1
|
Senthilkumaran M, Koch C, Herselman MF, Bobrovskaya L. Role of the Adrenal Medulla in Hypoglycaemia-Associated Autonomic Failure-A Diabetic Perspective. Metabolites 2024; 14:100. [PMID: 38392992 PMCID: PMC10890365 DOI: 10.3390/metabo14020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoglycaemia-associated autonomic failure (HAAF) is characterised by an impairment in adrenal medullary and neurogenic symptom responses following episodes of recurrent hypoglycaemia. Here, we review the status quo of research related to the regulatory mechanisms of the adrenal medulla in its response to single and recurrent hypoglycaemia in both diabetic and non-diabetic subjects with particular focus given to catecholamine synthesis, enzymatic activity, and the impact of adrenal medullary peptides. Short-term post-transcriptional modifications, particularly phosphorylation at specific residues of tyrosine hydroxylase (TH), play a key role in the regulation of catecholamine synthesis. While the effects of recurrent hypoglycaemia on catecholamine synthetic enzymes remain inconsistent, long-term changes in TH protein expression suggest species-specific responses. Adrenomedullary peptides such as neuropeptide Y (NPY), galanin, and proenkephalin exhibit altered gene and protein expression in response to hypoglycaemia, suggesting a potential role in the modulation of catecholamine secretion. Of note is NPY, since its antagonism has been shown to prevent reductions in TH protein expression. This review highlights the need for further investigation into the molecular mechanisms involved in the adrenal medullary response to hypoglycaemia. Despite advancements in our understanding of HAAF in non-diabetic rodents, a reliable diabetic rodent model of HAAF remains a challenge.
Collapse
Affiliation(s)
- Manjula Senthilkumaran
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Coen Koch
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Mauritz Frederick Herselman
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
2
|
Ha WS, Kim J, Hwang HW, Lee SH, Kim JI, Hong JY, Park SH, Han KD, Baek MS. The association between migraine and Parkinson's disease: a nationwide cohort study. Epidemiol Health 2023; 46:e2024010. [PMID: 38186247 PMCID: PMC10928470 DOI: 10.4178/epih.e2024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVES Clinical studies have suggested an association between migraine and the occurrence of Parkinson's disease (PD). However, it is unknown whether migraine affects PD risk. We aimed to investigate the incidence of PD in patients with migraine and to determine the risk factors affecting the association between migraine and PD incidence. METHODS Using the Korean National Health Insurance System database (2002-2019), we enrolled all Koreans aged ≥40 years who participated in the national health screening program in 2009. International Classification of Diseases (10th revision) diagnostic codes and Rare Incurable Diseases System diagnostic codes were used to define patients with migraine (within 12 months of enrollment) and newly diagnosed PD. RESULTS We included 214,193 patients with migraine and 5,879,711 individuals without migraine. During 9.1 years of follow-up (55,435,626 person-years), 1,973 (0.92%) and 30,664 (0.52%) individuals with and without migraine, respectively, were newly diagnosed with PD. Following covariate adjustment, patients with migraine showed a 1.35-fold higher PD risk than individuals without migraine. The incidence of PD was not significantly different between patients with migraine with aura and those without aura. In males with migraine, underlying dyslipidemia increased the risk of PD (p=0.012). In contrast, among females with migraine, younger age (<65 years) increased the risk of PD (p=0.038). CONCLUSIONS Patients with migraine were more likely to develop PD than individuals without migraine. Preventive management of underlying comorbidities and chronic migraine may affect the incidence of PD in these patients. Future prospective randomized clinical trials are warranted to clarify this association.
Collapse
Affiliation(s)
- Woo-Seok Ha
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeho Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Hee Won Hwang
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sue Hyun Lee
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ji In Kim
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jin Yong Hong
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sang Hyun Park
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Kyung Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Min Seok Baek
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
3
|
Papiri G, Vignini A, Capriotti L, Verdenelli P, Alia S, Di Paolo A, Fiori C, Baldinelli S, Silvestrini M, Luzzi S. Cerebrospinal Fluid α-Calcitonin Gene-Related Peptide: A Comparison between Alzheimer's Disease and Multiple Sclerosis. Biomolecules 2022; 12:199. [PMID: 35204700 PMCID: PMC8961604 DOI: 10.3390/biom12020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) and Multiple Sclerosis (MS) represent an emerging health problem on a global scale, as they are responsible for a significant contribution to the burden of disability in Western countries. Limited numbers of cerebrospinal fluid (CSF) diagnostic markers are available for each disease (amyloid and tau deposition markers for AD and oligoclonal bands for MS) representing mostly state markers that provide few, if any, clues about the severity of the clinical phenotype. α-CGRP is a neuropeptide implied in nociception, vasodilation, synaptic plasticity and immune functions. This neuropeptide is expressed in encephalic regions connected to memory, attention, autonomic and behavioral functions and is also expressed by spinal motor neurons. The present work confronted α-CGRP levels between 19 AD, 27 MS and 17 control subjects using an ELISA/EIA assay. We measured higher CSF α-CGRP contents in control subjects with respect to AD, as shown in previous studies, as well as in MS patients in comparison to AD. The control subjects and MS patients did not significantly differ between each other. We did not observe a relationship between CSF protein content, albumin quotient and α-CGRP. We also describe, retrospectively, an association between higher CSF CGRP content and higher MRI overall lesion count in MS and between lower α-CGRP and worse attention and visuo-perceptual skills in AD. We speculate that α-CGRP could be differentially involved in both disabling diseases.
Collapse
Affiliation(s)
- Giulio Papiri
- Neurology Clinic, Azienda Ospedaliero Universitaria, Ospedali Riuniti di Ancona, 60126 Torrette di Ancona, Italy; (G.P.); (C.F.); (S.B.); (M.S.); (S.L.)
| | - Arianna Vignini
- Section of Biochemistry, Department of Clinical Sciences, Biology and Physics, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.A.); (A.D.P.)
| | - Luigi Capriotti
- Anesthesiology and Intensive Care Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy; (L.C.); (P.V.)
| | - Paola Verdenelli
- Anesthesiology and Intensive Care Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy; (L.C.); (P.V.)
| | - Sonila Alia
- Section of Biochemistry, Department of Clinical Sciences, Biology and Physics, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.A.); (A.D.P.)
| | - Alice Di Paolo
- Section of Biochemistry, Department of Clinical Sciences, Biology and Physics, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.A.); (A.D.P.)
| | - Chiara Fiori
- Neurology Clinic, Azienda Ospedaliero Universitaria, Ospedali Riuniti di Ancona, 60126 Torrette di Ancona, Italy; (G.P.); (C.F.); (S.B.); (M.S.); (S.L.)
| | - Sara Baldinelli
- Neurology Clinic, Azienda Ospedaliero Universitaria, Ospedali Riuniti di Ancona, 60126 Torrette di Ancona, Italy; (G.P.); (C.F.); (S.B.); (M.S.); (S.L.)
