1
|
Cognitive Deficits Found in a Pro-inflammatory State are Independent of ERK1/2 Signaling in the Murine Brain Hippocampus Treated with Shiga Toxin 2 from Enterohemorrhagic Escherichia coli. Cell Mol Neurobiol 2022:10.1007/s10571-022-01298-1. [PMID: 36227397 DOI: 10.1007/s10571-022-01298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) produces hemorrhagic colitis, hemolytic uremic syndrome (HUS), and acute encephalopathy. The mortality rate in HUS increases significantly when the central nervous system (CNS) is involved. Besides, EHEC also releases lipopolysaccharide (LPS). Many reports have described cognitive dysfunctions in HUS patients, the hippocampus being one of the brain areas targeted by EHEC infection. In this context, a translational murine model of encephalopathy was employed to establish the deleterious effects of Stx2 and the contribution of LPS in the hippocampus. The purpose of this work is to elucidate the signaling pathways that may activate the inflammatory processes triggered by Stx2, which produces cognitive alterations at the level of the hippocampus. Results demonstrate that Stx2 produced depression-like behavior, pro-inflammatory cytokine release, and NF-kB activation independent of the ERK1/2 signaling pathway, while co-administration of Stx2 and LPS reduced memory index. On the other hand, LPS activated NF-kB dependent on ERK1/2 signaling pathway. Cotreatment of Stx2 with LPS aggravated the pathologic state, while dexamethasone treatment succeeded in preventing behavioral alterations. Our present work suggests that the use of drugs such as corticosteroids or NF-kB signaling inhibitors may serve as neuroprotectors from EHEC infection.
Collapse
|
2
|
Shiga Toxins as Antitumor Tools. Toxins (Basel) 2021; 13:toxins13100690. [PMID: 34678982 PMCID: PMC8538568 DOI: 10.3390/toxins13100690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins (Stxs), also known as Shiga-like toxins (SLT) or verotoxins (VT), constitute a family of structurally and functionally related cytotoxic proteins produced by the enteric pathogens Shigella dysenteriae type 1 and Stx-producing Escherichia coli (STEC). Infection with these bacteria causes bloody diarrhea and other pathological manifestations that can lead to HUS (hemolytic and uremic syndrome). At the cellular level, Stxs bind to the cellular receptor Gb3 and inhibit protein synthesis by removing an adenine from the 28S rRNA. This triggers multiple cellular signaling pathways, including the ribotoxic stress response (RSR), unfolded protein response (UPR), autophagy and apoptosis. Stxs cause several pathologies of major public health concern, but their specific targeting of host cells and efficient delivery to the cytosol could potentially be exploited for biomedical purposes. Moreover, high levels of expression have been reported for the Stxs receptor, Gb3/CD77, in Burkitt's lymphoma (BL) cells and on various types of solid tumors. These properties have led to many attempts to develop Stxs as tools for biomedical applications, such as cancer treatment or imaging, and several engineered Stxs are currently being tested. We provide here an overview of these studies.
Collapse
|
3
|
Lingwood C. Therapeutic Uses of Bacterial Subunit Toxins. Toxins (Basel) 2021; 13:toxins13060378. [PMID: 34073185 PMCID: PMC8226680 DOI: 10.3390/toxins13060378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
The B subunit pentamer verotoxin (VT aka Shiga toxin-Stx) binding to its cellular glycosphingolipid (GSL) receptor, globotriaosyl ceramide (Gb3) mediates internalization and the subsequent receptor mediated retrograde intracellular traffic of the AB5 subunit holotoxin to the endoplasmic reticulum. Subunit separation and cytosolic A subunit transit via the ER retrotranslocon as a misfolded protein mimic, then inhibits protein synthesis to kill cells, which can cause hemolytic uremic syndrome clinically. This represents one of the most studied systems of prokaryotic hijacking of eukaryotic biology. Similarly, the interaction of cholera AB5 toxin with its GSL receptor, GM1 ganglioside, is the key component of the gastrointestinal pathogenesis of cholera and follows the same retrograde transport pathway for A subunit cytosol access. Although both VT and CT are the cause of major pathology worldwide, the toxin–receptor interaction is itself being manipulated to generate new approaches to control, rather than cause, disease. This arena comprises two areas: anti neoplasia, and protein misfolding diseases. CT/CTB subunit immunomodulatory function and anti-cancer toxin immunoconjugates will not be considered here. In the verotoxin case, it is clear that Gb3 (and VT targeting) is upregulated in many human cancers and that there is a relationship between GSL expression and cancer drug resistance. While both verotoxin and cholera toxin similarly hijack the intracellular ERAD quality control system of nascent protein folding, the more widespread cell expression of GM1 makes cholera the toxin of choice as the means to more widely utilise ERAD targeting to ameliorate genetic diseases of protein misfolding. Gb3 is primarily expressed in human renal tissue. Glomerular endothelial cells are the primary VT target but Gb3 is expressed in other endothelial beds, notably brain endothelial cells which can mediate the encephalopathy primarily associated with VT2-producing E. coli infection. The Gb3 levels can be regulated by cytokines released during EHEC infection, which complicate pathogenesis. Significantly Gb3 is upregulated in the neovasculature of many tumours, irrespective of tumour Gb3 status. Gb3 is markedly increased in pancreatic, ovarian, breast, testicular, renal, astrocytic, gastric, colorectal, cervical, sarcoma and meningeal cancer relative to the normal tissue. VT has been shown to be effective in mouse xenograft models of renal, astrocytoma, ovarian, colorectal, meningioma, and breast cancer. These studies are herein reviewed. Both CT and VT (and several other bacterial toxins) access the cell cytosol via cell surface ->ER transport. Once in the ER they interface with the protein folding homeostatic quality control pathway of the cell -ERAD, (ER associated degradation), which ensures that only correctly folded nascent proteins are allowed to progress to their cellular destinations. Misfolded proteins are translocated through the ER membrane and degraded by cytosolic proteosome. VT and CT A subunits have a C terminal misfolded protein mimic sequence to hijack this transporter to enter the cytosol. This interface between exogenous toxin and genetically encoded endogenous mutant misfolded proteins, provides a new therapeutic basis for the treatment of such genetic diseases, e.g., Cystic fibrosis, Gaucher disease, Krabbe disease, Fabry disease, Tay-Sachs disease and many more. Studies showing the efficacy of this approach in animal models of such diseases are presented.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Departments of Laboratory Medicine & Pathobiology, and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Warr AR, Kuehl CJ, Waldor MK. Shiga toxin remodels the intestinal epithelial transcriptional response to Enterohemorrhagic Escherichia coli. PLoS Pathog 2021; 17:e1009290. [PMID: 33529199 PMCID: PMC7880444 DOI: 10.1371/journal.ppat.1009290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/12/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that causes diarrheal disease and the potentially lethal hemolytic uremic syndrome. We used an infant rabbit model of EHEC infection that recapitulates many aspects of human intestinal disease to comprehensively assess colonic transcriptional responses to this pathogen. Cellular compartment-specific RNA-sequencing of intestinal tissue from animals infected with EHEC strains containing or lacking Shiga toxins (Stx) revealed that EHEC infection elicits a robust response that is dramatically shaped by Stx, particularly in epithelial cells. Many of the differences in the transcriptional responses elicited by these strains were in genes involved in immune signaling pathways, such as IL23A, and coagulation, including F3, the gene encoding Tissue Factor. RNA FISH confirmed that these elevated transcripts were found almost exclusively in epithelial cells. Collectively, these findings suggest that Stx potently remodels the host innate immune response to EHEC. Enterohemorrhagic Escherichia coli (EHEC) is a potentially lethal foodborne pathogen. During infection, EHEC releases a potent toxin, Shiga toxin (Stx), into the intestine, but there is limited knowledge of how this toxin shapes the host response to infection. We used an infant rabbit model of infection that closely mimics human disease to profile intestinal transcriptomic responses to EHEC infection. Comparisons of the transcriptional responses to infection by strains containing or lacking Stx revealed that this toxin markedly remodels how the epithelial cell compartment responds to infection. Our findings suggest that Stx shapes the intestinal innate immune response to EHEC and provide insight into the complex host-pathogen dialogue that underlies disease.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carole J. Kuehl
