E, Rowlinson E, Vora N, Fortunato SJ, Sharma S, Safarzadeh M, Menon R. Extracellular Vesicles-mediated recombinant IL-10 protects against ascending infection-associated preterm birth by reducing fetal inflammatory response. Front Immunol 2023; 14:1196453. [PMID: 37600782 PMCID: PMC10437065 DOI: 10.3389/fimmu.2023.1196453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background Fetal inflammatory response mediated by the influx of immune cells and activation of pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is the major determinant of infection-associated preterm birth (PTB, live births < 37 weeks of gestation). Objective To reduce the incidence of PTB by minimizing inflammation, extracellular vesicles (EVs) were electroporetically engineered to contain anti-inflammatory cytokine interleukin (IL)-10 (eIL-10), and their efficacy was tested in an ascending model of infection (vaginal administration of E. coli) induced PTB in mouse models. Study design EVs (size: 30-170 nm) derived from HEK293T cells were electroporated with recombinant IL-10 at 500 volts and 125 Ω, and 6 pulses to generate eIL-10. eIL-10 structural characters (electron microscopy, nanoparticle tracking analysis, ExoView [size and cargo content] and functional properties (co-treatment of macrophage cells with LPS and eIL-10) were assessed. To test efficacy, CD1 mice were vaginally inoculated with E. coli (1010CFU) and subsequently treated with either PBS, eIL-10 (500ng) or Gentamicin (10mg/kg) or a combination of eIL-10+gentamicin. Fetal inflammatory response in maternal and fetal tissues after the infection or treatment were conducted by suspension Cytometer Time of Flight (CyTOF) using a transgenic mouse model that express red fluorescent TdTomato (mT+) in fetal cells. Results Engineered EVs were structurally and functionally stable and showed reduced proinflammatory cytokine production from LPS challenged macrophage cells in vitro. Maternal administration of eIL-10 (10 µg/kg body weight) crossed feto-maternal barriers to delay E. coli-induced PTB to deliver live pups at term. Delay in PTB was associated with reduced feto-maternal uterine inflammation (immune cell infiltration and histologic chorioamnionitis, NF-κB activation, and proinflammatory cytokine production). Conclusions eIL-10 administration was safe, stable, specific, delayed PTB by over 72 hrs and delivered live pups. The delivery of drugs using EVs overcomes the limitations of in-utero fetal interventions. Protecting IL-10 in EVs eliminates the need for the amniotic administration of recombinant IL-10 for its efficacy.
Collapse
Affiliation(s)
- Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Angela Mosebarger
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Emma Rowlinson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Stephen J. Fortunato
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Melody Safarzadeh
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
5
|
Sun W, Mao X, Wu W, Nan Y, Xu C, Wang Y, Xu H. Inhibition of Cdc37 Ameliorates Arthritis in Collagen-Induced Arthritis Rats by Inhibiting Synoviocyte Proliferation and Migration Through the ERK Pathway. Inflammation 2023; 46:1022-1035. [PMID: 36920636 DOI: 10.1007/s10753-023-01789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to synovial inflammation, pannus formation, cartilage damage, bone destruction, and ultimate disability. Fibroblast-like synoviocytes (FLS) are involved in the pathogenetic mechanism of RA. Cdc37 (cell division cycle protein 37) is regarded as a molecular chaperone involved in various physiological processes such as cell cycle progression, cell proliferation, cell signal transduction, tumorigenesis, and progression. However, the precise role of Cdc37 in the pathogenesis of rheumatoid arthritis (RA) remains uncertain. In our study, we found that Cdc37 expression was upregulated in human rheumatoid synovia in contrast with the normal group. Interestingly, Cdc37 activated the ERK pathway to promote RA-FLS proliferation and migration in vitro. Ultimately, in vivo experiments revealed that silencing of Cdc37 alleviated ankle swelling and cartilage destruction and validated the ERK signaling pathways in vitro findings. Collectively, we demonstrate that Cdc37 promotes the proliferation and migration of RA-FLS by activation of ERK signaling pathways and finally aggravates the progression of RA. These data indicated that Cdc37 may be a novel target for the treatment of RA.
Collapse
Affiliation(s)
- Weiwei Sun
- Department of Orthopaedics, Medical School, Affiliated Hospital of Nantong University, Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Xingxing Mao
- Department of Orthopaedics, Affiliated Nantong Hospital of Shanghai University, The Six People's Hospital of Nantong, Jiangsu, 226001, Nantong, China
| | - Weijie Wu
- Department of Orthopaedics, Medical School, Affiliated Hospital of Nantong University, Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Orthopaedics, Affiliated Nantong Hospital of Shanghai University, The Six People's Hospital of Nantong, Jiangsu, 226001, Nantong, China
| | - Yunyi Nan
- Department of Orthopaedics, Medical School, Affiliated Hospital of Nantong University, Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Chunxiang Xu
- Department of Nursing, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| | - Youhua Wang
- Department of Orthopaedics, Medical School, Affiliated Hospital of Nantong University, Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Hua Xu
- Department of Orthopaedics, Medical School, Affiliated Hospital of Nantong University, Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Qin X, Zhang B, Sun X, Zhang M, Xiao D, Lin S, Liu Z, Cui W, Lin Y. Tetrahedral-Framework Nucleic Acid Loaded with MicroRNA-155 Enhances Immunocompetence in Cyclophosphamide-Induced Immunosuppressed Mice by Modulating Dendritic Cells and Macrophages. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7793-7803. [PMID: 36745737 DOI: 10.1021/acsami.2c20657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanomaterials are often used as immunomodulators because they can be tailored by a controllable process. In this work, a complex based on a tetrahedral framework nucleic acid delivery system and MicroRNA-155, known as T-155, is synthesized for the modulation of immunosuppression. In vivo, T-155 ameliorated spleen and thymus damage and hematopoiesis suppression in cyclophosphamide-induced immunosuppressed mice by promoting T-cell proliferation to resist oxidative stress. In vitro, T-155 induced immature dendritic cells (DCs) to differentiate into mature DCs by the ERK1/2 pathway and converted M0 macrophages (Mφ) into the M1 type by the NF-κB pathway to enhance the surveillance capabilities of antigen-presenting cells. The experimental results suggest that T-155 has therapeutic potential as an immunomodulator for immunosuppression.
Collapse
Affiliation(s)
- Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Xiaoqin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
NMDARs antagonist MK801 suppresses LPS-induced apoptosis and mitochondrial dysfunction by regulating subunits of NMDARs via the CaM/CaMKII/ERK pathway. Cell Death Discov 2023; 9:59. [PMID: 36774369 PMCID: PMC9922289 DOI: 10.1038/s41420-023-01362-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023] Open
Abstract
Lipopolysaccharide (LPS) displays a robust immunostimulatory ability upon Toll-like receptor 4 (TLR4) recognition. N-methyl-D-aspartate receptors (NMDARs) are highly compartmentalized in most cells and implicated in various inflammatory disorders. However, the relationship between TLR4 and NMDARs has not been explored deeply. This study aimed to examine the role of NMDARs and its specific inhibitor MK801 in LPS-treated endothelial cell dysfunction and the related mechanism in vivo and in vitro. The results showed that pre-treatment with MK801 significantly decreased LPS-induced cell death, cellular Ca2+, cellular reactive oxygen species, and glutamate efflux. Moreover, MK801 restrained LPS-induced mitochondrial dysfunction by regulating mitochondrial membrane potential and mitochondrial Ca2+ uptake. The oxygen consumption, basal and maximal respiration rate, and ATP production in LPS-treated HUVECs were reversed by MK801 via regulating ATP synthesis-related protein SDHB2, MTCO1, and ATP5A. The molecular pathway involved in MK801-regulated LPS injury was mediated by phosphorylation of CaMKII and ERK and the expression of MCU, MCUR1, and TLR4. LPS-decreased permeability in HUVECs was improved by MK801 via the Erk/ZO-1/occluding/Cx43 axis. Co-immunoprecipitation assay and western blotting showed three subtypes of NMDARs, NMDAζ1, NMDAε2, and NMDAε4 were bound explicitly to TLR4, suppressed by LPS, and promoted by MK801. Deficiency of NMDAζ1, NMDAε2, or NMDAε4 induced cell apoptosis, Ca2+ uptake, ROS production, and decreased basal and maximal respiration rate, and ATP production, suggesting that NMDARs integrity is vital for cell and mitochondrial function. In vivo investigation showed MK801 improved impairment of vascular permeability, especially in the lung and mesentery in LPS-injured mice. Our study displayed a novel mechanism and utilization of MK801 in LPS-induced ECs injury and permeability.
Collapse
|
8
|
Titanium dioxide nanotubes increase purinergic receptor P2Y6 expression and activate its downstream PKCα-ERK1/2 pathway in bone marrow mesenchymal stem cells under osteogenic induction. Acta Biomater 2023; 157:670-682. [PMID: 36442823 DOI: 10.1016/j.actbio.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. TiO2 nanotubes were prepared on the surface of titanium specimens using the anodizing method and characterized their features. Quantitative reverse transcriptase polymerase chain reaction and western blotting were used to detect the expression of P2Y6, markers of osteogenic differentiation, and PKCα-ERK1/2. A rat femoral defect model was established to evaluate the osseointegration effect of TiO2 nanotubes combined with P2Y6 agonists. The results showed that the average inner diameter of the TiO2 nanotubes increased with an increase in voltage (voltage range of 30-90V), and the expression of P2Y6 in BMSCs could be upregulated by TiO2 nanotubes in osteogenic culture. Inhibition of P2Y6 expression partially inhibited the osteogenic effect of TiO2 nanotubes and downregulated the activity of the PKCα-ERK1/2 pathway. When using in vitro and in vivo experiments, the osteogenic effect of TiO2 nanotubes when combined with P2Y6 agonists was more pronounced. TiO2 nanotubes promoted the P2Y6 expression of BMSCs during osteogenic differentiation and promoted osteogenesis by activating the PKCα-ERK1/2 pathway. The combined application of TiO2 nanotubes and P2Y6 agonists may be an effective new strategy to improve the osseointegration of titanium implants. STATEMENT OF SIGNIFICANCE: Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. For the first time, this study revealed the relationship between TiO2 nanotubes and purine receptor P2Y6, and further explored its mode of action, which may provide clues as to the regulatory role of TiO2 nanotubes on osteogenic differentiation of BMSCs. These findings will help to develop novel methods for guiding material design and biosafety evaluation of nano implants.