| | - Mauro Silvestrini
- Neurology Clinic, Azienda Ospedaliero Universitaria, Ospedali Riuniti di Ancona, 60126 Torrette di Ancona, Italy; (G.P.); (C.F.); (S.B.); (M.S.); (S.L.)
| | - Simona Luzzi
- Neurology Clinic, Azienda Ospedaliero Universitaria, Ospedali Riuniti di Ancona, 60126 Torrette di Ancona, Italy; (G.P.); (C.F.); (S.B.); (M.S.); (S.L.)
| |
Collapse
|
4
|
Mathew PG, Krivitski D, Sharon R. Erenumab-Induced Severe Nausea Leading to Smoking Cessation: A Retrospective Case Series. Headache 2020; 60:2563-2569. [PMID: 33202039 DOI: 10.1111/head.13979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Erenumab is a novel treatment modality with a relatively benign and safe side effect profile, currently approved for the prevention of migraine headache. We present 3 cases with chronic migraine who are cigarette smokers were prescribed erenumab, and developed an intense smoking-induced nausea which eventually led to smoking cessation. METHODS A multicenter retrospective review of 3 cases with cigarette smoking, one of whom was also smoking marijuana, suffering from chronic migraine resistant to multiple preventive therapies was studied. All were prescribed monthly injections of erenumab 70 mg. Response in terms of headache frequency and intensity and smoking habits was obtained through medical record review. RESULTS Out of 3 patients, 2 reported reduced headache frequency and intensity. All patients developed severe nausea while smoking cigarettes after their first dose of erenumab, leading to smoking cessation. One patient co-smoked marijuana, which did not result in nausea after being treated. CONCLUSION To the best of our knowledge, this is the first report of severe nausea secondary to erenumab administration and smoking cigarettes, which finally resulted in complete cigarette smoking cessation. As such, further study is indicated on the benefit of erenumab and other calcitonin gene-related peptide antagonists in migraineurs who smoke to promote smoking cessation.
Collapse
Affiliation(s)
- Paul G Mathew
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Vanguard Medical Associates, Braintree, MA, USA
| | - David Krivitski
- Department of General, Yitzhak Shamir Medical Center, Be'er Ya'akov, Israel
| | - Roni Sharon
- Department of Neurology, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, University of Tel Aviv, Tel Aviv, Israel
| |
Collapse
|
5
|
Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [PMID: 31688964 DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, β-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.
Collapse
Affiliation(s)
- Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Antonio G García
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
6
|
Guérineau NC. Cholinergic and peptidergic neurotransmission in the adrenal medulla: A dynamic control of stimulus‐secretion coupling. IUBMB Life 2019; 72:553-567. [DOI: 10.1002/iub.2117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Nathalie C. Guérineau
- IGFUniv. Montpellier, CNRS, INSERM Montpellier France
- LabEx “Ion Channel Science and Therapeutics” Montpellier France
| |
Collapse
|
7
|
The Neurochemical Characterization of Parasympathetic Nerve Fibers in the Porcine Uterine Wall Under Physiological Conditions and After Exposure to Bisphenol A (BPA). Neurotox Res 2019; 35:867-882. [PMID: 30788711 PMCID: PMC6469660 DOI: 10.1007/s12640-019-00013-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Bisphenol A, a substance commonly used in plastic manufacturing, is relatively well known as an endocrine disruptor, which may bind to estrogen receptors and has multidirectional negative effects on both human and animal organisms. Previous studies have reported that BPA may act on the reproductive organs, but knowledge concerning BPA-induced changes within the nerves located in the uterine wall is extremely scant. The aim of this study was to investigate the impact of various doses of BPA on the parasympathetic nerves located in the corpus and horns of the uterus using a single and double immunofluorescence method. The obtained results have shown that BPA may change not only the expression of vesicular acetylcholine transporter (VAChT—a marker of parasympathetic nervous structures) in the uterine intramural nerve fibers, but also the degree of colocalization of this substance with other neuronal factors, including substance P (SP), vasoactive intestinal polypeptide (VIP), galanin (GAL), and calcitonin gene–related peptide (CGRP). Moreover, BPA caused changes in the density of the overall populations of fibers immunoreactive to the particular neuropeptides mentioned above. The characteristics of the changes clearly depended on the part of the uterus, the neuronal factors studied, and the dosage of BPA. The mechanisms of the observed fluctuations are probably connected with the neurotoxic and/or pro-inflammatory activity of BPA. Moreover, the results have shown that even low doses of BPA are not neutral to living organisms. Changes in the neurochemical characterization of nerves supplying the uterine wall may be the first subclinical sign of intoxication with this substance.
Collapse
|
8
|
Abstract
Calcitonin gene-related peptide (CGRP), a potent vasodilator and pain-signaling neuropeptide, is a validated therapeutic target for migraine and cluster headache. Four anti-CGRP monoclonal antibodies (mAbs) have been developed, representing the first specific, mechanism-based, migraine prophylactic treatment. CGRP mAbs demonstrated good efficacy coupled to excellent tolerability and safety in 5 phase II clinical trials. Notably, CGRP mAbs induced complete migraine remission in a patients' subset. To date, more than 20 phase III trials using CGRP mAbs for of episodic and chronic migraine and cluster headache prevention are ongoing. Future investigations will shed light on migraine endophenotypes predictive of good CGRP mAbs responsiveness and provide answers on their long-term cardiovascular safety.
Collapse
|
9
|
Brindley RL, Bauer MB, Hartley ND, Horning KJ, Currie KP. Sigma-1 receptor ligands inhibit catecholamine secretion from adrenal chromaffin cells due to block of nicotinic acetylcholine receptors. J Neurochem 2017; 143:171-182. [PMID: 28815595 PMCID: PMC5630514 DOI: 10.1111/jnc.14149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 07/03/2017] [Accepted: 08/10/2017] [Indexed: 01/07/2023]
Abstract
Adrenal chromaffin cells (ACCs) are the neuroendocrine arm of the sympathetic nervous system and key mediators of the physiological stress response. Acetylcholine (ACh) released from preganglionic splanchnic nerves activates nicotinic acetylcholine receptors (nAChRs) on chromaffin cells causing membrane depolarization, opening voltage-gated Ca2+ channels (VGCC), and exocytosis of catecholamines and neuropeptides. The serotonin transporter is expressed in ACCs and interacts with 5-HT1A receptors to control secretion. In addition to blocking the serotonin transporter, some selective serotonin reuptake inhibitors (SSRIs) are also agonists at sigma-1 receptors which function as intracellular chaperone proteins and can translocate to the plasma membrane to modulate ion channels. Therefore, we investigated whether SSRIs and other sigma-1 receptor ligands can modulate stimulus-secretion coupling in ACCs. Escitalopram and fluvoxamine (100 nM to 1 μM) reversibly inhibited nAChR currents. The sigma-1 receptor antagonists NE-100 and BD-1047 also blocked nAChR currents (≈ 50% block at 100 nM) as did PRE-084, a sigma-1 receptor agonist. Block of nAChR currents by fluvoxamine and NE-100 was not additive suggesting a common site of action. VGCC currents were unaffected by the drugs. Neither the increase in cytosolic [Ca2+ ] nor the resulting catecholamine secretion evoked by direct membrane depolarization to bypass nAChRs was altered by fluvoxamine or NE-100. However, both Ca2+ entry and catecholamine secretion evoked by the cholinergic agonist carbachol were significantly reduced by fluvoxamine or NE-100. Together, our data suggest that sigma-1 receptors do not acutely regulate catecholamine secretion. Rather, SSRIs and other sigma-1 receptor ligands inhibit secretion evoked by cholinergic stimulation because of direct block of Ca2+ entry via nAChRs.