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel) 2020; 12:toxins12090607. [PMID: 32967277 PMCID: PMC7551371 DOI: 10.3390/toxins12090607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Many cattle are persistently colonized with Shiga toxin-producing Escherichia coli (STEC) and represent a major source of human infections with human-pathogenic STEC strains (syn. enterohemorrhagic E. coli (EHEC)). Intervention strategies most effectively protecting humans best aim at the limitation of bovine STEC shedding. Mechanisms enabling STEC to persist in cattle are only partialy understood. Cattle were long believed to resist the detrimental effects of Shiga toxins (Stxs), potent cytotoxins acting as principal virulence factors in the pathogenesis of human EHEC-associated diseases. However, work by different groups, summarized in this review, has provided substantial evidence that different types of target cells for Stxs exist in cattle. Peripheral and intestinal lymphocytes express the Stx receptor globotriaosylceramide (Gb3syn. CD77) in vitro and in vivo in an activation-dependent fashion with Stx-binding isoforms expressed predominantly at early stages of the activation process. Subpopulations of colonic epithelial cells and macrophage-like cells, residing in the bovine mucosa in proximity to STEC colonies, are also targeted by Stxs. STEC-inoculated calves are depressed in mounting appropriate cellular immune responses which can be overcome by vaccination of the animals against Stxs early in life before encountering STEC. Considering Stx target cells and the resulting effects of Stxs in cattle, which significantly differ from effects implicated in human disease, may open promising opportunities to improve existing yet insufficient measures to limit STEC carriage and shedding by the principal reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, D-07743 Jena, Germany
| |
Collapse
|
6
|
Molecular Biology of Escherichia Coli Shiga Toxins' Effects on Mammalian Cells. Toxins (Basel) 2020; 12:toxins12050345. [PMID: 32456125 PMCID: PMC7290813 DOI: 10.3390/toxins12050345] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Shiga toxins (Stxs), syn. Vero(cyto)toxins, are potent bacterial exotoxins and the principal virulence factor of enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin-producing E. coli (STEC). EHEC strains, e.g., strains of serovars O157:H7 and O104:H4, may cause individual cases as well as large outbreaks of life-threatening diseases in humans. Stxs primarily exert a ribotoxic activity in the eukaryotic target cells of the mammalian host resulting in rapid protein synthesis inhibition and cell death. Damage of endothelial cells in the kidneys and the central nervous system by Stxs is central in the pathogenesis of hemolytic uremic syndrome (HUS) in humans and edema disease in pigs. Probably even more important, the toxins also are capable of modulating a plethora of essential cellular functions, which eventually disturb intercellular communication. The review aims at providing a comprehensive overview of the current knowledge of the time course and the consecutive steps of Stx/cell interactions at the molecular level. Intervention measures deduced from an in-depth understanding of this molecular interplay may foster our basic understanding of cellular biology and microbial pathogenesis and pave the way to the creation of host-directed active compounds to mitigate the pathological conditions of STEC infections in the mammalian body.
Collapse
|
7
|
Rescue from Stx2-Producing E. coli-Associated Encephalopathy by Intravenous Injection of Muse Cells in NOD-SCID Mice. Mol Ther 2019; 28:100-118. [PMID: 31607541 PMCID: PMC6953779 DOI: 10.1016/j.ymthe.2019.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromised non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9 × 109 colony-forming units of STEC O111 and treated 48 h later with intravenous injection of 5 × 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection.
Collapse
|
8
|
Chan YS, Ng TB. Shiga toxins: from structure and mechanism to applications. Appl Microbiol Biotechnol 2015; 100:1597-1610. [PMID: 26685676 DOI: 10.1007/s00253-015-7236-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 01/03/2023]
Abstract
Shiga toxins are a group of type 2 ribosome-inactivating proteins (RIPs) produced in several types of bacteria. The toxins possess an AB5 structure, which comprises a catalytic A chain with N-glycosidase activity, and five identical B chains and recognize and bind to the target cells with specific carbohydrate moieties. In humans, the major molecular target which recognizes the Shiga toxins is the Gb3 receptor, which is mainly expressed on the cell surface of endothelial cells of the intestine, kidney, and the brain. This causes these organs to be susceptible to the toxicity of Shiga toxins. When a person is infected by Shiga toxin-producing bacteria, the toxin is produced in the gut, translocated to the circulatory system, and carried to the target cells. Toxicity of the toxin causes inflammatory responses and severe cell damages in the intestine, kidneys, and brain, bringing about the hemolytic uremic syndrome (HUS), which can be fatal. The Shiga toxin requires a couple of steps to exert its toxicity to the target cells. After binding with the target cell surface receptor, the toxin requires a complicated process to be transported into the cytosol of the cell before it can approach the ribosomes. The mechanisms for the interactions of the toxin with the cells are described in this review. The consequences of the toxin on the cells are also discussed. It gives an overview of the steps for the toxin to be produced and transported, expression of catalytic activity, and the effects of the toxin on the target cells, as well as effects on the human body.
Collapse
Affiliation(s)
- Yau Sang Chan
- School of Biomedical Sciences, Lo Kwee Seong Integrated Biomedical Sciences Building, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Lo Kwee Seong Integrated Biomedical Sciences Building, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
9
|
Activation of the Classical Mitogen-Activated Protein Kinases Is Part of the Shiga Toxin-Induced Ribotoxic Stress Response and May Contribute to Shiga Toxin-Induced Inflammation. Infect Immun 2015; 84:138-48. [PMID: 26483408 DOI: 10.1128/iai.00977-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Infection with enterohemorrhagic Escherichia coli (EHEC) can result in severe disease, including hemorrhagic colitis and the hemolytic uremic syndrome. Shiga toxins (Stx) are the key EHEC virulence determinant contributing to severe disease. Despite inhibiting protein synthesis, Shiga toxins paradoxically induce the expression of proinflammatory cytokines from various cell types in vitro, including intestinal epithelial cells (IECs). This effect is mediated in large part by the ribotoxic stress response (RSR). The Shiga toxin-induced RSR is known to involve the activation of the stress-activated protein kinases (SAPKs) p38 and JNK. In some cell types, Stx also can induce the classical mitogen-activated protein kinases (MAPKs) or ERK1/2, but the mechanism(s) by which this activation occurs is unknown. In this study, we investigated the mechanism by which Stx activates ERK1/2s in IECs and the contribution of ERK1/2 activation to interleukin-8 (IL-8) expression. We demonstrate that Stx1 activates ERK1/2 in a biphasic manner: the first phase occurs in response to StxB1 subunit, while the second phase requires StxA1 subunit activity. We show that the A subunit-dependent ERK1/2 activation is mediated through ZAK-dependent signaling, and inhibition of ERK1/2 activation via the MEK1/2 inhibitors U0126 and PD98059 results in decreased Stx1-mediated IL-8 mRNA. Finally, we demonstrate that ERK1/2 are activated in vivo in the colon of Stx2-intoxicated infant rabbits, a model in which Stx2 induces a primarily neutrophilic inflammatory response. Together, our data support a role for ERK1/2 activation in the development of Stx-mediated intestinal inflammation.
