1
|
Tough IR, Moodaley R, Cox HM. Enteroendocrine cell-derived peptide YY signalling is stimulated by pinolenic acid or Intralipid and involves coactivation of fatty acid receptors FFA1, FFA4 and GPR119. Neuropeptides 2024; 108:102477. [PMID: 39427565 DOI: 10.1016/j.npep.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Long chain fatty acids are sensed by enteroendocrine L cells that express free-fatty acid receptors, including FFA1, FFA4 and the acylethanolamine receptor GPR119. Here we investigated the acute effects of single or multiple agonism at these G protein-coupled receptors in intestinal mucosae where L cell-derived peptide YY (PYY) is anti-secretory and acts via epithelial Y1 receptors. Mouse ileal or colonic mucosae were mounted in Ussing chambers, voltage-clamped and the resultant short-circuit current (Isc) recorded continuously. The agonists used were; FFA1, TAK-875 or AM-1638; for FFA4, Merck A; or for GPR119, AR231453, PSN632408 or AR440006. Their responses were compared with those of pinolenic acid (PA, a presumed dual FFA1/FFA4 agonist) and the lipid emulsion, Intralipid. The FFA1 agonist AM-1638 (EC50 = 38.2 nM) was more potent than TAK-875 (EC50 = 203.1 nM) but exhibited similar efficacy. GPR119 agonism (AR231453) pretreatment enhanced subsequent FFA1 (AM-1638 or TAK-875) and FFA4 (Merck A) signalling. PA (EC50 = 298.2 nM) co-activated epithelial FFA1 and FFA4 and involved endogenous PYY Y1/Y2-receptor mechanisms but desensitisation was observed between PA and high GPR119 agonist concentrations. Apical Intralipid co-activated FFA1, FFA4 and GPR119 with a residual component not being attributable to PYY, or this trio of fatty acid receptors.
Collapse
Affiliation(s)
- Iain R Tough
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Runisha Moodaley
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Helen M Cox
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
2
|
Lafferty RA, Flatt PR, Irwin N. NPYR modulation: Potential for the next major advance in obesity and type 2 diabetes management? Peptides 2024; 179:171256. [PMID: 38825012 DOI: 10.1016/j.peptides.2024.171256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The approval of the glucagon-like peptide 1 (GLP-1) mimetics semaglutide and liraglutide for management of obesity, independent of type 2 diabetes (T2DM), has initiated a resurgence of interest in gut-hormone derived peptide therapies for the management of metabolic diseases, but side-effect profile is a concern for these medicines. However, the recent approval of tirzepatide for obesity and T2DM, a glucose-dependent insulinotropic polypeptide (GIP), GLP-1 receptor co-agonist peptide therapy, may provide a somewhat more tolerable option. Despite this, an increasing number of non-incretin alternative peptides are in development for obesity, and it stands to reason that other hormones will take to the limelight in the coming years, such as peptides from the neuropeptide Y family. This narrative review outlines the therapeutic promise of the neuropeptide Y family of peptides, comprising of the 36 amino acid polypeptides neuropeptide Y (NPY), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP), as well as their derivatives. This family of peptides exerts a number of metabolically relevant effects such as appetite regulation and can influence pancreatic beta-cell survival. Although some of these actions still require full translation to the human setting, potential therapeutic application in obesity and type 2 diabetes is conceivable. However, like GLP-1 and GIP, the endogenous NPY, PYY and PP peptide forms are subject to rapid in vivo degradation and inactivation by the serine peptidase, dipeptidyl-peptidase 4 (DPP-4), and hence require structural modification to prolong circulating half-life. Numerous protective modification strategies are discussed in this regard herein, alongside related impact on biological activity profile and therapeutic promise.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Peter R Flatt
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
3
|
Beopoulos A, Gea M, Fasano A, Iris F. Autonomic Nervous System Neuroanatomical Alterations Could Provoke and Maintain Gastrointestinal Dysbiosis in Autism Spectrum Disorder (ASD): A Novel Microbiome-Host Interaction Mechanistic Hypothesis. Nutrients 2021; 14:65. [PMID: 35010940 PMCID: PMC8746684 DOI: 10.3390/nu14010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Dysbiosis secondary to environmental factors, including dietary patterns, antibiotics use, pollution exposure, and other lifestyle factors, has been associated to many non-infective chronic inflammatory diseases. Autism spectrum disorder (ASD) is related to maternal inflammation, although there is no conclusive evidence that affected individuals suffer from systemic low-grade inflammation as in many psychological and psychiatric diseases. However, neuro-inflammation and neuro-immune abnormalities are observed within ASD-affected individuals. Rebalancing human gut microbiota to treat disease has been widely investigated with inconclusive and contradictory findings. These observations strongly suggest that the forms of dysbiosis encountered in ASD-affected individuals could also originate from autonomic nervous system (ANS) functioning abnormalities, a common neuro-anatomical alteration underlying ASD. According to this hypothesis, overactivation of the sympathetic branch of the ANS, due to the fact of an ASD-specific parasympathetic activity deficit, induces deregulation of the gut-brain axis, attenuating intestinal immune and osmotic homeostasis. This sets-up a dysbiotic state, that gives rise to immune and osmotic dysregulation, maintaining dysbiosis in a vicious cycle. Here, we explore the mechanisms whereby ANS imbalances could lead to alterations in intestinal microbiome-host interactions that may contribute to the severity of ASD by maintaining the brain-gut axis pathways in a dysregulated state.
Collapse
Affiliation(s)
- Athanasios Beopoulos
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Manuel Gea
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA 022114, USA;
| | - François Iris
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| |
Collapse
|
4
|
El-Salhy M, Patcharatrakul T, Gonlachanvit S. Fecal microbiota transplantation for irritable bowel syndrome: An intervention for the 21 st century. World J Gastroenterol 2021; 27:2921-2943. [PMID: 34168399 PMCID: PMC8192290 DOI: 10.3748/wjg.v27.i22.2921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) affects about 12% of the global population. Although IBS does not develop into a serious disease or increase mortality, it results in a considerable reduction in the quality of life. The etiology of IBS is not known, but the intestinal microbiota appears to play a pivotal role in its pathophysiology. There is no effective treatment for IBS, and so the applied treatments clinically focus on symptom relief. Fecal microbiota transplantation (FMT), an old Chinese treatment, has been applied to IBS patients in seven randomized controlled trials (RCTs). Positive effects on IBS symptoms in various degrees were obtained in four of these RCTs, while there was no effect in the remaining three. Across the seven RCTs there were marked differences in the selection processes for the donor and treated patients, the transplant dose, the route of administration, and the methods used to measure how the patients responded to FMT. The present frontier discusses these differences and proposes: (1) criteria for selecting an effective donor (superdonor); (2) selection criteria for patients that are suitable for FMT; (3) the optimal FMT dose; and (4) the route of transplant administration. FMT appears to be safe, with only mild, self-limiting side effects of abdominal pain, cramping, tenderness, diarrhea, and constipation. Although it is early to speculate about the mechanisms underlying the effects of FMT, the available data suggest that changes in the intestinal bacteria accompanied by changes in fermentation patterns and fermentation products (specifically short-chain fatty acids) play an important role in improving the IBS symptoms seen after FMT. FMT appears to be a promising treatment for IBS, but further studies are needed before it can be applied in everyday clinical practice.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Medicine, Stord Helse Fonna Hospital and University of Bergen, Stord 5416, Norway
| | - Tanisa Patcharatrakul
- Department of Medicine, King Chulalongkorn Memorial Hospital and Center of Excellence in Neurogastroenterology and Motility, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sutep Gonlachanvit
- Department of Medicine, King Chulalongkorn Memorial Hospital and Center of Excellence in Neurogastroenterology and Motility, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
McCauley HA, Matthis AL, Enriquez JR, Nichol JT, Sanchez JG, Stone WJ, Sundaram N, Helmrath MA, Montrose MH, Aihara E, Wells JM. Enteroendocrine cells couple nutrient sensing to nutrient absorption by regulating ion transport. Nat Commun 2020; 11:4791. [PMID: 32963229 PMCID: PMC7508945 DOI: 10.1038/s41467-020-18536-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to absorb ingested nutrients is an essential function of all metazoans and utilizes a wide array of nutrient transporters found on the absorptive enterocytes of the small intestine. A unique population of patients has previously been identified with severe congenital malabsorptive diarrhea upon ingestion of any enteral nutrition. The intestines of these patients are macroscopically normal, but lack enteroendocrine cells (EECs), suggesting an essential role for this rare population of nutrient-sensing cells in regulating macronutrient absorption. Here, we use human and mouse models of EEC deficiency to identify an unappreciated role for the EEC hormone peptide YY in regulating ion-coupled absorption of glucose and dipeptides. We find that peptide YY is required in the small intestine to maintain normal electrophysiology in the presence of vasoactive intestinal polypeptide, a potent stimulator of ion secretion classically produced by enteric neurons. Administration of peptide YY to EEC-deficient mice restores normal electrophysiology, improves glucose and peptide absorption, diminishes diarrhea and rescues postnatal survival. These data suggest that peptide YY is a key regulator of macronutrient absorption in the small intestine and may be a viable therapeutic option to treat patients with electrolyte imbalance and nutrient malabsorption. Enteroendocrine cells (EECs) are specialized gastrointestinal cells that have a role in nutrient sensing and hormone secretion. Here the authors show that peptide YY from EECs regulates nutrient absorption in intestinal organoids.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Andrea L Matthis