Collapse
Affiliation(s)
| | | | - Nolan D. Hartley
- Department of Anesthesiology, Department of Pharmacology, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kyle J. Horning
- Department of Anesthesiology, Department of Pharmacology, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kevin P.M. Currie
- Department of Anesthesiology, Department of Pharmacology, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Acetylcholine nicotinic receptor subtypes in chromaffin cells. Pflugers Arch 2017; 470:13-20. [DOI: 10.1007/s00424-017-2050-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023]
|
11
|
Singh Y, Gupta G, Shrivastava B, Dahiya R, Tiwari J, Ashwathanarayana M, Sharma RK, Agrawal M, Mishra A, Dua K. Calcitonin gene-related peptide (CGRP): A novel target for Alzheimer's disease. CNS Neurosci Ther 2017; 23:457-461. [PMID: 28417590 PMCID: PMC6492742 DOI: 10.1111/cns.12696] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is leading cause of death among older characterized by neurofibrillary tangles, oxidative stress, progressive neuronal deficits, and increased levels of amyloid-β (Aβ) peptides. Cholinergic treatment could be the best suitable physiological therapy for AD. Calcitonin gene-related peptide (CGRP) is a thirty-seven-amino acid regulatory neuropeptide resulting from different merging of the CGRP gene, which also includes adrenomedullin, amylin, calcitonin, intermedin, and calcitonin receptor-stimulating peptide. It is a proof for a CGRP receptor within nucleus accumbens of brain that is different from either the CGRP1 or CGRP2 receptor in which it demonstrates similar high-affinity binding for salmon calcitonin, CGRP, and amylin, a possession which is not shared by any extra CGRP receptors. Binding of CGRP to its receptor increases activated cAMP-dependent pkA and PI3 kinase, resulting in N-terminal fragments that are shown to exert complex inhibitory as well facilitator actions on nAChRs. Fragments such as CGRP1-4, CGRP1-5, and CGRP1-6 rapidly as well as reversibly improve agonist sensitivity of nAChRs without straight stimulating those receptors and produce the Ca2+ -induced intracellular Ca2+ mobilization. Renin-angiotensin-aldosterone system (RAAS)-activated angiotensin-type (AT4) receptor is also beneficial in AD. It has been suggested that exogenous administration of CGRP inhibits infiltration of macrophages and expression of various inflammatory mediators such as NFkB, IL-1b, TNF-α, iNOS, matrix metalloproteinase (MMP)-9, and cell adhesion molecules like intercellular adhesion molecule (ICAM)-1 which attenuates consequence of inflammation in AD. Donepezil, a ChEI, inhibits acetylcholinesterase and produces angiogenesis and neurogenesis, in the dentate gyrus of the hippocampus of WT mice after donepezil administration. However, none of the results discovered in CGRP-knockout mice and WT mice exposed to practical denervation. Therefore, selective agonists of CGRP receptors may become the potential candidates for treatment of AD.
Collapse
Affiliation(s)
- Yogendra Singh
- School of PharmacyJaipur National UniversityJagatpuraJaipurIndia
| | - Gaurav Gupta
- School of PharmacyJaipur National UniversityJagatpuraJaipurIndia
- School of Medicine and Public HealthUniversity of NewcastleNewcastleNSWAustralia
| | | | - Rajiv Dahiya
- Laboratory of Peptide Research and DevelopmentSchool of Pharmacy, The University of the West IndiesSt. Augustine, Trinidad & TobagoWest Indies
| | - Juhi Tiwari
- School of PharmacyJaipur National UniversityJagatpuraJaipurIndia
| | | | | | - Mohit Agrawal
- School of pharmacySuresh Gyan Vihar UniversityJaipurIndia
| | - Anurag Mishra
- School of pharmacySuresh Gyan Vihar UniversityJaipurIndia
| | - Kamal Dua
- Discipline of PharmacyGraduate School of HealthUniversity of Technology SydneySydneyNSWAustralia
- School of Biomedical Sciences and PharmacyUniversity of NewcastleNewcastleNSWAustralia
- School of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
12
|
Yegutkin GG, Guerrero-Toro C, Kilinc E, Koroleva K, Ishchenko Y, Abushik P, Giniatullina R, Fayuk D, Giniatullin R. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions. Purinergic Signal 2016; 12:561-74. [PMID: 27369815 DOI: 10.1007/s11302-016-9521-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022] Open
Abstract
Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.
Collapse
Affiliation(s)
| | - Cindy Guerrero-Toro
- Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Erkan Kilinc
- Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Physiology, Medical Faculty, Abant Izzet Baysal University, Bolu, Turkey
| | - Kseniya Koroleva
- Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
- Kazan Federal University, Kazan, Russia
| | - Yevheniia Ishchenko
- Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Polina Abushik
- Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Raisa Giniatullina
- Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Dmitriy Fayuk
- Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Rashid Giniatullin
- Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland.
