1
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
2
|
Kellner S, Berlin S. Rescuing tri-heteromeric NMDA receptor function: the potential of pregnenolone-sulfate in loss-of-function GRIN2B variants. Cell Mol Life Sci 2024; 81:235. [PMID: 38795169 PMCID: PMC11127902 DOI: 10.1007/s00018-024-05243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/27/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs emerging from GRIN genes) are tetrameric receptors that form diverse channel compositions in neurons, typically consisting of two GluN1 subunits combined with two GluN2(A-D) subunits. During prenatal stages, the predominant channels are di-heteromers with two GluN1 and two GluN2B subunits due to the high abundance of GluN2B subunits. Postnatally, the expression of GluN2A subunits increases, giving rise to additional subtypes, including GluN2A-containing di-heteromers and tri-heteromers with GluN1, GluN2A, and GluN2B subunits. The latter emerge as the major receptor subtype at mature synapses in the hippocampus. Despite extensive research on purely di-heteromeric receptors containing two identical GRIN variants, the impact of a single variant on the function of other channel forms, notably tri-heteromers, is lagging. In this study, we systematically investigated the effects of two de novo GRIN2B variants (G689C and G689S) in pure, mixed di- and tri-heteromers. Our findings reveal that incorporating a single variant in mixed di-heteromers or tri-heteromers exerts a dominant negative effect on glutamate potency, although 'mixed' channels show improved potency compared to pure variant-containing di-heteromers. We show that a single variant within a receptor complex does not impair the response of all receptor subtypes to the positive allosteric modulator pregnenolone-sulfate (PS), whereas spermine completely fails to potentiate tri-heteromers containing GluN2A and -2B-subunits. We examined PS on primary cultured hippocampal neurons transfected with the variants, and observed a positive impact over current amplitudes and synaptic activity. Together, our study supports previous observations showing that mixed di-heteromers exhibit improved glutamate potency and extend these findings towards the exploration of the effect of Loss-of-Function variants over tri-heteromers. Notably, we provide an initial and crucial demonstration of the beneficial effects of GRIN2B-relevant potentiators on tri-heteromers. Our results underscore the significance of studying how different variants affect distinct receptor subtypes, as these effects cannot be inferred solely from observations made on pure di-heteromers. Overall, this study contributes to ongoing efforts to understand the pathophysiology of GRINopathies and provides insights into potential treatment strategies.
Collapse
Affiliation(s)
- Shai Kellner
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel
| | - Shai Berlin
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel.
| |
Collapse
|
3
|
Corsi S, Scheggi S, Pardu A, Braccagni G, Caruso D, Cioffi L, Diviccaro S, Gentile M, Fanni S, Stancampiano R, Gambarana C, Melcangi RC, Frau R, Carta M. Pregnenolone for the treatment of L-DOPA-induced dyskinesia in Parkinson's disease. Exp Neurol 2023; 363:114370. [PMID: 36878398 DOI: 10.1016/j.expneurol.2023.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Growing preclinical and clinical evidence highlights neurosteroid pathway imbalances in Parkinson's Disease (PD) and L-DOPA-induced dyskinesias (LIDs). We recently reported that 5α-reductase (5AR) inhibitors dampen dyskinesias in parkinsonian rats; however, unraveling which specific neurosteroid mediates this effect is critical to optimize a targeted therapy. Among the 5AR-related neurosteroids, striatal pregnenolone has been shown to be increased in response to 5AR blockade and decreased after 6-OHDA lesions in the rat PD model. Moreover, this neurosteroid rescued psychotic-like phenotypes by exerting marked antidopaminergic activity. In light of this evidence, we investigated whether pregnenolone might dampen the appearance of LIDs in parkinsonian drug-naïve rats. We tested 3 escalating doses of pregnenolone (6, 18, 36 mg/kg) in 6-OHDA-lesioned male rats and compared the behavioral, neurochemical, and molecular outcomes with those induced by the 5AR inhibitor dutasteride, as positive control. The results showed that pregnenolone dose-dependently countered LIDs without affecting L-DOPA-induced motor improvements. Post-mortem analyses revealed that pregnenolone significantly prevented the increase of validated striatal markers of dyskinesias, such as phospho-Thr-34 DARPP-32 and phospho-ERK1/2, as well as D1-D3 receptor co-immunoprecipitation in a fashion similar to dutasteride. Moreover, the antidyskinetic effect of pregnenolone was paralleled by reduced striatal levels of BDNF, a well-established factor associated with the development of LIDs. In support of a direct pregnenolone effect, LC/MS-MS analyses revealed that striatal pregnenolone levels strikingly increased after the exogenous administration, with no significant alterations in downstream metabolites. All these data suggest pregnenolone as a key player in the antidyskinetic properties of 5AR inhibitors and highlight this neurosteroid as an interesting novel tool to target LIDs in PD.
Collapse
Affiliation(s)
- Sara Corsi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, CA, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, SI, Italy
| | - Alessandra Pardu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, CA, Italy
| | - Giulia Braccagni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, SI, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, MI, Italy
| | - Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, MI, Italy
| | - Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, MI, Italy
| | - Mauro Gentile
- Department of Biomedical Sciences, University of Cagliari, Cagliari, CA, Italy
| | - Silvia Fanni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, CA, Italy; Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Lund University, Sweden
| | | | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, SI, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, MI, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Cagliari, CA, Italy; "Guy Everett Laboratory", Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, CA, Italy.
| |
Collapse
|
4
|
Sivcev S, Kudova E, Zemkova H. Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 2023; 234:109542. [PMID: 37040816 DOI: 10.1016/j.neuropharm.2023.109542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Neurosteroids are steroids synthesized de novo in the brain from cholesterol in an independent manner from peripheral steroid sources. The term "neuroactive steroid" includes all steroids independent of their origin, and newly synthesized analogs of neurosteroids that modify neuronal activities. In vivo application of neuroactive steroids induces potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-aminobutyric acid type-A receptor (GABAAR). However, neuroactive steroids also act as positive or negative allosteric regulators on several ligand-gated channels including N-methyl-d-aspartate receptors (NMDARs), nicotinic acetylcholine receptors (nAChRs) and ATP-gated purinergic P2X receptors. Seven different P2X subunits (P2X1-7) can assemble to form homotrimeric or heterotrimeric ion channels permeable for monovalent cations and calcium. Among them, P2X2, P2X4, and P2X7 are the most abundant within the brain and can be regulated by neurosteroids. Transmembrane domains are necessary for neurosteroid binding, however, no generic motif of amino acids can accurately predict the neurosteroid binding site for any of the ligand-gated ion channels including P2X. Here, we will review what is currently known about the modulation of rat and human P2X by neuroactive steroids and the possible structural determinants underlying neurosteroid-induced potentiation and inhibition of the P2X2 and P2X4 receptors.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
5
|
Tang W, Beckley JT, Zhang J, Song R, Xu Y, Kim S, Quirk MC, Robichaud AJ, Diaz ES, Myers SJ, Doherty JJ, Ackley MA, Traynelis SF, Yuan H. Novel neuroactive steroids as positive allosteric modulators of NMDA receptors: mechanism, site of action, and rescue pharmacology on GRIN variants associated with neurological conditions. Cell Mol Life Sci 2023; 80:42. [PMID: 36645496 PMCID: PMC10644378 DOI: 10.1007/s00018-022-04667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Accepted: 12/11/2022] [Indexed: 01/17/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play vital roles in normal brain functions (i.e., learning, memory, and neuronal development) and various neuropathological conditions, such as epilepsy, autism, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. Endogenous neuroactive steroids such as 24(S)-hydroxycholesterol (24(S)-HC) have been shown to influence NMDAR activity, and positive allosteric modulators (PAMs) derived from 24(S)-hydroxycholesterol scaffold can also enhance NMDAR function. This study describes the structural determinants and mechanism of action for 24(S)-hydroxycholesterol and two novel synthetic analogs (SGE-550 and SGE-301) on NMDAR function. We also show that these agents can mitigate the altered function caused by a set of loss-of-function missense variants in NMDAR GluN subunit-encoding GRIN genes associated with neurological and neuropsychiatric disorders. We anticipate that the evaluation of novel neuroactive steroid NMDAR PAMs may catalyze the development of new treatment strategies for GRIN-related neuropsychiatric conditions.
Collapse
Affiliation(s)
- Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | - Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rui Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, The First Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | - Eva Sarai Diaz
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
France G, Volianskis R, Ingram R, Bannister N, Rothärmel R, Irvine MW, Fang G, Burnell ES, Sapkota K, Costa BM, Chopra DA, Dravid SM, Michael-Titus AT, Monaghan DT, Georgiou J, Bortolotto ZA, Jane DE, Collingridge GL, Volianskis A. Differential regulation of STP, LTP and LTD by structurally diverse NMDA receptor subunit-specific positive allosteric modulators. Neuropharmacology 2022; 202:108840. [PMID: 34678377 PMCID: PMC8803579 DOI: 10.1016/j.neuropharm.2021.108840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Different types of memory are thought to rely on different types of synaptic plasticity, many of which depend on the activation of the N-Methyl-D Aspartate (NMDA) subtype of glutamate receptors. Accordingly, there is considerable interest in the possibility of using positive allosteric modulators (PAMs) of NMDA receptors (NMDARs) as cognitive enhancers. Here we firstly review the evidence that NMDA receptor-dependent forms of synaptic plasticity: short-term potentiation (STP), long-term potentiation (LTP) and long-term depression (LTD) can be pharmacologically differentiated by using NMDAR ligands. These observations suggest that PAMs of NMDAR function, depending on their subtype selectivity, might differentially regulate STP, LTP and LTD. To test this hypothesis, we secondly performed experiments in rodent hippocampal slices with UBP714 (a GluN2A/2B preferring PAM), CIQ (a GluN2C/D selective PAM) and UBP709 (a pan-PAM that potentiates all GluN2 subunits). We report here, for the first time, that: (i) UBP714 potentiates sub-maximal LTP and reduces LTD; (ii) CIQ potentiates STP without affecting LTP; (iii) UBP709 enhances LTD and decreases LTP. We conclude that PAMs can differentially regulate distinct forms of NMDAR-dependent synaptic plasticity due to their subtype selectivity. This article is part of the Neuropharmacology Special Issue on ‘Glutamate Receptors – NMDA receptors’. NMDAR-dependent STP, LTP and LTD can be dissociated pharmacologically GluN2A/2B PAM UBP714 potentiates LTP and reduces LTD GluN2C/D PAM CIQ potentiates STP without affecting LTP NMDAR pan-PAM UBP709 potentiates LTD and reduces LTP
Collapse
Affiliation(s)
- G France
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - R Volianskis
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - R Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - N Bannister
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - R Rothärmel
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - M W Irvine
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - G Fang
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - E S Burnell
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; University of Exeter, St Luke's Campus, Heavitree Road, Exeter, UK
| | - K Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - B M Costa
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA & Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - D A Chopra
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - S M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - A T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - D T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - J Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Z A Bortolotto
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D E Jane
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - G L Collingridge
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Department of Physiology, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - A Volianskis
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK; School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
7
|
Sapkota K, Burnell ES, Irvine MW, Fang G, Gawande DY, Dravid SM, Jane DE, Monaghan DT. Pharmacological characterization of a novel negative allosteric modulator of NMDA receptors, UBP792. Neuropharmacology 2021; 201:108818. [PMID: 34610288 DOI: 10.1016/j.neuropharm.2021.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023]
Abstract
N-methyl-d-aspartate (NMDA) receptors (NMDARs) are a subtype of ionotropic glutamate receptor with important roles in CNS function. Since excessive NMDAR activity can lead to neuronal cell death and epilepsy, there is interest in developing NMDAR negative allosteric modulators (NAMs) as neuroprotective agents. In this study, we characterize the inhibitory properties of a novel NMDAR antagonist, UBP792. This compound displays partial subtype-selectivity by having a varied maximal inhibition of GluN2A-, GluN2B-, GluN2C-, and GluN2D-containing receptors (52%, 70%, 87%, 89%, respectively) with IC50s 4-10 μM. UBP792 inhibited NMDAR responses by reducing l-glutamate and glycine potencies and efficacies. Consistent with non-competitive inhibition, increasing agonist concentrations 30-fold did not reduce UBP792 potency. UBP792 inhibition was also not competitive with the structurally-related positive allosteric modulator (PAM) UBP684. UBP792 activity was voltage-independent, unaffected by GluN1's exon-5, and reduced at low pH (except for GluN1/GluN2A receptors which were more sensitive at acidic pH). UBP792 binding appeared independent of agonist binding and may be entering the plasma membrane to gain access to its binding site. Inhibition by UBP792 is reduced when the ligand-binding domain (LBD) of the GluN2 subunit, but not that of the GluN1 subunit, is cross-linked in the closed-cleft, activated conformation. Thus, UBP792 may be inhibiting by stabilizing an open GluN2-LBD cleft associated with channel inactivation or by stabilizing downstream closed channel conformations allosterically-coupled to the GluN2-LBD. These findings further expand the repertoire displayed by NMDAR NAMs thus expanding the opportunities for developing NMDAR modulators with the most appropriate selectivity and physiological actions for specific therapeutic indications.