Collapse
|
10
|
Menge C, Loos D, Bridger PS, Barth S, Werling D, Baljer G. Bovine macrophages sense Escherichia coli Shiga toxin 1. Innate Immun 2015; 21:655-64. [PMID: 25907071 DOI: 10.1177/1753425915581215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/10/2015] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections in cattle are asymptomatic; however, Stx impairs the initiation of an adaptive immune response by targeting bovine peripheral and intraepithelial lymphocytes. As presumptive bovine mucosal macrophages (Mø) are also sensitive to Stx, STEC may even exert immune modulatory effects by acting on steps preceding lymphocyte activation at the Mø level. We therefore studied the expression of the Stx receptor (CD77), cellular phenotype and functions after incubation of primary bovine monocyte-derived Mø with purified Stx1. A significant portion of bovine Mø expressed CD77 on their surface, with the recombinant B-subunit of Stx1 binding to >50% of the cells. Stx1 down-regulated significantly surface expression of CD14, CD172a and co-stimulatory molecules CD80 and CD86 within 4 h of incubation, while MHC-II expression remained unaffected. Furthermore, incubation of Mø with Stx1 increased significantly numbers of transcripts for IL-4, IL-6, IL-10, IFN-γ, TNF-α, IL-8 and GRO-α but not for IL-12, TGF-β, MCP-1 and RANTES. In the course of bovine STEC infections, Stx1 appears to induce in Mø a mixed response pattern reminiscent of regulatory Mø, which may amplify the direct suppressive effect of the toxin on lymphocytes.
Collapse
Affiliation(s)
- Christian Menge
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Daniela Loos
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Philip S Bridger
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Stefanie Barth
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Dirk Werling
- Royal Veterinary College, Department of Pathology and Pathogen Biology, Hatfield, UK
| | - Georg Baljer
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| |
Collapse
|
11
|
Moazzezy N, Oloomi M, Bouzari S. Effect of shiga toxin and its subunits on cytokine induction in different cell lines. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:108-17. [PMID: 25035861 PMCID: PMC4082813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/22/2014] [Accepted: 05/20/2014] [Indexed: 11/01/2022]
Abstract
Shiga toxins (Stxs) are bacterial virulence factors produced by Shigella dysenteriae serotype 1 and Escherichia coli strains. Stxs are critical factors for the development of diseases such as severe bloody diarrhea and hemolytic uremic syndrome. Additionally, Stxs trigger the secretion of pro- inflammatory cytokines and chemokines, particularly in monocytes or macrophages. The inflammatory cytokines result in the modulation of the immune system, local inflammations and enhancement of cytotoxicity. In this study, stimulation of the pro- inflammatory cytokines IL-1α, IL-1β, IL-6, IL-8, and TNF-α was assessed by recombinant Stx (rStx) and its subunits (rStxA and rStxB). Cytokines expression at mRNA level was investigated by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) method in HeLa cells and THP1 monocyte/ macrophage cell lines. After incubation with rStx and its recombinant subunits, the expression of IL-1α, IL- 6 and IL- 8 mRNAs was strongly induced in HeLa cells. In HeLa cells, low expression of IL-1α mRNA was shown by rStxB induction. Furthermore, the expression of IL-1α and IL-1β mRNAs in undifferentiated THP1 cells was only induced by rStx. In differentiated THP1 cells, rStx and its recombinant subunits elicited the expression of IL-1α, IL-1β, IL-8 and IL- 6 mRNAs. On the other hand, expression of TNF-α mRNA was only induced by rStx. Based on the data, the profile of cytokine induction in response to the rStx, and its subunits differs depending on the cell types.
Collapse
Affiliation(s)
- Neda Moazzezy
- Molecular Biology Unit, Pasteur Institute of Iran, Pasteur Ave. 13164 Tehran, Iran.
| | - Mana Oloomi
- Molecular Biology Unit, Pasteur Institute of Iran, Pasteur Ave. 13164 Tehran, Iran.,Corresponding author: Molecular Biology Unit, Pasteur Institute of Iran, Pasteur Ave. 13164, Tehran, Iran. E. mail:
| | - Saeid Bouzari
- Molecular Biology Unit, Pasteur Institute of Iran, Pasteur Ave. 13164 Tehran, Iran.
| |
Collapse
|
12
|
Lee MS, Kim MH, Tesh VL. Shiga toxins expressed by human pathogenic bacteria induce immune responses in host cells. J Microbiol 2013; 51:724-30. [PMID: 24385347 DOI: 10.1007/s12275-013-3429-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/22/2013] [Indexed: 12/22/2022]
Abstract
Shiga toxins are a family of genetically and structurally related toxins that are the primary virulence factors produced by the bacterial pathogens Shigella dysenteriae serotype 1 and certain Escherichia coli strains. The toxins are multifunctional proteins inducing protein biosynthesis inhibition, ribotoxic and ER stress responses, apoptosis, autophagy, and inflammatory cytokine and chemokine production. The regulated induction of inflammatory responses is key to minimizing damage upon injury or pathogen-mediated infections, requiring the concerted activation of multiple signaling pathways to control cytokine/chemokine expression. Activation of host cell signaling cascades is essential for Shiga toxin-mediated proinflammatory responses and the contribution of the toxins to virulence. Many studies have been reported defining the inflammatory response to Shiga toxins in vivo and in vitro, including production and secretion of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), macrophage inflammatory protein-1α/β (MIP-1α/β), macrophage chemoattractant monocyte chemoattractant protein 1 (MCP-1), interleukin 8 (IL-8), interleukin 6 (IL-6), and Groβ. These cytokines and chemokines may contribute to damage in the colon and development of life threatening conditions such as acute renal failure (hemolytic uremic syndrome) and neurological abnormalities. In this review, we summarize recent findings in Shiga toxin-mediated inflammatory responses by different types of cells in vitro and in animal models. Signaling pathways involved in the inflammatory responses are briefly reviewed.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea,
| | | | | |
Collapse
|
13
|
Characterisation of the prostaglandin E2-ethanolamide suppression of tumour necrosis factor-α production in human monocytic cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1098-107. [PMID: 23542062 DOI: 10.1016/j.bbalip.2013.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Prostaglandin ethanolamides or prostamides are naturally occurring neutral lipid derivatives of prostaglandins that have been shown to be synthesised in vivo following COX-facilitated oxygenation of arachidonoyl ethanolamine (anandamide). Although the actions of prostaglandins have been extensively studied, little is known about the physiological or pathophysiological effects of prostamides. Since prostaglandin E2 has potent immunosuppressive/immunomodulating actions, the aim of the present study was to determine whether the derivative, prostaglandin E2 ethanolamide (PGE2-EA), could modulate the production of the pro-inflammatory cytokine tumour necrosis factor-α in human blood and human monocytic cells and indicate whether this action involved the same receptor systems/signals as PGE2. EXPERIMENTAL APPROACH Whole human blood, monocytes isolated from the blood or the human monocytic cell line THP-1 was incubated with LPS and the level of TNF-α produced was measured by ELISA assay. The actions of PGE2-EA were assessed on the LPS-induced TNF-α release. In addition, in order to ascertain the receptors involved, the levels of cyclic AMP in cells were measured in monocytes and THP-1 cells in response to PGE2-EA and directly compared to those of PGE2. The effect of PGE2-EA on the binding of radiolabelled PGE2 to cells was also measured. Cells were incubated with radiolabelled arachidonic acid and ethanolamine to estimate the production of PGE2-EA. KEY RESULTS PGE2-EA potently suppressed TNF-α production in blood, monocytes and the cell line THP-1 in a concentration-dependent manner. This occurred via cyclic AMP pathways as indicated by agents which interfere with these pathways and also direct ligand binding experiments. It was also shown that the cells were able to endogenously produce PGE2-EA. CONCLUSIONS AND IMPLICATIONS This study reports that PGE2-EA can downregulate the production of TNF-α by human mononuclear cells in response to an immune stimulus, i.e. LPS-activated TLR4, and that this appears to occur via a cAMP-dependent mechanism that most likely involves binding to the EP2 receptor.