- Kazan Federal University, Kazan, Russia.
| |
Collapse
|
13
|
MacDonald K, Buxton S, Kimber MJ, Day TA, Robertson AP, Ribeiro P. Functional characterization of a novel family of acetylcholine-gated chloride channels in Schistosoma mansoni. PLoS Pathog 2014; 10:e1004181. [PMID: 24945827 PMCID: PMC4055736 DOI: 10.1371/journal.ppat.1004181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/28/2014] [Indexed: 12/25/2022] Open
Abstract
Acetylcholine is the canonical excitatory neurotransmitter of the mammalian neuromuscular system. However, in the trematode parasite Schistosoma mansoni, cholinergic stimulation leads to muscle relaxation and a flaccid paralysis, suggesting an inhibitory mode of action. Information about the pharmacological mechanism of this inhibition is lacking. Here, we used a combination of techniques to assess the role of cholinergic receptors in schistosome motor function. The neuromuscular effects of acetylcholine are typically mediated by gated cation channels of the nicotinic receptor (nAChR) family. Bioinformatics analyses identified numerous nAChR subunits in the S. mansoni genome but, interestingly, nearly half of these subunits carried a motif normally associated with chloride-selectivity. These putative schistosome acetylcholine-gated chloride channels (SmACCs) are evolutionarily divergent from those of nematodes and form a unique clade within the larger family of nAChRs. Pharmacological and RNA interference (RNAi) behavioral screens were used to assess the role of the SmACCs in larval motor function. Treatment with antagonists produced the same effect as RNAi suppression of SmACCs; both led to a hypermotile phenotype consistent with abrogation of an inhibitory neuromuscular mediator. Antibodies were then generated against two of the SmACCs for use in immunolocalization studies. SmACC-1 and SmACC-2 localize to regions of the peripheral nervous system that innervate the body wall muscles, yet neither appears to be expressed directly on the musculature. One gene, SmACC-1, was expressed in HEK-293 cells and characterized using an iodide flux assay. The results indicate that SmACC-1 formed a functional homomeric chloride channel and was activated selectively by a panel of cholinergic agonists. The results described in this study identify a novel clade of nicotinic chloride channels that act as inhibitory modulators of schistosome neuromuscular function. Additionally, the iodide flux assay used to characterize SmACC-1 represents a new high-throughput tool for drug screening against these unique parasite ion channels.
Collapse
Affiliation(s)
- Kevin MacDonald
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - Samuel Buxton
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Michael J. Kimber
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Tim A. Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
14
|
Shelukhina I, Paddenberg R, Kummer W, Tsetlin V. Functional expression and axonal transport of α7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion. Brain Struct Funct 2014; 220:1885-99. [PMID: 24706047 DOI: 10.1007/s00429-014-0762-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Abstract
In recent pain studies on animal models, α7 nicotinic acetylcholine receptor (nAChR) agonists demonstrated analgesic, anti-hyperalgesic and anti-inflammatory effects, apparently acting through some peripheral receptors. Assuming possible involvement of α7 nAChRs on nociceptive sensory neurons, we investigated the morphological and neurochemical features of the α7 nAChR-expressing subpopulation of dorsal root ganglion (DRG) neurons and their ability to transport α7 nAChR axonally. In addition, α7 receptor activity and its putative role in pain signal neurotransmitter release were studied. Medium-sized α7 nAChR-expressing neurons prevailed, although the range covered all cell sizes. These cells accounted for one-fifth of total medium and large DRG neurons and <5% of small ones. 83.2% of α7 nAChR-expressing DRG neurons were peptidergic nociceptors (CGRP-immunopositive), one half of which had non-myelinated C-fibers and the other half had myelinated Aδ- and likely Aα/β-fibers, whereas 15.2% were non-peptidergic C-fiber nociceptors binding isolectin B4. All non-peptidergic and a third of peptidergic α7 nAChR-bearing nociceptors expressed TRPV1, a capsaicin-sensitive noxious stimulus transducer. Nerve crush experiments demonstrated that CGRPergic DRG nociceptors axonally transported α7 nAChRs both to the spinal cord and periphery. α7 nAChRs in DRG neurons were functional as their specific agonist PNU282987 evoked calcium rise enhanced by α7-selective positive allosteric modulator PNU120596. However, α7 nAChRs do not modulate neurotransmitter CGRP and glutamate release from DRG neurons since nicotinic ligands affected neither their basal nor provoked levels, showing the necessity of further studies to elucidate the true role of α7 nAChRs in those neurons.
Collapse
Affiliation(s)
- Irina Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia,
| | | | | | | |
Collapse
|
15
|
Jamieson AG, Boutard N, Sabatino D, Lubell WD. Peptide scanning for studying structure-activity relationships in drug discovery. Chem Biol Drug Des 2013; 81:148-65. [PMID: 23253136 DOI: 10.1111/cbdd.12042] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptide-based therapeutics have grown in importance over the last few decades. Furthermore, peptides have been extensively used as lead compounds in the drug discovery process to investigate the nature of chemical space required for molecular recognition and activity at a variety of targets. This critical commentary reviews scanning techniques, which employ natural and non-proteinogenic amino acids to facilitate understanding of structural requirements for peptide biological activity. The value of sequence analysis by such methods is highlighted by examples, in which the elements for peptide affinity and activity have been elucidated and employed to prepare peptidomimetic leads for drug development.
Collapse
Affiliation(s)
- Andrew G Jamieson
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | | | | | | |
Collapse
|
16
|
Naratriptan mitigates CGRP1-associated motor neuron degeneration caused by an expanded polyglutamine repeat tract. Nat Med 2012; 18:1531-8. [PMID: 23023499 DOI: 10.1038/nm.2932] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 08/13/2012] [Indexed: 11/08/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a motor neuron disease caused by the expansion of the CAG triplet repeat within the androgen receptor (AR) gene. Here, we demonstrated that pathogenic AR upregulates the gene encoding calcitonin gene-related peptide α (CGRP1). In neuronal cells, overexpression of CGRP1 induced cellular damage via the activation of the c-Jun N-terminal kinase (JNK) pathway, whereas pharmacological suppression of CGRP1 or JNK attenuated the neurotoxic effects of pathogenic AR. The depletion of CGRP1 inactivated JNK and suppressed neurodegeneration in a mouse model of SBMA. Naratriptan, a serotonin 1B/1D (5-hydroxytryptamine 1B/1D, or 5-HT1B/1D) receptor agonist, decreased CGRP1 expression via the induction of dual-specificity protein phosphatase 1 (DUSP1), attenuated JNK activity and mitigated pathogenic AR-mediated neuronal damage in cellular and mouse SBMA models. These observations suggest that pharmacological activation of the 5-HT1B/1D receptor may be used therapeutically to treat SBMA and other polyglutamine-related neurodegenerative diseases.
Collapse
|
17
|
Chibalin AV, Heiny JA, Benziane B, Prokofiev AV, Vasiliev AV, Kravtsova VV, Krivoi II. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman. PLoS One 2012; 7:e33719. [PMID: 22442718 PMCID: PMC3307752 DOI: 10.1371/journal.pone.0033719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/15/2012] [Indexed: 11/23/2022] Open
Abstract
Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21–31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV) while the activity of the α1 isoform decreased (−4.4 mV). Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM), measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser63 and Ser68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.