Collapse
Affiliation(s)
- Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Erica S Burnell
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK; University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Mark W Irvine
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK; Hello Bio, Unit 3, Io Centre Cabot Park/Moorend Farm Ave, Bristol, BS11 0QL, UK
| | - Guangyu Fang
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK; Hello Bio, Unit 3, Io Centre Cabot Park/Moorend Farm Ave, Bristol, BS11 0QL, UK
| | - Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, 68178, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, 68178, USA
| | - David E Jane
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA.
| |
Collapse
|
8
|
Ondřejíková L, Pařízek A, Šimják P, Vejražková D, Velíková M, Anderlová K, Vosátková M, Krejčí H, Koucký M, Kancheva R, Dušková M, Vaňková M, Bulant J, Hill M. Altered Steroidome in Women with Gestational Diabetes Mellitus: Focus on Neuroactive and Immunomodulatory Steroids from the 24th Week of Pregnancy to Labor. Biomolecules 2021; 11:1746. [PMID: 34944390 PMCID: PMC8698588 DOI: 10.3390/biom11121746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 12/19/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a complication in pregnancy, but studies focused on the steroidome in patients with GDM are not available in the public domain. This article evaluates the steroidome in GDM+ and GDM- women and its changes from 24 weeks (± of gestation) to labor. The study included GDM+ (n = 44) and GDM- women (n = 33), in weeks 24-28, 30-36 of gestation and at labor and mixed umbilical blood after delivery. Steroidomic data (101 steroids quantified by GC-MS/MS) support the concept that the increasing diabetogenic effects with the approaching term are associated with mounting progesterone levels. The GDM+ group showed lower levels of testosterone (due to reduced AKR1C3 activity), estradiol (due to a shift from the HSD17B1 towards HSD17B2 activity), 7-oxygenated androgens (competing with cortisone for HSD11B1 and shifting the balance from diabetogenic cortisol towards the inactive cortisone), reduced activities of SRD5As, and CYP17A1 in the hydroxylase but higher CYP17A1 activity in the lyase step. With the approaching term, the authors found rising activities of CYP3A7, AKR1C1, CYP17A1 in its hydroxylase step, but a decline in its lyase step, rising conjugation of neuroinhibitory and pregnancy-stabilizing steroids and weakening AKR1D1 activity.
Collapse
Affiliation(s)
- Leona Ondřejíková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Antonín Pařízek
- Department of Gynecology and Obstetrics, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, 128 08 Prague, Czech Republic; (A.P.); (P.Š.); (K.A.); (H.K.); (M.K.)
| | - Patrik Šimják
- Department of Gynecology and Obstetrics, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, 128 08 Prague, Czech Republic; (A.P.); (P.Š.); (K.A.); (H.K.); (M.K.)
| | - Daniela Vejražková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Marta Velíková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Kateřina Anderlová
- Department of Gynecology and Obstetrics, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, 128 08 Prague, Czech Republic; (A.P.); (P.Š.); (K.A.); (H.K.); (M.K.)
| | - Michala Vosátková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Hana Krejčí
- Department of Gynecology and Obstetrics, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, 128 08 Prague, Czech Republic; (A.P.); (P.Š.); (K.A.); (H.K.); (M.K.)
| | - Michal Koucký
- Department of Gynecology and Obstetrics, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, 128 08 Prague, Czech Republic; (A.P.); (P.Š.); (K.A.); (H.K.); (M.K.)
| | - Radmila Kancheva
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Michaela Dušková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Markéta Vaňková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Josef Bulant
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Martin Hill
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| |
Collapse
|
9
|
Mueller JW, Vogg N, Lightning TA, Weigand I, Ronchi CL, Foster PA, Kroiss M. Steroid Sulfation in Adrenal Tumors. J Clin Endocrinol Metab 2021; 106:3385-3397. [PMID: 33739426 DOI: 10.1210/clinem/dgab182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The adrenal cortex produces specific steroid hormones including steroid sulfates such as dehydroepiandrosterone sulfate (DHEAS), the most abundant steroid hormone in the human circulation. Steroid sulfation involves a multistep enzyme machinery that may be impaired by inborn errors of steroid metabolism. Emerging data suggest a role of steroid sulfates in the pathophysiology of adrenal tumors and as potential biomarkers. EVIDENCE ACQUISITION Selective literature search using "steroid," "sulfat*," "adrenal," "transport," "mass spectrometry" and related terms in different combinations. EVIDENCE SYNTHESIS A recent study highlighted the tissue abundance of estrogen sulfates to be of prognostic impact in adrenocortical carcinoma tissue samples using matrix-assisted laser desorption ionization mass spectrometry imaging. General mechanisms of sulfate uptake, activation, and transfer to substrate steroids are reasonably well understood. Key aspects of this pathway, however, have not been investigated in detail in the adrenal; these include the regulation of substrate specificity and the secretion of sulfated steroids. Both for the adrenal and targeted peripheral tissues, steroid sulfates may have relevant biological actions beyond their cognate nuclear receptors after desulfation. Impaired steroid sulfation such as low DHEAS in Cushing adenomas is of diagnostic utility, but more comprehensive studies are lacking. In bioanalytics, the requirement of deconjugation for gas-chromatography/mass-spectrometry has precluded the study of steroid sulfates for a long time. This limitation may be overcome by liquid chromatography/tandem mass spectrometry. CONCLUSIONS A role of steroid sulfation in the pathophysiology of adrenal tumors has been suggested and a diagnostic utility of steroid sulfates as biomarkers is likely. Recent analytical developments may target sulfated steroids specifically.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Nora Vogg
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
| | - Thomas Alec Lightning
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Isabel Weigand
- Department of Medicine IV, University Hospital München, Ludwig-Maximilians-Universität München, München, Germany
| | - Cristina L Ronchi
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
| | - Paul A Foster
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
- Department of Medicine IV, University Hospital München, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
10
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
11
|
Zhang J, Tang W, Bhatia NK, Xu Y, Paudyal N, Liu D, Kim S, Song R, XiangWei W, Shaulsky G, Myers SJ, Dobyns W, Jayaraman V, Traynelis SF, Yuan H, Bozarth X. A de novo GRIN1 Variant Associated With Myoclonus and Developmental Delay: From Molecular Mechanism to Rescue Pharmacology. Front Genet 2021; 12:694312. [PMID: 34413877 PMCID: PMC8369916 DOI: 10.3389/fgene.2021.694312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) are highly expressed in brain and play important roles in neurodevelopment and various neuropathologic conditions. Here, we describe a new phenotype in an individual associated with a novel de novo deleterious variant in GRIN1 (c.1595C>A, p.Pro532His). The clinical phenotype is characterized with developmental encephalopathy, striking stimulus-sensitive myoclonus, and frontal lobe and frontal white matter hypoplasia, with no apparent seizures detected. NMDARs that contained the P532H within the glycine-binding domain of GluN1 with either the GluN2A or GluN2B subunits were evaluated for changes in their pharmacological and biophysical properties, which surprisingly revealed only modest changes in glycine potency but a significant decrease in glutamate potency, an increase in sensitivity to endogenous zinc inhibition, a decrease in response to maximally effective concentrations of agonists, a shortened synaptic-like response time course, a decreased channel open probability, and a reduced receptor cell surface expression. Molecule dynamics simulations suggested that the variant can lead to additional interactions across the dimer interface in the agonist-binding domains, resulting in a more open GluN2 agonist-binding domain cleft, which was also confirmed by single-molecule fluorescence resonance energy transfer measurements. Based on the functional deficits identified, several positive modulators were evaluated to explore potential rescue pharmacology.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nidhi K. Bhatia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Nabina Paudyal
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Ding Liu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Rui Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Gil Shaulsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Scott J. Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - William Dobyns
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Xiuhua Bozarth
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Division of Pediatric Neurology, Department of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Geoffroy C, Paoletti P, Mony L. Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. J Physiol 2021; 600:233-259. [PMID: 34339523 DOI: 10.1113/jp280875] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that play key roles in synaptic transmission and plasticity. Both hyper- and hypo-activation of NMDARs are deleterious to neuronal function. In particular, NMDAR hypofunction is involved in a wide range of neurological and psychiatric conditions like schizophrenia, intellectual disability, age-dependent cognitive decline, or Alzheimer's disease. While early medicinal chemistry efforts were mostly focused on the development of NMDAR antagonists, the last 10 years have seen a boom in the development of NMDAR positive allosteric modulators (PAMs). Here we review the currently developed NMDAR PAMs, their pharmacological profiles and mechanisms of action, as well as their physiological effects in healthy animals and animal models of NMDAR hypofunction. In light of the complexity of physiological outcomes of NMDAR PAMs in vivo, we discuss the remaining challenges and questions that need to be addressed to better grasp and predict the therapeutic potential of NMDAR positive allosteric modulation.
Collapse
Affiliation(s)
- Chloé Geoffroy
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| |
Collapse
|
13
|
Li Z, Cai G, Fang F, Li W, Fan M, Lian J, Qiu Y, Xu X, Lv X, Li Y, Zheng R, Wang Y, Li Z, Zhang G, Liu Z, Huang Z, Zhang L. Discovery of Novel and Potent N-Methyl-d-aspartate Receptor Positive Allosteric Modulators with Antidepressant-like Activity in Rodent Models. J Med Chem 2021; 64:5551-5576. [PMID: 33934604 DOI: 10.1021/acs.jmedchem.0c02018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are glutamate-gated Na+ and Ca2+-permeable ion channels involved in excitatory synaptic transmission and synaptic plasticity. NMDAR hypofunction has long been implicated in the pathophysiology including major depressive disorders (MDDs). Herein, we report a series of furan-2-carboxamide analogues as novel NMDAR-positive allosteric modulators (PAMs). Through structure-based virtual screen and electrophysiological tests, FS2921 was identified as a novel NMDAR PAM with potential antidepressant effects. Further structure-activity relationship studies led to the discovery of novel analogues with increased potentiation. Compound 32h caused a significant increase in NMDAR excitability in vitro and impressive activity in the forced swimming test. Moreover, compound 32h showed no significant inhibition of hERG or cell viability and possessed a favorable PK/PD profile. Our study presented a series of novel NMDAR PAMs and provided potential opportunities for discovering of new antidepressants.