Collapse
|
14
|
Bergan J, Dyve Lingelem AB, Simm R, Skotland T, Sandvig K. Shiga toxins. Toxicon 2012; 60:1085-107. [PMID: 22960449 DOI: 10.1016/j.toxicon.2012.07.016] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/19/2012] [Accepted: 07/25/2012] [Indexed: 02/03/2023]
Abstract
Shiga toxins are virulence factors produced by the bacteria Shigella dysenteriae and certain strains of Escherichia coli. There is currently no available treatment for disease caused by these toxin-producing bacteria, and understanding the biology of the Shiga toxins might be instrumental in addressing this issue. In target cells, the toxins efficiently inhibit protein synthesis by inactivating ribosomes, and they may induce signaling leading to apoptosis. To reach their cytoplasmic target, Shiga toxins are endocytosed and transported by a retrograde pathway to the endoplasmic reticulum, before the enzymatically active moiety is translocated to the cytosol. The toxins thereby serve as powerful tools to investigate mechanisms of intracellular transport. Although Shiga toxins are a serious threat to human health, the toxins may be exploited for medical purposes such as cancer therapy or imaging.
Collapse
Affiliation(s)
- Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
15
|
Leyva-Illades D, Cherla RP, Lee MS, Tesh VL. Regulation of cytokine and chemokine expression by the ribotoxic stress response elicited by Shiga toxin type 1 in human macrophage-like THP-1 cells. Infect Immun 2012; 80:2109-20. [PMID: 22431646 PMCID: PMC3370584 DOI: 10.1128/iai.06025-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/04/2012] [Indexed: 01/20/2023] Open
Abstract
Shiga toxins (Stxs) are cytotoxins produced by the enteric pathogens Shigella dysenteriae serotype 1 and Shiga toxin-producing Escherichia coli (STEC). Stxs bind to a membrane glycolipid receptor, enter cells, and undergo retrograde transport to ultimately reach the cytosol, where the toxins exert their protein synthesis-inhibitory activity by depurination of a single adenine residue from the 28S rRNA component of eukaryotic ribosomes. The depurination reaction activates the ribotoxic stress response, leading to signaling via the mitogen-activated protein kinase (MAPK) pathways (Jun N-terminal protein kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) in human epithelial, endothelial, and myeloid cells. We previously showed that treatment of human macrophage-like THP-1 cells with Stxs resulted in increased cytokine and chemokine expression. In the present study, we show that individual inactivation of ERK, JNK, and p38 MAPKs using pharmacological inhibitors in the presence of Stx1 resulted in differential regulation of the cytokines tumor necrosis factor alpha and interleukin-1β (IL-1β) and chemokines IL-8, growth-regulated protein-β, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β. THP-1 cells exposed to Stx1 upregulate the expression of select dual-specificity phosphatases (DUSPs), enzymes that dephosphorylate and inactivate MAPKs in mammalian cells. In this study, we confirmed DUSP1 protein production by THP-1 cells treated with Stx1. DUSP1 inhibition by triptolide showed that ERK and p38 phosphorylation is regulated by DUSP1, while JNK phosphorylation is not. Inhibition of p38 MAPK signaling blocked the ability of Stx1 to induce DUSP1 mRNA expression, suggesting that an autoregulatory signaling loop may be activated by Stxs. Thus, Stxs appear to be capable of eliciting signals which both activate and deactivate signaling for increased cytokine/chemokine production in human macrophage-like cells.
Collapse
Affiliation(s)
- Dinorah Leyva-Illades
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Shiga toxin-producing bacteria cause widespread outbreaks of bloody diarrhoea that may progress to life-threatening systemic complications. Shiga toxins (Stxs), the main virulence factors expressed by the pathogens, are ribosome-inactivating proteins which inhibit protein synthesis by removing an adenine residue from 28S rRNA. Recently, Stxs were shown to activate multiple stress-associated signalling pathways in mammalian cells. The ribotoxic stress response is activated following the depurination reaction localized to the α-sarcin/ricin loop of eukaryotic ribosomes. The unfolded protein response (UPR) may be initiated by toxin unfolding within the endoplasmic reticulum, and maintained by production of truncated, misfolded proteins following intoxication. Activation of the ribotoxic stress response leads to signalling through MAPK cascades, which appears to be critical for activation of innate immunity and regulation of apoptosis. Precise mechanisms linking ribosomal damage with MAPK activation require clarification but may involve recognition of ribosomal conformational changes and binding of protein kinases to ribosomes, which activate MAP3Ks and MAP2Ks. Stxs appear capable of activating all ER membrane localized UPR sensors. Prolonged signalling through the UPR induces apoptosis in some cell types. The characterization of stress responses activated by Stxs may identify targets for the development of interventional therapies to block cell damage and disease progression.
Collapse
Affiliation(s)
- Vernon L Tesh
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
17
|
Verotoxin-2 activates mitogen-activated protein kinases in bovine adherent peripheral blood mononuclear cells. J Comp Pathol 2011; 147:20-3. [PMID: 22014416 DOI: 10.1016/j.jcpa.2011.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/11/2011] [Accepted: 08/19/2011] [Indexed: 11/20/2022]
Abstract
The effects of verotoxin (VT) on the mitogen-activated protein (MAP) kinase signalling pathways were investigated in bovine adherent peripheral blood mononuclear cells (PBMCs). VT2 stimulated a transient activation of both p38 MAP kinase and extracellular-regulated kinase (ERK) and stimulated an increase in tumour necrosis factor-α release from PBMCs. Bovine PBMCs react with very similar kinetics to human peripheral blood monocytes, despite the gross differences in disease outcome of the two species on infection with verotoxigenic Escherichia coli.