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jonah T Nichol
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - J Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - William J Stone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Michael A Helmrath
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Marshall H Montrose
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - Eitaro Aihara
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
6
|
El-Salhy M, Hatlebakk JG, Hausken T. Possible role of peptide YY (PYY) in the pathophysiology of irritable bowel syndrome (IBS). Neuropeptides 2020; 79:101973. [PMID: 31727345 DOI: 10.1016/j.npep.2019.101973] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder of unknown aetiology for which there is no effective treatment. Although IBS does not increase mortality, it reduces the quality of life and is an economic burden to both the patients themselves and society as a whole. Peptide YY (PYY) is localized in endocrine cells located in the ileum, colon and rectum. The concentration of PYY and the density of PYY cells are decreased in both the colon and rectum but unchanged in the ileum of patients with IBS. The low density of PYY cells in the large intestine may be caused by a decreased number of stem cells and their progeny toward endocrine cells. PYY regulates the intestinal motility, secretion and absorption as well as visceral sensitivity via modulating serotonin release. An abnormality in PYY may therefore contribute to the intestinal dysmotility and visceral hypersensitivity seen in IBS patients. Diet management involving consuming a low-FODMAP diet restores the density of PYY cells in the large intestine and improves abdominal symptoms in patients with IBS. This review shows that diet management appears to be a valuable tool for correcting the PYY abnormalities in the large intestine of IBS patients in the clinic.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| |
Collapse
|
7
|
McCauley HA. Enteroendocrine Regulation of Nutrient Absorption. J Nutr 2020; 150:10-21. [PMID: 31504661 DOI: 10.1093/jn/nxz191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Enteroendocrine cells (EECs) in the intestine regulate many aspects of whole-body physiology and metabolism. EECs sense luminal and circulating nutrients and respond by secreting hormones that act on multiple organs and organ systems, such as the brain, gallbladder, and pancreas, to control satiety, digestion, and glucose homeostasis. In addition, EECs act locally, on enteric neurons, endothelial cells, and the gastrointestinal epithelium, to facilitate digestion and absorption of nutrients. Many recent reports raise the possibility that EECs and the enteric nervous system may coordinate to regulate gastrointestinal functions. Loss of all EECs results in chronic malabsorptive diarrhea, placing EECs in a central role regulating nutrient absorption in the gut. Because there is increasing evidence that EECs can directly modulate the efficiency of nutrient absorption, it is possible that EECs are master regulators of a feed-forward loop connecting appetite, digestion, metabolism, and abnormally augmented nutrient absorption that perpetuates metabolic disease. This review focuses on the roles that specific EEC hormones play on glucose, peptide, and lipid absorption within the intestine.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology and the Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
8
|
Tanahashi Y, Katsurada T, Inasaki N, Uchiyama M, Sakamoto T, Yamamoto M, Matsuyama H, Komori S, Unno T. Further characterization of the synergistic activation mechanism of cationic channels by M 2 and M 3 muscarinic receptors in mouse intestinal smooth muscle cells. Am J Physiol Cell Physiol 2019; 318:C514-C523. [PMID: 31875697 DOI: 10.1152/ajpcell.00277.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mouse ileal myocytes, muscarinic receptor-mediated cationic current (mIcat) occurs mainly through synergism of M2 and M3 subtypes involving Gi/o-type GTP-binding proteins and phospholipase C (PLC). We have further studied the M2/M3 synergistic pathway. Carbachol-induced mIcat was markedly depressed by YM-254890, a Gq/11 protein inhibitor. However, the mIcat was unaffected by heparin, calphostin C, or chelerythrine, suggesting that mIcat activation does not involve signaling molecules downstream of phosphatidylinositol 4,5-bisphosphate (PIP2) breakdown. M2-knockout (KO) mice displayed a reduced mIcat (~10% of wild-type mIcat) because of the lack of M2-Gi/o signaling. The impaired mIcat was insensitive to neuropeptide Y possessing a Gi/o-stimulating activity. M3-KO mice also displayed a reduced mIcat (~6% of wild-type mIcat) because of the lack of M3-Gq/11 signaling, and the mIcat was insensitive to prostaglandin F2α possessing a Gq/11-stimulating activity. These results suggest the importance of Gq/11/PLC-hydrolyzed PIP2 breakdown itself in mIcat activation and also support the idea that the M2/M3 synergistic pathway represents a signaling complex consisting of M2-Gi/o and M3-Gq/11-PLC systems in which both G proteins are special for this pathway but not general in receptor coupling.
Collapse
Affiliation(s)
- Yasuyuki Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Taisuke Katsurada
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Noriko Inasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Mai Uchiyama
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Takashi Sakamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Masayuki Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Hayato Matsuyama
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Seiichi Komori
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Toshihiro Unno
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| |
Collapse
|
9
|
Shao J, Chen MJ, Kuehl PJ, Hochhaus G. Pharmacokinetic and pharmacodynamic modeling of gut hormone peptide YY (3-36) after pulmonary delivery. Drug Dev Ind Pharm 2019; 45:1101-1110. [PMID: 31039626 DOI: 10.1080/03639045.2019.1593443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Peptide YY(3-36) (PYY(3-36)) is an endogenous appetite suppressing peptide. The present research was to perform pharmacokinetic/pharmacodynamic (PK/PD) analysis for predicting the concentration- and response-time profiles of PYY(3-36) after systemic and pulmonary delivery in mice, with the goal of suggesting a potential pulmonary dosing regimen in humans. A PK/PD model was developed to describe PYY(3-36) plasma concentration - and relative food intake rate ratio (as % of control) - time profiles after intraperitoneal and subcutaneous administration, and inhalation in mice. The absorption of inhaled PYY(3-36) from the lungs of mice could only be described with a combined slow (absorption rate of 0.147 L/h) and fast (absorption rate of 104.4 L/h) absorption process, presumably related to absorption from the central and peripheral regions of the lungs. The estimates for IC50 and Imax were 6.8 ng/mL and 63.5%, respectively, based on inhibitory Emax model. The PK parameters, such as clearance (CL), volume of distribution at steady state (Vdss), and the absorption rates (ka), were then scaled to human's. The scaled human CL and Vdss for obese subjects were 24.8 L/h and 9.0 L, respectively. The model predicted human plasma PYY(3-36) concentrations agreed reasonably well with placebo-normalized plasma PYY(3-36) concentrations after short-term infusion and SC injection in literature. An inhalation dose of PYY(3-36) of about 100 µg was proposed for obese subjects based on simulations. This PK/PD analysis satisfactorily described PYY(3-36) concentration-time and relative food intake rate ratio- time profiles at all doses and routes. The developed model might facilitate the inhalation dose selection of PYY(3-36).
Collapse
Affiliation(s)
- Jie Shao
- a Department of Pharmaceutics, College of Pharmacy , University of Florida , Gainesville , Florida , USA
| | - Mong-Jen Chen
- a Department of Pharmaceutics, College of Pharmacy , University of Florida , Gainesville , Florida , USA
| | - Philip J Kuehl
- b Lovelace Respiratory Research Institute , Albuquerque , New Mexico , USA
| | - Guenther Hochhaus
- a Department of Pharmaceutics, College of Pharmacy , University of Florida , Gainesville , Florida , USA
| |
Collapse
|
10
|
Tough IR, Forbes S, Cox HM. Signaling of free fatty acid receptors 2 and 3 differs in colonic mucosa following selective agonism or coagonism by luminal propionate. Neurogastroenterol Motil 2018; 30:e13454. [PMID: 30136343 PMCID: PMC6282569 DOI: 10.1111/nmo.13454] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Propionate exhibits affinity for free fatty acid receptor 2 (FFA2, formerly GPR43) and FFA3 (GPR41). These two G protein-coupled receptors (GPCRs) are expressed by enteroendocrine L cells that contain anorectic peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), while FFA3 is also expressed by enteric neurons. Few studies have investigated the individual roles of FFA2 and FFA3 in propionate's gastrointestinal (GI) effects. Here, we compared FFA2, FFA3, and propionate mucosal responses utilizing selective ligands including an FFA3 antagonist, in mouse and human colonic mucosa. METHODS Vectorial ion transport was measured in native colonic preparations from normal mouse and human colon with intact submucosal innervation. Endogenous fecal pellet propulsion was monitored in colons isolated from wild-type (WT) and PYY-/- mice. KEY RESULTS FFA2 and FFA3 signaling differed significantly. FFA2 agonism involved endogenous L cell-derived PYY and was glucose dependent, while FFA3 agonism was independent of PYY and glucose, but required submucosal enteric neurons for activity. Tonic FFA3 activity was observed in mouse and human colon mucosa. Apical propionate responses were a combination of FFA2-PYY mediation and FFA3 neuronal GLP-1- and CGRP-dependent signaling in mouse ascending colon mucosa. Propionate also slowed WT and PYY-/- colonic transit, and this effect was blocked by a GLP-1 receptor antagonist. CONCLUSIONS & INFERENCES We conclude that luminal propionate costimulates FFA2 and FFA3 pathways, reducing anion secretion and slowing colonic motility; FFA2 via PYY mediation and FFA3 signaling by activation of enteric sensory neurons.