Collapse
Affiliation(s)
- Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guanxing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fan Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenchao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghua Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingjing Lian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Xuehui Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
14
|
Cerrah Gunes M, Gunes MS, Vural A, Aybuga F, Bayram A, Bayram KK, Sahin MI, Dogan ME, Ozdemir SY, Ozkul Y. Change in gene expression levels of GABA, glutamate and neurosteroid pathways due to acoustic trauma in the cochlea. J Neurogenet 2021; 35:45-57. [PMID: 33825593 DOI: 10.1080/01677063.2021.1904922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The characteristic feature of noise-induced hearing loss (NIHL) is the loss or malfunction of the outer hair cells (OHC) and the inner hair cells (IHC) of the cochlea. 90-95% of the spiral ganglion neurons, forming the cell bodies of cochlear nerve, synapse with the IHCs. Glutamate is the most potent excitatory neurotransmitter for IHC-auditory nerve synapses. Excessive release of glutamate in response to acoustic trauma (AT), may cause excitotoxicity by causing damage to the spiral ganglion neurons (SGN) or loss of the spiral ganglion dendrites, post-synaptic to the IHCs. Another neurotransmitter, GABA, plays an important role in the processing of acoustic stimuli and central regulation after peripheral injury, so it is potentially related to the regulation of hearing function and sensitivity after noise. The aim of this study is to evaluate the effect of AT on the expressions of glutamate excitotoxicity, GABA inhibition and neurosteroid synthesis genes.We exposed 24 BALB/c mice to AT. Controls were sacrificed without exposure to noise, Post-AT(1) and Post-AT(15) were sacrificed on the 1st and 15th day, respectively, after noise exposure. The expressions of various genes playing roles in glutamate, GABA and neurosteroid pathways were compared between groups by real-time PCR.Expressions of Cyp11a1, Gls, Gabra1, Grin2b, Sult1a1, Gad1, and Slc1a2 genes in Post-AT(15) mice were significantly decreased in comparison to control and Post-AT(1) mice. No significant differences in the expression of Slc6a1 and Slc17a8 genes was detected.These findings support the possible role of balance between glutamate excitotoxicity and GABA inhibition is disturbed during the post AT days and also the synthesis of some neurosteroids such as pregnenolone sulfate may be important in this balance.
Collapse
Affiliation(s)
- Meltem Cerrah Gunes
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Murat Salih Gunes
- Department of Otolaryngology, Izmit Seka State Hospital, Kocaeli, Turkey
| | - Alperen Vural
- Department of Otolaryngology, School of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Arslan Bayram
- Etlik Zübeyde Hanım Women's Diseases Education and Research Hospital, Health Sciences University, T.R. Ministry of Health, Ankara, Turkey
| | - Keziban Korkmaz Bayram
- Department of Medical Genetics, School of Medicine, Yıldirim Beyazit University, Ankara, Turkey
| | - Mehmet Ilhan Sahin
- Department of Otolaryngology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Muhammet Ensar Dogan
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Sevda Yesim Ozdemir
- Department of Medical Genetics, School of Medicine, Uskudar University, Istanbul, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey.,Center of Genome and Stem Cell, Kayseri, Turkey
| |
Collapse
|
15
|
Lattanzi S, Riva A, Striano P. Ganaxolone treatment for epilepsy patients: from pharmacology to place in therapy. Expert Rev Neurother 2021; 21:1317-1332. [PMID: 33724128 DOI: 10.1080/14737175.2021.1904895] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Nonsulfated neurosteroids can provide phasic and tonic inhibition through activation of synaptic and extra-synaptic γ-aminobutyric acid (GABA)A receptors, exhibiting a greater potency for the latter. These actions occur by interacting with modulatory sites that are distinct from those bound by benzodiazepines and barbiturates. Ganaxolone (GNX) is a synthetic analog of the endogenous neurosteroid allopregnanolone and a member of a novel class of neuroactive steroids called epalons.Areas covered: The authors review the pharmacology of GNX, summarize the main clinical evidence about its antiseizure efficacy and tolerability, and suggest implications for clinical practice and future research.Expert opinion: The clinical development of GNX is mainly oriented to target unmet needs and focused on status epilepticus and rare genetic epilepsies that have few or no treatment options.The availability of oral and intravenous formulations allows reaching adult and pediatric patients in acute and chronic care settings. Further evidence will complement the understanding of the potentialities of GNX and possibly lead to indications for use in clinical practice.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| |
Collapse
|
16
|
Biosynthesis and signalling functions of central and peripheral nervous system neurosteroids in health and disease. Essays Biochem 2021; 64:591-606. [PMID: 32756865 PMCID: PMC7517341 DOI: 10.1042/ebc20200043] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Neurosteroids are steroid hormones synthesised de novo in the brain and peripheral nervous tissues. In contrast to adrenal steroid hormones that act on intracellular nuclear receptors, neurosteroids directly modulate plasma membrane ion channels and regulate intracellular signalling. This review provides an overview of the work that led to the discovery of neurosteroids, our current understanding of their intracellular biosynthetic machinery, and their roles in regulating the development and function of nervous tissue. Neurosteroids mediate signalling in the brain via multiple mechanisms. Here, we describe in detail their effects on GABA (inhibitory) and NMDA (excitatory) receptors, two signalling pathways of opposing function. Furthermore, emerging evidence points to altered neurosteroid function and signalling in neurological disease. This review focuses on neurodegenerative diseases associated with altered neurosteroid metabolism, mainly Niemann-Pick type C, multiple sclerosis and Alzheimer disease. Finally, we summarise the use of natural and synthetic neurosteroids as current and emerging therapeutics alongside their potential use as disease biomarkers.
Collapse
|
17
|
Ziolkowski L, Mordukhovich I, Chen DM, Chisari M, Shu HJ, Lambert PM, Qian M, Zorumski CF, Covey DF, Mennerick S. A neuroactive steroid with a therapeutically interesting constellation of actions at GABA A and NMDA receptors. Neuropharmacology 2021; 183:108358. [PMID: 33115614 PMCID: PMC7736525 DOI: 10.1016/j.neuropharm.2020.108358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022]
Abstract
Neuroactive steroids are an ascendant class of treatment for neuropsychiatric illness. Effects on ligand-gated neurotransmitter receptors appear to be a major mechanism of action. Here we describe a neuroactive steroid with a unique constellation of receptor actions. MQ-221 is a sulfated, 3β-hydroxy neurosteroid analogue that inhibits NMDAR function but also potentiates GABAAR function, thereby exhibiting unusual but potentially clinically desirable effects. Although the compound also exhibited features of other sulfated steroids, namely activation-dependent inhibition of GABAAR function, net potentiation dominated under physiological conditions. Potentiation of GABAAR function was distinct from the mechanism governing potentiation by anesthetic neurosteroids. Inhibition of NMDAR function showed weaker channel activation dependence than pregnanolone sulfate (3α5βPS). MQ-221 was unique among four stereoisomers explored in the pattern of effects at GABAA and NMDARs. Taken together, MQ-221 may represent a new class of compound with unique psychoactive effects and beneficial prospects for treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Luke Ziolkowski
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Isaac Mordukhovich
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel M Chen
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Mariangela Chisari
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Hong-Jin Shu
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Peter M Lambert
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Mingxing Qian
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas F Covey
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
18
|
Strong KL, Epplin MP, Ogden KK, Burger PB, Kaiser TM, Wilding TJ, Kusumoto H, Camp CR, Shaulsky G, Bhattacharya S, Perszyk RE, Menaldino DS, McDaniel MJ, Zhang J, Le P, Banke TG, Hansen KB, Huettner JE, Liotta DC, Traynelis SF. Distinct GluN1 and GluN2 Structural Determinants for Subunit-Selective Positive Allosteric Modulation of N-Methyl-d-aspartate Receptors. ACS Chem Neurosci 2021; 12:79-98. [PMID: 33326224 DOI: 10.1021/acschemneuro.0c00561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are ionotropic ligand-gated glutamate receptors that mediate fast excitatory synaptic transmission in the central nervous system (CNS). Several neurological disorders may involve NMDAR hypofunction, which has driven therapeutic interest in positive allosteric modulators (PAMs) of NMDAR function. Here we describe modest changes to the tetrahydroisoquinoline scaffold of GluN2C/GluN2D-selective PAMs that expands activity to include GluN2A- and GluN2B-containing recombinant and synaptic NMDARs. These new analogues are distinct from GluN2C/GluN2D-selective compounds like (+)-(3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (CIQ) by virtue of their subunit selectivity, molecular determinants of action, and allosteric regulation of agonist potency. The (S)-enantiomers of two analogues (EU1180-55, EU1180-154) showed activity at NMDARs containing all subunits (GluN2A, GluN2B, GluN2C, GluN2D), whereas the (R)-enantiomers were primarily active at GluN2C- and GluN2D-containing NMDARs. Determination of the actions of enantiomers on triheteromeric receptors confirms their unique pharmacology, with greater activity of (S) enantiomers at GluN2A/GluN2D and GluN2B/GluN2D subunit combinations than (R) enantiomers. Evaluation of the (S)-EU1180-55 and EU1180-154 response of chimeric kainate/NMDA receptors revealed structural determinants of action within the pore-forming region and associated linkers. Scanning mutagenesis identified structural determinants within the GluN1 pre-M1 and M1 regions that alter the activity of (S)-EU1180-55 but not (R)-EU1180-55. By contrast, mutations in pre-M1 and M1 regions of GluN2D perturb the actions of only the (R)-EU1180-55 but not the (S) enantiomer. Molecular modeling supports the idea that the (S) and (R) enantiomers interact distinctly with GluN1 and GluN2 pre-M1 regions, suggesting that two distinct sites exist for these NMDAR PAMs, each of which has different functional effects.
Collapse
Affiliation(s)
- Katie L. Strong
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew P. Epplin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Kevin K. Ogden
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Pieter B. Burger
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Thomas M. Kaiser
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Timothy J. Wilding
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri 63110, United States
| | - Hiro Kusumoto
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chad R. Camp
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Gil Shaulsky
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama 36849, United States
| | - Riley E. Perszyk
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - David S. Menaldino
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Miranda J. McDaniel
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jing Zhang
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Phuong Le
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Tue G. Banke
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Kasper B. Hansen
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
- Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, Division for Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - James E. Huettner
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri 63110, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen F. Traynelis
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Jorratt P, Hoschl C, Ovsepian SV. Endogenous antagonists of N-methyl-d-aspartate receptor in schizophrenia. Alzheimers Dement 2020; 17:888-905. [PMID: 33336545 DOI: 10.1002/alz.12244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a chronic neuropsychiatric brain disorder that has devastating personal impact and rising healthcare costs. Dysregulation of glutamatergic neurotransmission has been implicated in the pathobiology of the disease, attributed largely to the hypofunction of the N-methyl-d-aspartate (NMDA) receptor. Currently, there is a major gap in mechanistic analysis as to how endogenous modulators of the NMDA receptors contribute to the onset and progression of the disease. We present a systematic review of the neurobiology and the role of endogenous NMDA receptor antagonists in animal models of schizophrenia, and in patients. We discuss their neurochemical origin, release from neurons and glia with action mechanisms, and functional effects, which might contribute toward the impairment of neuronal processes underlying this complex pathological state. We consider clinical evidence suggesting dysregulations of endogenous NMDA receptor in schizophrenia, and highlight the pressing need in future studies and emerging directions, to restore the NMDA receptor functions for therapeutic benefits.