Collapse
|
9
|
Lucas RM, Luo L, Stow JL. ERK1/2 in immune signalling. Biochem Soc Trans 2022; 50:1341-1352. [PMID: 36281999 PMCID: PMC9704528 DOI: 10.1042/bst20220271] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023]
Abstract
Extracellular signal-related kinases 1 and 2 (ERK1/2) are the final components of the mitogen-activated protein kinase (MAPK) phosphorylation cascade, an integral module in a diverse array of signalling pathways for shaping cell behaviour and fate. More recently, studies have shown that ERK1/2 plays an essential role downstream of immune receptors to elicit inflammatory gene expression in response to infection and cell or tissue damage. Much of this work has studied ERK1/2 activation in Toll-like receptor (TLR) pathways, providing mechanistic insights into its recruitment, compartmentalisation and activation in cells of the innate immune system. In this review, we summarise the typical activation of ERK1/2 in growth factor receptor pathways before discussing its known roles in immune cell signalling with a focus downstream of TLRs. We examine emerging research uncovering evidence of dysfunctional ERK1/2 signalling in inflammatory diseases and discuss the potential therapeutic benefit of targeting ERK1/2 pathways in inflammation.
Collapse
Affiliation(s)
- Richard M. Lucas
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Lang J, Li L, Chen S, Quan Y, Yi J, Zeng J, Li Y, Zhao J, Yin Z. Mechanism Investigation of Wuwei Shexiang Pills on Gouty Arthritis via Network Pharmacology, Molecule Docking, and Pharmacological Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2377692. [PMID: 36248423 PMCID: PMC9568303 DOI: 10.1155/2022/2377692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022]
Abstract
Background Gout is a common crystal-related arthritis caused by the deposition of monosodium urates (MSU). Tibetan medicine Wuwei Shexiang Pills (WSP) has been demonstrated to exhibit anti-inflammatory, antihyperuricemia, and antigout activities. However, the underlying mechanism is unknown. Objectives To explore the mechanisms of Wuwei Shexiang Pills on gouty arthritis via network pharmacology, molecule docking, and pharmacological verification. Methods The ingredients and targets of WSP were obtained by searching and screening in BATMAN-TCM and SwissADME. The targets involving the gout were acquired from public databases. The shared targets were put onto STRING to construct a PPI network. Furthermore, Metascape was applied for the GO and KEGG enrichment analysis to predict the biological processes and signaling pathways. And molecular docking was performed to validate the binding association between the key ingredients and the relative proteins of TNF signaling. Based on the serum pharmacology, the predicted antigout mechanism of WSP was validated in MSU-induced THP-1 macrophages. The levels of inflammatory cytokines and mRNA were measured by ELISA and qRT-PCR, respectively, and MAPK, NF-κB, and NLRP3 signaling-associated proteins were determined by western blot and immunofluorescence staining. Results 48 bioactive ingredients and 165 common targets were found in WSP. The data showed that 5-Cis-Cyclopentadecen-1-One, 5-Cis-Cyclotetradecen-1-One, (-)-isoshyobunone, etc. were potential active ingredients. TNF signaling, HIF-1 signaling, and Jak-STAT signaling were predicted to be the potential pathways against gout. The molecule docking analysis found that most ingredients had a high affinity for p65, NLRP3, IL-1β, TNF-α, and p38. The data from in vitro experiment showed that WSP suppressed the production and gene expression of inflammatory cytokines. Furthermore, WSP could inhibit the activation of MAPK, NF-κB, and NLRP3 signaling pathways. Conclusion Our finding suggested that the antigout effect of WSP could be achieved by inhibiting MAPK, NF-κB, and NLRP3 signaling pathways. WSP might be a candidate drug for gouty treatment.
Collapse
Affiliation(s)
- Jirui Lang
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Shilong Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yunyun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jing Yi
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yong Li
- Sichuan Fengchun Pharmaceutical Co, Ltd, Deyang, China
| | - Junning Zhao
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Wu NL, Huang DY, Hsieh SL, Dai YS, Lin WW. Decoy receptor 3 is involved in epidermal keratinocyte commitment to terminal differentiation via EGFR and PKC activation. Exp Mol Med 2022; 54:542-551. [PMID: 35478210 PMCID: PMC9076855 DOI: 10.1038/s12276-022-00762-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/04/2021] [Accepted: 01/09/2022] [Indexed: 11/30/2022] Open
Abstract
Decoy receptor 3 (DcR3) is a soluble receptor for Fas ligand, LIGHT and TL1A, but it also exerts effector functions. Previously, we found that DcR3 is upregulated in the serum and lesional skin of patients with psoriasis and is upregulated by EGFR activation in proliferating primary human epidermal keratinocytes. However, the functional role of intracellular DcR3 in keratinocyte differentiation is still incompletely defined. Herein, primary cultured human epidermal keratinocytes were differentiated by phorbol 12-myristate 13-acetate (PMA) treatment, calcium treatment and cell confluence, which are three standard in vitro differentiation models. We found that the constitutive expression of the DcR3 gene and protein was progressively suppressed during terminal differentiation of keratinocytes. These changes were correlated with downregulation of EGFR activation during keratinocyte differentiation. EGFR inhibition by gefitinib further decreased confluence-induced suppression of DcR3 mRNA expression, and, vice versa, knocking down DcR3 expression attenuated EGFR and EGFR ligand expression as well as EGFR activation. Under conditions without a change in cell growth, DcR3 silencing reduced the expression of involucrin and transglutaminase 1 but enhanced the induction of the terminal differentiation markers keratin 10 and loricrin. Of note, DcR3 interacted with PKCα and PKCδ and enhanced PKC activity. In keratinocytes with PKCα and PKCδ silencing, differentiation markers were differentially affected. In conclusion, DcR3 expression in keratinocytes is regulated by EGFR and forms a positive feedback loop to orchestrate constitutive EGFR and PKC activity. During differentiation, DcR3 is downregulated and involved in modulating the pattern of terminal differentiation. A protein linked to cancer and various inflammatory diseases may also be an important driver for the skin condition in psoriasis. The outer surface of the skin is formed by cells called keratinocytes, which transition from a highly proliferative state to a fully mature state where they no longer divide. This developmental process is disrupted in psoriasis. Researchers led by Wan-Wan Lin at National Taiwan University, Taipei, have now identified a prominent role for a protein called decoy receptor 3 (DcR3), which is a biomarker for a variety of disorders and is also abnormally expressed in keratinocytes in psoriatic lesions. Lin and colleagues demonstrated that DcR3 interacts with multiple cellular signaling pathways that coordinate cell differentiation. These findings reveal how aberrant DcR3 activity might lead to the abnormal keratinocyte developmental behavior observed in psoriasis.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan, ROC.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan, ROC.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan, ROC
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | - Yang-Shia Dai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC. .,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
12
|
Han S, Yuan R, Cui Y, He J, Wang QQ, Zhuo Y, Yang S, Gao H. Hederasaponin C Alleviates Lipopolysaccharide-Induced Acute Lung Injury In Vivo and In Vitro Through the PIP2/NF-κB/NLRP3 Signaling Pathway. Front Immunol 2022; 13:846384. [PMID: 35281058 PMCID: PMC8913935 DOI: 10.3389/fimmu.2022.846384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Gene transcription is governed by epigenetic regulation that is essential for the pro-inflammatory mediators surge following pathological triggers. Acute lung injury (ALI) is driven by pro-inflammatory cytokines produced by the innate immune system, which involves the nod-like receptor 3 (NLRP3) inflammasome and nuclear factor-κB (NF-κB) pathways. These two pathways are interconnected and share a common inducer the phosphatidylinositol 4,5-bisphosphate (PIP2), an epigenetic regulator of (Ribosomal ribonucleic acid (rRNA) gene transcription, to regulate inflammation by the direct inhibition of NF-κB phosphorylation and NLRP3 inflammasome activation. Herein, we report that hederasaponin C (HSC) exerted a therapeutic effect against ALI through the regulation of the PIP2/NF-κB/NLRP3 signaling pathway. In lipopolysaccharide (LPS)/lipopolysaccharide + adenosine triphosphate (LPS+ATP)-stimulated macrophages, our results showed that HSC remarkably inhibited the secretion of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). Moreover, HSC inhibited NF-κB/p65 nuclear translocation and the binding of PIP2 to transforming growth factor-β activated kinase 1 (TAK1). The intracellular calcium (Ca2+) level was decreased by HSC via the PIP2 signaling pathway, which subsequently inhibited the activation of NLRP3 inflammasome. HSC markedly alleviated LPS-induced ALI, restored lung function of mice, and rescued ALI-induced mice death. In addition, HSC significantly reduced the level of white blood cells (WBC), neutrophils, and lymphocytes, as well as pro-inflammatory mediators like IL-6, IL-1β, and TNF-α. Hematoxylin and eosin (H&E) staining results suggested HSC has a significant therapeutic effect on lung injury of mice. Interestingly, the PIP2/NF-κB/NLRP3 signaling pathway was further confirmed by the treatment of HSC with ALI, which is consistent with the treatment of HSC with LPS/LPS+ATP-stimulated macrophages. Overall, our findings revealed that HSC demonstrated significant anti-inflammatory activity through modulating the PIP2/NF-κB/NLRP3 axis in vitro and in vivo, suggesting that HSC is a potential therapeutic agent for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Hongwei Gao,
| |
Collapse
|
13
|
Calcium Dobesilate Modulates PKCδ-NADPH Oxidase- MAPK-NF-κB Signaling Pathway to Reduce CD14, TLR4, and MMP9 Expression during Monocyte-to-Macrophage Differentiation: Potential Therapeutic Implications for Atherosclerosis. Antioxidants (Basel) 2021; 10:antiox10111798. [PMID: 34829669 PMCID: PMC8615002 DOI: 10.3390/antiox10111798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Monocyte-to-macrophage differentiation results in the secretion of various inflammatory mediators and oxidative stress molecules necessary for atherosclerosis pathogenesis. Consequently, this differentiation represents a potential clinical target in atherosclerosis. Calcium dobesilate (CaD), an established vasoactive and angioprotective drug in experimental models of diabetic microvascular complications reduces oxidative stress and inhibits inflammation via diverse molecular targets; however, its effect on monocytes/macrophages is poorly understood. In this study, we investigated the anti-inflammatory mechanism of CaD during phorbol 12-myristate 13-acetate (PMA)-induced monocyte-to-macrophage differentiation in in vitro models of sepsis (LPS) and hyperglycemia, using THP-1 monocytic cell line. CaD significantly suppressed CD14, TLR4, and MMP9 expression and activity, lowering pro-inflammatory mediators, such as IL1β, TNFα, and MCP-1. The effects of CaD translated through to studies on primary human macrophages. CaD inhibited reactive oxygen species (ROS) generation, PKCδ, MAPK (ERK1/2 and p38) phosphorylation, NOX2/p47phox expression, and membrane translocation. We used hydrogen peroxide (H2O2) to mimic oxidative stress, demonstrating that CaD suppressed PKCδ activation via its ROS-scavenging properties. Taken together, we demonstrate for the first time that CaD suppresses CD14, TLR4, MMP9, and signature pro-inflammatory cytokines, in human macrophages, via the downregulation of PKCδ/NADPH oxidase/ROS/MAPK/NF-κB-dependent signaling pathways. Our data present novel mechanisms of how CaD alleviates metabolic and infectious inflammation.