Collapse
Affiliation(s)
- Iain R. Tough
- King's College LondonWolfson Centre for Age‐Related Diseases, Institute of Psychiatry, Psychology & NeuroscienceLondonUK
| | - Sarah Forbes
- King's College LondonWolfson Centre for Age‐Related Diseases, Institute of Psychiatry, Psychology & NeuroscienceLondonUK
| | - Helen M. Cox
- King's College LondonWolfson Centre for Age‐Related Diseases, Institute of Psychiatry, Psychology & NeuroscienceLondonUK
| |
Collapse
|
11
|
Aktar R, Peiris M, Fikree A, Cibert-Goton V, Walmsley M, Tough IR, Watanabe P, Araujo EJA, Mohammed SD, Delalande JM, Bulmer DC, Scott SM, Cox HM, Voermans NC, Aziz Q, Blackshaw LA. The extracellular matrix glycoprotein tenascin-X regulates peripheral sensory and motor neurones. J Physiol 2018; 596:4237-4251. [PMID: 29917237 PMCID: PMC6117562 DOI: 10.1113/jp276300] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Tenascin-X (TNX) is an extracellular matrix glycoprotein with anti-adhesive properties in skin and joints. Here we report the novel finding that TNX is expressed in human and mouse gut tissue where it is exclusive to specific subpopulations of neurones. Our studies with TNX-deficient mice show impaired defecation and neural control of distal colonic motility that can be rescued with a 5-HT4 receptor agonist. However, colonic secretion is unchanged. They are also susceptible to internal rectal intussusception. Colonic afferent sensitivity is increased in TNX-deficient mice. Correspondingly, there is increased density of and sensitivity of putative nociceptive fibres in TNX-deficient mucosa. A group of TNX-deficient patients report symptoms highly consistent with those in the mouse model. These findings suggest TNX plays entirely different roles in gut to non-visceral tissues - firstly a role in enteric motor neurones and secondly a role influencing nociceptive sensory neurones Studying further the mechanisms by which TNX influences neuronal function will lead to new targets for future treatment. ABSTRACT The extracellular matrix (ECM) is not only an integral structural molecule, but is also critical for a wide range of cellular functions. The glycoprotein tenascin-X (TNX) predominates in the ECM of tissues like skin and regulates tissue structure through anti-adhesive interactions with collagen. Monogenic TNX deficiency causes painful joint hypermobility and skin hyperelasticity, symptoms characteristic of hypermobility Ehlers Danlos syndrome (hEDS). hEDS patients also report consistently increased visceral pain and gastrointestinal (GI) dysfunction. We investigated whether there is a direct link between TNX deficiency and GI pain or motor dysfunction. We set out first to learn where TNX is expressed in human and mouse, then determine how GI function, specifically in the colon, is disordered in TNX-deficient mice and humans of either sex. In human and mouse tissue, TNX was predominantly associated with cholinergic colonic enteric neurones, which are involved in motor control. TNX was absent from extrinsic nociceptive peptidergic neurones. TNX-deficient mice had internal rectal prolapse and a loss of distal colonic contractility which could be rescued by prokinetic drug treatment. TNX-deficient patients reported increased sensory and motor GI symptoms including abdominal pain and constipation compared to controls. Despite absence of TNX from nociceptive colonic neurones, neuronal sprouting and hyper-responsiveness to colonic distension was observed in the TNX-deficient mice. We conclude that ECM molecules are not merely support structures but an integral part of the microenvironment particularly for specific populations of colonic motor neurones where TNX exerts functional influences.
Collapse
Affiliation(s)
- Rubina Aktar
- Blizard Institute, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Blizard Institute, Queen Mary University of London, London, UK
| | - Asma Fikree
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Maxim Walmsley
- Blizard Institute, Queen Mary University of London, London, UK
| | - Iain R Tough
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Paulo Watanabe
- Blizard Institute, Queen Mary University of London, London, UK.,Department of Histology, Centre for Biological Sciences, State University of Londrina, Brazil
| | - Eduardo J A Araujo
- Blizard Institute, Queen Mary University of London, London, UK.,Department of Histology, Centre for Biological Sciences, State University of Londrina, Brazil
| | | | | | - David C Bulmer
- Blizard Institute, Queen Mary University of London, London, UK
| | - S Mark Scott
- Blizard Institute, Queen Mary University of London, London, UK
| | - Helen M Cox
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Nicol C Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Qasim Aziz
- Blizard Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
12
|
Abstract
Even the simplest animals possess sophisticated systems for sensing and securing nutrients. After all, ensuring adequate nutrition is essential for sustaining life. Once multicellular animals grew too large to be nourished by simple diffusion of nutrients from their environment, they required a digestive system for the absorption and digestion of food. The majority of cells in the digestive tract are enterocytes that are designed to absorb nutrients. However, the digestive tracts of animals ranging from worms to humans contain specialized cells that discriminate between nutrients and nondigestible ingestants. These cells "sense" both the environment within the gut lumen and nutrients as they cross the gut epithelium. This dual sensing is then translated into local signals that regulate the gut epithelium or distant signals through hormones or nerves. This review will discuss how sensors of the gut interact with cells of the epithelium and neurons to regulate epithelial integrity and initiate neural transmission from the gut lumen. © 2017 American Physiological Society. Compr Physiol 8:1019-1030, 2018.
Collapse
Affiliation(s)
- Rodger A Liddle
- Department of Medicine, Duke University and Durham VA Healthcare System, Durham, North Carolina, USA
| |
Collapse
|
13
|
Tough IR, Forbes S, Herzog H, Jones RM, Schwartz TW, Cox HM. Bidirectional GPR119 Agonism Requires Peptide YY and Glucose for Activity in Mouse and Human Colon Mucosa. Endocrinology 2018; 159:1704-1717. [PMID: 29471473 PMCID: PMC5972582 DOI: 10.1210/en.2017-03172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
The lipid sensor G protein-coupled receptor 119 (GPR119) is highly expressed by enteroendocrine L-cells and pancreatic β-cells that release the hormones, peptide YY (PYY) and glucagonlike peptide 1, and insulin, respectively. Endogenous oleoylethanolamide (OEA) and the dietary metabolite, 2-monoacylglycerol (2-OG), can each activate GPR119. Here, we compared mucosal responses with selective, synthetic GPR119 agonists (AR440006 and AR231453) and the lipids, OEA, 2-OG, and N-oleoyldopamine (OLDA), monitoring epithelial ion transport as a readout for L-cell activity in native mouse and human gastrointestinal (GI) mucosae. We also assessed GPR119 modulation of colonic motility in wild-type (WT), GPR119-deficient (GPR119-/-), and PYY-deficient (PYY-/-) mice. The water-soluble GPR119 agonist, AR440006 (that cannot traverse epithelial tight junctions), elicited responses, when added apically or basolaterally in mouse and human colonic mucosae. In both species, GPR119 responses were PYY, Y1 receptor mediated, and glucose dependent. AR440006 efficacy matched the GI distribution of L-cells in WT tissues but was absent from GPR119-/- tissue. OEA and 2-OG responses were significantly reduced in the GPR119-/- colon, but OLDA responses were unchanged. Alternative L-cell activation via free fatty acid receptors 1, 3, and 4 and the G protein-coupled bile acid receptor TGR5 or by the melanocortin 4 receptor, was unchanged in GPR119-/- tissues. The GPR119 agonist slowed transit in WT but not the PYY-/- colon in vitro. AR440006 (intraperitoneally) slowed WT colonic and upper-GI transit significantly in vivo. These data indicate that luminal or blood-borne GPR119 agonism can stimulate L-cell PYY release with paracrine consequences and slower motility. We suggest that this glucose-dependent L-cell response to a gut-restricted GPR119 stimulus has potential therapeutic advantage in modulating insulinotropic signaling with reduced risk of hypoglycemia.
Collapse
Affiliation(s)
- Iain R Tough
- King’s College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Sarah Forbes
- King’s College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Herbert Herzog
- Garvan Institute of Medical Research, Darlinghurst New South Wales, Sydney, Australia
| | - Robert M Jones
- Department of Medicinal Chemistry, Arena Pharmaceuticals, San Diego, California
| | - Thue W Schwartz
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Helen M Cox
- King’s College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
- Correspondence: Helen M. Cox, PhD, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE1 1UL, United Kingdom. E-mail:
| |
Collapse
|
14
|
Moodaley R, Smith DM, Tough IR, Schindler M, Cox HM. Agonism of free fatty acid receptors 1 and 4 generates peptide YY-mediated inhibitory responses in mouse colon. Br J Pharmacol 2017; 174:4508-4522. [PMID: 28971469 DOI: 10.1111/bph.14054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Free fatty acid receptors FFA1 and FFA4 are located on enteroendocrine L cells with the highest gastrointestinal (GI) expression in descending colon. Their activation causes the release of glucagon-like peptide 1 and peptide YY (PYY) from L cells. Additionally, FFA1 agonism releases insulin from pancreatic β cells. As these receptors are modulators of nutrient-stimulated glucose regulation, the aim of this study was to compare the pharmacology of commercially available agonists (TUG424, TUG891, GW9508) with proven selective agonists (JTT, TAK-875, AZ423, Metabolex-36) in mice. EXPERIMENTAL APPROACH Mouse mucosa was mounted in Ussing chambers, voltage-clamped and the resultant short-circuit current (Isc ) was recorded continuously. Pretreatments included antagonists of FFA1, Y1 or Y2 receptors. Glucose sensitivity was investigated by mannitol replacement apically, and colonic and upper GI transit was assessed in vitro and in vivo. KEY RESULTS FFA1 and FFA4 agonism required glucose and reduced Isc in a PYY-Y1 receptor-dependent manner. The novel compounds were more potent than GW9508. The FFA1 antagonists (GW1100 and ANT825) blocked FFA1 activity only and revealed FFA1 tonic activity. The FFA4 agonist, Metabolex-36, slowed colonic transit in vitro but increased small intestinal transit in vivo. CONCLUSIONS AND IMPLICATIONS The selective FFA1 and FFA4 agonists were more potent at reducing Isc than GW9508, a dual FFA1 and FFA4 agonist. A paracrine epithelial mechanism involving PYY-stimulated Y1 receptors mediated their responses, which were glucose sensitive, potentially limiting hypoglycaemia. ANT825 revealed tonic activity and the possibility of endogenous FFA1 ligands causing PYY release. Finally, FFA4 agonism induced regional differences in transit.