Collapse
|
18
|
Abstract
Shiga toxin-producing Escherichia coli is a contaminant of food and water that in humans causes a diarrheal prodrome followed by more severe disease of the kidneys and an array of symptoms of the central nervous system. The systemic disease is a complex referred to as diarrhea-associated hemolytic uremic syndrome (D+HUS). D+HUS is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. This review focuses on the renal aspects of D+HUS. Current knowledge of this renal disease is derived from a combination of human samples, animal models of D+HUS, and interaction of Shiga toxin with isolated renal cell types. Shiga toxin is a multi-subunit protein complex that binds to a glycosphingolipid receptor, Gb3, on select eukaryotic cell types. Location of Gb3 in the kidney is predictive of the sites of action of Shiga toxin. However, the toxin is cytotoxic to some, but not all cell types that express Gb3. It also can cause apoptosis or generate an inflammatory response in some cells. Together, this myriad of results is responsible for D+HUS disease.
Collapse
Affiliation(s)
- Tom G Obrig
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, 685 W. Baltimore St., HSF I Suite 380, Baltimore, MD 21201, USA; ; Tel.: +1-410-706-6917
| |
Collapse
|
19
|
Al-Mutairi M, Al-Harthi S, Cadalbert L, Plevin R. Over-expression of mitogen-activated protein kinase phosphatase-2 enhances adhesion molecule expression and protects against apoptosis in human endothelial cells. Br J Pharmacol 2010; 161:782-98. [PMID: 20860659 DOI: 10.1111/j.1476-5381.2010.00952.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We assessed the effects of over-expressing the dual-specific phosphatase, mitogen-activated protein (MAP) kinase phosphatase-2 (MKP-2), in human umbilical vein endothelial cells (HUVECs) on inflammatory protein expression and apoptosis, two key features of endothelial dysfunction in disease. EXPERIMENTAL APPROACHES We infected HUVECs for 40 h with an adenoviral version of MKP-2 (Adv.MKP-2). Tumour necrosis factor (TNF)-α-stimulated phosphorylation of MAP kinase and protein expression was measured by Western blotting. Cellular apoptosis was assayed by FACS. KEY RESULTS Infection with Adv.MKP-2 selectively abolished TNF-α-mediated c-Jun-N-terminal kinase (JNK) activation and had little effect upon extracellular signal-regulated kinase or p38 MAP kinase. Adv.MKP-2 abolished COX-2 expression, while induction of the endothelial cell adhesion molecules, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), two NFκB-dependent proteins, was not affected. However, when ICAM and VCAM expression was partly reduced by blockade of the NFκB pathway, Adv.MKP-2 was able to reverse this inhibition. This correlated with enhanced TNF-α-induced loss of the inhibitor of κB (IκB)α loss, a marker of NFκB activation. TNF-α in combination with NFκB blockade also increased HUVEC apoptosis; this was significantly reversed by Adv.MKP-2. Protein markers of cellular damage and apoptosis, H2AX phosphorylation and caspase-3 cleavage, were also reversed by MKP-2 over-expression. CONCLUSIONS AND IMPLICATIONS Over-expression of MKP-2 had different effects upon the expression of inflammatory proteins due to a reciprocal effect upon JNK and NFκB signalling, and also prevented TNF-α-mediated endothelial cell death. These properties may make Adv.MKP-2 a potentially useful future therapy in cardiovascular diseases where endothelial dysfunction is a feature.
Collapse
Affiliation(s)
- Mashael Al-Mutairi
- Division of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, Glasgow, UK
| | | | | | | |
Collapse
|
20
|
Shiga toxins: intracellular trafficking to the ER leading to activation of host cell stress responses. Toxins (Basel) 2010; 2:1515-35. [PMID: 22069648 PMCID: PMC3153247 DOI: 10.3390/toxins2061515] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/18/2010] [Accepted: 06/01/2010] [Indexed: 12/25/2022] Open
Abstract
Despite efforts to improve hygenic conditions and regulate food and drinking water safety, the enteric pathogens, Shiga toxin-producing Escherichia coli (STEC) and Shigella dysenteriae serotype 1 remain major public health concerns due to widespread outbreaks and the severity of extra-intestinal diseases they cause, including acute renal failure and central nervous system complications. Shiga toxins are the key virulence factors expressed by these pathogens mediating extra-intestinal disease. Delivery of the toxins to the endoplasmic reticulum (ER) results in host cell protein synthesis inhibition, activation of the ribotoxic stress response, the ER stress response, and in some cases, the induction of apoptosis. Intrinsic and/or extrinsic apoptosis inducing pathways are involved in executing cell death following intoxication. In this review we provide an overview of the current understanding Shiga toxin intracellular trafficking, host cellular responses to the toxin and ER stress-induced apoptosis with an emphasis on recent findings.
Collapse
|
21
|
Global transcriptional response of macrophage-like THP-1 cells to Shiga toxin type 1. Infect Immun 2010; 78:2454-65. [PMID: 20351145 DOI: 10.1128/iai.01341-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Shiga toxins (Stxs) are bacterial cytotoxins produced by the enteric pathogens Shigella dysenteriae serotype 1 and some serotypes of Escherichia coli that cause bacillary dysentery and hemorrhagic colitis, respectively. To date, approaches to studying the capacity of Stxs to alter gene expression in intoxicated cells have been limited to individual genes. However, it is known that many of the signaling pathways activated by Stxs regulate the expression of multiple genes in mammalian cells. To expand the scope of analysis of gene expression and to better understand the underlying mechanisms for the various effects of Stxs on host cell functions, we carried out comparative microarray analyses to characterize the global transcriptional response of human macrophage-like THP-1 cells to Shiga toxin type 1 (Stx1) and lipopolysaccharides. The data were analyzed by using a rigorous combinatorial approach with three separate statistical algorithms. A total of 36 genes met the criteria of upregulated expression in response to Stx1 treatment, with 14 genes uniquely upregulated by Stx1. Microarray data were validated by real-time reverse transcriptase PCR for genes encoding early growth response 1 (Egr-1) (transcriptional regulator), cyclooxygenase 2 (COX-2; inflammation), and dual specificity phosphatase 1 (DUSP1), DUSP5, and DUSP10 (regulation of mitogen-activated protein kinase signaling). Stx1-mediated signaling through extracellular signal-regulated kinase 1/2 and Egr-1 appears to be involved in the increased expression and production of the proinflammatory mediator tumor necrosis factor alpha. Activation of COX-2 is associated with the increased production of proinflammatory and vasoactive eicosanoids. However, the capacity of Stx1 to increase the expression of genes encoding phosphatases suggests that mechanisms to dampen the macrophage proinflammatory response may be built into host response to the toxins.