Collapse
|
14
|
Lucas RM, Liu L, Curson JEB, Koh YWH, Tuladhar N, Condon ND, Das Gupta K, Burgener SS, Schroder K, Ingley E, Sweet MJ, Stow JL, Luo L. SCIMP is a spatiotemporal transmembrane scaffold for Erk1/2 to direct pro-inflammatory signaling in TLR-activated macrophages. Cell Rep 2021; 36:109662. [PMID: 34496234 DOI: 10.1016/j.celrep.2021.109662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Immune cells are armed with Toll-like receptors (TLRs) for sensing and responding to pathogens and other danger cues. The role of extracellular-signal-regulated kinases 1/2 (Erk1/2) in TLR signaling remains enigmatic, with both pro- and anti-inflammatory functions described. We reveal here that the immune-specific transmembrane adaptor SCIMP is a direct scaffold for Erk1/2 in TLR pathways, with high-resolution, live-cell imaging revealing that SCIMP guides the spatial and temporal recruitment of Erk2 to membrane ruffles and macropinosomes for pro-inflammatory TLR4 signaling. SCIMP-deficient mice display defects in Erk1/2 recruitment to TLR4, c-Fos activation, and pro-inflammatory cytokine production, with these effects being phenocopied by Erk1/2 signaling inhibition. Our findings thus delineate a selective role for SCIMP as a key scaffold for the membrane recruitment of Erk1/2 kinase to initiate TLR-mediated pro-inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Richard M Lucas
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Liping Liu
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James E B Curson
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yvette W H Koh
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Neeraj Tuladhar
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sabrina S Burgener
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Evan Ingley
- Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; Discipline of Medical, Molecular and Forensic Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
15
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
16
|
NF-κB signaling induces inductive expression of the downstream molecules and IgD gene in the freshwater carp, Catla catla. 3 Biotech 2020; 10:445. [PMID: 33014688 DOI: 10.1007/s13205-020-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022] Open
Abstract
Toll-like receptors (TLRs) in innate immune system act as primary sensors in detecting the microbial components and activate their signaling cascades to induce NF-κB (nuclear factor NF-κB) towards the augmentation of immunoglobulin (Ig) synthesis. To gain insights into the efficacy of NF-κB pathway in immunoglobulin D (IgD) synthesis in the Indian Major Carp Catla catla, cloning and sequencing of TLR-signaling downstream molecules [TRAF3 (TNF receptor-associated factor 3), NEMO (nuclear factor-kappa B essential modulator), NF-κB and BAFF (B cell activating factor)] were performed by infecting the fish with pathogens. mRNA expression analysis of the downstream molecules and IgD showed significant up-regulation of these genes in kidney (P ≤ 0.001) as compared to spleen (P ≤ 0.05). To ascertain the role of NF-κB pathway in IgD synthesis, the primary cell culture of kidney and spleen in monolayer cell suspension was treated with NF-κB inhibitor (BAY 11-7082) and down-regulation of BAFF, NEMO, NF-κB, and IgD gene was observed. These results highlight the importance of NF-κB signaling pathway in augmenting the IgD gene expression in the freshwater carp, Catla catla.
Collapse
|
17
|
Vibrio vulnificus cytolysin induces inflammatory responses in RAW264.7 macrophages through calcium signaling and causes inflammation in vivo. Microb Pathog 2019; 137:103789. [PMID: 31605759 DOI: 10.1016/j.micpath.2019.103789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/12/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
Vibrio vulnificus is a food-borne marine pathogen that causes both life-threatening primary septicemia and necrotizing wound infections which accompany severe inflammation. Cytolysin is a very powerful virulence factor of V. vulnificus and is one of the likely candidates in the pathogenesis of V. vulnificus infections. However, the pathogenetic roles of cytolysin in V. vulnificus-induced inflammation are not well understood. In this study, we used the recombinant protein Vibrio vulnificus cytolysin (VVC) to demonstrate that VVC can induce inflammatory responses in RAW264.7 macrophages. Low dose (<5 μg/ml) VVC had no impact on cell viability and induced pro-inflammatory cytokines production in RAW264.7 macrophages such as IL-6 and TNF-α. Moreover, VVC induced p65, p38, ERK1/2, and AKT phosphorylation in RAW264.7 macrophages. We further demonstrated that BAPTA-AM, a specific intracellular calcium chelator, inhibited VVC-induced inflammatory responses including pro-inflammatory cytokines production and inflammatory signaling activation in RAW264.7 macrophages. In addition, VVC primed rather than actived NLRP3 inflammasome in RAW264.7 macrophages. To determine whether VVC have a direct inflammatory effect on the host, we examined the effects of VVC injected into the skin of mice. VVC stimulated a significant induction of mRNAs for the pro-inflammatory cytokine IL-6 and inflammatory chemokines such as MCP-1 and IP-10. Histology data also showed that VVC caused inflammatory responses in the skin of mice. Collectively, our findings indicated that VVC induced inflammatory responses in RAW264.7 macrophages and in vivo and suggested the possibility of targeting VVC as a strategy for the clinical management of V. vulnificus-induced inflammatory responses.
Collapse
|
18
|
Keith BA, Ching JC, Loewen ME. Von Willebrand Factor Type A domain of hCLCA1 is sufficient for U-937 macrophage activation. Biochem Biophys Rep 2019; 18:100630. [PMID: 30984882 PMCID: PMC6444176 DOI: 10.1016/j.bbrep.2019.100630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 11/18/2022] Open
Abstract
The human hCLCA1 gene is a member of the CLCA gene family that has a well-documented role in inflammatory airway diseases. Previously, we demonstrated that secreted hCLCA1 plays a role in regulating the innate immune response by activating airway macrophages. However, the mechanism of this regulation remains unclear. In this present study, recombinant proteins containing different hCLCA1 domains are expressed to determine the specific hCLCA1 domain(s) responsible for macrophage activation. Specifically, hCLCA1 constructs containing the hydrolase domain (HYD), the von Willebrand Factor Type A (VWA) domain, and the fibronectin type III (FN3) domain were heterologously expressed and affinity purified through fast protein liquid chromatography. Circular dichroism spectroscopy revealed that the purified hCLCA1 constructs exhibited secondary structure consistent with folded proteins. The VWA domain clearly demonstrated an ability to activate macrophages, inducing an increase in both IL-1β mRNA and protein expression. This activation was associated with the activation of MAPKs and NF-κB pathways, identifying potential mechanistic pathways by which hCLCA1's VWA domain exerts its signaling effect. Altogether, this work identifies a domain with signaling function within hCLCA1, providing a specific target to one of the most highly induced gene products of airway inflammatory disease.
Collapse
Affiliation(s)
| | | | - Matthew E. Loewen
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
19
|
Inter-α-inhibitor Ameliorates Endothelial Inflammation in Sepsis. Lung 2019; 197:361-369. [PMID: 31028466 DOI: 10.1007/s00408-019-00228-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Vascular endothelial cells demonstrate severe injury in sepsis, and a reduction in endothelial inflammation would be beneficial. Inter-α-Inhibitor (IαI) is a family of abundant plasma proteins with anti-inflammatory properties and has been investigated in human and animal sepsis with encouraging results. We hypothesized that IαI may protect endothelia from sepsis-related inflammation. METHODS IαI-deficient or sufficient mice were treated with endotoxin or underwent complement-induced lung injury. VCAM-1 and ICAM-1 expression was measured in blood and lung as marker of endothelial activation. Human endothelia were exposed to activated complement C5a with or without IαI. Blood from human sepsis patients was examined for VCAM-1 and ICAM-1 and levels were correlated with blood levels of IαI. RESULTS IαI-deficient mice showed increased endothelial activation in endotoxin/sepsis- and complement-induced lung injury models. In vitro, levels of endothelial pro-inflammatory cytokines and cell growth factors induced by activated complement C5a were significantly decreased in the presence of IαI. This effect was associated with decreased ERK and NFκB activation. IαI levels were inversely associated with VCAM-1 and ICAM-1 levels in a human sepsis cohort. CONCLUSIONS IαI ameliorates endothelial inflammation and may be beneficial as a treatment of sepsis.