Collapse
Affiliation(s)
- Runisha Moodaley
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - David M Smith
- Discovery Sciences, Innovative Medicines & Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Iain R Tough
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Marcus Schindler
- AstraZeneca Mölndal, Innovative Medicines & Early Development, Cardiovascular & Metabolic Diseases iMed, Mölndal, Sweden
| | - Helen M Cox
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| |
Collapse
|
15
|
El-Salhy M, Solomon T, Hausken T, Gilja OH, Hatlebakk JG. Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease. World J Gastroenterol 2017; 23:5068-5085. [PMID: 28811704 PMCID: PMC5537176 DOI: 10.3748/wjg.v23.i28.5068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/15/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent condition whose etiology is unknown, and it includes ulcerative colitis, Crohn’s disease, and microscopic colitis. These three diseases differ in clinical manifestations, courses, and prognoses. IBD reduces the patients’ quality of life and is an economic burden to both the patients and society. Interactions between the gastrointestinal (GI) neuroendocrine peptides/amines (NEPA) and the immune system are believed to play an important role in the pathophysiology of IBD. Moreover, the interaction between GI NEPA and intestinal microbiota appears to play also a pivotal role in the pathophysiology of IBD. This review summarizes the available data on GI NEPA in IBD, and speculates on their possible role in the pathophysiology and the potential use of this information when developing treatments. GI NEPA serotonin, the neuropeptide Y family, and substance P are proinflammatory, while the chromogranin/secretogranin family, vasoactive intestinal peptide, somatostatin, and ghrelin are anti-inflammatory. Several innate and adaptive immune cells express these NEPA and/or have receptors to them. The GI NEPA are affected in patients with IBD and in animal models of human IBD. The GI NEPA are potentially useful for the diagnosis and follow-up of the activity of IBD, and are candidate targets for treatments of this disease.
Collapse
|
16
|
Integrated Neural and Endocrine Control of Gastrointestinal Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:159-73. [PMID: 27379644 DOI: 10.1007/978-3-319-27592-5_16] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The activity of the digestive system is dynamically regulated by external factors, including body nutritional and activity states, emotions and the contents of the digestive tube. The gut must adjust its activity to assimilate a hugely variable mixture that is ingested, particularly in an omnivore such as human for which a wide range of food choices exist. It must also guard against toxins and pathogens. These nutritive and non-nutritive components of the gut contents interact with the largest and most vulnerable surface in the body, the lining of the gastrointestinal tract. This requires a gut sensory system that can detect many classes of nutrients, non-nutrient components of food, physicochemical conditions, toxins, pathogens and symbionts (Furness et al., Nat Rev Gastroenterol Hepatol 10:729-740, 2013). The gut sensors are in turn coupled to effector systems that can respond to the sensory information. The responses are exerted through enteroendocrine cells (EEC), the enteric nervous system (ENS), the central nervous system (CNS) and the gut immune and tissue defence systems. It is apparent that the control of the digestive organs is an integrated function of these effectors. The peripheral components of the EEC, ENS and CNS triumvirate are extensive. EEC cells have traditionally been classified into about 12 types (disputed in this review), releasing about 20 hormones, together making the gut endocrine system the largest endocrine organ in the body. Likewise, in human the ENS contains about 500 million neurons, far more than the number of neurons in the remainder of the peripheral autonomic nervous system. Together gut hormones, the ENS and the CNS control or influence functions including satiety, mixing and propulsive activity, release of digestive enzymes, induction of nutrient transporters, fluid transport, local blood flow, gastric acid secretion, evacuation and immune responses. Gut content receptors, including taste, free fatty acid, peptide and phytochemical receptors, are primarily located on EEC. Hormones released by EEC act via both the ENS and CNS to optimise digestion. Toxic chemicals and pathogens are sensed and then avoided, expelled or metabolised. These defensive activities also involve the EEC and signalling from EEC to the ENS and the CNS. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut, via its effector systems, the ENS, extrinsic innervation, EEC and the gut immune system, to the sensory information it receives.
Collapse
|
17
|
Martins P, Fakhry J, de Oliveira EC, Hunne B, Fothergill LJ, Ringuet M, Reis DD, Rehfeld JF, Callaghan B, Furness JB. Analysis of enteroendocrine cell populations in the human colon. Cell Tissue Res 2016; 367:161-168. [DOI: 10.1007/s00441-016-2530-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022]
|
18
|
Cox HM. Neuroendocrine peptide mechanisms controlling intestinal epithelial function. Curr Opin Pharmacol 2016; 31:50-56. [PMID: 27597736 DOI: 10.1016/j.coph.2016.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/20/2016] [Accepted: 08/12/2016] [Indexed: 01/01/2023]
Abstract
Enteroendocrine cells (EECs) contain different combinations of hormones, which are released following stimulation of nutrient receptors that are selectively expressed by these cells. This chemosensation varies according to the intestinal area and species of interest, and responses to meals are rapidly modified following bariatric surgery. Such surgically-induced gastrointestinal (GI) changes highlight considerable enteroplasticity, however our understanding of even the acute physiological control and consequences of neuroendocrine peptide release is still under-developed. This review focuses on recent advances in nutrient G protein-coupled receptor (GPCR)-chemosensation in L cells, the patterns of peptide release and consequent changes in GI function. A clearer resolution of these mucosal mechanisms will shed light on potential receptor-target combinations that could provide less-invasive anti-diabesity strategies in future.
Collapse
Affiliation(s)
- Helen M Cox
- Wolfson Centre for Age-Related Diseases, IoPPN, King's College London, London SE1 1UL, UK.
| |
Collapse
|
19
|
El-Salhy M, Hausken T. The role of the neuropeptide Y (NPY) family in the pathophysiology of inflammatory bowel disease (IBD). Neuropeptides 2016; 55:137-44. [PMID: 26431932 DOI: 10.1016/j.npep.2015.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) includes three main disorders: ulcerative colitis, Crohn's disease, and microscopic colitis. The etiology of IBD is unknown and the current treatments are not completely satisfactory. Interactions between the gut neurohormones and the immune system are thought to play a pivot role in inflammation, especially in IBD. These neurohormones are believed to include members of the neuropeptide YY (NPY) family, which comprises NPY, peptide YY (PYY), and pancreatic polypeptide (PP). Understanding the role of these peptides may shed light on the pathophysiology of IBD and potentially yield an effective treatment tool. Intestinal NPY, PYY, and PP are abnormal in both patients with IBD and animal models of human IBD. The abnormality in NPY appears to be primarily caused by an interaction between immune cells and the NPY neurons in the enteric nervous system; the abnormalities in PYY and PP appear to be secondary to the changes caused by the abnormalities in other gut neurohormonal peptides/amines that occur during inflammation. NPY is the member of the NPY family that can be targeted in order to decrease the inflammation present in IBD.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord, Norway; Section for Neuroendocrine Gastroenterology, Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Trygve Hausken
- Section for Neuroendocrine Gastroenterology, Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
20
|
Panaro BL, Tough IR, Engelstoft MS, Matthews RT, Digby GJ, Møller CL, Svendsen B, Gribble F, Reimann F, Holst JJ, Holst B, Schwartz TW, Cox HM, Cone RD. The melanocortin-4 receptor is expressed in enteroendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo. Cell Metab 2014; 20:1018-29. [PMID: 25453189 PMCID: PMC4255280 DOI: 10.1016/j.cmet.2014.10.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 08/15/2014] [Accepted: 10/10/2014] [Indexed: 02/07/2023]
Abstract
The melanocortin-4 receptor (MC4R) is expressed in the brainstem and vagal afferent nerves and regulates a number of aspects of gastrointestinal function. Here we show that the receptor is also diffusely expressed in cells of the gastrointestinal system, from stomach to descending colon. Furthermore, MC4R is the second most highly enriched GPCR in peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) expressing enteroendocrine L cells. When vectorial ion transport is measured across mouse or human intestinal mucosa, administration of α-MSH induces a MC4R-specific PYY-dependent antisecretory response consistent with a role for the MC4R in paracrine inhibition of electrolyte secretion. Finally, MC4R-dependent acute PYY and GLP-1 release from L cells can be stimulated in vivo by intraperitoneal (i.p.) administration of melanocortin peptides to mice. This suggests physiological significance for MC4R in L cells and indicates a previously unrecognized peripheral role for the MC4R, complementing vagal and central receptor functions.
Collapse
Affiliation(s)
- Brandon L Panaro
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Iain R Tough
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | - Maja S Engelstoft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Denmark; Danish Diabetes Academy, 5000 Odense, Denmark
| | - Robert T Matthews
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gregory J Digby
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Cathrine L Møller
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Denmark; Diabetes and Obesity Biology, Novo Nordisk A/S, 2760 Maaloev, Denmark
| | - Berit Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Denmark; Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Denmark
| | - Fiona Gribble
- University of Cambridge, Cambridge Institute for Medical Research (CIMR) & MRC Metabolic Diseases Unit (MDU), Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Frank Reimann
- University of Cambridge, Cambridge Institute for Medical Research (CIMR) & MRC Metabolic Diseases Unit (MDU), Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Denmark; Danish Diabetes Academy, 5000 Odense, Denmark
| | - Birgitte Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Denmark
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Medical and Health Sciences, University of Copenhagen, 2200 Denmark
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | - Roger D Cone
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
21
|
Joshi S, Tough IR, Cox HM. Endogenous PYY and GLP-1 mediate l-glutamine responses in intestinal mucosa. Br J Pharmacol 2014; 170:1092-101. [PMID: 23992397 DOI: 10.1111/bph.12352] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/01/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE l-glutamine (Gln) is an energy source for gastrointestinal (GI) epithelia and can stimulate glucagon-like peptide 1 (GLP-1) release from isolated enteroendocrine L-cells. GLP-1 and peptide YY (PYY) are co-secreted postprandially and both peptides have functional roles in glucose homeostasis and energy balance. The primary aim of this project was to establish the endogenous mechanisms underpinning Gln responses within intact GI mucosae using selective receptor antagonists. EXPERIMENTAL APPROACH Mouse mucosae from different GI regions were voltage-clamped and short-circuit current (Isc) was recorded to Gln added to either surface in the absence or presence of antagonists, using wild-type (WT) or PYY-/- tissues. The glucose sensitivity of Gln responses was also investigated by replacement with mannitol. KEY RESULTS Colonic apical and basolateral Gln responses (at 0.1 and 1 mM) were biphasic; initial increases in Isc were predominantly GLP-1 mediated. GLP-1 receptor antagonism significantly reduced the initial Gln response in the PYY-/- colon. The slower reductions in Isc to Gln were PYY-Y1 mediated as they were absent from the PYY-/- colon and were blocked selectively in WT tissue by a Y1 receptor antagonist. In jejunum mucosa, Gln stimulated monophasic Isc reductions that were PYY-Y1 receptor mediated. Gln effects were partially glucose sensitive, and Calhex 231 inhibition indicated that the calcium-sensing receptor (CaSR) was involved. CONCLUSION AND IMPLICATIONS Gln stimulates the co-release of endogenous GLP-1 and PYY from mucosal L-cells resulting in paracrine GLP-1 and Y1 receptor-mediated electrogenic epithelial responses. This glucose-sensitive mechanism appears to be CaSR mediated and could provide a significant therapeutic strategy releasing two endogenous peptides better known for their glucose-lowering and satiating effects.