Collapse
Affiliation(s)
- Pascal Jorratt
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| |
Collapse
|
20
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|
21
|
Tang W, Liu D, Traynelis SF, Yuan H. Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders. Neuropharmacology 2020; 177:108247. [PMID: 32712275 DOI: 10.1016/j.neuropharm.2020.108247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/20/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) mediate a slow component of excitatory synaptic transmission that plays important roles in normal brain function and development. A large number of disease-associated variants in the GRIN gene family encoding NMDAR GluN subunits have been identified in patients with various neurological and neuropsychiatric disorders. Many of these variants reduce the function of NMDARs by a range of different mechanisms, including reduced glutamate potency, reduced glycine potency, accelerated deactivation time course, decreased surface expression, and/or reduced open probability. We have evaluated whether three positive allosteric modulators of NMDAR receptor function (24(S)-hydroxycholesterol, pregnenolone sulfate, tobramycin) and three co-agonists (d-serine, l-serine, and d-cycloserine) can mitigate the diminished function of NMDARs harboring GRIN variants. We examined the effects of these modulators on NMDARs that contained 21 different loss-of-function variants in GRIN1, GRIN2A, or GRIN2B, identified in patients with epilepsy, intellectual disability, autism, and/or movement disorders. For all variants, some aspect of the reduced function was partially restored. Moreover, some variants showed enhanced sensitivity to positive allosteric modulators compared to wild type receptors. These results raise the possibility that enhancement of NMDAR function by positive allosteric modulators may be a useful therapeutic strategy.
Collapse
Affiliation(s)
- Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ding Liu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
22
|
Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor. J Neurosci 2020; 40:5922-5936. [PMID: 32611707 DOI: 10.1523/jneurosci.3010-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) hypofunction has been implicated in several neurodevelopmental disorders. NMDAR function can be augmented by positive allosteric modulators, including endogenous compounds, such as cholesterol and neurosteroid pregnenolone sulfate (PES). Here we report that PES accesses the receptor via the membrane, and its binding site is different from that of cholesterol. Alanine mutagenesis has identified residues that disrupt the steroid potentiating effect at the rat GluN1 (G638; I642) and GluN2B (W559; M562; Y823; M824) subunit. Molecular dynamics simulation indicates that, in the absence of PES, the GluN2B M1 helix residue W559 interacts with the M4 helix residue M824. In the presence of PES, the M1 and M4 helices of agonist-activated receptor rearrange, forming a tighter interaction with the GluN1 M3 helix residues G638 and I642. This stabilizes the open-state position of the GluN1 M3 helices. Together, our data identify a likely binding site for the NMDAR-positive allosteric modulator PES and describe a novel molecular mechanism by which NMDAR activity can be augmented.SIGNIFICANCE STATEMENT There is considerable interest in drugs that enhance NMDAR function and could compensate for receptor hypofunction associated with certain neuropsychiatric disorders. Positive allosteric modulators of NMDARs include an endogenous neurosteroid pregnenolone sulfate (PES), but the binding site of PES on the NMDAR and the molecular mechanism of potentiation are unknown. We use patch-clamp electrophysiology in combination with mutagenesis and in silico modeling to describe the interaction of PES with the NMDAR. Our data indicate that PES binds to the transmembrane domain of the receptor at a discrete group of residues at the GluN2B membrane helices M1 and M4 and the GluN1 helix M3, and that PES potentiates NMDAR function by stabilizing the open-state position of the GluN1 M3 helices.
Collapse
|
23
|
Sun X, Zhang C, Guo H, Chen J, Tao Y, Wang F, Lin X, Liu Q, Su L, Qin A. Pregnenolone Inhibits Osteoclast Differentiation and Protects Against Lipopolysaccharide-Induced Inflammatory Bone Destruction and Ovariectomy-Induced Bone Loss. Front Pharmacol 2020; 11:360. [PMID: 32292342 PMCID: PMC7135856 DOI: 10.3389/fphar.2020.00360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
Osteolytic bone disease is characterized by excessive osteoclast bone resorption leading to increased skeletal fragility and fracture risk. Multinucleated osteoclasts formed through the fusion of mononuclear precursors are the principle cell capable of bone resorption. Pregnenolone (Preg) is the grand precursor of most if not all steroid hormones and have been suggested to be a novel anti-osteoporotic agent. However, the effects of Preg on osteoclast biology and function has yet to be shown. Here we examined the effect of Preg on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation and bone resorption in vitro, and potential therapeutic application in inflammatory bone destruction and bone loss in vivo. Our in vitro cellular assays demonstrated that Preg can inhibit the formation of TRAP+ve osteoclast formation as well as mature osteoclast bone resorption in a dose-dependent manner. The expression of osteoclast marker genes CTSK, TRAP, DC-STAMP, ATP6V0d2, and NFATc1 were markedly attenuated. Biochemical analyses of RANKL-induced signaling pathways showed that Preg inhibited the early activation of extracellular regulated protein kinases (ERK) mitogen-activated protein kinase (MAPK) and nuclear factor-κB, which consequently impaired the downstream induction of c-Fos and NFATc1. Using reactive oxygen species (ROS) detection assays, we found that Preg exhibits anti-oxidant properties inhibiting the generation of intracellular ROS following RANKL stimulation. Consistent with these in vitro results, we confirmed that Preg protected mice against local Lipopolysaccharide (LPS)-induced inflammatory bone destruction in vivo by suppressing osteoclast formation. Furthermore, we did not find any observable effect of Preg on osteoblastogenesis and mineralization in vitro. Finally Preg was administered to ovariectomy (OVX)-induced bone loss and demonstrated that Preg prevented systemic OVX-induced osteoporosis. Collectively, our observations provide strong evidence for the use of Preg as anti-osteoclastogenic and anti-resorptive agent for the potential treatment of osteolytic bone conditions.
Collapse
Affiliation(s)
- Xiaochen Sun
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huan Guo
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiao Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yali Tao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xixi Lin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - An Qin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Goldsmith PJ. NMDAR PAMs: Multiple Chemotypes for Multiple Binding Sites. Curr Top Med Chem 2019; 19:2239-2253. [PMID: 31660834 DOI: 10.2174/1568026619666191011095341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is a member of the ionotropic glutamate receptor (iGluR) family that plays a crucial role in brain signalling and development. NMDARs are nonselective cation channels that are involved with the propagation of excitatory neurotransmission signals with important effects on synaptic plasticity. NMDARs are functionally and structurally complex receptors, they exist as a family of subtypes each with its own unique pharmacological properties. Their implication in a variety of neurological and psychiatric conditions means they have been a focus of research for many decades. Disruption of NMDAR-related signalling is known to adversely affect higherorder cognitive functions (e.g. learning and memory) and the search for molecules that can recover (or even enhance) receptor output is a current strategy for CNS drug discovery. A number of positive allosteric modulators (PAMs) that specifically attempt to overcome NMDAR hypofunction have been discovered. They include various chemotypes that have been found to bind to several different binding sites within the receptor. The heterogeneity of chemotype, binding site and NMDAR subtype provide a broad landscape of ongoing opportunities to uncover new features of NMDAR pharmacology. Research on NMDARs continues to provide novel mechanistic insights into receptor activation and this review will provide a high-level overview of the research area and discuss the various chemical classes of PAMs discovered so far.
Collapse
Affiliation(s)
- Paul J Goldsmith
- Eli Lilly and Co. Ltd, Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, United Kingdom
| |
Collapse
|
25
|
Isoform-specific Inhibition of N-methyl-D-aspartate Receptors by Bile Salts. Sci Rep 2019; 9:10068. [PMID: 31296930 PMCID: PMC6624251 DOI: 10.1038/s41598-019-46496-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
The N-methyl-D-aspartate subfamily of ionotropic glutamate receptors (NMDARs) is well known for its important roles in the central nervous system (CNS), e.g. learning and memory formation. Besides the CNS, NMDARs are also expressed in numerous peripheral tissues including the pancreas, kidney, stomach, and blood cells, where an understanding of their physiological and pathophysiological roles is only evolving. Whereas subunit composition increases functional diversity of NMDARs, a great number of endogenous cues tune receptor signaling. Here, we characterized the effects of the steroid bile salts cholate and chenodeoxycholate (CDC) on recombinantly expressed NMDARs of defined molecular composition. CDC inhibited NMDARs in an isoform-dependent manner, preferring GluN2D and GluN3B over GluN2A and GluN2B receptors. Determined IC50 values were in the range of bile salt serum concentrations in severe cholestatic disease states, pointing at a putative pathophysiological significance of the identified receptor modulation. Both pharmacological and molecular simulation analyses indicate that CDC acts allosterically on GluN2D, whereas it competes with agonist binding on GluN3B receptors. Such differential modes of inhibition may allow isoform-specific targeted interference with the NMDAR/bile salt interaction. In summary, our study provides further molecular insight into the modulation of NMDARs by endogenous steroids and points at a putative pathophysiological role of the receptors in cholestatic disease.
Collapse
|
26
|
Burnell ES, Irvine M, Fang G, Sapkota K, Jane DE, Monaghan DT. Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action. J Med Chem 2019; 62:3-23. [PMID: 29446949 PMCID: PMC6368479 DOI: 10.1021/acs.jmedchem.7b01640] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Excitatory activity in the CNS is predominately mediated by l-glutamate through several families of l-glutamate neurotransmitter receptors. Of these, the N-methyl-d-aspartate receptor (NMDAR) family has many critical roles in CNS function and in various neuropathological and psychiatric conditions. Until recently, the types of compounds available to regulate NMDAR function have been quite limited in terms of mechanism of action, subtype selectivity, and biological effect. However, several new classes of NMDAR agents have now been identified that are positive or negative allosteric modulators (PAMs and NAMs, respectively) with various patterns of NMDAR subtype selectivity. These new agents act at several newly recognized binding sites on the NMDAR complex and offer significantly greater pharmacological control over NMDAR activity than previously available agents. The purpose of this review is to summarize the structure-activity relationships for these new NMDAR modulator drug classes and to describe the current understanding of their mechanisms of action.