Collapse
|
20
|
Toll like receptor induces Ig synthesis in Catla catla by activating MAPK and NF-κB signalling. Mol Immunol 2019; 105:62-75. [DOI: 10.1016/j.molimm.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/31/2018] [Accepted: 11/18/2018] [Indexed: 02/08/2023]
|
21
|
KIAA1549-BRAF Expression Establishes a Permissive Tumor Microenvironment Through NFκB-Mediated CCL2 Production. Neoplasia 2018; 21:52-60. [PMID: 30504064 PMCID: PMC6277251 DOI: 10.1016/j.neo.2018.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
KIAA1549-BRAF is the most frequently identified genetic mutation in sporadic pilocytic astrocytoma (PA), creating a fusion BRAF (f-BRAF) protein with increased BRAF activity. Fusion-BRAF-expressing neural stem cells (NSCs) exhibit increased cell growth and can generate glioma-like lesions following injection into the cerebella of naïve mice. Increased Iba1+ monocyte (microglia) infiltration is associated with murine f-BRAF-expressing NSC-induced glioma-like lesion formation, suggesting that f-BRAF-expressing NSCs attract microglia to establish a microenvironment supportive of tumorigenesis. Herein, we identify Ccl2 as the chemokine produced by f-BRAF-expressing NSCs, which is critical for creating a permissive stroma for gliomagenesis. In addition, f-BRAF regulation of Ccl2 production operates in an ERK- and NFκB-dependent manner in cerebellar NSCs. Finally, Ccr2-mediated microglia recruitment is required for glioma-like lesion formation in vivo, as tumor do not form in Ccr2-deficient mice following f-BRAF-expressing NSC injection. Collectively, these results demonstrate that f-BRAF expression creates a supportive tumor microenvironment through NFκB-mediated Ccl2 production and microglia recruitment.
Collapse
|
22
|
Shin JS, Im HT, Lee KT. Saikosaponin B2 Suppresses Inflammatory Responses Through IKK/IκBα/NF-κB Signaling Inactivation in LPS-Induced RAW 264.7 Macrophages. Inflammation 2018; 42:342-353. [DOI: 10.1007/s10753-018-0898-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
3D micro-environment regulates NF-κβ dependent adhesion to induce monocyte differentiation. Cell Death Dis 2018; 9:914. [PMID: 30206232 PMCID: PMC6133927 DOI: 10.1038/s41419-018-0993-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Differentiation of monocytes entails their relocation from blood to the tissue, hence accompanied by an altered physicochemical micro-environment. While the mechanism by which the biochemical make-up of the micro-environment induces differentiation is known, the fluid-like to gel-like transition in the physical micro-environment is not well understood. Monocytes maintain non-adherent state to prevent differentiation. We establish that irrespective of the chemical makeup, a 3D gel-like micro-environment induces a positive-feedback loop of adhesion-MAPK-NF-κβ activation to facilitate differentiation. In 2D fluid-like micro-environment, adhesion alone is capable of inducing differentiation via the same positive-feedback signaling. Chemical inducer treatment in fluid-like micro-environment, increases the propensity of monocyte adhesion via a brief pulse of p-MAPK. The adhesion subsequently elicit differentiation, establishing that adhesion is both necessary and sufficient to induce differentiation in 2D/3D micro-environment. MAPK, and NF-κβ being key molecules of multiple signaling pathways, we hypothesize that biochemically inert 3D gel-like micro-environment would also influence other cellular functions.
Collapse
|
24
|
Pan YJ, Wang WH, Huang TY, Weng WH, Fang CK, Chen YC, Hwang JJ. Quetiapine ameliorates collagen-induced arthritis in mice via the suppression of the AKT and ERK signaling pathways. Inflamm Res 2018; 67:847-861. [PMID: 30109356 DOI: 10.1007/s00011-018-1176-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/12/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE AND DESIGN To investigate the amelioration effects of quetiapine on rheumatoid arthritis with RAW 264.7 macrophage and collagen-induced arthritis (CIA) DBA/1J mouse model. SUBJECTS RAW 264.7 macrophage and DBA/1J mice. TREATMENT Lipopolysaccharide and collagen. METHODS RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS) followed by quetiapine treatments were investigated. Activations of CD80 and CD86 were analyzed by flow cytometry. Pro-inflammatory cytokines such as IL-6, TNF-α and IL-1β were analyzed by ELISA. Proteins involved in signaling pathways related to the formation of rheumatoid arthritis were assayed by Western blotting. Therapeutic efficacy of quetiapine in CIA mouse model was also assayed. 18F-FDG/micro-PET was used to monitor the inflammation status in the joints, and the severity of bone erosion was evaluated with micro-CT and H&E staining. RESULTS The inhibition of pro-inflammatory cytokines by quetiapine was found through the ERK and AKT phosphorylation and subsequent NF-κB and CREB signaling pathways. Pro-inflammatory cytokines such as IL-17, IL-6 and IL-1β were decreased, while immunosuppressive factors such as TGF-β and IL-10 were increased in CIA mice treated with quetiapine. Notably, no uptake of 18F-FDG and bone erosion was found with micro-PET images on days 32 and 43 in the quetiapine-treated and normal control groups. However, significant uptake of 18F-FDG could be observed in the CIA group during the same time course. Similar results were further verified with ex vivo autoradiography. CONCLUSION Taken together, these results suggest that quetiapine is a potential anti-inflammatory drug, and may be used as an adjuvant for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yi-Ju Pan
- Department of Psychiatry, Far Eastern Memorial Hospital, Banciao, New Taipei City, 220, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kao-hsiung, Taiwan
| | - Tzu-Yao Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Hsiang Weng
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Kai Fang
- Department of Psychiatry and Suicide Prevention Center, Mackay Memorial Hospital, No. 155, Sec.2, Li-Nong Street, Bei-tou, Taipei, 112, Taiwan
| | - Yu-Chan Chen
- Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Jeng-Jong Hwang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan. .,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
25
|
Chen L, Chen P, Liu J, Hu C, Yang S, He D, Yu P, Wu M, Zhang X. Sargassum Fusiforme Polysaccharide SFP-F2 Activates the NF-κB Signaling Pathway via CD14/IKK and P38 Axes in RAW264.7 Cells. Mar Drugs 2018; 16:E264. [PMID: 30071655 PMCID: PMC6117693 DOI: 10.3390/md16080264] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Sargassum fusifrome is considered a "longevity vegetable" in Asia. Sargassum fusifrome polysaccharides exhibit numerous biological activities, specially, the modulation of immune response via the NF-κB signaling pathway. However, the precise mechanisms by which these polysaccharides modulate the immune response through the NF-κB signaling pathway have not been elucidated. In this study, we purified and characterized a novel fraction of Sargassum fusifrome polysaccharide and named it SFP-F2. SFP-F2 significantly upregulated the production of the cytokines TNF-α, IL-1β and IL-6 in RAW264.7 cells. It also activated the NF-κB signaling pathway. Data obtained from experiments carried out with specific inhibitors (PDTC, BAY 11-7082, IKK16 and SB203580) suggested that SFP-F2 activated the NF-κB signaling pathway via CD14/IKK and P38 axes. SFP-F2 could therefore potentially exert an immune-enhancement effect through inducing the CD14/IKK/NF-κB and P38/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Liujun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
- Natural Resources and Environmental Studies Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada.
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Chenxi Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Shanshan Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Dan He
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Ping Yu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
26
|
Li Y, Li Y, Huang S, He K, Zhao M, Lin H, Li D, Qian J, Zhou C, Chen Y, Huang C. Long non-coding RNA growth arrest specific transcript 5 acts as a tumour suppressor in colorectal cancer by inhibiting interleukin-10 and vascular endothelial growth factor expression. Oncotarget 2017; 8:13690-13702. [PMID: 28099146 PMCID: PMC5355130 DOI: 10.18632/oncotarget.14625] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are highly involved in diverse biological processes of human malignancies. The expression profile and underlying mechanism of lncRNA growth arrest specific transcript 5 (GAS5) in colorectal cancer (CRC) is poorly understood. In this study, we found that GAS5 was commonly downregulated in CRC tissues, serum of CRC patients and CRC cell lines. Knockdown of GAS5 promoted CRC cell proliferation and colony formation, whereas overexpression of GAS5 produced the opposite result. We further demonstrated that knockdown of GAS5 increased the expression and secretion of interleukin-10 (IL-10) and vascular endothelial growth factor (VEGF-A) via NF-κB and Erk1/2 pathways. Neutralization of IL-10 and VEGF-A reduced tumour proliferation caused by GAS5 knockdown. Moreover, GAS5 expression showed a statistically significant correlation with the mRNA levels of IL-10 and VEGF-A in CRC tissues. We further illustrated that GAS5 was markedly downregulated and negatively correlated with the cytokine expression in a mouse model of colitis-associated cancer (CAC). These results delineate a novel mechanism of lncRNA GAS5 in suppressing colorectal carcinogenesis. The cytokines IL-10 and VEGF-A inhibited by GAS5 may provide targets for lncRNA-based therapies for CRC.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Developmental Biology, China Medical University, Shenyang, 110122, China
| | - Yan Li
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shengkai Huang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Kun He
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mei Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Hong Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongdong Li
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Caihong Zhou
- Department of Education, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhua Chen
- Department of Developmental Biology, China Medical University, Shenyang, 110122, China
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| |
Collapse
|
27
|
Bandyopadhyay S, Li J, Traer E, Tyner JW, Zhou A, Oh ST, Cheng JX. Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PLoS One 2017; 12:e0179558. [PMID: 28719608 PMCID: PMC5515395 DOI: 10.1371/journal.pone.0179558] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Since the advent of tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, and dasatinib, chronic myelogenous leukemia (CML) prognosis has improved greatly. However, ~30-40% of patients develop resistance to imatinib therapy. Although most resistance is caused by mutations in the BCR-ABL kinase domain, 50-85% of these patients develop resistance in the absence of new mutations. In these cases, targeting other pathways may be needed to regain clinical response. Using label-free Raman spectromicroscopy, we evaluated a number of leukemia cell lines and discovered an aberrant accumulation of cholesteryl ester (CE) in CML, which was found to be a result of BCR-ABL kinase activity. CE accumulation in CML was found to be a cancer-specific phenomenon as untransformed cells did not accumulate CE. Blocking cholesterol esterification with avasimibe, a potent inhibitor of acyl-CoA cholesterol acyltransferase 1 (ACAT-1), significantly suppressed CML cell proliferation in Ba/F3 cells with the BCR-ABLT315I mutation and in K562 cells rendered imatinib resistant without mutations in the BCR-ABL kinase domain (K562R cells). Furthermore, the combination of avasimibe and imatinib caused a profound synergistic inhibition of cell proliferation in K562R cells, but not in Ba/F3T315I. This synergistic effect was confirmed in a K562R xenograft mouse model. Analysis of primary cells from a BCR-ABL mutation-independent imatinib resistant patient by mass cytometry suggested that the synergy may be due to downregulation of the MAPK pathway by avasimibe, which sensitized the CML cells to imatinib treatment. Collectively, these data demonstrate a novel strategy for overcoming BCR-ABL mutation-independent TKI resistance in CML.