Collapse
Affiliation(s)
- S Joshi
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK
| | | | | |
Collapse
|
22
|
Kojima SI, Tohei A, Kojima K, Anzai N. Evidence for tachykinin NK3 receptors-triggered peptide YY release from isolated guinea-pig distal colon. Eur J Pharmacol 2014; 740:121-6. [PMID: 25034808 DOI: 10.1016/j.ejphar.2014.06.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/25/2014] [Accepted: 06/29/2014] [Indexed: 02/02/2023]
Abstract
The anorectic gut hormone, peptide YY (PYY), is released from colonic mucosal endocrine cells, but little is known about the role for tachykinin NK3 receptor in the control of PYY release from the colonic mucosa. We investigated the functional role for NK3 receptors in the control of PYY release from isolated guinea-pig distal colon, and the role for NK3 receptors-triggered PYY release in the control of colonic motility. Isolated colonic preparations were mounted in organ baths for measurement of PYY release and mechanical activity. The release of PYY from these preparations was determined by enzyme immunoassays. The NK3 receptor agonist senktide produced a tetrodotoxin/atropine-sensitive sustained increase in the release of PYY from the colonic preparations. Basal PYY release was transiently inhibited by the NK3 receptor antagonist SB222200. The neuropeptide Y1 receptor antagonist BIBO3304 produced a leftward shift of the concentration-response curves for senktide-evoked neurogenic contraction, but neither the neuropeptide Y2 receptor antagonist BIIE0246 nor the neuropeptide Y5 receptor antagonist CGP71683 affected the senktide concentration-response curves. NK3 receptors appear to play an important role in the control of PYY release from colonic mucosa, and NK3 receptor-triggered PYY release can exert Y1 receptor-mediated inhibition of tachykinergic neuromuscular transmission. This indicates a pathophysiological role for the NK3 receptor-triggered PYY release in the control of colonic motility.
Collapse
Affiliation(s)
- Shu-ichi Kojima
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan.
| | - Atsushi Tohei
- Laboratory of Experimetal Animal Science Nippon Veterinary and Life Science University School of Medicine, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Ken Kojima
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
23
|
Abstract
The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Grattan Street, Parkville, Vic 3010, Australia
| | | | | | | | | |
Collapse
|
24
|
Forbes S, Herzog H, Cox HM. A role for neuropeptide Y in the gender-specific gastrointestinal, corticosterone and feeding responses to stress. Br J Pharmacol 2012; 166:2307-16. [PMID: 22404240 DOI: 10.1111/j.1476-5381.2012.01939.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Exposure to an acute stress inhibits gastric emptying and stimulates colonic transit via central neuropeptide Y (NPY) pathways; however, peripheral involvement is uncertain. The anxiogenic phenotype of NPY(-/-) mice is gender-dependent, raising the possibility that stress-induced gastrointestinal (GI) responses are female-dominant through NPY. The aim of this study was to determine GI transit rates, corticosterone levels and food intake after acute restraint (AR) or novel environment (NE) stress in male and female NPY(-/-) and WT mice. EXPERIMENTAL APPROACH Upper gastrointestinal transit (UGIT) (established 30 min after oral gavage) and corticosterone levels were determined under basal or restrained conditions (30 min) and after treatment i.p. with Y(1) antagonist BIBO3304 or Y(2) antagonist BIIE0246. Faecal pellet output (FPO) was established after AR and treatment i.p. with NPY in the NE, as were colonic bead expulsion rates. KEY RESULTS UGIT and FPO were similar in unrestrained male and female mice. NPY(-/-) females displayed significantly slower UGIT than NPY(-/-) males after AR, but both genders displayed significantly higher FPO and reduced food intake relative to WT counterparts. Peripheral NPY treatment increased bead expulsion time in WT mice. AR male NPY(-/-) mice had higher levels of corticosterone than male WT mice; whilst in AR WT mice, after peripheral Y(1) and Y(2) receptor antagonism in males, and Y(2) antagonism in females, corticosterone was significantly elevated. CONCLUSIONS AND IMPLICATIONS NPY possesses a role in the gender-dependent susceptibility to stress-induced GI responses. Furthermore, NPY inhibits GI motility through Y(2) receptors and corticosterone release via peripheral Y(1) and Y(2) receptors.
Collapse
Affiliation(s)
- S Forbes
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, UK.
| | | | | |
Collapse
|
25
|
Tough IR, Forbes S, Tolhurst R, Ellis M, Herzog H, Bornstein JC, Cox HM. Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y₁ and Y₂ receptors. Br J Pharmacol 2012; 164:471-84. [PMID: 21457230 DOI: 10.1111/j.1476-5381.2011.01401.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Peptide YY (PYY) and neuropeptide Y (NPY) activate Y receptors, targets under consideration as treatments for diarrhoea and other intestinal disorders. We investigated the gastrointestinal consequences of selective PYY or NPY ablation on mucosal ion transport, smooth muscle activity and transit using wild-type, single and double peptide knockout mice, comparing mucosal responses with those from human colon. EXPERIMENTAL APPROACH Mucosae were pretreated with a Y₁ (BIBO3304) or Y₂ (BIIE0246) receptor antagonist and changes in short-circuit current recorded. Colonic transit and colonic migrating motor complexes (CMMCs) were assessed in vitro and upper gastrointestinal and colonic transit measured in vivo. KEY RESULTS Y receptor antagonists revealed tonic Y₁ and Y₂ receptor-mediated antisecretory effects in human and wild-type mouse colon mucosae. In both, Y₁ tone was epithelial while Y₂ tone was neuronal. Y₁ tone was reduced 90% in PYY⁻/⁻ mucosa but unchanged in NPY⁻/⁻ tissue. Y₂ tone was partially reduced in NPY⁻/⁻ or PYY⁻/⁻ mucosae and abolished in tetrodotoxin-pretreated PYY⁻/⁻ tissue. Y₁ and Y₂ tone were absent in NPYPYY⁻/⁻ tissue. Colonic transit was inhibited by Y₁ blockade and increased by Y₂ antagonism indicating tonic Y₁ excitation and Y₂ inhibition respectively. Upper GI transit was increased in PYY⁻/⁻ mice only. Y₂ blockade reduced CMMC frequency in isolated mouse colon. CONCLUSIONS AND IMPLICATIONS Endogenous PYY and NPY induced significant mucosal antisecretory tone mediated by Y₁ and Y₂ receptors, via similar mechanisms in human and mouse colon mucosa. Both peptides contributed to tonic Y₂-receptor-mediated inhibition of colonic transit in vitro but only PYY attenuated upper GI transit.
Collapse
Affiliation(s)
- I R Tough
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Cox HM, Tough IR, Woolston AM, Zhang L, Nguyen AD, Sainsbury A, Herzog H. Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of gastrointestinal mucosal responses. Cell Metab 2010; 11:532-42. [PMID: 20519124 PMCID: PMC2890049 DOI: 10.1016/j.cmet.2010.04.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/28/2010] [Accepted: 04/16/2010] [Indexed: 01/25/2023]
Abstract
Peptide YY (PYY) is released following food intake and regulates intestinal function and glucose homeostasis, but the mechanisms underpinning these processes are unclear. Enteroendocrine L cells contain PYY and express the acylethanolamine receptor, Gpr119. Here, we show that Gpr119 activation inhibited epithelial electrolyte secretion in human and mouse colon in a glucose-sensitive manner. Endogenous PYY selectively mediated these effects, since PYY(-/-) mice showed no Gpr119 response, but responses were observed in NPY(-/-) mice. Importantly, Gpr119 responses in wild-type (WT) mouse tissue and human colon were abolished by Y(1) receptor antagonism, but were not enhanced by dipeptidylpeptidase IV blockade, indicating that PYY processing to PYY(3-36) was not important. In addition, Gpr119 agonism reduced glycemic excursions after oral glucose delivery to WT mice but not PYY(-/-) mice. Taken together, these data demonstrate a previously unrecognized role of PYY in mediating intestinal Gpr119 activity and an associated function in controlling glucose tolerance.
Collapse
Affiliation(s)
- Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Antisecretory effects of neuropeptide Y in the mouse colon are region-specific and are lost in DSS-induced colitis. ACTA ACUST UNITED AC 2010; 165:138-45. [PMID: 20561896 DOI: 10.1016/j.regpep.2010.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/20/2010] [Accepted: 05/30/2010] [Indexed: 12/13/2022]
Abstract
Regulation of water movement in the gut is an important homeostatic event that is critical to normal intestinal function. We assessed the effect of neuropeptide Y (NPY) on epithelial ion transport in the normal and inflamed mouse colons. Colitis was induced by dextran sodium sulfate (DSS, 4% wt./vol.) administered in the drinking water for 5 days followed by 3 days of regular water. Segments of proximal and distal colons were excised and short-circuit current (I(SC)) was measured in Ussing chambers to assess net electrogenic active ion transport. NPY Y(1) receptor (Y(1)R) expression was measured by quantitative real-time PCR and immunohistochemistry. Challenge of distal colon from normal mice with NPY (10(-7)M) evoked a drop in I(SC) (51.4±9.1 μA/cm(2)), which was dependent on Cl(-) flux, was insensitive to neural blockade with tetrodotoxin and was mediated primarily through the Y(1)R. In contrast, the proximal colon was largely unresponsive to NPY, expressing ~ten-fold less Y(1)R mRNA compared to the distal colon. These findings confirm that specific regional regulation of ion transport occurs in the colon. Segments of proximal and distal colons from mice with DDS-induced colitis were virtually unresponsive to NPY, expressed less Y(1)R mRNA than tissues from control mice and displayed loss of Y(1)R protein expression in the colonic epithelium. This hypo-responsiveness to an antisecretory stimulus adds to the well-documented loss of responsiveness to pro-secretory agents during inflammation, attesting to a profound loss of control of active ion transport during enteric inflammatory disease.