Collapse
Affiliation(s)
- Alexander V. Chibalin
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (AC); (IIK)
| | - Judith A. Heiny
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Boubacar Benziane
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V. Prokofiev
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | - Alexander V. Vasiliev
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | - Violetta V. Kravtsova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | - Igor I. Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
- * E-mail: (AC); (IIK)
| |
Collapse
|
18
|
CGRP antagonists for the treatment of migraine: rationale and clinical data. ACTA ACUST UNITED AC 2012. [DOI: 10.4155/cli.11.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Calcitonin gene-related peptide- and adrenomedullin-induced facilitation of calcium current in submandibular ganglion. Arch Oral Biol 2010; 56:187-93. [PMID: 20951369 DOI: 10.1016/j.archoralbio.2010.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/27/2010] [Accepted: 09/19/2010] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The control of saliva secretion is mainly under parasympathetic control. The submandibular ganglion (SMG) is a parasympathetic ganglion which receives inputs from preganglionic cholinergic neurons, and innervates the submandibular salivary gland to control saliva secretion. The aim of this study was to investigate if adrenomedullin (ADM) and/or calcitonin gene-related peptide (CGRP) modulate voltage-dependent calcium channel (VDCCs) current (I(Ca)) in SMG. DESIGN The profile of CGRP and ADM actions in SMG was studied using the whole-cell configuration of the patch-clamp technique. RESULTS Both ADM and CGRP facilitated I(Ca). These facilitations were attenuated by intracellular dialysis of the anti-Gα(s)-protein and pretreatment of SQ22536 (an adenylate cyclase inhibitor). CONCLUSIONS ADM and CGRP facilitates VDCCs mediated by Gα(s)-protein and adenylate cyclase in SMG.
Collapse
|
20
|
Ho TW, Edvinsson L, Goadsby PJ. CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol 2010; 6:573-82. [DOI: 10.1038/nrneurol.2010.127] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Edvinsson L, Ho TW. CGRP receptor antagonism and migraine. Neurotherapeutics 2010; 7:164-75. [PMID: 20430315 PMCID: PMC5084097 DOI: 10.1016/j.nurt.2010.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is expressed throughout the central and peripheral nervous systems, consistent with control of vasodilatation, nociception, motor function, secretion, and olfaction. alphaCGRP is prominently localized in primary spinal afferent C and ADelta fibers of sensory ganglia, and betaCGRP is the main isoform in the enteric nervous system. In the CNS there is a wide distribution of CGRP-containing neurons, with the highest levels occurring in striatum, amygdala, colliculi, and cerebellum. The peripheral projections are involved in neurogenic vasodilatation and inflammation, and central release induces hyperalgesia. CGRP is released from trigeminal nerves in migraine. Trigeminal nerve activation results in antidromic release of CGRP to cause non-endothelium-mediated vasodilatation. At the central synapses in the trigeminal nucleus caudalis, CGRP acts postjunctionally on second-order neurons to transmit pain signals centrally via the brainstem and midbrain to the thalamus and higher cortical pain regions. Recently developed CGRP receptor antagonists are effective at aborting acute migraine attacks. They may act both centrally and peripherally to attenuate signaling within the trigeminovascular pathway.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Medicine, Institute of Clinical Sciences, Lund University Hospital, Lund University, 22185 Lund, Sweden.
| | | |
Collapse
|
22
|
Arias HR. Positive and negative modulation of nicotinic receptors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 80:153-203. [PMID: 21109220 DOI: 10.1016/b978-0-12-381264-3.00005-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholine receptors (AChRs) are one of the best characterized ion channels from the Cys-loop receptor superfamily. The study of acetylcholine binding proteins and prokaryotic ion channels from different species has been paramount for the understanding of the structure-function relationship of the Cys-loop receptor superfamily. AChR function can be modulated by different ligand types. The neurotransmitter ACh and other agonists trigger conformational changes in the receptor, finally opening the intrinsic cation channel. The so-called gating process couples ligand binding, located at the extracellular portion, to the opening of the ion channel, located at the transmembrane region. After agonist activation, in the prolonged presence of agonists, the AChR becomes desensitized. Competitive antagonists overlap the agonist-binding sites inhibiting the pharmacological action of agonists. Positive allosteric modulators (PAMs) do not bind to the orthostetic binding sites but allosterically enhance the activity elicited by agonists by increasing the gating process (type I) and/or by decreasing desensitization (type II). Instead, negative allosteric modulators (NAMs) produce the opposite effects. Interestingly, this negative effect is similar to that found for another class of allosteric drugs, that is, noncompetitive antagonists (NCAs). However, the main difference between both categories of drugs is based on their distinct binding site locations. Although both NAMs and NCAs do not bind to the agonist sites, NACs bind to sites located in the ion channel, whereas NAMs bind to nonluminal sites. However, this classification is less clear for NAMs interacting at the extracellular-transmembrane interface where the ion channel mouth might be involved. Interestingly, PAMs and NAMs might be developed as potential medications for the treatment of several diseases involving AChRs, including dementia-, skin-, and immunological-related diseases, drug addiction, and cancer. More exciting is the potential combination of specific agonists with specific PAMs. However, we are still in the beginning of understanding how these compounds act and how these drugs can be used therapeutically.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
23
|
Hippocampal infusions of MARCKS peptides impair memory of rats on the radial-arm maze. Brain Res 2009; 1308:147-52. [PMID: 19854162 DOI: 10.1016/j.brainres.2009.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 12/24/2022]
Abstract
In vitro hippocampal studies by Gay et al. (2008) demonstrated that a myristoylated alanine-rich C kinase substrate (MARCKS) peptide comprising the phosphorylation site or effector domain of the protein acts as a powerful inhibitor of alpha7 nicotinic acetylcholine receptors (nAChRs), which are known to be critically involved in memory function. However, behavioral consequences of hippocampal MARCKS peptide infusions have not been investigated. The purpose of the current study was to determine if local infusions in the rat ventral hippocampus of long (comprising amino acids 151-175) and short (amino acids 159-165) forms of MARCKS peptides could affect memory performance in the 16-arm radial maze. Our results demonstrated a dramatic impairment of both working (changing) and reference (constant) memory with MARCKS(151-175) only. The shorter MARCKS peptide did not affect memory performance. This is in line with in vitro results reported by Gay et al. (2008) that long, but not short, MARCKS peptides inhibit alpha7 nAChRs. We also found that the effect of the MARCKS(151-175) peptide was dose-dependent, with a robust memory impairment at 10 microg/side, and smaller inconsistent effects at lower doses. Our present behavioral study, together with the earlier in vitro study by Gay et al. (2008), suggests that effector domain MARCKS peptides could play a significant role in memory regulation and impairment.