Collapse
MESH Headings
- Acetamides
- Acetates/pharmacology
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cholesterol/metabolism
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Esterification/drug effects
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MAP Kinase Signaling System/drug effects
- Mice
- Mutation
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Sulfonamides
- Sulfonic Acids/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Amy Zhou
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen T. Oh
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
28
|
Deubiquitinase USP12 promotes LPS induced macrophage responses through inhibition of IκBα. Biochem Biophys Res Commun 2017; 483:69-74. [DOI: 10.1016/j.bbrc.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022]
|
29
|
Halasz M, Kholodenko BN, Kolch W, Santra T. Integrating network reconstruction with mechanistic modeling to predict cancer therapies. Sci Signal 2016; 9:ra114. [PMID: 27879396 DOI: 10.1126/scisignal.aae0535] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signal transduction networks are often rewired in cancer cells. Identifying these alterations will enable more effective cancer treatment. We developed a computational framework that can identify, reconstruct, and mechanistically model these rewired networks from noisy and incomplete perturbation response data and then predict potential targets for intervention. As a proof of principle, we analyzed a perturbation data set targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) pathways in a panel of colorectal cancer cells. Our computational approach predicted cell line-specific network rewiring. In particular, feedback inhibition of insulin receptor substrate 1 (IRS1) by the kinase p70S6K was predicted to confer resistance to EGFR inhibition, suggesting that disrupting this feedback may restore sensitivity to EGFR inhibitors in colorectal cancer cells. We experimentally validated this prediction with colorectal cancer cell lines in culture and in a zebrafish (Danio rerio) xenograft model.
Collapse
Affiliation(s)
- Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. .,School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. .,School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tapesh Santra
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
30
|
Ha SK, Sung J, Choi I, Kim Y. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation. Pharmacogn Mag 2016; 12:295-301. [PMID: 27867272 PMCID: PMC5096276 DOI: 10.4103/0973-1296.192198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Rice (Oryza sativa) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. Materials and Methods: In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Results: We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. Conclusion: This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. SUMMARY Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages. Rice hull extract inhibited nitric oxide and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways. Rice hull extract may provide a potential therapeutic approach for inflammatory diseases.
Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species, TNF-α: tumor necrosis factor-α
Collapse
Affiliation(s)
- Sang Keun Ha
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Gyeonggi, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jeehye Sung
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Gyeonggi, Republic of Korea
| | - Inwook Choi
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Gyeonggi, Republic of Korea
| | - Yoonsook Kim
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Gyeonggi, Republic of Korea
| |
Collapse
|
31
|
Rizzi M, Migliario M, Rocchetti V, Tonello S, Renò F. Near-infrared laser increases MDPC-23 odontoblast-like cells proliferation by activating redox sensitive pathways. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:283-288. [PMID: 27718420 DOI: 10.1016/j.jphotobiol.2016.08.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/19/2016] [Accepted: 08/20/2016] [Indexed: 11/25/2022]
Abstract
Near infrared laser is known to induce biostimulatory effects, resulting in cell proliferation enhancement. Although such positive effect is widely exploited in various clinical applications, molecular mechanisms involved are still poorly understood. The aim of the study was to investigate the ability of laser stimulation to increase cell proliferation through an early activation of three redox sensitive pathways, namely Nrf-2, NF-κB and ERK in a rat odontoblast-like cell line (MDPC-23 cells). MDPC-23 cells were irradiated with different energy settings (0-50J, corresponding to 0-32.47J/cm2) and cell proliferation was evaluated by cell counting. Nrf-2, NF-κB and ERK signaling pathways activation was investigated through Western blot analysis. Our results show that a single 25J laser stimulation is able to increase cell proliferation and that this effect could be increased by repeating the stimulation twice with a time lapse of 24h. Western blot experiments demonstrated that laser stimulation is able to induce an early activation response in intracellular signaling, with an overlapping time pattern between the three considered pathways. Results discussed in this paper reveal a complex mechanism underlying near-infrared induced increase in pre-odontoblasts proliferation, involving three survival pathways that can act both separately or through reciprocal crosstalk. In particular, data presented suggest an important role for ERK pathway that could act directly by stimulating cell proliferation but can also induce both Nrf-2 and NF-κB activation, acting as a critical cellular checkpoint in response to imbalanced redox state generated by a laser induced increase in ROS production.
Collapse
Affiliation(s)
- Manuela Rizzi
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale "A. Avogadro", via Solaroli, 17, 28100 Novara, Italy.
| | - Mario Migliario
- Dental Clinic, Health Sciences Department, Università del Piemonte Orientale "A. Avogadro", via Solaroli, 17, 28100 Novara, Italy.
| | - Vincenzo Rocchetti
- Dental Clinic, Health Sciences Department, Università del Piemonte Orientale "A. Avogadro", via Solaroli, 17, 28100 Novara, Italy.
| | - Stelvio Tonello
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale "A. Avogadro", via Solaroli, 17, 28100 Novara, Italy.
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale "A. Avogadro", via Solaroli, 17, 28100 Novara, Italy.
| |
Collapse
|
32
|
Leibowitz SM, Yan J. NF-κB Pathways in the Pathogenesis of Multiple Sclerosis and the Therapeutic Implications. Front Mol Neurosci 2016; 9:84. [PMID: 27695399 PMCID: PMC5023675 DOI: 10.3389/fnmol.2016.00084] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways are involved in cell immune responses, apoptosis and infections. In multiple sclerosis (MS), NF-κB pathways are changed, leading to increased levels of NF-κB activation in cells. This may indicate a key role for NF-κB in MS pathogenesis. NF-κB signaling is complex, with many elements involved in its activation and regulation. Interestingly, current MS treatments are found to be directly or indirectly linked to NF-κB pathways and act to adjust the innate and adaptive immune system in patients. In this review, we will first focus on the intricacies of NF-κB signaling, including the activating pathways and regulatory elements. Next, we will theorize about the role of NF-κB in MS pathogenesis, based on current research findings, and discuss some of the associated therapeutic implications. Lastly, we will review four new MS treatments which interrupt NF-κB pathways—fingolimod, teriflunomide, dimethyl fumarate (DMF) and laquinimod (LAQ)—and explain their mechanisms, and the possible strategy for MS treatments in the future.
Collapse
Affiliation(s)
- Saskia M Leibowitz
- UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| | - Jun Yan
- UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
33
|
Zhao Q, Yue J, Zhang C, Gu X, Chen H, Xu L. Inactivation of M2 AChR/NF-κB signaling axis reverses epithelial-mesenchymal transition (EMT) and suppresses migration and invasion in non-small cell lung cancer (NSCLC). Oncotarget 2016; 6:29335-46. [PMID: 26336823 PMCID: PMC4745730 DOI: 10.18632/oncotarget.5004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022] Open
Abstract
Non-neuronal cholinergic system is involved in lung physiology and lung cancer. However, the biochemical events downstream acetylcholine (ACh) receptor activation leading to carcinogenesis and tumor progression are not fully understood. Our previous work has shown that non-neuronal ACh acts as an autoparacrine growth factor to stimulate cell proliferation and promote epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) via activation of M2 muscarinic receptor (M2R). The aim of the present study was to delineate the underlying mechanisms linking M2R and lung tumor progression, which may provide potential therapeutic targets to delay lung cancer progression. Inhibition of M2R by antagonist or siRNA suppresses NSCLC cell migratory and invasive capacities, reverses EMT and simultaneously inactivates PI3K/Akt, MAPK ERK and NF-κB p65. On the other hand, M2R activation stimulates NSCLC migration and invasion and promotes EMT via NF-κB p65 activation. Moreover, NF-κB p65 activation induced by M2R activation was partially inhibited by either Akt or ERK inhibitor. Taken together, these results demonstrated for the first time that NF-κB p65 activation is essential in NSCLC progression associated with non-neuronal cholinergic system. Our data suggest that M2R/ERK/Akt/NF-κB axis could be a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Qingnan Zhao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinnan Yue
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Zhang
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiajing Gu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Xu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Hydrogen sulfide diminishes the levels of thymic stromal lymphopoietin in activated mast cells. Arch Dermatol Res 2016; 308:103-13. [DOI: 10.1007/s00403-016-1619-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/14/2015] [Accepted: 01/08/2016] [Indexed: 12/30/2022]
|
35
|
Zong X, Hu W, Song D, Li Z, Du H, Lu Z, Wang Y. Porcine lactoferrin-derived peptide LFP-20 protects intestinal barrier by maintaining tight junction complex and modulating inflammatory response. Biochem Pharmacol 2016; 104:74-82. [PMID: 26776304 DOI: 10.1016/j.bcp.2016.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
LFP-20, a 20-amino acid antimicrobial peptide in the N terminus of porcine lactoferrin, has antimicrobial and immunomodulatory activities. This study assessed the protective effects of LFP-20 on LPS-induced intestinal damage in a LPS-induced mouse model and in vitro, using intestinal porcine epithelial cell line 1 (IPEC-1) cells. LFP-20 prevented LPS-induced impairment in colon epithelium tissues, infiltration of macrophages or leukocytes, histological evidence of inflammation and increased levels of TNF-a, IL-6 and IFN-γ. LFP-20 increased the expression of zonula occludens-1, occludin and claudin-1 and reduced permeability as well as apoptosis of the colon in LPS-treated mice. In IPEC-1 cells, LFP-20 increased transepithelial electrical resistance and tight junction expression. Moreover, we found LFP-20 decreased the MyD88 and AKT levels to affect the NF-κB signaling pathway, to modulate inflammation response and tight junction networks in the processing of LPS stimulation. In summary, LFP-20 prevents the inflammatory response and disruption of tight junction structure induced by LPS, suggesting the potential use of LFP-20 as a prophylactic agent to protect intestinal barrier function.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wangyang Hu
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Deguang Song
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhi Li
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeqing Lu
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
George M, Vijayakumar A, Dhanesh SB, James J, Shivakumar K. Molecular basis and functional significance of Angiotensin II-induced increase in Discoidin Domain Receptor 2 gene expression in cardiac fibroblasts. J Mol Cell Cardiol 2015; 90:59-69. [PMID: 26674152 DOI: 10.1016/j.yjmcc.2015.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
Abstract
Delineation of mechanisms underlying the regulation of fibrosis-related genes in the heart is an important clinical goal as cardiac fibrosis is a major cause of myocardial dysfunction. This study probed the regulation of Discoidin Domain Receptor 2 (DDR2) gene expression and the regulatory links between Angiotensin II, DDR2 and collagen in Angiotensin II-stimulated cardiac fibroblasts. Real-time PCR and western blot analyses showed that Angiotensin II enhances DDR2 mRNA and protein expression in rat cardiac fibroblasts via NADPH oxidase-dependent reactive oxygen species induction. NF-κB activation, demonstrated by gel shift assay, abolition of DDR2 expression upon NF-κB inhibition, and luciferase and chromatin immunoprecipitation assays confirmed transcriptional control of DDR2 by NF-κB in Angiotensin II-treated cells. Inhibitors of Phospholipase C and Protein kinase C prevented Angiotensin II-dependent p38 MAPK phosphorylation that in turn blocked NF-κB activation. Angiotensin II also enhanced collagen gene expression. Importantly, the stimulatory effects of Angiotensin II on DDR2 and collagen were inter-dependent as siRNA-mediated silencing of one abolished the other. Angiotensin II promoted ERK1/2 phosphorylation whose inhibition attenuated Angiotensin II-stimulation of collagen but not DDR2. Furthermore, DDR2 knockdown prevented Angiotensin II-induced ERK1/2 phosphorylation, indicating that DDR2-dependent ERK1/2 activation enhances collagen expression in cells exposed to Angiotensin II. DDR2 knockdown was also associated with compromised wound healing response to Angiotensin II. To conclude, Angiotensin II promotes NF-κB activation that up-regulates DDR2 transcription. A reciprocal regulatory relationship between DDR2 and collagen, involving cross-talk between the GPCR and RTK pathways, is central to Angiotensin II-induced increase in collagen expression in cardiac fibroblasts.