Collapse
|
29
|
Moriya R, Shirakura T, Hirose H, Kanno T, Suzuki J, Kanatani A. NPY Y2 receptor agonist PYY(3-36) inhibits diarrhea by reducing intestinal fluid secretion and slowing colonic transit in mice. Peptides 2010; 31:671-5. [PMID: 19925840 DOI: 10.1016/j.peptides.2009.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 12/20/2022]
Abstract
Peptide YY (PYY)(3-36), a neuropeptide Y (NPY) Y2 receptor agonist, is a powerful inhibitor of intestinal secretion. Based on this anti-secretory effect, NPY Y2 receptor agonists may be useful as novel anti-diarrheal agents, but anti-diarrheal efficacy has yet to be determined. We therefore examined the anti-diarrheal efficacy of PYY(3-36) and a selective Y2 receptor agonist, N-acetyl-[Leu28, Leu31]-NPY(24-36), in experimental mouse models of diarrhea. Intraperitoneal administration of PYY(3-36) (0.01-1mg/kg) and N-acetyl-[Leu28, Leu31]-NPY(24-36) (10mg/kg) significantly inhibited diarrhea (increase in wet fecal weight and diarrhea score) induced by dimethyl-prostaglandin E2, 5-hydroxytryptamine, and castor oil. Anti-diarrheal activities of PYY(3-36) and N-acetyl-[Leu28, Leu31]-NPY(24-36) were comparable to the effects of loperamide (1mg/kg), a widely used anti-diarrheal drug. To clarify the anti-diarrheal mechanisms of NPY Y2 receptor agonists, we investigated the effects of PYY(3-36) and N-acetyl-[Leu28, Leu31]-NPY(24-36) on intestinal fluid secretion and colonic transit. PYY(3-36) (1mg/kg) and N-acetyl-[Leu28, Leu31]-NPY(24-36) (10mg/kg) significantly reduced dimethyl-prostaglandin E2-induced intestinal fluid accumulation in conscious mice, suggesting that NPY Y2 receptor agonists inhibit diarrhea, at least in part, by reducing intestinal secretion. In addition, PYY(3-36) (0.01-1mg/kg) and N-acetyl-[Leu28, Leu31]-NPY(24-36) (10mg/kg) potently inhibited normal fecal output, suggesting that NPY Y2 receptor activation inhibits colonic motor function and NPY Y2 receptor agonists inhibit diarrhea partly by slowing colonic transit. These results indicate that NPY Y2 receptor agonists inhibit diarrhea in mice by not only reducing intestinal fluid secretion, but also slowing colonic transit, and illustrate the therapeutic potential of NPY Y2 receptor agonists as effective treatments for diarrhea.
Collapse
Affiliation(s)
- Ryuichi Moriya
- Tsukuba Research Institute, Banyu Pharmaceutical Co, Ltd, Okubo 3, Tsukuba 300-2611, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Wang L, Gourcerol G, Yuan PQ, Wu SV, Million M, Larauche M, Taché Y. Peripheral peptide YY inhibits propulsive colonic motor function through Y2 receptor in conscious mice. Am J Physiol Gastrointest Liver Physiol 2010; 298:G45-56. [PMID: 19892938 PMCID: PMC2806102 DOI: 10.1152/ajpgi.00349.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Peptide YY (PYY) antisecretory effect on intestinal epithelia is well established, whereas less is known about its actions to influence colonic motility in conscious animals. We characterized changes in basal function and stimulated colonic motor function induced by PYY-related peptides in conscious mice. PYY(3-36), PYY, and neuropeptide Y (NPY) (8 nmol/kg) injected intraperitoneally inhibited fecal pellet output (FPO) per hour during novel environment stress by 90%, 63%, and 57%, respectively, whereas the Y(1)-preferring agonists, [Pro(34)]PYY and [Leu(31),Pro(34)]NPY, had no effect. Corticotrophin-releasing factor 2 receptor antagonist did not alter PYY(3-36) inhibitory action. PYY and PYY(3-36) significantly reduced restraint-stimulated defecation, and PYY(3-36) inhibited high-amplitude distal colonic contractions in restrained conscious mice for 1 h, by intraluminal pressure with the use of a microtransducer. PYY suppression of intraperitoneal 5-hydroxytryptophan induced FPO and diarrhea was blocked by the Y(2) antagonist, BIIE0246, injected intraperitoneally and mimicked by PYY(3-36), but not [Leu(31),Pro(34)]NPY. PYY(3-36) also inhibited bethanechol-stimulated FPO and diarrhea. PYY(3-36) inhibited basal FPO during nocturnal feeding period and light phase in fasted/refed mice for 2-3 h, whereas the reduction of food intake lasted for only 1 h. PYY(3-36) delayed gastric emptying after fasting-refeeding by 48% and distal colonic transit time by 104%, whereas [Leu(31),Pro(34)]NPY had no effect. In the proximal and distal colon, higher Y(2) mRNA expression was detected in the mucosa than in muscle layers, and Y(2) immunoreactivity was located in nerve terminals around myenteric neurons. These data established that PYY/PYY(3-36) potently inhibits basal and stress/serotonin/cholinergic-stimulated propulsive colonic motor function in conscious mice, likely via Y(2) receptors.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Research Center, and Center for Neurobiology of Stress, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Moriya R, Fujikawa T, Ito J, Shirakura T, Hirose H, Suzuki J, Fukuroda T, Macneil DJ, Kanatani A. Pancreatic polypeptide enhances colonic muscle contraction and fecal output through neuropeptide Y Y4 receptor in mice. Eur J Pharmacol 2009; 627:258-64. [PMID: 19818748 DOI: 10.1016/j.ejphar.2009.09.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/11/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
Pancreatic polypeptide is released mainly from the pancreas, and is thought to be one of the major endogenous agonists of the neuropeptide Y Y(4) receptor. Pancreatic polypeptide has been shown to stimulate colonic muscle contraction, but whether pancreatic polypeptide has in vivo functional activity with respect to colonic transit is unclear. The present report investigated the effects of pancreatic polypeptide on fecal output as an index of colonic transit as well as intestinal motor activity, using wild-type (WT) and neuropeptide Y Y(4) receptor-deficient (KO) mice. Peripheral administration of pancreatic polypeptide increased fecal weight and caused diarrhea in WT mice in a dose-dependent manner (0.01-3mg/kg s.c.). Pancreatic polypeptide-induced increases in fecal weight and diarrhea completely disappeared in KO mice, while basal fecal weights did not differ between WT and KO mice. In longitudinal and circular muscles of mouse isolated colon, pancreatic polypeptide (0.01-1 microM) increased basal tone and frequency of spontaneous contraction in WT mice, but not in KO mice. Atropine did not affect pancreatic polypeptide-induced fecal output or increase in colonic muscle tone, indicating that the actions of pancreatic polypeptide are not mediated through cholinergic mechanisms. The present findings demonstrate that pancreatic polypeptide enhances colonic contractile activity and fecal output through neuropeptide Y Y(4) receptor, and a neuropeptide Y Y(4) receptor agonist might offer a novel therapeutic approach to ameliorate constipation.
Collapse
Affiliation(s)
- Ryuichi Moriya
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Tsukuba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cox HM. Endogenous PYY and NPY mediate tonic Y1- and Y2-mediated absorption in human and mouse colon. Nutrition 2008; 24:900-6. [PMID: 18662856 PMCID: PMC2572019 DOI: 10.1016/j.nut.2008.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 06/13/2008] [Indexed: 02/07/2023]
Abstract
Objective To establish the functional significance of endogenous peptide YY (PYY) and neuropeptide Y (NPY) as mediators of Y1 and Y2 absorptive tone in colonic mucosa. Methods Functional studies utilized descending colon from adult mice (wild type [WT] and peptide nulls) and ex vivo human colonic tissue (from patients undergoing bowel resections) measuring changes in basal ion transport. Peak increases in ion transport to Y1 or Y2 antagonists (BIBO3304 300 nM; BIIE0246 1 μM) were pooled (mean ± SEM) and compared using Student's unpaired t test (P ≤ 0.05); some tissues received tetrodotoxin (TTX; 100 nM). PYY-positive L-cell numbers and NPY innervation were also compared. Results Y1 and Y2 tones were present in human and WT mouse colon mucosa and only the latter was TTX sensitive. Y1 tone was unchanged in NPY−/− but was ∼90% inhibited in PYY−/− and abolished in PYYNPY−/− colon mucosa. Y2 tone was reduced ∼50% in NPY−/− and PYY−/− tissues and was absent from PYYNPY−/− colon. Residual Y2 and Y1 tones present in PYY−/− mucosa were abolished by TTX. PYY ablation had no apparent effect on NPY innervation and PYY-positive cells were observed at the same frequency in NPY−/− (56.7 ± 6.8 cells/section) and WT (55.0 ± 4.6 cells/section) colons. Double knockouts lacked PYY and NPY expression, but endocrine cells and enteric nerves were present with similar frequencies to those of WT mice. Conclusion Endogenous PYY mediates Y1 absorptive tone that is epithelial in origin, whereas Y2 tone is a combination of PYY and NPY mediation.