Collapse
|
24
|
Gay EA, Klein RC, Melton MA, Blackshear PJ, Yakel JL. Inhibition of native and recombinant nicotinic acetylcholine receptors by the myristoylated alanine-rich C kinase substrate peptide. J Pharmacol Exp Ther 2008; 327:884-90. [PMID: 18812491 DOI: 10.1124/jpet.108.144758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A variety of peptide ligands are known to inhibit the function of neuronal nicotinic acetylcholine receptors (nAChRs), including small toxins and brain-derived peptides such as beta-amyloid(1-42) and synthetic apolipoproteinE peptides. The myristoylated alanine-rich C kinase substrate (MARCKS) protein is a major substrate of protein kinase C and is highly expressed in the developing and adult brain. The ability of a 25-amino acid synthetic MARCKS peptide, derived from the effector domain (ED), to modulate nAChR activity was tested. To determine the effects of the MARCKS ED peptide on nAChR function, receptors were expressed in Xenopus laevis oocytes, and two-electrode voltage-clamp experiments were performed. The MARCKS ED peptide completely inhibited acetylcholine (ACh)-evoked responses from alpha7 nAChRs in a dose-dependent manner, yielding an IC(50) value of 16 nM. Inhibition of ACh-induced responses was both activity- and voltage-independent. The MARCKS ED peptide was unable to block alpha-bungarotoxin binding. A MARCKS ED peptide in which four serine residues were replaced with aspartate residues was unable to inhibit alpha7 nAChR-mediated currents. The MARCKS ED peptide inhibited ACh-induced alpha4beta2 and alpha2beta2 responses, although with decreased potency. The effects of the MARCKS ED peptide on native nAChRs were tested using acutely isolated rat hippocampal slices. In hippocampal interneurons, the MARCKS ED peptide was able to block native alpha7 nAChRs in a dose-dependent manner. The MARCKS ED peptide represents a novel antagonist of neuronal nAChRs that has considerable utility as a research tool.
Collapse
Affiliation(s)
- Elaine A Gay
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
25
|
Molecular Mechanisms of Sensitization of Pain-transducing P2X3 Receptors by the Migraine Mediators CGRP and NGF. Mol Neurobiol 2008; 37:83-90. [DOI: 10.1007/s12035-008-8020-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 04/02/2008] [Indexed: 12/24/2022]
|
26
|
Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neurosci Lett 2008; 437:199-202. [PMID: 18423863 DOI: 10.1016/j.neulet.2008.03.081] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/22/2008] [Accepted: 03/19/2008] [Indexed: 02/08/2023]
Abstract
This review explains symptoms and nature of neuropeptide signaling and its importance for clinical symptoms of CRPS. Neurogenic inflammation regularly accompanies excitation of primary afferent nociceptors. It has two major components-plasma extravasation and vasodilatation. The most important mediators are the calcitonin gene-related peptide (CGRP) and substance P (SP). After peripheral trauma immune reaction (e.g. cytokines) and the attempts of the tissue to regenerate (e.g. growth factors) sensitize nociceptors and amplify neurogenic inflammation. This cascade of events has been demonstrated in rat models of CRPS. Clinical findings in these animals strongly resemble clinical findings in CRPS, and can be prevented by anti-cytokine and anti-neuropeptide treatment. In CRPS patients, there is meanwhile also plenty of evidence that neurogenic inflammation contributes to clinical presentation. Increased cytokine production was demonstrated, as well as facilitated neurogenic inflammation. Very recently even "non-inflammatory" signs of CRPS (hyperhidrosis, cold skin) have been linked to neuropeptide signaling. Surprisingly, there was even moderately increased neurogenic inflammation in unaffected body regions. This favors the possibility that CRPS patients share genetic similarities. The future search for genetic commonalities will help us to further unravel the "mystery" CRPS.
Collapse
|
27
|
Abstract
In the adrenal medulla, acetylcholine released by the sympathetic splanchnic nerves activates neuronal-type nicotinic acetylcholine receptors (nAChRs) on the membrane of chromaffin cells which liberate catecholamines into the bloodstream in preparation for the fight and flight reactions. On adrenal chromaffin cells the main class of nAChRs is a pentameric assembly of alpha3 and beta4 subunits that forms ion channels which produce membrane depolarization by increasing Na+, K+ and Ca2+ permeability. Homomeric alpha7 nicotinic receptors are expressed in a species-dependent manner and do not contribute to catecholamine secretion. Chromaffin cell nAChRs rapidly activate and desensitize with full recovery on washout. nAChR activity is subjected to various types of dynamic regulation. It is allosterically modulated by the endogenous neuropeptide substance P that stabilizes receptors in their desensitized state, thus depressing their responsiveness. The full-length peptide CGRP acts as a negative allosteric modulator by inhibiting responses without changing desensitization, whereas its N-terminal fragments act as positive allosteric modulators to transiently enhance nAChR function. nAChR expression increases when cells are chronically exposed to either selective antagonists or agonists such as nicotine, a protocol mimicking the condition of chronic heavy smokers. In this case, large upregulation of nAChRs occurs even though most of the extra nAChRs remain inside the cells, creating a mismatch between the increase in total nAChRs and increase in functional nAChRs on the cell surface. These findings highlight the plastic properties of cholinergic neurotransmission in the adrenal medulla to provide robust mechanisms for adapting catecholamine release to acute and chronic changes in sympathetic activity.
Collapse
Affiliation(s)
- F Sala
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | | | | |
Collapse
|
28
|
Schlereth T, Birklein F. The sympathetic nervous system and pain. Neuromolecular Med 2007; 10:141-7. [PMID: 17990126 DOI: 10.1007/s12017-007-8018-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/17/2007] [Indexed: 01/29/2023]
Abstract
The sympathetic nervous system (SNS) and pain interact on many levels of the neuraxis. In healthy subjects, activation of the SNS in the brain usually suppresses pain mainly by descending inhibition of nociceptive transmission in the spinal cord. Furthermore, some experimental data even suggest that the SNS might control peripheral inflammation and nociceptive activation. However, even subtle changes in pathophysiology can dramatically change the effect of SNS on pain, and vice versa. In the periphery, inflammation or nociceptive activation is enhanced, spinal descending inhibition is reversed to spinal facilitation, and finally the awareness of all these changes will induce anxiety, which furthermore amplifies pain perception, affects pain behavior, and depresses mood. Unraveling the detailed molecular mechanisms of how this interaction of SNS and pain is established in health and disease will help us to treat pain more successfully in the future.