Collapse
Affiliation(s)
- Mereena George
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India
| | - Anupama Vijayakumar
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology, Neurobiology Division, Rajiv Gandhi Center for Biotechnology, Trivandrum, 695014, Kerala, India
| | - Jackson James
- Neuro Stem Cell Biology, Neurobiology Division, Rajiv Gandhi Center for Biotechnology, Trivandrum, 695014, Kerala, India
| | - K Shivakumar
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India.
| |
Collapse
|
37
|
Permpoonputtana K, Porter JE, Govitrapong P. Calcitonin gene-related peptide mediates an inflammatory response in Schwann cells via cAMP-dependent ERK signaling cascade. Life Sci 2015; 144:19-25. [PMID: 26596264 DOI: 10.1016/j.lfs.2015.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/14/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
AIMS Calcitonin gene-related peptides (CGRP), an endogenous neuropeptide, play an important role in the development of neuroinflammation by acting upon its receptor. The CGRP receptor immunoreactivity was identified on Schwann cells. However the effects of CGRP on Schwann cells are unknown and the exact signaling mechanisms associated with CGRP receptor activation related to Schwann cells inflammatory responses are not well understood. We investigated the effect of CGRP on CGRP receptor activation mediates a proinflammatory signaling response in Schwann cells. MAIN METHODS CGRP-induced ERK-MAPK phosphorylation and proinflammatory cytokines, interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) expressions were measured by immune blotting. We also used specific antagonist and inhibitors to confirm the exactly signaling pathway including CGRP (8-37), SQ 22536 and H-89. KEY FINDINGS Treatment with CGRP demonstrated a significant generation of IL-1β and IL-6 but not in the level of TNF-α. In addition, there was a temporal increase in the activated form of ERK caused by CGRP that was prevented after pretreatment with CGRP (8-37), SQ 22536 and H-89. Furthermore, use of the CGRP (8-37), ERK inhibitor PD 98059, SQ 22536 or H-89 abolished the CGRP mediated increase in IL-1β. SIGNIFICANCE This investigation provides evidence for a novel CGRP activation on Schwann cells that mediates inflammatory response by increasing of IL-1β and IL-6 expression. CGRP activates the cAMP-PKA-ERK signaling cascade leading to IL-1β production. These results support the notion that CGRP may play a direct role to initiate inflammatory processes in the peripheral nervous system.
Collapse
Affiliation(s)
- Kannika Permpoonputtana
- Occupational Therapy Division, Faculty of Physical Therapy, Mahidol University, Nakornpathom 73170, Thailand
| | - James E Porter
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, ND 58202, USA
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
38
|
Neacsu P, Mazare A, Schmuki P, Cimpean A. Attenuation of the macrophage inflammatory activity by TiO₂ nanotubes via inhibition of MAPK and NF-κB pathways. Int J Nanomedicine 2015; 10:6455-67. [PMID: 26491301 PMCID: PMC4608594 DOI: 10.2147/ijn.s92019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biomaterial implantation in a living tissue triggers the activation of macrophages in inflammatory events, promoting the transcription of pro-inflammatory mediator genes. The initiation of macrophage inflammatory processes is mainly regulated by signaling proteins of mitogen-activated protein kinase (MAPK) and by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. We have previously shown that titania nanotubes modified Ti surfaces (Ti/TiO2) mitigate the immune response, compared with flat Ti surfaces; however, little is known regarding the underlying mechanism. Therefore, the aim of this study is to investigate the mechanism(s) by which this nanotopography attenuates the inflammatory activity of macrophages. Thus, we analyzed the effects of TiO2 nanotubes on the activation of MAPK and NF-κB signaling pathways in standard and lipopolysaccharide-evoked conditions. Results showed that the Ti/TiO2 significantly reduce the expression levels of the phosphorylated forms of p38, ERK1/2, c-Jun NH2-terminal kinase (JNK), IKKβ, and IkB-α. Furthermore, a significant reduction in the p65 nuclear accumulation on the nanotubular surface was remarked. Following, by using specific MAPK inhibitors, we observed that lipopolysaccharide-induced production of monocyte chemotactic protein-1 and nitric oxide was significantly inhibited on the Ti/TiO2 surface via p38 and ERK1/2, but not via JNK. However, the selective inhibitor for JNK signaling pathway (SP600125) was effective in reducing tumor necrosis factor alpha release as well as monocyte chemotactic protein-1 and nitric oxide production. Altogether, these data suggest that titania nanotubes can attenuate the macrophage inflammatory response via suppression of MAPK and NF-κB pathways providing a potential mechanism for their anti-inflammatory activity.
Collapse
Affiliation(s)
- Patricia Neacsu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Anca Mazare
- Department of Materials Science, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
39
|
Zong X, Song D, Wang T, Xia X, Hu W, Han F, Wang Y. LFP-20, a porcine lactoferrin peptide, ameliorates LPS-induced inflammation via the MyD88/NF-κB and MyD88/MAPK signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:123-131. [PMID: 26003437 DOI: 10.1016/j.dci.2015.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
LFP-20 is one of the 20 amino acid anti-microbial peptides identified in the N terminus of porcine lactoferrin. Apart from its extensively studied direct anti-bacterial activity, its potential as an activator of immune-related cellular functions is unknown. Therefore, this study investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated pig alveolar macrophages in vitro and systemic inflammation in an in vivo mouse model. We found that the inhibitory effects of LFP-20 on production of pro-inflammatory cytokines were independent of its LPS-binding activity. However, they were associated with NF-κB and MAPK-dependent signaling. Furthermore, LFP-20 might directly influence MyD88 levels to block its interaction with NF-κB and MAPK-dependent signaling molecules that might alter LPS-mediated inflammatory responses in activated macrophages. Taken together, our data indicated that LFP-20 prevents the LPS-induced inflammatory response by inhibiting MyD88/NF-κB and MyD88/MAPK signaling pathways, and sheds light on the potential use of LFP-20 in the therapy of LPS-mediated sepsis.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Deguang Song
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tenghao Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Xia
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wangyang Hu
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feifei Han
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Luo MXM, Wong SH, Chan MTV, Yu L, Yu SSB, Wu F, Xiao Z, Wang X, Zhang L, Cheng ASL, Ng SSM, Chan FKL, Cho CH, Yu J, Sung JJY, Wu WKK. Autophagy Mediates HBx-Induced Nuclear Factor-κB Activation and Release of IL-6, IL-8, and CXCL2 in Hepatocytes. J Cell Physiol 2015; 230:2382-9. [PMID: 25708728 DOI: 10.1002/jcp.24967] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
Hepatitis B virus (HBV) and one of its encoded proteins, HBV X protein (HBx), have been shown to induce autophagy in hepatoma cells. Substantial evidence indicates that autophagy is a potent suppressor of inflammation. However, sporadic reports suggest that autophagy could promote pro-inflammatory cytokine expression and inflammation in some biological contexts. Here, we show that overexpression of HBx induces LC3B-positive autophagosome formation, increases autophagic flux and enhances the expression of ATG5, ATG7, and LC3B-II in normal hepatocytes. Abrogation of autophagy by small interfering RNA against ATG5 and ATG7 prevents HBx-induced formation of autophagosomes. Autophagy inhibition also abrogates HBx-induced activation of nuclear factor-κB (NF-κB) and production of interleukin-6 (IL-6), IL-8, and CXCL2. These findings suggest that autophagy is required for HBx-induced NF-κB activation and pro-inflammatory cytokine production and could shed new light on the complex role of autophagy in the modulation of inflammation.