Collapse
|
22
|
|
23
|
Johannes L, Römer W. Shiga toxins--from cell biology to biomedical applications. Nat Rev Microbiol 2009; 8:105-16. [PMID: 20023663 DOI: 10.1038/nrmicro2279] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shiga toxin-producing Escherichia coli is an emergent pathogen that can induce haemolytic uraemic syndrome. The toxin has received considerable attention not only from microbiologists but also in the field of cell biology, where it has become a powerful tool to study intracellular trafficking. In this Review, we summarize the Shiga toxin family members and their structures, receptors, trafficking pathways and cellular targets. We discuss how Shiga toxin affects cells not only by inhibiting protein biosynthesis but also through the induction of signalling cascades that lead to apoptosis. Finally, we discuss how Shiga toxins might be exploited in cancer therapy and immunotherapy.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie - Centre de Recherche and CNRS UMR144, Traffic, Signalling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
24
|
Shiga toxin 1-induced proinflammatory cytokine production is regulated by the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway. Infect Immun 2009; 77:3919-31. [PMID: 19596774 DOI: 10.1128/iai.00738-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Shiga toxin 1 (Stx1) transiently increases the expression of proinflammatory cytokines by macrophage-like THP-1 cells in vitro. Increased cytokine production is partly due to activation of the translation initiation factor eIF4E through a mitogen-activated protein kinase (MAPK)- and Mnk1-dependent pathway. eIF4E availability for translation initiation is regulated by association with eIF4E binding proteins (4E-BP). In this study, we showed that Stx1 transiently induced 4E-BP hyperphosphorylation, which may release eIF4E for translation initiation. Phosphorylation of 4E-BP at priming sites T37 and T46 was not altered by Stx1 but was transiently increased at S65, concomitant with increased cytokine expression. Using kinase inhibitors, we showed that 4E-BP phosphorylation was dependent on phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) activation but did not require MAPKs. Stx1 treatment resulted in increased levels of cytosolic Ca(2+). PI3K and Akt activation led to the phosphorylation and inactivation of the positive cytokine regulator glycogen synthase kinase 3alpha/beta (GSK-3alpha/beta). PI3K, Akt, and mTOR inhibitors and small interfering RNA knockdown of Akt expression all increased, whereas a GSK-3alpha/beta inhibitor decreased, Stx1-induced soluble tumor necrosis factor alpha and interleukin-1beta production. Overall, these findings suggest that despite transient activation of 4E-BP, the PI3K/Akt/mTOR pathway negatively influences cytokine induction by inactivating the positive regulator GSK-3alpha/beta.
Collapse
|
25
|
p38 mitogen-activated protein kinase mediates lipopolysaccharide and tumor necrosis factor alpha induction of shiga toxin 2 sensitivity in human umbilical vein endothelial cells. Infect Immun 2007; 76:1115-21. [PMID: 18086809 DOI: 10.1128/iai.01300-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 Shiga toxin 2 (Stx2), one of the causative agents of hemolytic-uremic syndrome, is toxic to endothelial cells, including primary cultured human umbilical vein endothelial cells (HUVEC). This sensitivity of cells to Stx2 can be increased with either lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-alpha). The goal of the present study was to identify the intracellular signaling pathway(s) by which LPS and TNF-alpha sensitize HUVEC to the cytotoxic effects of Stx2. To identify these pathways, specific pharmacological inhibitors and small interfering RNAs were tested with cell viability endpoints. A time course and dose response experiment for HUVEC exposure to LPS and TNF-alpha showed that a relatively short exposure to either agonist was sufficient to sensitize the cells to Stx2 and that both agonists stimulated intracellular signaling pathways within a short time. Cell viability assays indicated that the p38 mitogen-activated protein kinase (MAPK) inhibitors SB202190 and SB203580 and the general protein synthesis inhibitor cycloheximide inhibited both the LPS and TNF-alpha sensitization of HUVEC to Stx2, while all other inhibitors tested did not inhibit this sensitization. Additionally, SB202190 reduced the cellular globotriaosylceramide content under LPS- and TNF-alpha-induced conditions. In conclusion, our results show that LPS and TNF-alpha induction of Stx2 sensitivity in HUVEC is mediated through a pathway that includes p38 MAPK. These results indicate that inhibition of p38 MAPK in endothelial cells may protect a host from the deleterious effects of Stx2.
Collapse
|
26
|
Wälchli S, Skånland SS, Gregers TF, Lauvrak SU, Torgersen ML, Ying M, Kuroda S, Maturana A, Sandvig K. The Mitogen-activated protein kinase p38 links Shiga Toxin-dependent signaling and trafficking. Mol Biol Cell 2007; 19:95-104. [PMID: 17959827 DOI: 10.1091/mbc.e07-06-0565] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Shiga toxin (Stx) binds to the cell, and it is transported via endosomes and the Golgi apparatus to the endoplasmic reticulum and cytosol, where it exerts its toxic effect. We have recently shown that Stx activates the tyrosine kinase Syk, which in turn induces clathrin phosphorylation and up-regulates Stx uptake. Here, we show that toxin-induced signaling can also regulate another step in intracellular Stx transport. We demonstrate that transport of Stx to the Golgi apparatus is dependent on the mitogen-activated protein kinase p38. Treatment of cells with chemical inhibitors or small interfering RNA targeting p38 inhibited Stx transport to the Golgi and reduced Stx toxicity. This p38 dependence is specific to Stx, because transport of the related toxin ricin was not affected by p38 inhibition. Stx rapidly activated p38, and recruited it to early endosomes in a Ca(2+)-dependent manner. Furthermore, agonist-induced oscillations in cytosolic Ca(2+) levels were inhibited upon Stx stimulation, possibly reflecting Stx-dependent local alterations in cytosolic Ca(2+) levels. Intracellular transport of Stx is Ca(2+) dependent, and we provide evidence that Stx activates a signaling cascade involving cross talk between Ca(2+) and p38, to regulate its trafficking to the Golgi apparatus.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Biochemistry and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, University of Oslo, Montebello, N-0310 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ritchie E, Saka M, MacKenzie C, Drummond R, Wheeler-Jones C, Kanke T, Plevin R. Cytokine upregulation of proteinase-activated-receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase beta in human endothelial cells. Br J Pharmacol 2007; 150:1044-54. [PMID: 17339845 PMCID: PMC2013917 DOI: 10.1038/sj.bjp.0707150] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/07/2006] [Accepted: 11/20/2006] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Up-regulation of proteinase-activated receptor-2 (PAR2) is a factor in a number of disease states and we have therefore examined the signalling pathways involved in the expression of the receptor. EXPERIMENTAL APPROACH We investigated the effects of tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), trypsin and the PAR2 activating peptide, 2-furoyl(2f)-LIGKV-OH on both mRNA and functional expression of PAR2 in human umbilical vein endothelial cells (HUVECs). The effect of specific chemical inhibitors and dominant negative adenovirus constructs of the mitogen-activated protein kinase (MAPK) cascade and the nuclear factor kappa B (NF-kappaB) signalling pathway was assessed. Methods included semi-quantitative and quantitative RT-PCR, [(3)H]inositol phosphate (IP) accumulation and Ca(2+)-dependent fluorescence. KEY RESULTS The above agonists induced both mRNA and functional expression of PAR2; PAR4 mRNA, but not that for PAR1 or PAR-3, also increased following TNFalpha treatment. Inhibition of p38 MAP kinase reduced PAR2 and PAR4 expression, whilst inhibition of MEK1/ERK/JNK was without effect. A similar dependency upon p38 MAP kinase was observed for the expression of PAR4. TNFalpha -induced enhancement of PAR2 stimulated [(3)H]-inositol phosphate accumulation (IP) and Ca(2+) signalling was abolished following SB203580 pre-treatment. Infection with adenovirus encoding dominant-negative IKKbeta (Ad.IKKbeta(+/-)) and to a lesser extent dominant-negative IKKalpha (Ad.IKKalpha(+/-)), substantially reduced both control and IL-1beta- induced expression of both PAR2 and PAR4 mRNA and enhancement of PAR2-stimulated IP accumulation and Ca(2+) mobilisation. CONCLUSIONS AND IMPLICATIONS These data reveal for the first time the signalling events involved in the upregulation of both PAR2 and PAR4 during pro-inflammatory challenge.