Collapse
Affiliation(s)
- Erica S. Burnell
- Centre for Synaptic Plasticity, School of Physiology,
Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
- School of Chemistry, National University of Ireland Galway,
Galway H91TK33, Irelands
| | - Mark Irvine
- Centre for Synaptic Plasticity, School of Physiology,
Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Guangyu Fang
- Centre for Synaptic Plasticity, School of Physiology,
Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience,
University of Nebraska Medical Center, Omaha, NE 68198
| | - David E. Jane
- Centre for Synaptic Plasticity, School of Physiology,
Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Daniel T. Monaghan
- Department of Pharmacology and Experimental Neuroscience,
University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
27
|
Ratner MH, Kumaresan V, Farb DH. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front Endocrinol (Lausanne) 2019; 10:169. [PMID: 31024441 PMCID: PMC6465949 DOI: 10.3389/fendo.2019.00169] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Memory dysfunction is a symptomatic feature of many neurologic and neuropsychiatric disorders; however, the basic underlying mechanisms of memory and altered states of circuitry function associated with disorders of memory remain a vast unexplored territory. The initial discovery of endogenous neurosteroids triggered a quest to elucidate their role as neuromodulators in normal and diseased brain function. In this review, based on the perspective of our own research, the advances leading to the discovery of positive and negative neurosteroid allosteric modulators of GABA type-A (GABAA), NMDA, and non-NMDA type glutamate receptors are brought together in a historical and conceptual framework. We extend the analysis toward a state-of-the art view of how neurosteroid modulation of neural circuitry function may affect memory and memory deficits. By aggregating the results from multiple laboratories using both animal models for disease and human clinical research on neuropsychiatric and age-related neurodegenerative disorders, elements of a circuitry level view begins to emerge. Lastly, the effects of both endogenously active and exogenously administered neurosteroids on neural networks across the life span of women and men point to a possible underlying pharmacological connectome by which these neuromodulators might act to modulate memory across diverse altered states of mind.
Collapse
|
28
|
Offei SD, Arman HD, Baig MO, Chavez LS, Paladini CA, Yoshimoto FK. Chemical synthesis of 7-oxygenated 12α-hydroxy steroid derivatives to enable the biochemical characterization of cytochrome P450 8B1, the oxysterol 12α-hydroxylase enzyme implicated in cardiovascular health and obesity. Steroids 2018; 140:185-195. [PMID: 30399365 PMCID: PMC6249089 DOI: 10.1016/j.steroids.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
Cholic acid is the endogenous 12α-hydroxylated bile acid, which possesses enhanced cholesterol absorption properties compared to its 12-desoxy counterpart, chenodeoxycholic acid. The oxysterol 12α-hydroxylase enzyme is cytochrome P450 8B1 (P450 8B1), which regioselectively and stereoselectively incorporates the 12α-hydroxy group in 7α-hydroxycholest-4-en-3-one, the biosynthetic precursor of cholic acid. Despite the vital role of P450 8B1 activity in cardiovascular health, research studies of other 12α-hydroxy steroid derivatives are rare. A synthetic route to incorporate a C12α-hydroxy group into the C12-methylene (-CH2-) in dehydroepiandrosterone derivatives is disclosed. The incorporation of the C12-oxygen was accomplished through a copper mediated Schönecker oxidation of an imino-pyridine intermediate, introducing the 12β-hydroxy group. The resulting 12β-hydroxy steroid derivative was oxidized to the C12-ketone, which was stereoselectively reduced with lithium tri-sec-butylborohydride to afford the 12α-hydroxy stereochemistry. The C7-position was oxidized to yield the various 7-keto, 7β-hydroxy, and 7α-hydroxy derivatives. Furthermore, 7-ketodehydroepiandrosterone and 12 α-hydroxy-7-ketodehydroepiandrosterone both displayed NMDA receptor antagonistic activities at 10 μM concentrations. These C12α-hydroxy steroids will be used as tools to identify new biochemical properties of the enzymatic products of P450 8B1, the oxysterol 12α-hydroxylase.
Collapse
Affiliation(s)
- Samuel D Offei
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249-0698, United States
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249-0698, United States
| | - Mirza Oais Baig
- Department of Biology, UTSA Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX 78249-0698, United States
| | - Lazaro S Chavez
- Department of Biology, UTSA Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX 78249-0698, United States
| | - Carlos A Paladini
- Department of Biology, UTSA Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX 78249-0698, United States
| | - Francis K Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249-0698, United States.
| |
Collapse
|
29
|
Sapkota K, Dore K, Tang K, Irvine M, Fang G, Burnell ES, Malinow R, Jane DE, Monaghan DT. The NMDA receptor intracellular C-terminal domains reciprocally interact with allosteric modulators. Biochem Pharmacol 2018; 159:140-153. [PMID: 30503374 DOI: 10.1016/j.bcp.2018.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/28/2018] [Indexed: 11/27/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) have multiple prominent roles in CNS function but their excessive or insufficient activity contributes to neuropathological/psychiatric disorders. Consequently, a variety of positive and negative allosteric modulators (PAMs and NAMs, respectively) have recently been developed. Although these modulators bind to extracellular domains, in the present report we find that the NMDAR's intracellular C-terminal domains (CTDs) significantly influence PAM/NAM activity. GluN2 CTD deletion robustly affected NAM and PAM activity with both enhancing and inhibiting effects that were compound-specific and NMDAR subunit-specific. In three cases, individual PAMs became NAMs at specific GluN2-truncated receptors. In contrast to GluN2, GluN1 CTD removal only reduced PAM activity of UBP684 and CIQ, and did not affect NAM activity. Consistent with these findings, agents altering phosphorylation state or intracellular calcium levels displayed receptor-specific and compound-specific effects on PAM activity. It is possible that the GluN2's M4 domain transmits intracellular modulatory signals from the CTD to the M1/M4 channel gating machinery and that this site is a point of convergence in the direct or indirect actions of several PAMs/NAMs thus rendering them sensitive to CTD status. Thus, allosteric modulators are likely to have a marked and varied sensitivity to post-translational modifications, protein-protein associations, and intracellular ions. The interaction between PAM activity and NMDAR CTDs appears reciprocal. GluN1 CTD-deletion eliminated UBP684, but not pregnenolone sulfate (PS), PAM activity. And, in the absence of agonists, UBP684, but not PS, was able to promote movement of fluorescently-tagged GluN1-CTDs. Thus, it may be possible to pharmacologically target NMDAR metabotropic activity in the absence of channel activation.
Collapse
Affiliation(s)
- Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA 92093-0634, USA
| | - Kang Tang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Mark Irvine
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Guangyu Fang
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Erica S Burnell
- School of Chemistry, National University of Ireland Galway, Galway H91TK33, Ireland
| | - Roberto Malinow
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA 92093-0634, USA
| | - David E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
30
|
Chisari M, Wilding TJ, Brunwasser S, Krishnan K, Qian M, Benz A, Huettner JE, Zorumski CF, Covey DF, Mennerick S. Visualizing pregnenolone sulfate-like modulators of NMDA receptor function reveals intracellular and plasma-membrane localization. Neuropharmacology 2018; 144:91-103. [PMID: 30332607 DOI: 10.1016/j.neuropharm.2018.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/07/2018] [Accepted: 10/12/2018] [Indexed: 12/27/2022]
Abstract
Positive modulators of NMDA receptors are important candidates for therapeutic development to treat psychiatric disorders including autism and schizophrenia. Sulfated neurosteroids have been studied as positive allosteric modulators of NMDA receptors for years, but we understand little about the cellular fate of these compounds, an important consideration for drug development. Here we focus on a visualizable sulfated neurosteroid analogue, KK-169. As expected of a pregnenolone sulfate analogue, the compound strongly potentiates NMDA receptor function, is an antagonist of GABAA receptors, exhibits occlusion with pregnenolone sulfate potentiation, and requires receptor domains important for pregnenolone sulfate potentiation. KK-169 exhibits somewhat higher potency than the natural parent, pregnenolone sulfate. The analogue contains a side-chain alkyne group, which we exploited for retrospective click labeling of neurons. Although the anionic sulfate group is expected to hinder cell entry, we detected significant accumulation of KK-169 in neurons with even brief incubations. Adding a photolabile diazirine group revealed that the expected plasma membrane localization of KK-169 is likely lost during fixation. Overall, our studies reveal new facets of the structure-activity relationship of neurosteroids at NMDA receptors, and their intracellular distribution suggests that sulfated neurosteroids could have unappreciated targets in addition to plasma membrane receptors.
Collapse
Affiliation(s)
- Mariangela Chisari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy J Wilding
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Brunwasser
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mingxing Qian
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ann Benz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
31
|
Pinna G. Biomarkers for PTSD at the Interface of the Endocannabinoid and Neurosteroid Axis. Front Neurosci 2018; 12:482. [PMID: 30131663 PMCID: PMC6091574 DOI: 10.3389/fnins.2018.00482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 2018; 150:1081-1105. [PMID: 30037851 PMCID: PMC6080888 DOI: 10.1085/jgp.201812032] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Hansen et al. review recent structural data that have provided insight into the function and allosteric modulation of NMDA receptors. NMDA-type glutamate receptors are ligand-gated ion channels that mediate a Ca2+-permeable component of excitatory neurotransmission in the central nervous system (CNS). They are expressed throughout the CNS and play key physiological roles in synaptic function, such as synaptic plasticity, learning, and memory. NMDA receptors are also implicated in the pathophysiology of several CNS disorders and more recently have been identified as a locus for disease-associated genomic variation. NMDA receptors exist as a diverse array of subtypes formed by variation in assembly of seven subunits (GluN1, GluN2A-D, and GluN3A-B) into tetrameric receptor complexes. These NMDA receptor subtypes show unique structural features that account for their distinct functional and pharmacological properties allowing precise tuning of their physiological roles. Here, we review the relationship between NMDA receptor structure and function with an emphasis on emerging atomic resolution structures, which begin to explain unique features of this receptor.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Riley E Perszyk
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | - Hiro Furukawa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Lonnie P Wollmuth
- Departments of Neurobiology & Behavior and Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
33
|
Neurotransmitter, Peptide, and Steroid Hormone Abnormalities in PTSD: Biological Endophenotypes Relevant to Treatment. Curr Psychiatry Rep 2018; 20:52. [PMID: 30019147 DOI: 10.1007/s11920-018-0908-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review summarizes neurotransmitter, peptide, and other neurohormone abnormalities associated with posttraumatic stress disorder (PTSD) and relevant to development of precision medicine therapeutics for PTSD. RECENT FINDINGS As the number of molecular abnormalities associated with PTSD across a variety of subpopulations continues to grow, it becomes clear that no single abnormality characterizes all individuals with PTSD. Instead, individually variable points of molecular dysfunction occur within several different stress-responsive systems that interact to produce the clinical PTSD phenotype. Future work should focus on critical interactions among the systems that influence PTSD risk, severity, chronicity, comorbidity, and response to treatment. Effort also should be directed toward development of clinical procedures by which points of molecular dysfunction within these systems can be identified in individual patients. Some molecular abnormalities are more common than others and may serve as subpopulation biological endophenotypes for targeting of currently available and novel treatments.
Collapse
|
34
|
Schverer M, Lanfumey L, Baulieu EE, Froger N, Villey I. Neurosteroids: non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacol Ther 2018; 191:190-206. [PMID: 29953900 DOI: 10.1016/j.pharmthera.2018.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurosteroids are neuroactive brain-born steroids. They can act through non-genomic and/or through genomic pathways. Genomic pathways are largely described for steroid hormones: the binding to nuclear receptors leads to transcription regulation. Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone have no corresponding nuclear receptor identified so far whereas some of their non-genomic targets have been identified. Neuroplasticity is the capacity that neuronal networks have to change their structure and function in response to biological and/or environmental signals; it is regulated by several mechanisms, including those that involve neurosteroids. In this review, after a description of their biosynthesis, the effects of Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone on their targets will be exposed. We then shall highlight that neurosteroids, by acting on these targets, can regulate neurogenesis, structural and functional plasticity. Finally, we will discuss the therapeutic potential of neurosteroids in the pathophysiology of neurological diseases in which alterations of neuroplasticity are associated with changes in neurosteroid levels.