Collapse
Affiliation(s)
- Millore X M Luo
- State Key Laboratory of Digestive Diseases, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- State Key Laboratory of Digestive Diseases, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T V Chan
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Le Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Sidney S B Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Feng Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhangang Xiao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaojuan Wang
- State Key Laboratory of Digestive Diseases, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- State Key Laboratory of Digestive Diseases, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred S L Cheng
- State Key Laboratory of Digestive Diseases, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon S M Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- State Key Laboratory of Digestive Diseases, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi H Cho
- State Key Laboratory of Digestive Diseases, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Diseases, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph J Y Sung
- State Key Laboratory of Digestive Diseases, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- State Key Laboratory of Digestive Diseases, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Zhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, Sun S, Zhang Z, Chen XQ, Qin M, Liu X, Tao J, Jia L, Fan HY, Zhou B, Yu Y, Ying H, Hui L, Liu X, Yi X, Liu X, Zhang L, Duan SZ. High salt primes a specific activation state of macrophages, M(Na). Cell Res 2015; 25:893-910. [PMID: 26206316 PMCID: PMC4528058 DOI: 10.1038/cr.2015.87] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/12/2015] [Accepted: 05/30/2015] [Indexed: 02/05/2023] Open
Abstract
High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na).
Collapse
Affiliation(s)
- Wu-Chang Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Jun Zheng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin-Juan Du
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-Yong Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhu-Xia Shen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Chaoji Shi
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuyang Sun
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Zhang
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiao-qing Chen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lijun Jia
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Heng-yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bin Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Ying
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ 08854, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Sheng-Zhong Duan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
42
|
Song MG, Ryoo IG, Choi HY, Choi BH, Kim ST, Heo TH, Lee JY, Park PH, Kwak MK. NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA)-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages. PLoS One 2015. [PMID: 26222138 PMCID: PMC4519053 DOI: 10.1371/journal.pone.0134235] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Blood monocytes are recruited to injured tissue sites and differentiate into macrophages, which protect against pathogens and repair damaged tissues. Reactive oxygen species (ROS) are known to be an important contributor to monocytes’ differentiation and macrophages’ function. NF-E2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, is known to be a critical modulator of inflammatory responses. We herein investigated the role of NRF2 in macrophage differentiation using the human monocytic U937 cell line and phorbol-12-myristate-13-acetate (PMA). In U937 cells with NRF2 silencing, PMA-stimulated cell adherence was significantly facilitated when compared to control U937 cells. Both transcript and protein levels for pro-inflammatory cytokines, including interleukine-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNFα) were highly elevated in PMA-stimulated NRF2-silenced U937 compared to the control. In addition, PMA-inducible secretion of monocyte chemotactic protein 1 (MCP-1) was significantly high in NRF2-silenced U937. As an underlying mechanism, we showed that NRF2-knockdown U937 retained high levels of cellular ROS and endoplasmic reticulum (ER) stress markers expression; and subsequently, PMA-stimulated levels of Ca2+ and PKCα were greater in NRF2-knockdown U937 cells, which caused enhanced nuclear accumulation of nuclear factor-ҡB (NFҡB) p50 and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation. Whereas the treatment of NRF2-silenced U937 cells with pharmacological inhibitors of NFҡB or ERK1/2 largely blocked PMA-induced IL-1β and IL-6 expression, indicating that these pathways are associated with cell differentiation. Taken together, our results suggest that the NRF2 system functions to suppress PMA-stimulated U937 cell differentiation into pro-inflammatory macrophages and provide evidence that the ROS-PKCα-ERK-NFҡB axis is involved in PMA-facilitated differentiation of NRF2-silenced U937 cells.
Collapse
Affiliation(s)
- Min-gu Song
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712–749, Republic of Korea
| | - In-geun Ryoo
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Hye-young Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Bo-hyun Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Sang-Tae Kim
- Seoul National University Bundang Hospital, Sungnam, Gyeonggi-do 463–707, Republic of Korea
| | - Tae-Hwe Heo
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712–749, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
- * E-mail:
| |
Collapse
|
43
|
Chang SF, Lin SS, Yang HC, Chou YY, Gao JI, Lu SC. LPS-Induced G-CSF Expression in Macrophages Is Mediated by ERK2, but Not ERK1. PLoS One 2015; 10:e0129685. [PMID: 26114754 PMCID: PMC4483241 DOI: 10.1371/journal.pone.0129685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/12/2015] [Indexed: 01/12/2023] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) selectively stimulates proliferation and differentiation of neutrophil progenitors which play important roles in host defense against infectious agents. However, persistent G-CSF production often leads to neutrophilia and excessive inflammatory reactions. There is therefore a need to understand the mechanism regulating G-CSF expression. In this study, we showed that U0126, a MEK1/2 inhibitor, decreases lipopolysaccharide (LPS)-stimulated G-CSF promoter activity, mRNA expression and protein secretion. Using short hairpin RNA knockdown, we demonstrated that ERK2, and not ERK1, involves in LPS-induced G-CSF expression, but not LPS-regulated expression of TNF-α. Reporter assays showed that ERK2 and C/EBPβ synergistically activate G-CSF promoter activity. Further chromatin immunoprecipitation (ChIP) assays revealed that U0126 inhibits LPS-induced binding of NF-κB (p50/p65) and C/EBPβ to the G-CSF promoter, but not their nuclear protein levels. Knockdown of ERK2 inhibits LPS-induced accessibility of the G-CSF promoter region to DNase I, suggesting that chromatin remodeling may occur. These findings clarify that ERK2, rather than ERK1, mediates LPS-induced G-CSF expression in macrophages by remodeling chromatin, and stimulates C/EBPβ-dependent activation of the G-CSF promoter. This study provides a potential target for regulating G-CSF expression.
Collapse
Affiliation(s)
- Shwu-Fen Chang
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Shan Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Ching Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Yi Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jhen-I Gao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
44
|
Liew K, Yong PVC, Navaratnam V, Lim YM, Ho ASH. Differential proteomic analysis on the effects of 2-methoxy-1,4-naphthoquinone towards MDA-MB-231 cell line. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:517-527. [PMID: 25981917 DOI: 10.1016/j.phymed.2015.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/31/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND We have previously reported the anti-metastatic effects of 2-methoxy-1,4-naphthoquinone (MNQ) against MDA-MB-231 cell line. PURPOSE To investigate the molecular mechanism underlying the anti-metastatic effects of MNQ towards MDA-MB-231 cell line via the comparative proteomic approach. STUDY DESIGN/METHODS Differentially expressed proteins in MNQ-treated MDA-MB-231 cells were identified by using two-dimensional gel electrophoresis coupled with tandem mass spectrometry. Proteins and signalling pathways associated with the identified MNQ-altered proteins were studied by using Western blotting. RESULTS Significant modulation of MDA-MB-231 cell proteome was observed upon treatment with MNQ in which the expressions of 19 proteins were found to be downregulated whereas another eight were upregulated (>1.5 fold, p < 0.05). The altered proteins were mainly related to cytoskeletal functions and regulations, mRNA processing, protein modifications and oxidative stress response. Notably, two of the downregulated proteins, protein S100-A4 (S100A4) and laminin-binding protein (RPSA) are known to play key roles in driving metastasis and were verified using Western blotting. Further investigation using Western blotting also revealed that MNQ decreased the activations of pro-metastatic ERK1/2 and NF-κB signalling pathways. Moreover, MNQ was shown to stimulate the expression of the metastatic suppressor, E-cadherin. CONCLUSION This study reports a proposed mechanism by which MNQ exerts its anti-metastatic effects against MDA-MB-231 cell line. The findings from this study offer new insights on the potential of MNQ to be developed as a novel anti-metastatic agent.
Collapse
Affiliation(s)
- Kitson Liew
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Phelim Voon Chen Yong
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Visweswaran Navaratnam
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Yang Mooi Lim
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
| | - Anthony Siong Hock Ho
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
45
|
Vibrio vulnificus VvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production in intestinal epithelial cells. Cell Death Dis 2015; 6:1655. [PMID: 25695598 PMCID: PMC4669806 DOI: 10.1038/cddis.2015.19] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 01/29/2023]
Abstract
The Gram-negative bacterium Vibrio vulnificus produces hemolysin (VvhA), which induces cytotoxicity in mammalian cells. However, our understanding of the cytotoxic mechanism and the modes of action of VvhA are still fragmentary and incomplete. The recombinant protein (r) VvhA (50 pg/ml) significantly induces necrotic cell death and apoptosis in human intestinal epithelial (INT-407) cells. The apoptotic cell death induced by rVvhA is highly susceptible to the sequestration of cholesterol by methyl-β-cyclodextrin, whereas for necrotic cell death, this shows a marginal effect. We found that rVvhA induces the aggregation of lipid raft components coupled with NADPH oxidase enzymes, in which rVvhA increased the interaction of NADPH oxidase 2 (NOX2, gp91phox) with a cytosolic protein NCF1 (p47phox) to facilitate the production of reactive oxygen species (ROS). rVvhA uniquely stimulated a conventional PKC isoform PKCα and induced the phosphorylation of both ERK and JNK, which are responsible for the activation of transcription factor NF-κB. rVvhA induced an NF-κB-dependent imbalance of the Bcl-2/Bax ratio, the release of mitochondrial cytochrome c, and caspase-3/-9 activation during its promotion of apoptotic cell death. In addition, rVvhA has the ability to inhibit the expression of cell cycle-related proteins, such as CDK2, CDK4, cyclin D1, and cyclin E. These results demonstrate that rVvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production by the distinct activation of PKCα and ERK/JNK in intestinal epithelial cells.