Collapse
Affiliation(s)
- E Ritchie
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - M Saka
- Tokyo New Drug Research Laboratories, Kowa Company Limited Higashimurayama, Tokyo, Japan
| | - C MacKenzie
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - R Drummond
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - C Wheeler-Jones
- Department of Veterinary Basic Sciences, Royal Veterinary College London, UK
| | - T Kanke
- Tokyo New Drug Research Laboratories, Kowa Company Limited Higashimurayama, Tokyo, Japan
| | - R Plevin
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| |
Collapse
|
28
|
Ikeda M, Gunji Y, Sonoda H, Oshikawa S, Shimono M, Horie A, Ito K, Yamasaki S. Inhibitory effect of tyrphostin 47 on Shiga toxin-induced cell death. Eur J Pharmacol 2006; 546:36-9. [PMID: 16919262 DOI: 10.1016/j.ejphar.2006.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 11/27/2022]
Abstract
The inhibitory effects of tyrosine kinase inhibitors including tyrphostins 25, 47 and 51 on Shiga toxin 1-induced cell death and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation were examined in Vero cells. Tyrphostin 47 significantly inhibited Shiga toxin 1-induced cell death and p38 MAPK phosphorylation. In contrast, tyrphostins 25 and 51 had no significant effect on the Shiga toxin 1-induced responses. These data indicate that Shiga toxin 1-induced cell injury occurs through a pathway sensitive to tyrphostin 47, and the target molecule for tyrphostin 47 opens up new opportunities for pharmacological intervention against Shiga toxin-producing Escherichia coli infectious diseases.
Collapse
Affiliation(s)
- Masahiro Ikeda
- Department of Veterinary Pharmacology, Faculty of Agriculture, University of Miyazaki, Gakuenkibanadai-nishi 1-1, Miyazaki 889-2192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Islam Z, Gray JS, Pestka JJ. p38 Mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes. Toxicol Appl Pharmacol 2005; 213:235-44. [PMID: 16364386 DOI: 10.1016/j.taap.2005.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/23/2005] [Accepted: 11/01/2005] [Indexed: 11/21/2022]
Abstract
The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 and IL-1beta intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38(+) cells. DON-induced p38 activation occurred exclusively in the CD14(+) monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response.
Collapse
Affiliation(s)
- Zahidul Islam
- Department of Food Science and Human Nutrition, Michigan State University, 234 G.M. Trout Building, East Lansing, MI 48824-1224, USA
| | | | | |
Collapse
|
30
|
Cherla RP, Lee SY, Mees PL, Tesh VL. Shiga toxin 1-induced cytokine production is mediated by MAP kinase pathways and translation initiation factor eIF4E in the macrophage-like THP-1 cell line. J Leukoc Biol 2005; 79:397-407. [PMID: 16301326 DOI: 10.1189/jlb.0605313] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Upon binding to the glycolipid receptor globotriaosylceramide, Shiga toxins (Stxs) undergo retrograde transport to reach ribosomes, cleave 28S rRNA, and inhibit protein synthesis. Stxs induce the ribotoxic stress response and cytokine and chemokine expression in some cell types. Signaling mechanisms necessary for cytokine expression in the face of toxin-mediated protein synthesis inhibition are not well characterized. Stxs may regulate cytokine expression via multiple mechanisms involving increased gene transcription, mRNA transcript stabilization, and/or increased translation initiation efficiency. We show that treatment of differentiated THP-1 cells with purified Stx1 resulted in prolonged activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) cascades, and lipopolysaccharides (LPS) rapidly triggered transient activation of JNK and p38 and prolonged activation of extracellular signal-regulated kinase cascades. Simultaneous treatment with Stx1 + LPS mediated prolonged p38 MAPK activation. Stx1 increased eukaryotic translation initiation factor 4E (eIF4E) activation by 4.3-fold within 4-6 h, and LPS or Stx1 + LPS treatment increased eIF4E activation by 7.8- and 11-fold, respectively, within 1 h. eIF4E activation required Stx1 enzymatic activity and was mediated by anisomycin, another ribotoxic stress inducer. A combination of MAPK inhibitors or a MAPK-interacting kinase 1 (Mnk1)-specific inhibitor blocked eIF4E activation by all stimulants. Mnk1 inhibition blocked the transient increase in total protein synthesis detected in Stx1-treated cells but failed to block long-term protein synthesis inhibition. The MAPK inhibitors or Mnk1 inhibitor blocked soluble interleukin (IL)-1beta and IL-8 production or release by 73-96%. These data suggest that Stxs may regulate cytokine expression in part through activation of MAPK cascades, activation of Mnk1, and phosphorylation of eIF4E.
Collapse
Affiliation(s)
- Rama P Cherla
- Department of Medical Microbiology and Immunology, Texas A & M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
31
|
Lee SY, Cherla RP, Caliskan I, Tesh VL. Shiga toxin 1 induces apoptosis in the human myelogenous leukemia cell line THP-1 by a caspase-8-dependent, tumor necrosis factor receptor-independent mechanism. Infect Immun 2005; 73:5115-26. [PMID: 16041028 PMCID: PMC1201203 DOI: 10.1128/iai.73.8.5115-5126.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Shiga toxins (Stxs) induce apoptosis in a variety of cell types. Here, we show that Stx1 induces apoptosis in the undifferentiated myelogenous leukemia cell line THP-1 in the absence of tumor necrosis factor alpha (TNF-alpha) or death receptor (TNF receptor or Fas) expression. Caspase-8 and -3 inhibitors blocked, and caspase-6 and -9 inhibitors partially blocked, Stx1-induced apoptosis. Stx1 induced the mitochondrial pathway of apoptosis, as activation of caspase-8 triggered the (i) cleavage of Bid, (ii) disruption of mitochondrial membrane potential, and (iii) release of cytochrome c into the cytoplasm. Caspase-8, -9, and -3 cleavage and functional activities began 4 h after toxin exposure and peaked after 8 h of treatment. Caspase-6 may also contribute to Stx1-induced apoptosis by directly acting on caspase-8. It appears that functional Stx1 holotoxins must be transported to the endoplasmic reticulum to initiate apoptotic signaling through the ribotoxic stress response. These data suggest that Stxs may activate monocyte apoptosis via a novel caspase-8-dependent, death receptor-independent mechanism.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Medical Microbiology and Immunology, Room 407, Reynolds Medical Building, Texas A and M University System Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | |
Collapse
|
32
|
Shen J, Sakaida I, Uchida K, Terai S, Okita K. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci 2005; 77:1502-15. [PMID: 15979653 DOI: 10.1016/j.lfs.2005.04.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 04/18/2005] [Indexed: 01/22/2023]
Abstract
Leptin is now recognized as a proinflammatory cytokine and thought to be a progressive factor for non-alcoholic steatohepatitis (NASH). Here we showed the effects of leptin on the production of TNF-alpha (tumor necrosis factor-alpha) by Kupffer cells (KCs) with signal transduction. Leptin enhanced TNF-alpha production accompanied by a dose-dependent increase of MAPK activity in lipopolysaccharide (LPS)-stimulated KCs. SB203580 and JNK inhibitor I, specific inhibitors of P38 and JNK, inhibited TNF-alpha production in KCs but PD98059, an inhibitor of the ERK pathway, did not affect TNF-alpha production by KCs. Recombinant constitutively active adenovirus (Ad)-MKK6 and-MKK7 increased TNF-alpha production in KCs with activation of P38 and JNK without any change by Ad-MEK1 delivery. On the other hand, KCs isolated from the Zucker rat (fa/fa), a leptin receptor-deficient rat, showed reduced production of TNF-alpha on stimulation with LPS. The delivery of Ad-MKK6 and-MKK7, but not Ad-MEK1, increased TNF-alpha production in KCs of Zucker rats with activation of P38 and JNK. Addition of leptin to normal rats increased LPS-induced hepatic TNF-alpha production in vivo and leptin receptor-deficient Zucker rats showed reduced hepatic TNF-alpha production on addition of LPS in vivo. These findings indicate that P38 and JNK pathways are involved in the signal transduction of leptin enhancement of LPS-induced TNF-alpha production.