Collapse
Affiliation(s)
- Tanja Schlereth
- Department of Neurology, Johannes Gutenberg-University, Langenbeckstr. 1, Mainz 55101, Germany.
| | | |
Collapse
|
29
|
Boeglin D, Hamdan FF, Melendez RE, Cluzeau J, Laperriere A, Héroux M, Bouvier M, Lubell WD. Calcitonin gene-related peptide analogues with aza and indolizidinone amino acid residues reveal conformational requirements for antagonist activity at the human calcitonin gene-related peptide 1 receptor. J Med Chem 2007; 50:1401-8. [PMID: 17319653 DOI: 10.1021/jm061343w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcitonin gene-related peptide antagonists have potential for the treatment and prevention of disease states such as non-insulin-dependent diabetes mellitus, migraine headache, pain, and inflammation. To gain insight into the spatial requirements for CGRP antagonism, three strategies were employed to restrict the conformation of the potent undecapeptide antagonist, [D31,P34,F35]CGRP27-37. First, aza-amino acid scanning was performed, and ten aza-peptide analogues were synthesized and examined for biological activity. Second, (3S,6S,9S)-2-oxo-3-amino-indolizidin-2-one amino acid (I2aa) and (2S,6S,8S)-9-oxo-8-amino-indolizidin-9-one amino acid (I9aa) both were introduced at positions 31-32, 32-33, 33-34, and 34-35, regions of the backbone expected to adopt turns. Finally, the conformation of the backbone and side-chain of the C-terminal residue, Phe35-Ala36-Phe37-NH2, was explored employing (2S,4R,6R,8S)-9-oxo-8-amino-4-phenyl-indolizidin-9-one amino acid (4-Ph-I9aa) as a constrained phenylalanine mimic. The structure-activity relationships exhibited by our 26 analogues illustrate conformational requirements important for designing CGRP antagonists and highlight the importance of beta-turns centered at Gly33-Pro34 for potency.
Collapse
Affiliation(s)
- Damien Boeglin
- Département de Chimie, Université de Montréal, C. P. 6128, Succursale Centre Ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Vadasz C, Saito M, O'Brien D, Zavadil J, Morahan G, Chakraborty G, Wang R. Ventral Tegmental Transcriptome Response to Intermittent Nicotine Treatment and Withdrawal in BALB/cJ, C57BL/6ByJ, and Quasi-Congenic RQI Mice. Neurochem Res 2007; 32:457-80. [PMID: 17268848 DOI: 10.1007/s11064-006-9250-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/05/2006] [Indexed: 10/23/2022]
Abstract
The aim of this study was to identify neurochemical pathways and candidate genes involved in adaptation to nicotine treatment and withdrawal. Locomotor sensitization was assessed in a nicotine challenge test after exposure to intermittent nicotine treatment and withdrawal. About 24 h after the challenge test the ventral tegmentum of the mesencephaion was dissected and processed using oligonucleotide microarrays with 22,690 probe sets (Affymetrix 430A 2.0). Quasi-congenic RQI, and donor BALB/cJ mice developed significant locomotor sensitization, while sensitization was not significant in the background partner, C57BL/6By. Comparing saline treated controls of C57BL/6ByJ and BALB/cJ by a rigorous statistical microarray analysis method we identified 238 differentially expressed transcripts. Quasi-congenic strains B6.Cb4i5-alpha4/Vad and B6.Ib5i7-beta25A/Vad significantly differed from the background strain in 11 and 11 transcripts, respectively. Identification of several cis- and trans-regulated genes indicates that further work with quasi-congenic strains can quickly lead to mapping of Quantitative Trait Loci for nicotine susceptibility because donor chromosome regions have been mapped in quasi-congenic strains. Nicotine treatment significantly altered the abundance of 41, 29, 54, and 14 ventral tegmental transcripts in strains C57BL/6ByJ, BALB/cJ, B6.Cb4i5-alpha4/Vad, and B6.Ib5i7-beta25A/Vad, respectively. Although transcript sets overlapped to some extent, each strain showed a distinct profile of nicotine sensitive genes, indicating genetic effects on nicotine-induced gene expression. Nicotine-responsive genes were related to processes including regulation of signal transduction, intracellular protein transport, proteasomal ubiquitin-dependent protein catabolism, and neuropeptide signaling pathway. Our results suggest that while there are common regulatory mechanisms across inbred strains, even relatively small differences in genetic constitution can significantly affect transcriptome response to nicotine.
Collapse
Affiliation(s)
- Csaba Vadasz
- Laboratory of Neurobehavioral Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Riganti L, Matteoni C, Di Angelantonio S, Nistri A, Gaimarri A, Sparatore F, Canu-Boido C, Clementi F, Gotti C. Long-term exposure to the new nicotinic antagonist 1,2-bisN-cytisinylethane upregulates nicotinic receptor subtypes of SH-SY5Y human neuroblastoma cells. Br J Pharmacol 2006; 146:1096-109. [PMID: 16273122 PMCID: PMC1751242 DOI: 10.1038/sj.bjp.0706434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nicotinic drug treatment can affect the expression of neuronal nicotinic acetylcholine receptors (nAChR) both in vivo and in vitro through molecular mechanisms not fully understood. The present study investigated the effect of the novel cytisine dimer 1,2-bisN-cytisinylethane (CC4) on nAChR natively expressed by SH-SY5Y neuroblastoma cells in culture. CC4 lacked the agonist properties of cytisine and was a potent antagonist (IC50=220 nM) on nAChRs. Chronic treatment of SH-SY5Y cells with 1 mM CC4 for 48 h increased the expression of 3H-epibatidine (3H-Epi; 3-4-fold) or 125I-alpha-bungarotoxin (125I-alphaBgtx; 1.2-fold) sensitive receptors present on the cell membrane and in the intracellular pool. Comparable data were obtained with nicotine or cytisine, but not with carbamylcholine, d-tubocurarine, di-hydro-beta-erythroidine or hexametonium. Immunoprecipitation and immunopurification studies showed that the increase in 3H-Epi-binding receptors was due to the enhanced expression of alpha3beta2 and alpha3beta2beta4 subtypes without changes in subunit mRNA transcription or receptor half-life. The upregulation was not dependent on agonist/antagonist properties of the drugs, and did not concern muscarinic or serotonin receptors. Whole-cell patch clamp analysis of CC4-treated cells demonstrated larger nicotine-evoked inward currents with augmented sensitivity to the blockers alpha-conotoxin MII or methyllycaconitine. In conclusion, chronic treatment with CC4 increased the number of nAChRs containing beta2 and alpha7 subunits on the plasma membrane, where they were functionally active. In the case of beta2-containing receptors, we propose that CC4, by binding to intracellular receptors, triggered a conformational reorganisation of intracellular subunits that stimulated preferential assembly and membrane-directed trafficking of beta2-containing receptor subtypes..