Collapse
|
46
|
Calvayrac O, Rodríguez-Calvo R, Martí-Pamies I, Alonso J, Ferrán B, Aguiló S, Crespo J, Rodríguez-Sinovas A, Rodríguez C, Martínez-González J. NOR-1 modulates the inflammatory response of vascular smooth muscle cells by preventing NFκB activation. J Mol Cell Cardiol 2014; 80:34-44. [PMID: 25536180 DOI: 10.1016/j.yjmcc.2014.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/19/2014] [Accepted: 12/07/2014] [Indexed: 11/25/2022]
Abstract
Recent work has highlighted the role of NR4A receptors in atherosclerosis and inflammation. In vascular smooth muscle cell (VSMC) proliferation, however, NOR-1 (neuron-derived orphan receptor-1) exerts antagonistic effects to Nur77 and Nurr1. The aim of this study was to analyse the effect of NOR-1 in VSMC inflammatory response. We assessed the consequence of a gain-of-function of this receptor on the response of VSMC to inflammatory stimuli. In human VSMC, lentiviral over-expression of NOR-1 reduced lipopolysaccharide (LPS)-induced up-regulation of cytokines (IL-1β, IL-6 and IL-8) and chemokines (MCP-1 and CCL20). Similar effects were obtained in cells stimulated with TNFα or oxLDL. Conversely, siRNA-mediated NOR-1 inhibition significantly increased the expression of pro-inflammatory mediators. Interestingly, in the aortas from transgenic mice that over-express human NOR-1 in VSMC (TgNOR-1), the up-regulation of cytokine/chemokine by LPS was lower compared to wild-type littermates. Similar results were obtained in VSMC from transgenic animals. NOR-1 reduced the transcriptional activity of NFκB sensitive promoters (in transient transfections), and the binding of NFκB to its responsive element (in electrophoretic mobility shift assays). Furthermore, NOR-1 prevented the activation of NFκB pathway by decreasing IκBα phosphorylation/degradation and inhibiting the phosphorylation and subsequent translocation of p65 to the nucleus (assessed by Western blot and immunocytochemistry). These effects were associated with an attenuated phosphorylation of ERK1/2, p38 MAPK and Jun N-terminal kinase, pathways involved in the activation of NFκB. In mouse challenged with LPS, the activation of the NFκB signalling was also attenuated in the aorta from TgNOR-1. Our data support a role for NOR-1 as a negative modulator of the acute response elicited by pro-inflammatory stimuli in the vasculature.
Collapse
Affiliation(s)
- Olivier Calvayrac
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | | | - Ingrid Martí-Pamies
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Judith Alonso
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Beatriz Ferrán
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Silvia Aguiló
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Javier Crespo
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | | | - Cristina Rodríguez
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain.
| | | |
Collapse
|
47
|
Santos LAM, Ribeiro EL, Barbosa KPS, Fragoso IT, Gomes FODS, Donato MAM, Silva BS, Silva AKS, Rocha SWS, França MER, Rodrigues GB, Silva TG, Peixoto CA. Diethylcarbamazine inhibits NF-κB activation in acute lung injury induced by carrageenan in mice. Int Immunopharmacol 2014; 23:153-62. [PMID: 25175917 DOI: 10.1016/j.intimp.2014.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 12/25/2022]
Abstract
Diethylcarbamazine citrate (DEC) is widely used to treat lymphatic filariasis and Tropical Pulmonary Eosinophilia. A number of studies have reported a possible role in the host immune system, but exactly how DEC exerts this effect is still unknown. The present study reports the effects of DEC pretreatment on NF-κB regulation using the pleurisy model induced by carrageenan. Swiss male mice (Mus musculus) were divided into four experimental groups: control (SAL); carrageenan (CAR); diethylcarbamazine (DEC) and curcumin (CUR). The animals were pretreated with DEC (50mg/kg, v.o), CUR (50mg/kg, i.p) or distilled water for three consecutive days before pleurisy. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test, and values were considered statistically significant when p<0.05. DEC pretreatment reduced tissue damage and the production of inflammatory markers, such as NO, iNOS, PGE2, COX-2, and PARP induced by carrageenan. Similarly, a known inhibitor of NF-κB pathway (curcumin) was also able to reduce these parameters. Like curcumin, DEC prevents NF-κB activation by reducing NF-κB p65 phosphorylation and IκBα degradation. DEC prevented NF-κB activation via p38 MAPK, but did not interfere in the ERK pathway in this experimental model. However, further studies should be developed to confirm this hypothesis. These findings suggest that DEC could be a promising drug for inflammatory disorders, especially in pulmonary diseases such as Acute Lung Inflammation, due its high anti-inflammatory potential which prevents NF-κB activation.
Collapse
Affiliation(s)
| | - Edlene Lima Ribeiro
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, CPqAM/FIOCRUZ, Brazil.
| | | | | | | | | | - Bruna Santos Silva
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, CPqAM/FIOCRUZ, Brazil.
| | | | | | | | | | - Teresinha Gonçalves Silva
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Brazil.
| | | |
Collapse
|
48
|
Pinocembrin protects human brain microvascular endothelial cells against fibrillar amyloid-β(1-40) injury by suppressing the MAPK/NF-κB inflammatory pathways. BIOMED RESEARCH INTERNATIONAL 2014; 2014:470393. [PMID: 25157358 PMCID: PMC4135138 DOI: 10.1155/2014/470393] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/02/2014] [Accepted: 06/15/2014] [Indexed: 11/28/2022]
Abstract
Cerebrovascular accumulation of amyloid-β (Aβ) peptides in Alzheimer's disease (AD) may contribute to disease progression through Aβ-induced microvascular endothelial pathogenesis. Pinocembrin has been shown to have therapeutic effects in AD models. These effects correlate with preservation of microvascular function, but the effect on endothelial cells under Aβ-damaged conditions is unclear. The present study focuses on the in vitro protective effect of pinocembrin on fibrillar Aβ1−40 (fAβ1−40) injured human brain microvascular endothelial cells (hBMECs) and explores potential mechanisms. The results demonstrate that fAβ1−40-induced cytotoxicity in hBMECs can be rescued by pinocembrin treatment. Pinocembrin increases cell viability, reduces the release of LDH, and relieves nuclear condensation. The mechanisms of this reversal from Aβ may be associated with the inhibition of inflammatory response, involving inhibition of MAPK activation, downregulation of phosphor-IKK level, relief of IκBα degradation, blockage of NF-κB p65 nuclear translocation, and reduction of the release of proinflammatory cytokines. Pinocembrin does not show obvious effects on regulating the redox imbalance after exposure to fAβ1−40. Together, the suppression of MAPK and the NF-κB signaling pathways play a significant role in the anti-inflammation of pinocembrin in hBMECs subjected to fAβ1−40. This may serve as a therapeutic agent for BMEC protection in Alzheimer's-related deficits.
Collapse
|
49
|
Abarikwu SO. Kolaviron, a natural flavonoid from the seeds of Garcinia kola, reduces LPS-induced inflammation in macrophages by combined inhibition of IL-6 secretion, and inflammatory transcription factors, ERK1/2, NF-κB, p38, Akt, p-c-JUN and JNK. Biochim Biophys Acta Gen Subj 2014; 1840:2373-81. [PMID: 24650887 DOI: 10.1016/j.bbagen.2014.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/22/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Kolaviron (Kol-v), an important component of Garcinia kola seed has a variety of biologic activities, including anti-inflammatory properties. METHODS We tested the ability of Kol-v to block signalling pathways implicated in lipopolysaccharide (LPS)-induced inflammatory gene expression in RAW 264.7 macrophage cell line. RESULTS When macrophages pre-treated with Kol-v (15 and 25μM) were activated with LPS, phosphorylation of p38 and p-c-JUN but not IκBα degradation and phosphorylation of NF-κB (p65), ERK1/2, and IκBα were blocked. Furthermore, Kol-v suppressed LPS-induced increase in the expression of IL-18 gene and LPS-induced decrease in the mRNA expression of IP-10 but it had no effect on the LPS-induced decrease in the gene expression levels of IL-1α, IL-33, IL-1β, and IFNβ1-1. When macrophages pre-treated with Kol-v (50 and 100μM) were activated with LPS, phosphorylation of Akt, ERK1/2, IκBα, and NFκB (p65) but not that of CREB was blocked by Kol-v. The protective effect of Kol-v on the LPS-induced phosphorylation of the mitogen activated protein kinase (MAPK) family member JNK was only observed at 100μM. At all concentrations of Kol-v (0-100μM) tested in this study, there was no effect of Kol-v on LPS-induced secretion of the pro-inflammatory cytokine TNF-α but a concentration dependent inhibition of Kol-v on IL-6 secretion was observed. CONCLUSION Kol-v interferes with LPS signalling by reducing the activation of several inflammatory transcription factors and that its inhibitory action on IL-6 secretion correlates with inhibition of ERK1/2, p38, Akt, p-c-JUN and JNK signalling pathways. GENERAL SIGNIFICANCE The anti-inflammatory potential of Kol-v via inhibition of IL-6 secretion in RAW macrophage was established in this study.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Chemical Sciences, College of Natural Sciences, Redeemer's University, Redemption City, Ogun State, Nigeria.
| |
Collapse
|
50
|
Sharma G, Kar S, Basu Ball W, Ghosh K, Das PK. The curative effect of fucoidan on visceral leishmaniasis is mediated by activation of MAP kinases through specific protein kinase C isoforms. Cell Mol Immunol 2014; 11:263-74. [PMID: 24561457 DOI: 10.1038/cmi.2013.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 01/08/2023] Open
Abstract
Fucoidan can cure both antimony-sensitive and antimony-resistant visceral leishmaniasis through immune activation. However, the signaling events underlying this cellular response remain uncharacterized. The present study reveals that fucoidan induces activation of p38 and ERK1/2 and NF-κB DNA binding in both normal and Leishmania donovani-infected macrophages, as revealed by western blotting and electrophoretic mobility shift assay (EMSA), respectively. Pharmacological inhibition of p38, ERK1/2 or the NF-κB pathway markedly attenuated fucoidan-induced pro-inflammatory cytokine synthesis and inducible nitric oxide synthase (iNOS) gene transcription, resulting in a reduction of parasite clearance. To decipher the underlying mechanism of fucoidan-mediated parasite suppression, the expression and functionality of various protein kinase C (PKC) isoforms were evaluated by immunoblotting and enzyme activity assay. Fucoidan elicited an increase in expression and activity of PKC-α, -βI and -βII isoforms in infected macrophages. Functional knockdown of PKC-α and -β resulted in downregulation of p38 and ERK1/2, along with a marked reduction of IL-12 and TNF-α production in fucoidan-treated infected macrophages. Collectively, these results suggest that the curative effect of fucoidan is mediated by PKC-dependent activation of the mitogen-activated protein kinase (MAPK)/NF-κB pathway, which ultimately results in the production of nitric oxide (NO) and disease-resolving pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Gunjan Sharma
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Susanta Kar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Writoban Basu Ball
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Kuntal Ghosh
- Department of Biochemistry, Calcutta University, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|