Collapse
Affiliation(s)
- Jinhua Shen
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi-Pref. 755-8505, Japan
| | | | | | | | | |
Collapse
|
33
|
Kobayashi S, Sato R, Inanami O, Yamamori T, Yamato O, Maede Y, Sato J, Kuwabara M, Naito Y. Reduction of concanavalin A-induced expression of interferon-gamma by bovine lactoferrin in feline peripheral blood mononuclear cells. Vet Immunol Immunopathol 2005; 105:75-84. [PMID: 15797477 DOI: 10.1016/j.vetimm.2004.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 10/27/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
Lactoferrin (LF), a glycoprotein present in milk, mucosal secretions and neutrophils, contributes to host defense and immunomodulation. In the present study, we investigated the effect of bovine LF (bLF) on cytokine messenger RNA (mRNA) expression in concanavalin A (ConA)-stimulated feline peripheral blood mononuclear cells (PBMC). Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and real-time PCR showed a ConA-induced increase of interferon-gamma (IFN-gamma) mRNA expression but not of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and IL-12 p40 mRNA in feline PBMC. This ConA-induced increase of IFN-gamma mRNA expression was inhibited by addition of bLF not only 30 min before ConA stimulation but also 10, 20 and 40 min after ConA stimulation. Western blotting showed that protein tyrosine kinase (PTK) and extracellular signal-regulated kinase (ERK) in feline PBMC were activated within 10 min after the ConA stimulation and that the activation of both kinases had almost disappeared by 40 min after stimulation. Moreover, the ConA-induced IFN-gamma mRNA expression was partly prevented by genistein, a global PTK inhibitor, and PD-98059, an ERK inhibitor, respectively. These results suggest that bLF is able to inhibit the ConA-induced IFN-gamma mRNA expression by abrogation of intracellular signaling activated after interaction between ConA and its receptor.
Collapse
Affiliation(s)
- Saori Kobayashi
- Department of Veterinary Clinical Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cadalbert L, Sloss CM, Cameron P, Plevin R. Conditional expression of MAP kinase phosphatase-2 protects against genotoxic stress-induced apoptosis by binding and selective dephosphorylation of nuclear activated c-jun N-terminal kinase. Cell Signal 2005; 17:1254-64. [PMID: 16038800 DOI: 10.1016/j.cellsig.2005.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 01/11/2005] [Indexed: 11/18/2022]
Abstract
MAP Kinase Phosphatase-2 (MKP-2) is a dual specific nuclear phosphatase which is selective for both ERK and JNK, MAP kinases implicated in the regulation of apoptosis in response to genotoxic stress. Here we report the conditional expression of MKP-2 in human embryonic kidney cells 293. We demonstrate that Flag-WT-MKP-2 is able to rescue cells from apoptotic commitment when subjected to UV-C or cisplatin treatment. We establish that upon stimulation all three major MAP kinase families (ERK, JNK and p38 MAP kinases) are activated. However, MKP-2 is surprisingly only able to deactivate JNK in vivo. Furthermore, whilst pre-treatment of cells with either the JNK inhibitor SP600125, or the MEK-1 inhibitor PD98059, also reverses UV-C and cisplatin-induced apoptosis, the anti-apoptotic effect of MKP-2 overexpression is not additive with SP600125 but is with PD098059, suggesting that MKP-2 is involved in specifically terminating JNK activity and not ERK. The inability of MKP-2 to dephosphorylate ERK in vivo is also not due to the inability of Flag-MKP-2 to bind both ERK and JNK; phosphorylated forms of each kinase are co-precipitated with both WT and CI-MKP-2. Immunofluorescence studies however demonstrate that ERK is exclusively cytosolic in origin and not translocated to the nucleus following UV-C and cisplatin treatment whilst JNK is principally nuclear. These studies demonstrate the in vivo specificity of MKP-2 for JNK and not ERK and show that nuclear-targeted JNK is involved in genotoxic stress-induced apoptosis.
Collapse
Affiliation(s)
- Laurence Cadalbert
- Strathclyde Institute for Biomedical Sciences, Department of Physiology and Pharmacology, University of Strathclyde, 27 Taylor Street, G4 0NR, Glasgow, Scotland, UK.
| | | | | | | |
Collapse
|
35
|
Zhou HR, Jia Q, Pestka JJ. Ribotoxic Stress Response to the Trichothecene Deoxynivalenol in the Macrophage Involves the Src Family Kinase Hck. Toxicol Sci 2005; 85:916-26. [PMID: 15772366 DOI: 10.1093/toxsci/kfi146] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trichothecene mycotoxins and other translational inhibitors activate mitogen-activated protein kinase (MAPKs) by a mechanism called the "ribotoxic stress response," which drives both cytokine gene expression and apoptosis in macrophages. The purpose of this study was to identify upstream kinases involved in the ribotoxic stress response using the trichothecene deoxynivalenol (DON) and the RAW 264.7 macrophage as models. DON (100 to 1000 ng/ml) dose-dependently induced phosphorylation of c-Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAPKs. MAPK phosphorylation in response to DON exposure occurred as early as 5 min, was maximal from 15 to 30 min, and lasted up to 8 h. Preincubation with inhibitors of protein kinase C, protein kinase A, or phospholipase C had no effect on DON-induced MAPK phosphorylation. In contrast, the Src family tyrosine kinase inhibitors, PP1 (4-amino-5-[4-methylphenyl)]-7-[t-butyl]pyrazolo[3,4-d]-pyrimidine) and, PP2 (4-amino-5-[4-chlorophenyl]-7-[t-butyl]pyrazolo[3,4-d]-pyrimidine) concentration-dependently impaired phosphorylation of all three MAPK families. PP1 suppressed DON-induced phosphorylation of the MAPK substrates c-jun, ATF-2, and p90(Rsk). MAPK phosphorylation by two other translational inhibitors, anisomycin and emetine, were similarly Src-dependent. PP1 reduced DON-induced increases in nuclear levels and binding activities of several transcription factors (NF-kappaB, AP-1, and C/EBP), which corresponded to decreases in TNF-alpha production, caspase-3 activation, and apoptosis. Tyrosine phosphorylation of hematopoeitic cell kinase (Hck), a Src found in macrophages, was detectable within 1 to 5 min after DON addition, and this was suppressed by PP1. Knockdown of Hck expression with siRNAs confirmed involvement of this Src in DON-induced TNF-alpha production and caspase activation. Taken together, activation of Hck and possibly other Src family tyrosine kinases are likely to be critical signals that precede both MAPK activation and induction of resultant downstream sequelae by DON and other ribotoxic stressors.
Collapse
Affiliation(s)
- Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | | | |
Collapse
|
36
|
|