Collapse
Affiliation(s)
- Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, United Kingdom.
| |
Collapse
|
33
|
Osbak PS, Bindslev N, Poulsen SS, Kaltoft N, Tilotta MC, Hansen MB. Colonic epithelial ion transport is not affected in patients with diverticulosis. BMC Gastroenterol 2007; 7:37. [PMID: 17888183 PMCID: PMC2064914 DOI: 10.1186/1471-230x-7-37] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 09/23/2007] [Indexed: 11/10/2022] Open
Abstract
Background Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1) to investigate colonic epithelial ion transport in patients with diverticulosis and (2) to adapt a miniaturized Modified Ussing Air-Suction (MUAS) chamber for colonic endoscopic biopsies. Methods Biopsies were obtained from the sigmoid part of the colon. 86 patients were included. All patients were referred for colonoscopy on suspicion of neoplasia and they were without pathological findings at colonoscopy (controls) except for diverticulosis in 22 (D-patients). Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use and reproducible data were obtained. Results Median basal short circuit current (SCC) was 43.8 μA·cm-2 (0.8 – 199) for controls and 59.3 μA·cm-2 (3.0 – 177.2) for D-patients. Slope conductance was 77.0 mS·cm-2 (18.6 – 204.0) equal to 13 Ω·cm2 for controls and 96.6 mS·cm-2 (8.4 – 191.4) equal to 10.3 Ω·cm2 for D-patients. Stimulation with serotonin, theophylline, forskolin and carbachol induced increases in SCC in a range of 4.9 – 18.6 μA·cm-2, while inhibition with indomethacin, bumetanide, ouabain and amiloride decreased SCC in a range of 6.5 – 27.4 μA·cm-2, and all with no significant differences between controls and D-patients. Histological examinations showed intact epithelium and lamina propria before and after mounting for both types of patients. Conclusion We conclude that epithelial ion transport is not significantly altered in patients with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies.
Collapse
Affiliation(s)
- Philip S Osbak
- Department of Gastrointestinal Surgery K, Bispebjerg University Hospital of Copenhagen, Denmark
| | - Niels Bindslev
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Anatomy B, Panum Institute, University of Copenhagen, Denmark
| | - Nicolai Kaltoft
- Department of Gastrointestinal Surgery K, Bispebjerg University Hospital of Copenhagen, Denmark
| | - Maria C Tilotta
- Department of Gastrointestinal Surgery K, Bispebjerg University Hospital of Copenhagen, Denmark
| | - Mark B Hansen
- Department of Gastrointestinal Surgery K, Bispebjerg University Hospital of Copenhagen, Denmark
| |
Collapse
|
34
|
Abstract
Endocrine cells, enteric neurons and enterocytes provide an integrated functional defense against luminal factors, including nutrients, microbes and toxins. Prominent among intrinsic mediators is peptide YY (PYY) which is present in approximately 50% of colorectal endocrine cells and neuropeptide Y (NPY), a neurotransmitter expressed in submucous and myenteric nerves. Both peptides and their long fragments (PYY(3-36) and NPY(3-36)) are potent, long-lasting anti-secretory agents in vitro and in vivo and, they provide significant Y receptor-mediated absorptive tone in human and mouse colon mucosa. The main function of the colon is to absorb 90% of approximately 2l of daily ileal effluent (in adult humans) and Y-absorptive tone can contribute significantly to this electrolyte absorption. Blockade or loss of this mucosal Y-absorptive tone (i.e. with Y(1) or Y(2) antagonists) leads to hypersecretion and potentially to diarrhea, so Y agonists are predicted to rescue absorption by mimicking endogenous neuroendocrine PYY or neuronal NPY.
Collapse
Affiliation(s)
- Helen M Cox
- Wolfson Centre for Age-Related Diseases, King's College London, School of Biomedical and Health Sciences, Guy's Campus, Hodgkin Building, London SE1 1UL, UK.
| |
Collapse
|
35
|
Brain SD, Cox HM. Neuropeptides and their receptors: innovative science providing novel therapeutic targets. Br J Pharmacol 2006; 147 Suppl 1:S202-11. [PMID: 16402106 PMCID: PMC1760747 DOI: 10.1038/sj.bjp.0706461] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This review examines our current understanding of the roles of some of the best known neuropeptides that have played major roles in our combined research programmes. Evidence obtained from over 75 years of research shows involvement of these transmitters in a wide range of organs relevant to cardiovascular, respiratory, cutaneous, neuronal and intestinal systems. There is an increasing understanding of the mechanisms involved in the release of the peptides (substance P and calcitonin gene-related peptide (CGRP)) from sensory nerves or, neuropeptide Y (NPY) from sympathetic, parasympathetic and nonadrenergic, noncholinergic (NANC) neurons. Responses in target tissues result from interactions of the neuropeptides, or related forms, with specific G-protein coupled receptors (GPCRs or 7 transmembrane-spanning, 7TM proteins) that belong to either rhodopsin-like, class 1 (neurokinin (NK) and NPY Y receptors) or secretin-like, class 2 GPCRs (CGRP receptors). The majority of receptors activated by our chosen neuropeptides are now cloned, with knowledge of preferred agonists and selective antagonists for many receptor subtypes within these families. The study of neuropeptides in animal models has additionally revealed physiological and pathophysiological roles that in turn have led to the ongoing development of new drugs, through utilization predominantly of antagonist activities.
Collapse
Affiliation(s)
- Susan D Brain
- King's College London, Cardiovascular Division, School of Biomedical and Health Sciences, New Hunt's House, Guy's Campus, London SE1 1UL.
| | | |
Collapse
|
36
|
Cox HM. Neuropeptide Y receptors; antisecretory control of intestinal epithelial function. Auton Neurosci 2006; 133:76-85. [PMID: 17140858 DOI: 10.1016/j.autneu.2006.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/12/2006] [Accepted: 10/23/2006] [Indexed: 12/11/2022]
Abstract
This paper reviews the cellular localisation, mechanisms of release and intestinal absorptive actions of neuropeptide Y and its related peptides, peptide YY, pancreatic polypeptide and major fragments NPY(3-36) and PYY(3-36). While NPY is commonly found in inhibitory enteric neurons that can be interneurons, motor neurons or secretomotor-nonvasodilator in nature, its analogue, peptide YY in contrast, is located in neuroendocrine L-cells that predominate in the colorectal mucosa. Peptide YY is released from these cells when nutrients arrive in the small or large bowel, exerting paracrine as well as hormonal actions. Pancreatic polypeptide is found in relatively few, scattered intestinal endocrine cells, the majority of this peptide being produced by, and released from pancreatic islet F-cells in response to food intake. An introduction to the current pharmacology of this family of peptides is provided and the different types of neuropeptide Y (termed Y) receptors, their agonist preferences, antagonism, and preferred signalling pathways, are described. Our current understanding of specific Y receptor localisation within the intestine as determined by immunohistochemistry, is presented as a prelude to an assessment of functional studies that have monitored ion transport across isolated mucosal preparations. It is becoming clear that three Y receptor types are significant functionally in human colon, as well as particular rodent models (e.g. mouse) and these, namely the Y(1), Y(2) and Y(4) receptors, are discussed in detail. Their presence within the basolateral aspect of the epithelial layer (Y(1) and Y(4) receptors) or on enteric neurons (Y(1) and Y(2) receptors) and their activation by endogenous neuropeptide Y, peptide YY (Y(1) and Y(2) receptors) or pancreatic polypeptide (which prefers Y(4) receptors) results consistently in antisecretory/absorptive responses. The recent use of novel mouse knockouts has helped establish loss of specific intestinal functions including Y(1) and Y(2) receptor-mediated absorptive tone in colon mucosa. Progress in this field has been rapid recently, aided by the availability of selective antagonists and mutant mice lacking either one (e.g. Y(4)-/-, for which no antagonists exist at present) or more Y receptor types. It is therefore timely to review this work and present a rational basis for developing stable synthetic Y receptor agonists as novel anti-diarrhoeals.
Collapse
Affiliation(s)
- Helen M Cox
- Wolfson Centre for Age-Related Diseases, King's College London, Hodgkin Building, Guy's Campus, London, SE1 1UL, United Kingdom.
| |
Collapse
|
37
|
Tough IR, Holliday ND, Cox HM. Y(4) receptors mediate the inhibitory responses of pancreatic polypeptide in human and mouse colon mucosa. J Pharmacol Exp Ther 2006; 319:20-30. [PMID: 16807358 DOI: 10.1124/jpet.106.106500] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The antisecretory effects of several Y agonists, including pancreatic polypeptide (PP), indicate the presence of Y(1), Y(2), and Y(4) receptors in mouse and human (h) colon mucosae. Here, we used preparations from human and from wild-type (WT), Y(4), and Y(1) receptor knockout ((-/-)) mice, alongside Y(4) receptor-transfected cells to define the relative functional contribution of the Y(4) receptor. First, rat (r) PP antisecretory responses were lost in murine Y(4)(-/-) preparations, but hPP and Pro(34) peptide YY (PYY) costimulated Y(4) and Y(1) receptors in WT mucosa. The Y(1) antagonist/Y(4) agonist GR231118 [(Ile,Glu,Pro,Dpr,Tyr,Arg,Leu,Arg,Try-NH(2))-2-cyclic(2,4'),(2',4)-diamide] elicited small Y(4)-mediated antisecretory responses in human tissues pretreated with the Y(1) antagonist, BIBO3304 [(R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N(2)-(diphenylacetyl)-argininamide trifluoroacetate)], and attenuated Y(4)-mediated hPP responses in mouse and human mucosa. GR231118 and rPP were also antisecretory in hY(4)-transfected epithelial monolayers but were partial agonists compared with hPP at this receptor. In Y(4)-transfected human embryonic kidney (HEK) 293 cells, Y(4) ligands displaced [(125)I]hPP binding with orders of affinity (pK(i)) at human (hPP = rPP > GR231118 > Pro(34)PYY = PYY) and mouse (rPP = hPP > GR231118 > Pro(34)PYY > PYY) Y(4) receptors. GR231118- and rPP-stimulated guanosine 5'-3-O-(thio)triphosphate binding through hY(4) receptors with significantly lower efficacy than hPP. GR231118 marginally increased basal but abolished further PP-induced hY(4) internalization to recycling (transferrin-labeled) pathways in HEK293 cells. Taken together, these findings show that Y(4) receptors play a definitive role in attenuating colonic anion transport and may be useful targets for novel antidiarrheal agents due to their limited peripheral expression.