Collapse
Affiliation(s)
- Marina Schverer
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France
| | - Laurence Lanfumey
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France.
| | - Etienne-Emile Baulieu
- MAPREG SAS, Le Kremlin-Bicêtre, France; Inserm UMR 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | | | |
Collapse
|
35
|
Rajagopal L, Soni D, Meltzer HY. Neurosteroid pregnenolone sulfate, alone, and as augmentation of lurasidone or tandospirone, rescues phencyclidine-induced deficits in cognitive function and social interaction. Behav Brain Res 2018; 350:31-43. [PMID: 29763637 DOI: 10.1016/j.bbr.2018.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pregnenolone sulfate (PregS), an endogenous neurosteroid, which negatively and positively modulates gamma amino butyric acid subunit A (GABAA) and N-methyl D-aspartate (NMDA) receptors (R) respectively, among other potential neuroplastic changes on synaptic processes, has shown some beneficial effects on treating cognitive impairment associated with schizophrenia (CIAS) and negative symptoms. Lurasidone (Lur), an atypical antipsychotic drug (AAPD), and tandospirone (Tan), a 5-HT1A R partial agonist, have also been reported to improve cognitive or negative symptoms, or both, in some schizophrenia patients. METHODS We tested whether PregS, by itself, and in combination with Lur or Tan could rescue persistent deficits produced by subchronic treatment with the NMDAR antagonist, phencyclidine (PCP)-in episodic memory, executive functioning, and social behavior, using novel object recognition (NOR), operant reversal learning (ORL), and social interaction (SI) tasks, in male C57BL/6 J mice. RESULTS PregS (10, but not 3 mg/kg) significantly rescued subchronic PCP-induced NOR and SI deficits. Co-administration of sub-effective doses (SEDs) of PregS (3 mg/kg) + Lur (0.1 mg/kg) or Tan (0.03 mg/kg) rescued scPCP-induced NOR and SI deficits. Further, PregS (30, but not 10 mg/kg) rescued PCP-induced ORL deficit, as did the combination of SED PregS (10 mg/kg) +SED Lur (1 mg/kg) or Tan (1 mg/kg). CONCLUSION PregS was effective alone and as adjunctive treatment for treating two types of cognitive impairments and negative symptoms in this schizophrenia model. Further study of the mechanisms by which PregS alone and in combination with AAPDs and 5-HT1A R partial agonists, rescues the deficits in cognition and SI in this preclinical model is indicated.
Collapse
Affiliation(s)
- L Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA
| | - D Soni
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA.
| |
Collapse
|
36
|
Perszyk R, Katzman BM, Kusumoto H, Kell SA, Epplin MP, Tahirovic YA, Moore RL, Menaldino D, Burger P, Liotta DC, Traynelis SF. An NMDAR positive and negative allosteric modulator series share a binding site and are interconverted by methyl groups. eLife 2018; 7:34711. [PMID: 29792594 PMCID: PMC5967867 DOI: 10.7554/elife.34711] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/28/2018] [Indexed: 12/30/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are an important receptor in the brain and have been implicated in multiple neurological disorders. Many non-selective NMDAR-targeting drugs are poorly tolerated, leading to efforts to target NMDAR subtypes to improve the therapeutic index. We describe here a series of negative allosteric NMDAR modulators with submaximal inhibition at saturating concentrations. Modest changes to the chemical structure interconvert negative and positive modulation. All modulators share the ability to enhance agonist potency and are use-dependent, requiring the binding of both agonists before modulators act with high potency. Data suggest that these modulators, including both enantiomers, bind to the same site on the receptor and share structural determinants of action. Due to the modulator properties, submaximal negative modulators in this series may spare NMDAR at the synapse, while augmenting the response of NMDAR in extrasynaptic spaces. These modulators could serve as useful tools to probe the role of extrasynaptic NMDARs.
Collapse
Affiliation(s)
- Riley Perszyk
- Department of Pharmacology, Emory University, Atlanta, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Effect of developmental NMDAR antagonism with CGP 39551 on aspartame-induced hypothalamic and adrenal gene expression. PLoS One 2018; 13:e0194416. [PMID: 29561882 PMCID: PMC5862471 DOI: 10.1371/journal.pone.0194416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/04/2018] [Indexed: 01/16/2023] Open
Abstract
Rationale Aspartame (L-aspartyl phenylalanine methyl ester) is a non-nutritive sweetener (NNS) approved for use in more than 6000 dietary products and pharmaceuticals consumed by the general public including adults and children, pregnant and nursing mothers. However a recent prospective study reported a doubling of the risk of being overweight amongst 1-year old children whose mothers consumed NNS-sweetened beverages daily during pregnancy. We have previously shown that chronic aspartame (ASP) exposure commencing in utero may detrimentally affect adulthood adiposity status, glucose metabolism and aspects of behavior and spatial cognition, and that this can be modulated by developmental N-methyl-D-aspartate receptor (NMDAR) blockade with the competitive antagonist CGP 39551 (CGP). Since glucose homeostasis and certain aspects of behavior and locomotion are regulated in part by the NMDAR-rich hypothalamus, which is part of the hypothalamic-pituitary-adrenal- (HPA) axis, we have elected to examine changes in hypothalamic and adrenal gene expression in response to ASP exposure in the presence or absence of developmental NMDAR antagonism with CGP, using Affymetrix microarray analysis. Results Using 2-factor ANOVA we identified 189 ASP-responsive differentially expressed genes (DEGs) in the adult male hypothalamus and 2188 in the adrenals, and a further 23 hypothalamic and 232 adrenal genes significantly regulated by developmental treatment with CGP alone. ASP exposure robustly elevated the expression of a network of genes involved in hypothalamic neurosteroidogenesis, together with cell stress and inflammatory genes, consistent with previous reports of aspartame-induced CNS stress and oxidative damage. These genes were not differentially expressed in ASP mice with CGP antagonism. In the adrenal glands of ASP-exposed mice, GABA and Glutamate receptor subunit genes were amongst those most highly upregulated. Developmental NMDAR antagonism alone had less effect on adulthood gene expression and affected mainly hypothalamic neurogenesis and adrenal steroid metabolism. Combined ASP + CGP treatment mainly upregulated genes involved in adrenal drug and cholesterol metabolism. Conclusion ASP exposure increased the expression of functional networks of genes involved in hypothalamic neurosteroidogenesis and adrenal catecholamine synthesis, patterns of expression which were not present in ASP-exposed mice with developmental NMDAR antagonism.
Collapse
|
38
|
Rebas E, Radzik T, Boczek T, Zylinska L. Calcium-engaged Mechanisms of Nongenomic Action of Neurosteroids. Curr Neuropharmacol 2017; 15:1174-1191. [PMID: 28356049 PMCID: PMC5725547 DOI: 10.2174/1570159x15666170329091935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/01/1970] [Accepted: 03/25/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Neurosteroids form the unique group because of their dual mechanism of action. Classically, they bind to specific intracellular and/or nuclear receptors, and next modify genes transcription. Another mode of action is linked with the rapid effects induced at the plasma membrane level within seconds or milliseconds. The key molecules in neurotransmission are calcium ions, thereby we focus on the recent advances in understanding of complex signaling crosstalk between action of neurosteroids and calcium-engaged events. METHODS Short-time effects of neurosteroids action have been reviewed for GABAA receptor complex, glycine receptor, NMDA receptor, AMPA receptor, G protein-coupled receptors and sigma-1 receptor, as well as for several membrane ion channels and plasma membrane enzymes, based on available published research. RESULTS The physiological relevance of neurosteroids results from the fact that they can be synthesized and accumulated in the central nervous system, independently from peripheral sources. Fast action of neurosteroids is a prerequisite for genomic effects and these early events can significantly modify intracellular downstream signaling pathways. Since they may exert either positive or negative effects on calcium homeostasis, their role in monitoring of spatio-temporal Ca2+ dynamics, and subsequently, Ca2+-dependent physiological processes or initiation of pathological events, is evident. CONCLUSION Neurosteroids and calcium appear to be the integrated elements of signaling systems in neuronal cells under physiological and pathological conditions. A better understanding of cellular and molecular mechanisms of nongenomic, calcium-engaged neurosteroids action could open new ways for therapeutic interventions aimed to restore neuronal function in many neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Elzbieta Rebas
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Poland
| | - Tomasz Radzik
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Poland
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Poland
- Boston Children’s Hospital and Harvard Medical School, Boston, USA
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Poland
| |
Collapse
|
39
|
Guo H, Camargo LM, Yeboah F, Digan ME, Niu H, Pan Y, Reiling S, Soler-Llavina G, Weihofen WA, Wang HR, Shanker YG, Stams T, Bill A. A NMDA-receptor calcium influx assay sensitive to stimulation by glutamate and glycine/D-serine. Sci Rep 2017; 7:11608. [PMID: 28912557 PMCID: PMC5599507 DOI: 10.1038/s41598-017-11947-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
N-methyl-D-aspartate-receptors (NMDARs) are ionotropic glutamate receptors that function in synaptic transmission, plasticity and cognition. Malfunction of NMDARs has been implicated in a variety of nervous system disorders, making them attractive therapeutic targets. Overexpression of functional NMDAR in non-neuronal cells results in cell death by excitotoxicity, hindering the development of cell-based assays for NMDAR drug discovery. Here we report a plate-based, high-throughput approach to study NMDAR function. Our assay enables the functional study of NMDARs with different subunit composition after activation by glycine/D-serine or glutamate and hence presents the first plate-based, high throughput assay that allows for the measurement of NMDAR function in glycine/D-serine and/or glutamate sensitive modes. This allows to investigate the effect of small molecule modulators on the activation of NMDARs at different concentrations or combinations of the co-ligands. The reported assay system faithfully replicates the pharmacology of the receptor in response to known agonists, antagonists, positive and negative allosteric modulators, as well as the receptor’s sensitivity to magnesium and zinc. We believe that the ability to study the biology of NMDARs rapidly and in large scale screens will enable the identification of novel therapeutics whose discovery has otherwise been hindered by the limitations of existing cell based approaches.