Collapse
Affiliation(s)
- Loredana Riganti
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Cosetta Matteoni
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Andrea Nistri
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Annalisa Gaimarri
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Fabio Sparatore
- Department of Pharmaceutical Science, University of Genoa, Genoa, Italy
| | | | - Francesco Clementi
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Cecilia Gotti
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
- Author for correspondence:
| |
Collapse
|
32
|
Schlereth T, Dittmar JO, Seewald B, Birklein F. Peripheral amplification of sweating--a role for calcitonin gene-related peptide. J Physiol 2006; 576:823-32. [PMID: 16931551 PMCID: PMC1890409 DOI: 10.1113/jphysiol.2006.116111] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuropeptides are the mediators of neurogenic inflammation. Some pain disorders, e.g. complex regional pain syndromes, are characterized by increased neurogenic inflammation and by exaggerated sudomotor function. The aim of this study was to explore whether neuropeptides have a peripheral effect on human sweating. We investigated the effects of different concentrations of calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and substance P (SP) on acetylcholine-induced axon reflex sweating in healthy subjects (total n = 18). All substances were applied via dermal microdialysis. The experiments were done in a parallel setting: ACh alone and ACh combined with CGRP, VIP or SP in various concentrations were applied. Acetylcholine (10(-2) m) always elicited a sweating response, neuropeptides alone did not. However, CGRP significantly enhanced ACh-induced sweating (P < 0.01). Post hoc tests revealed that CGRP in physiological concentrations of 10(-7)-10(-9) m was most effective. VIP at any concentration had no significant effect on axon reflex sweating. The duration of the sweating response (P < 0.01), but not the amount of sweat, was reduced by SP. ACh-induced skin blood flow was significantly increased by CGRP (P < 0.01), but unaltered by VIP and SP. The results indicate that CGRP amplifies axon reflex sweating in human skin.
Collapse
Affiliation(s)
- Tanja Schlereth
- Department of Neurology, Johannes Gutenberg-University Langenbeckstr. 1, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
33
|
Fabbretti E, D'Arco M, Fabbro A, Simonetti M, Nistri A, Giniatullin R. Delayed upregulation of ATP P2X3 receptors of trigeminal sensory neurons by calcitonin gene-related peptide. J Neurosci 2006; 26:6163-71. [PMID: 16763024 PMCID: PMC6675180 DOI: 10.1523/jneurosci.0647-06.2006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent evidence indicates a key role for the neuropeptide calcitonin gene-related peptide (CGRP) in migraine pain, as demonstrated by the strong analgesic action of CGRP receptor antagonists, although the mechanisms of this effect remain unclear. Most trigeminal nociceptive neurons releasing CGRP also express ATP-activated purinergic P2X3 receptors to transduce pain. To understand whether the CGRP action involves P2X3 receptor modulation, the model of trigeminal nociceptive neurons in culture was used to examine the long-term action of this peptide. Although 79% of CGRP-binding neurons expressed P2X3 receptors, acute application of CGRP did not change P2X3 receptor function. Nevertheless, after 1 h of CGRP treatment, strong enhancement of the amplitude of P2X3 receptor currents was observed together with accelerated recovery from desensitization. Receptor upregulation persisted up to 10 h (despite CGRP washout), was accompanied by increased P2X3 gene transcription, and was fully prevented by the CGRP antagonist CGRP(8-37). Surface biotinylation showed CGRP augmented P2X3 receptor expression, consistent with confocal microscopy data indicating enhanced P2X3 immunoreactivity beneath the neuronal membrane. These results suggest that CGRP stimulated trafficking of P2X3 receptors to the cell-surface membrane. Using pharmacological tools, we demonstrated that this effect of CGRP was dependent on protein kinase A and PKC activation and was prevented by the trafficking inhibitor brefeldin A. Capsaicin-sensitive TRPV1 vanilloid receptors were not upregulated. The present data demonstrate a new form of selective, slow upregulation of nociceptive P2X3 receptors on trigeminal neurons by CGRP. This mechanism might contribute to pain sensitization and represents a model of neuronal plasticity in response to a migraine mediator.
Collapse
|
34
|
Gerrikagoitia I, García del Caño G, Canudas J, Sarasa M, Martínez-Millán L. Expression pattern of calcitonin gene-related peptide in the superior colliculus during postnatal development: demonstration of its intrinsic nature and possible roles. J Comp Neurol 2006; 494:721-37. [PMID: 16374811 DOI: 10.1002/cne.20834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a widespread neuropeptide with multiple central and peripheral targets. In an analysis on the expression of this peptide throughout the rat brain during postnatal development, we observed a discrepancy between results obtained by immunohistochemistry and by in situ hybridization. In the superior colliculus (SC), only the immunohistochemical signal could be detected (Terrado et al. [1997] Neuroscience 80:951-970). Here we focus our attention on this structure because the temporal pattern of CGRP immunoreactivity observed in the SC suggested the participation of this peptide in the postnatal maturation of the SC. In the present study, we describe in detail the postnatal development of collicular CGRP-immunoreactive structures and their spatiotemporal relationship with cholinergic modules and definitively demonstrate the local expression of CGRP in the SC. CGRP-immunopositive axons and neurons were distributed within the most ventral part of superficial strata and in the intermediate strata of the SC, showing a peak in staining intensity and density at the end of the first postnatal week. At P14, CGRPergic terminal fibers are arranged in small, clearly defined patches in a complementary manner with respect to the cholinergic modules, which start forming at this stage. By using Western blot and RT-PCR analyses, and by means of injections of antisense oligonucleotides, both the presence of CGRP peptide in the SC and the local expression of alpha-CGRP transcripts in collicular neurons were demonstrated. A possible role of CGRP is discussed in the context of postnatal modular compartmentalization of collicular afferents.
Collapse
Affiliation(s)
- Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | | | | | | | | |
Collapse
|
35
|
Dakhama A, Park JW, Taube C, El Gazzar M, Kodama T, Miyahara N, Takeda K, Kanehiro A, Balhorn A, Joetham A, Loader JE, Larsen GL, Gelfand EW. Alteration of airway neuropeptide expression and development of airway hyperresponsiveness following respiratory syncytial virus infection. Am J Physiol Lung Cell Mol Physiol 2005; 288:L761-70. [PMID: 15608150 DOI: 10.1152/ajplung.00143.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms by which respiratory syncytial virus (RSV) infection causes airway hyperresponsiveness (AHR) are not fully established. We hypothesized that RSV infection may alter the expression of airway sensory neuropeptides, thereby contributing to the development of altered airway function. BALB/c mice were infected with RSV followed by assessment of airway function, inflammation, and sensory neuropeptide expression. After RSV infection, mice developed significant airway inflammation associated with increased airway resistance to inhaled methacholine and increased tracheal smooth muscle responsiveness to electrical field stimulation. In these animals, substance P expression was markedly increased, whereas calcitonin gene-related peptide (CGRP) expression was decreased in airway tissue. Prophylactic treatment with Sendide, a highly selective antagonist of the neurokinin-1 receptor, or CGRP, but not the CGRP antagonist CGRP(8–37), inhibited the development of airway inflammation and AHR in RSV-infected animals. Therapeutic treatment with CGRP, but not CGRP(8–37) or Sendide, abolished AHR in RSV-infected animals despite increased substance P levels and previously established airway inflammation. These data suggest that RSV-induced airway dysfunction is, at least in part, due to an imbalance in sensory neuropeptide expression in the airways. Restoration of this balance may be beneficial for the treatment of RSV-mediated airway dysfunction.
Collapse
Affiliation(s)
- Azzeddine Dakhama
- Department of Pediatrics, Division of Cell Biology, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|