Collapse
Affiliation(s)
- Iain R Tough
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
38
|
Hyland NP, Cox HM. The regulation of veratridine-stimulated electrogenic ion transport in mouse colon by neuropeptide Y (NPY), Y1 and Y2 receptors. Br J Pharmacol 2006; 146:712-22. [PMID: 16100526 PMCID: PMC1751203 DOI: 10.1038/sj.bjp.0706368] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
1 Neuropeptide Y (NPY) is a prominent enteric neuropeptide with prolonged antisecretory effects in mammalian intestine. Veratridine depolarises neurons consequently causing epithelial anion secretion across mouse colon mucosa. Our aim was to characterise functionally, veratridine-stimulated mucosal responses and to determine the roles for NPY, Y(1), and Y(2) receptors in modulating these neurogenic effects. 2 Colon mucosae (with intact submucous innervation) from wild-type mice (+/+) and knockouts lacking either NPY (NPY-/-), Y(1)-/- or Y(2)-/- were placed in Ussing chambers and voltage clamped at 0 mV. Veratridine-stimulated short-circuit current (I(sc)) responses in +/+, Y(1) or Y(2) antagonist pretreated +/+ colon, Y(1)-/- and NPY-/- colon were insensitive to cholinergic blockade by atropine (At; 1 microM) and hexamethonium (Hex; 10 microM). Tetrodotoxin (TTX, 100 nM) abolished veratridine responses, but had no effect upon carbachol (CCh) or vasoactive intestinal polypeptide (VIP)-induced secretory responses. 3 To establish the functional roles for Y(1) and Y(2) receptors, +/+ tissues were pretreated with either the Y(1) or Y(2) receptor antagonist (BIBO3304 (300 nM) or BIIE0246 (1 microM), respectively) and veratridine responses were compared with those from Y(1)-/- or Y(2)-/- colon. Neither BIBO3304 nor Y(1)-/- altered veratridine-induced secretion, but Y(1) agonist responses were abolished in both preparations. In contrast, the Y(2) antagonist BIIE0246 significantly amplified veratridine responses in +/+ mucosa. Unexpectedly, NPY-/- colon exhibited significantly attenuated veratridine responses (between 1 and 5 min). 4 We demonstrate that electrogenic veratridine responses in mouse colon are noncholinergic and that NPY can act directly upon epithelia, a Y(1) receptor effect. The enhanced veratridine response observed in +/+ tissue following BIIE0246, indicates that Y(2) receptors are located on submucosal neurons and that their activation by NPY will inhibit enteric noncholinergic secretory neurotransmission. 5 We also demonstrate Y(1) and Y(2) receptor-mediated antisecretory tone in +/+ colon and show selective loss of each in Y(1) and Y(2) null colon respectively. In NPY-/- tissue, only Y(1)-mediated tone was present, this presumably being mediated by endogenous endocrine peptide YY. Y(2) tone was absent from NPY-/- (and Y(2)-/-) colon and we conclude that NPY activation of neuronal Y(2) receptors attenuates secretory neurotransmission thereby providing an absorptive electrolyte tone in isolated colon.
Collapse
Affiliation(s)
- Niall P Hyland
- Wolfson Centre for Age-Related Diseases, King's College London, GKT School of Biomedical Sciences, Guy's Campus, London, SE1 1UL
| | - Helen M Cox
- Wolfson Centre for Age-Related Diseases, King's College London, GKT School of Biomedical Sciences, Guy's Campus, London, SE1 1UL
- Author for correspondence:
| |
Collapse
|
39
|
Abstract
Most gut peptides exert their effects through G protein-coupled receptors, a family of about 700 membrane proteins, 87 of which are presently known to have peptide ligands. Three additional gut peptide receptors are not G protein-coupled receptors but regulate intracellular cyclic GMP accumulation. The aim of this review is to illustrate how the sequencing of the human genome and other recent advances in genomics has contributed to our understanding of the role of peptides and their receptors in gastrointestinal function. Recent discoveries include the identification of receptors for the peptides motilin and neuromedin U, and new physiological ligands for the PTH2 receptor, the CRF(2) receptor and the growth hormone secretagogue receptor. Knockout mice lacking specific peptide receptors or their ligands provide informative animal models in which to determine the functions of the numerous peptide-receptor systems in the gut and to predict which of them may be the most fruitful for drug development. Some peptide-receptor signalling systems may be more important in disease states than they are in normal physiology. For example, substance P, galanin, bradykinin and opioids play important roles in visceral pain and inflammation. Other peptides may have developmental roles: for example, disruption of endothelin-3 signalling prevents the normal development of the enteric nervous system and contributes to the pathogenesis of Hirschsprung disease.
Collapse
Affiliation(s)
- Anthony J Harmar
- Division of Neuroscience and Centre for Neuroscience Research, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
40
|
Chelikani PK, Haver AC, Reidelberger RD. Comparison of the inhibitory effects of PYY(3-36) and PYY(1-36) on gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1064-70. [PMID: 15242829 DOI: 10.1152/ajpregu.00376.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the effects of the two molecular forms of the brain-gut peptide YY (PYY), PYY(1-36) and PYY(3-36), on gastric emptying. Unanesthetized rats received 20-min intravenous infusions of rat PYY(1-36) (0, 1.7, 5, 17, 50, 100, 170 pmol·kg−1·min−1) and rat PYY(3-36) (0, 0.5, 1.7, 5, 17, 50, 100, 170 pmol·kg−1·min−1), either alone or combined, and gastric emptying of saline was measured during the last 10 min of infusion. For comparison, human PYY(3-36) was administered at 0, 17, and 50 pmol·kg−1·min−1. Gastric emptying was decreased by 11, 24, 26 and 38% in response to 17, 50, 100, and 170 pmol·kg−1·min−1 of rat PYY(1-36); by 10, 26, 41, 53, and 57% in response to 5, 17, 50, 100, and 170 pmol·kg−1·min−1 of rat PYY(3-36); and by 35 and 53% in response to 17 and 50 pmol·kg−1·min−1 of human PYY(3-36), respectively. Estimated ED50s were 470 and 37 pmol·kg−1·min−1 for rat PYY(1-36) and PYY(3-36), respectively. In general, within an experiment, coadministration of PYY(1-36) and PYY(3-36) inhibited gastric emptying by an amount that was comparable to that produced when either peptide was given alone. We conclude that 1) intravenous infusion of PYY(1-36) and PYY(3-36) each produces a dose-dependent inhibition of gastric emptying in rats, 2) PYY(3-36) is an order of magnitude more potent than PYY(1-36) in inhibiting gastric emptying, 3) human PYY(3-36) and rat PYY(3-36) inhibit gastric emptying similarly, and 4) PYY(1-36) and PYY(3-36) do not appear to interact in an additive or synergistic manner to inhibit gastric emptying.
Collapse
|
41
|
Chu DQ, Cox HM, Costa SKP, Herzog H, Brain SD. The ability of neuropeptide Y to mediate responses in the murine cutaneous microvasculature: an analysis of the contribution of Y1 and Y2 receptors. Br J Pharmacol 2003; 140:422-30. [PMID: 12970079 PMCID: PMC1574044 DOI: 10.1038/sj.bjp.0705452] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The ability of neuropeptide Y (NPY) to modulate skin blood flow, oedema formation and neutrophil accumulation was investigated. Experiments were designed to examine the possible contribution of the Y2 receptor, in addition to the Y1 receptor, through use of Y2 receptor knockout mice (Y2-/-) and selective receptor antagonists. 2. The development of a 99mTc clearance technique for the measurement of microvascular blood flow changes in mouse dorsal skin revealed a dose-dependent ability of picomole amounts of NPY, and also of the Y1-preferred agonist Pro34NPY and the Y2-preferred agonist PYY(3-36) to decrease blood flow. 3. The Y1 receptor antagonist BIBO3304 blocked responses to the Y1 agonist at the lower doses, but only partially inhibited at the higher doses tested in Y2+/+. In Y2-/- receptor mice, the responses to the Y2 agonist were abolished at the lower doses and partially reduced at the highest dose tested, while those to the Y1 agonist were similar in both Y2+/+ and Y2-/-receptor mice. 4. In Y2+/+ receptor mice, the simultaneous injection of the Y2 antagonist BIIE0246 with BIBO3304 abolished Y2 agonist-induced decreases in blood flow over the dose range used (10-100 pmol). When the Y2 receptor antagonist BIIE0246 was given alone, it was not able to significantly affect the PYY(3-36)-induced response, whereas the Y1 receptor antagonist BIBO3304 partially (P<0.001) inhibited the decrease in blood flow evoked by PYY(3-36) at the highest dose. 5. NPY did not mediate either oedema formation, even when investigated in the presence of the vasodilator calcitonin gene-related peptide (CGRP), or neutrophil accumulation in murine skin. 6. We conclude that the major vasoactive activity of NPY in the cutaneous microvasculature is to act in a potent manner to decrease blood flow via Y1 receptors, with evidence for the additional involvement of postjunctional Y2 receptors. Our results do not provide evidence for a potent proinflammatory activity of NPY in the cutaneous microvasculature.
Collapse
Affiliation(s)
- Duc Quyen Chu
- Centre for Cardiovascular Biology & Medicine, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL
| | - Helen M Cox
- Centre for Neuroscience Research, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL
| | - Soraia K P Costa
- Centre for Cardiovascular Biology & Medicine, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL
| | - Herbert Herzog
- Neurobiology Program, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Susan D Brain
- Centre for Cardiovascular Biology & Medicine, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL
- Author for correspondence:
| |
Collapse
|