Collapse
Affiliation(s)
- Hongqiu Guo
- Novartis Institutes of Biomedical Research, Chemical Biology and Therapeutics, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - L Miguel Camargo
- Novartis Institutes of Biomedical Research, Chemical Biology and Therapeutics, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Fred Yeboah
- Novartis Institutes of Biomedical Research, Chemical Biology and Therapeutics, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Mary Ellen Digan
- Novartis Institutes of Biomedical Research, Chemical Biology and Therapeutics, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Honglin Niu
- Novartis Institutes of Biomedical Research, Chemical Biology and Therapeutics, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Yue Pan
- Novartis Institutes of Biomedical Research, Global Discovery Chemistry, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stephan Reiling
- Novartis Institutes of Biomedical Research, Chemical Biology and Therapeutics, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Gilberto Soler-Llavina
- Novartis Institutes of Biomedical Research, Neuroscience, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Wilhelm A Weihofen
- Novartis Institutes of Biomedical Research, Chemical Biology and Therapeutics, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Hao-Ran Wang
- Novartis Institutes of Biomedical Research, Chemical Biology and Therapeutics, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Y Gopi Shanker
- Novartis Institutes of Biomedical Research, Neuroscience, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Travis Stams
- Novartis Institutes of Biomedical Research, Chemical Biology and Therapeutics, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Anke Bill
- Novartis Institutes of Biomedical Research, Chemical Biology and Therapeutics, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
40
|
Sapkota K, Irvine MW, Fang G, Burnell ES, Bannister N, Volianskis A, Culley GR, Dravid SM, Collingridge GL, Jane DE, Monaghan DT. Mechanism and properties of positive allosteric modulation of N-methyl-d-aspartate receptors by 6-alkyl 2-naphthoic acid derivatives. Neuropharmacology 2017; 125:64-79. [PMID: 28709671 DOI: 10.1016/j.neuropharm.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/14/2017] [Accepted: 07/09/2017] [Indexed: 01/27/2023]
Abstract
The theory that N-methyl-d-aspartate receptor (NMDAR) hypofunction is responsible for the symptoms of schizophrenia is well supported by many pharmacological and genetic studies. Accordingly, positive allosteric modulators (PAMs) that augment NMDAR signaling may be useful for treating schizophrenia. Previously we have identified several NMDAR PAMs containing a carboxylic acid attached to naphthalene, phenanthrene, or coumarin ring systems. In this study, we describe several functional and mechanistic properties of UBP684, a 2-naphthoic acid derivative, which robustly potentiates agonist responses at each of the four GluN1a/GluN2 receptors and at neuronal NMDARs. UBP684 increases the maximal l-glutamate/glycine response while having minor subunit-specific effects on agonist potency. PAM binding is independent of agonist binding, and PAM activity is independent of membrane voltage, redox state, and the GluN1 exon 5 N-terminal insert. UBP684 activity is, however, markedly pH-dependent, with greater potentiation occurring at lower pHs and inhibitory activity at pH 8.4. UBP684 increases channel open probability (Po) and slows receptor deactivation time upon removal of l-glutamate, but not glycine. The structurally related PAM, UBP753, reproduced most of these findings, but did not prolong agonist removal deactivation time. Studies using cysteine mutants to lock the GluN1 and GluN2 ligand-binding domains (LBDs) in the agonist-bound states indicate that PAM potentiation requires GluN2 LBD conformational flexibility. Together, these findings suggest that UBP684 and UBP753 stabilize the GluN2 LBD in an active conformation and thereby increase Po. Thus, UBP684 and UBP753 may serve as lead compounds for developing agents to enhance NMDAR activity in disorders associated with NMDAR hypofunction.
Collapse
Affiliation(s)
- Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Mark W Irvine
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Guangyu Fang
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Erica S Burnell
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Neil Bannister
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Arturas Volianskis
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Georgia R Culley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | - Graham L Collingridge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
41
|
Strong KL, Epplin MP, Bacsa J, Butch CJ, Burger PB, Menaldino DS, Traynelis SF, Liotta DC. The Structure-Activity Relationship of a Tetrahydroisoquinoline Class of N-Methyl-d-Aspartate Receptor Modulators that Potentiates GluN2B-Containing N-Methyl-d-Aspartate Receptors. J Med Chem 2017; 60:5556-5585. [PMID: 28586221 DOI: 10.1021/acs.jmedchem.7b00239] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have identified a series of positive allosteric NMDA receptor (NMDAR) modulators derived from a known class of GluN2C/D-selective tetrahydroisoquinoline analogues that includes CIQ. The prototypical compound of this series contains a single isopropoxy moiety in place of the two methoxy substituents present in CIQ. Modifications of this isopropoxy-containing scaffold led to the identification of analogues with enhanced activity at the GluN2B subunit. We identified molecules that potentiate the response of GluN2B/GluN2C/GluN2D, GluN2B/GluN2C, and GluN2C/GluN2D-containing NMDARs to maximally effective concentrations of agonist. Multiple compounds potentiate the response of NMDARs with submicromolar EC50 values. Analysis of enantiomeric pairs revealed that the S-(-) enantiomer is active at the GluN2B, GluN2C, and/or GluN2D subunits, whereas the R-(+) enantiomer is only active at GluN2C/D subunits. These results provide a starting point for the development of selective positive allosteric modulators for GluN2B-containing receptors.
Collapse
Affiliation(s)
- Katie L Strong
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew P Epplin
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christopher J Butch
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States.,Earth-Life Science Institute, Tokyo Institute of Technology , Meguro-ku, Tokyo Japan
| | - Pieter B Burger
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - David S Menaldino
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University , 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Dennis C Liotta
- Department of Pharmacology, Emory University , 1510 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
42
|
Locci A, Pinna G. Neurosteroid biosynthesis down-regulation and changes in GABA A receptor subunit composition: a biomarker axis in stress-induced cognitive and emotional impairment. Br J Pharmacol 2017; 174:3226-3241. [PMID: 28456011 DOI: 10.1111/bph.13843] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022] Open
Abstract
By rapidly modulating neuronal excitability, neurosteroids regulate physiological processes, such as responses to stress and development. Excessive stress affects their biosynthesis and causes an imbalance in cognition and emotions. The progesterone derivative, allopregnanolone (Allo) enhances extrasynaptic and postsynaptic inhibition by directly binding at GABAA receptors, and thus, positively and allosterically modulates the function of GABA. Allo levels are decreased in stress-induced psychiatric disorders, including depression and post-traumatic stress disorder (PTSD), and elevating Allo levels may be a valid therapeutic approach to counteract behavioural dysfunction. While benzodiazepines are inefficient, selective serotonin reuptake inhibitors (SSRIs) represent the first choice treatment for depression and PTSD. Their mechanisms to improve behaviour in preclinical studies include neurosteroidogenic effects at low non-serotonergic doses. Unfortunately, half of PTSD and depressed patients are resistant to current prescribed 'high' dosage of these drugs that engage serotonergic mechanisms. Unveiling novel biomarkers to develop more efficient treatment strategies is in high demand. Stress-induced down-regulation of neurosteroid biosynthesis and changes in GABAA receptor subunit expression offer a putative biomarker axis to develop new PTSD treatments. The advantage of stimulating Allo biosynthesis relies on the variety of neurosteroidogenic receptors to be targeted, including TSPO and endocannabinoid receptors. Furthermore, stress favours a GABAA receptor subunit composition with higher sensitivity for Allo. The use of synthetic analogues of Allo is a valuable alternative. Pregnenolone or drugs that stimulate its levels increase Allo but also sulphated steroids, including pregnanolone sulphate which, by inhibiting NMDA tonic neurotransmission, provides neuroprotection and cognitive benefits. In this review, we describe current knowledge on the effects of stress on neurosteroid biosynthesis and GABAA receptor neurotransmission and summarize available pharmacological strategies that by enhancing neurosteroidogenesis are relevant for the treatment of SSRI-resistant patients. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
43
|
Rasmusson AM, Marx CE, Pineles SL, Locci A, Scioli-Salter ER, Nillni YI, Liang JJ, Pinna G. Neuroactive steroids and PTSD treatment. Neurosci Lett 2017; 649:156-163. [PMID: 28215878 DOI: 10.1016/j.neulet.2017.01.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
This review highlights early efforts to translate pre-clinical and clinical findings regarding the role of neuroactive steroids in stress adaptation and PTSD into new therapeutics for PTSD. Numerous studies have demonstrated PTSD-related alterations in resting levels or the reactivity of neuroactive steroids and their targets. These studies also have demonstrated substantial variability in the dysfunction of specific neuroactive steroid systems among PTSD subpopulations. These variabilities have been related to the developmental timing of trauma, severity and type of trauma, genetic background, sex, reproductive state, lifestyle influences such as substance use and exercise, and the presence of comorbid conditions such as depression and chronic pain. Nevertheless, large naturalistic studies and a small placebo-controlled interventional study have revealed generally positive effects of glucocorticoid administration in preventing PTSD after trauma, possibly mediated by glucocorticoid receptor-mediated effects on other targets that impact PTSD risk, including other neuroactive steroid systems. In addition, clinical and preclinical studies show that administration of glucocorticoids, 17β-estradiol, and GABAergic neuroactive steroids or agents that enhance their synthesis can facilitate extinction and extinction retention, depending on dose and timing of dose in relation to these complex PTSD-relevant recovery processes. This suggests that clinical trials designed to test neuroactive steroid therapeutics in PTSD may benefit from such considerations; typical continuous dosing regimens may not be optimal. In addition, validated and clinically accessible methods for identifying specific neuroactive steroid system abnormalities at the individual level are needed to optimize both clinical trial design and precision medicine based treatment targeting.
Collapse
Affiliation(s)
- Ann M Rasmusson
- National Center for PTSD, Women's Health Science Division, Department of Veterans Affairs 150 South Huntington Avenue, Boston, MA 02135, USA; VA Boston Healthcare System 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA.
| | - Christine E Marx
- Durham VA Medical Center, VA Mid-Atlantic MIRECC,and Duke University Medical Center, 508 Fulton Street, Durham, NC 27705, USA
| | - Suzanne L Pineles
- National Center for PTSD, Women's Health Science Division, Department of Veterans Affairs 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
| | - Erica R Scioli-Salter
- VA Boston Healthcare System 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Yael I Nillni
- National Center for PTSD, Women's Health Science Division, Department of Veterans Affairs 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Jennifer J Liang
- Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
| |
Collapse
|
44
|
Nakazawa K, Jeevakumar V, Nakao K. Spatial and temporal boundaries of NMDA receptor hypofunction leading to schizophrenia. NPJ SCHIZOPHRENIA 2017; 3:7. [PMID: 28560253 PMCID: PMC5441533 DOI: 10.1038/s41537-016-0003-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
The N-methyl-d-aspartate receptor hypofunction is one of the most prevalent models of schizophrenia. For example, healthy subjects treated with uncompetitive N-methyl-d-aspartate receptor antagonists elicit positive, negative, and cognitive-like symptoms of schizophrenia. Patients with anti-N-methyl-d-aspartate receptor encephalitis, which is likely caused by autoantibody-mediated down-regulation of cell surface N-methyl-d-aspartate receptors, often experience psychiatric symptoms similar to schizophrenia initially. However, where and when N-methyl-d-aspartate receptor hypofunction occurs in the brain of schizophrenic patients is poorly understood. Here we review the findings from N-methyl-d-aspartate receptor antagonist and autoantibody models, postmortem studies on N-methyl-d-aspartate receptor subunits, as well as the global and cell-type-specific knockout mouse models of subunit GluN1. We compare various conditional GluN1 knockout mouse strains, focusing on the onset of N-methyl-d-aspartate receptor deletion and on the cortical cell-types. Based on these results, we hypothesize that N-methyl-d-aspartate receptor hypofunction initially occurs in cortical GABAergic neurons during early postnatal development. The resulting GABA neuron maturation deficit may cause reduction of intrinsic excitability and GABA release, leading to disinhibition of pyramidal neurons. The cortical disinhibition in turn could elicit glutamate spillover and subsequent homeostatic down regulation of N-methyl-d-aspartate receptor function in pyramidal neurons in prodromal stage. These two temporally-distinct N-methyl-d-aspartate receptor hypofunctions may be complimentary, as neither alone may not be able to fully explain the entire schizophrenia pathophysiology. Potential underlying mechanisms for N-methyl-d-aspartate receptor hypofunction in cortical GABA neurons are also discussed, based on studies of naturally-occurring N-methyl-d-aspartate receptor antagonists, neuregulin/ErbB4 signaling pathway, and theoretical analysis of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Kazu Nakazawa
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Vivek Jeevakumar
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Kazuhito Nakao
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
45
|
Hackos DH, Hanson JE. Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacology 2016; 112:34-45. [PMID: 27484578 DOI: 10.1016/j.neuropharm.2016.07.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
NMDA Receptors (NMDARs) play key roles in synaptic physiology and NMDAR hypofunction has been implicated in various neurological conditions. In recent years an increasing number of positive allosteric modulators (PAMs) of NMDARs have been discovered and characterized. These diverse PAM classes vary not only in their binding sites and GluN2 subunit selectivity profiles, but also in the nature of their impacts on channel function. Major differences exist in the degree of slowing of channel deactivation and shifting of apparent agonist affinity between different classes of PAMs. Here we review the diverse modes of potentiation by the currently known classes of NMDAR PAMs and discuss the potential consequences of different types of potentiation in terms of desirable and undesirable effects on brain function. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- David H Hackos
- Department of Neuroscience, 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Jesse E Hanson
- Department of Neuroscience, 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
46
|
Mazzo F, Zwart R, Serratto GM, Gardinier KM, Porter W, Reel J, Maraula G, Sher E. Reconstitution of synaptic Ion channels from rodent and human brain in Xenopus oocytes: a biochemical and electrophysiological characterization. J Neurochem 2016; 138:384-96. [PMID: 27216696 DOI: 10.1111/jnc.13675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/10/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Abstract
Disruption in the expression and function of synaptic proteins, and ion channels in particular, is critical in the pathophysiology of human neuropsychiatric and neurodegenerative diseases. However, very little is known regarding the functional and pharmacological properties of native synaptic human ion channels, and their potential changes in pathological conditions. Recently, an electrophysiological technique has been enabled for studying the functional and pharmacological properties of ion channels present in crude membrane preparation obtained from post-mortem frozen brains. We here extend these studies by showing that human synaptic ion channels also can be studied in this way. Synaptosomes purified from different regions of rodent and human brain (control and Alzheimer's) were characterized biochemically for enrichment of synaptic proteins, and expression of ion channel subunits. The same synaptosomes were also reconstituted in Xenopus oocytes, in which the functional and pharmacological properties of the native synaptic ion channels were characterized using the voltage clamp technique. We show that we can detect GABA, (RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and NMDA receptors, and modulate them pharmacologically with selective agonists, antagonists, and allosteric modulators. Furthermore, changes in ion channel expression and function were detected in synaptic membranes from Alzheimer's brains. Our present results demonstrate the possibility to investigate synaptic ion channels from healthy and pathological brains. This method of synaptosomes preparation and injection into oocytes is a significant improvement over the earlier method. It opens the way to directly testing, on native ion channels, the effects of novel drugs aimed at modulating important classes of synaptic targets. Disruption in the expression and function of synaptic ion channels is critical in the pathophysiology of human neurodegenerative diseases. We here show that synaptosomes purified from rodent and human frozen brain (control and Alzheimer disease) can be studied both biochemically and functionally. This method opens the way to directly testing the effects of novel drugs on native ion channels.
Collapse
Affiliation(s)
- Francesca Mazzo
- Lilly Research Centre, Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6HP, UK
| | - Ruud Zwart
- Lilly Research Centre, Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6HP, UK
| | - Giulia Maia Serratto
- Lilly Research Centre, Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6HP, UK
| | - Kevin M Gardinier
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Warren Porter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Jon Reel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Giovanna Maraula
- Lilly Research Centre, Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6HP, UK
| | - Emanuele Sher
- Lilly Research Centre, Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6HP, UK
| |
Collapse
|
47
|
Vaňková M, Hill M, Velíková M, Včelák J, Vacínová G, Dvořáková K, Lukášová P, Vejražková D, Rusina R, Holmerová I, Jarolímová E, Vaňková H, Kancheva R, Bendlová B, Stárka L. Preliminary evidence of altered steroidogenesis in women with Alzheimer's disease: Have the patients "OLDER" adrenal zona reticularis? J Steroid Biochem Mol Biol 2016; 158:157-177. [PMID: 26704533 DOI: 10.1016/j.jsbmb.2015.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) represents more than half of total dementias. Various factors including altered steroid biosynthesis may participate in its pathophysiology. We investigated how the circulating steroids (measured by GC-MS and RIA) may be altered in the presence of AD. Sixteen women with AD and 22 age- and BMI-corresponding controls aged over 65 years were enrolled in the study. The steroid levels (47 steroids and steroid polar conjugates) and their ratios in AD female patients indicated increased CYP11A1 activity, weakened activity of the CYP17A1C17,20 lyase metabolic step and attenuated sulfotransferase SULT2A1 activity at higher activity of the CYP17A1 17-hydroxylase step. The patients showed diminished HSD3B2 activity for C21 steroids, abated conversion of 17-hydroxyprogesterone to cortisol, and significantly elevated cortisol. The women with AD had also attenuated steroid 7α-hydroxylation forming immunoprotective Δ(5)-C19 steroids, attenuated aromatase activity forming estradiol that induces autoimmunity and a shift from the 3β-hydroxy-5α/β-reduced C19 steroids to their neuroinhibitory and antiinflammatory GABAergic 3α-hydroxy- counterparts and showed higher levels of the 3α-hydroxy-5α/β-reduced C21 steroids and pregnenolone sulfate (improves cognitive abilities but may be both protective and excitotoxic). Our preliminary data indicated functioning of alternative "backdoor" pathway in women with AD showing higher levels of both 5α/β-reduced C21 steroids but reduced levels of both 5α/β-reduced C21 steroids, which implied that the alternative "backdoor" pathway might include both 5α- and 5β-reduced steroids. Our study suggested relationships between AD status in women based on the age of subjects and levels of 10 steroids measured by GC-MS.
Collapse
Affiliation(s)
- Markéta Vaňková
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Marta Velíková
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Josef Včelák
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Gabriela Vacínová
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | | | - Petra Lukášová
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | | | - Robert Rusina
- Department of Neurology, Thomayer's Hospital, Vídeňská 800, Prague 140 59, Czech Republic.
| | - Iva Holmerová
- Faculty of Humanities, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic.
| | - Eva Jarolímová
- Faculty of Humanities, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic.
| | - Hana Vaňková
- Faculty of Humanities, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic; Third Faculty of Medicine, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic.
| | - Radmila Kancheva
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Běla Bendlová
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Luboslav Stárka
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| |
Collapse
|
48
|
Rahmani B, Ghasemi R, Dargahi L, Ahmadiani A, Haeri A. Neurosteroids; potential underpinning roles in maintaining homeostasis. Gen Comp Endocrinol 2016; 225:242-250. [PMID: 26432100 DOI: 10.1016/j.ygcen.2015.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
The neuroactive steroids which are synthesized in the brain and nervous system are known as "Neurosteroids". These steroids have crucial functions such as contributing to the myelination and organization of the brain connectivity. Under the stressful circumstances, the concentrations of neurosteroid products such as allopregnanolone (ALLO) and allotetrahydrodeoxycorticosterone (THDOC) alter. It has been suggested that these stress-derived neurosteroids modulate the physiological response to stress. Moreover, it has been demonstrated that the hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological adaptation following stress in order to maintain homeostasis. Although several regulatory pathways have been introduced, the exact role of neurosteroids in controlling HPA axis is not clear to date. In this review, we intend to discern specific pathways associated with regulation of HPA axis in which neuroactive steroids have the main role. In this respect, we propose pathways that may be initiated after neurosteroidogenesis in different brain subregions following acute stress which are potentially capable of activating or inhibiting the HPA axis.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Haeri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Chopra DA, Monaghan DT, Dravid SM. Bidirectional Effect of Pregnenolone Sulfate on GluN1/GluN2A N-Methyl-D-Aspartate Receptor Gating Depending on Extracellular Calcium and Intracellular Milieu. Mol Pharmacol 2015; 88:650-9. [PMID: 26162866 DOI: 10.1124/mol.115.100396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/10/2015] [Indexed: 01/30/2023] Open
Abstract
Pregnenolone sulfate (PS), one of the most commonly occurring neurosteroids in the central nervous system, influences the function of several receptors. PS modulates N-methyl-D-aspartate receptors (NMDARs) and has been shown to have both positive and negative modulatory effects on NMDAR currents generally in a subtype-selective manner. We assessed the gating mechanism of PS modulation of GluN1/GluN2A receptors transiently expressed in human embryonic kidney 293 cells using whole-cell and single-channel electrophysiology. Only a modest effect on the whole-cell responses was observed by PS in dialyzed (nonperforated) whole-cell recordings. Interestingly, in perforated conditions, PS was found to increase the whole-cell currents in the absence of nominal extracellular Ca(2+), whereas PS produced an inhibition of the current responses in the presence of 0.5 mM extracellular Ca(2+). The Ca(2+)-binding DRPEER motif and GluN1 exon-5 were found to be critical for the Ca(2+)-dependent bidirectional effect of PS. Single-channel cell-attached analysis demonstrated that PS primarily affected the mean open time to produce its effects: positive modulation mediated by an increase in duration of open time constants, and negative modulation mediated by a reduction in the time spent in a long-lived open state of the receptor. Further kinetic modeling of the single-channel data suggested that the positive and negative modulatory effects are mediated by different gating steps which may represent GluN2 and GluN1 subunit-selective conformational changes, respectively. Our studies provide a unique mechanism of modulation of NMDARs by an endogenous neurosteroid, which has implications for identifying state-dependent molecules.
Collapse
Affiliation(s)
- Divyan A Chopra
- Department of Pharmacology, Creighton University, Omaha, Nebraska (D.A.C., S.M.D.); and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (D.T.M.)
| | - Daniel T Monaghan
- Department of Pharmacology, Creighton University, Omaha, Nebraska (D.A.C., S.M.D.); and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (D.T.M.)
| | - Shashank M Dravid
- Department of Pharmacology, Creighton University, Omaha, Nebraska (D.A.C., S.M.D.); and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (D.T.M.)
| |
Collapse
|
50
|
Vyklicky V, Krausova B, Cerny J, Balik A, Zapotocky M, Novotny M, Lichnerova K, Smejkalova T, Kaniakova M, Korinek M, Petrovic M, Kacer P, Horak M, Chodounska H, Vyklicky L. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci Rep 2015; 5:10935. [PMID: 26086919 PMCID: PMC4471902 DOI: 10.1038/srep10935] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/08/2015] [Indexed: 11/10/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system.
Collapse
Affiliation(s)
- Vojtech Vyklicky
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Barbora Krausova
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jiri Cerny
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ales Balik
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martin Zapotocky
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marian Novotny
- Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
| | | | - Tereza Smejkalova
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martina Kaniakova
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Miloslav Korinek
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Milos Petrovic
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
- Institute of Medical Physiology, School of Medicine, University of Belgrade, Visegradska 26/II, 11000 Beograd, Srbija
| | - Petr Kacer
- Institute of Chemical Technology—Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Martin Horak
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry CAS, Flemingovo nam. 2, 166 10 Prague 2, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|