1
|
Green DP. The role of Mrgprs in pain. Neurosci Lett 2021; 744:135544. [PMID: 33421487 DOI: 10.1016/j.neulet.2020.135544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022]
Abstract
Owing to their functional diversity, the Mas-related G-protein-coupled receptor (Mrgpr) family has a role in both itch and pain modulation. While primarily linked to pruritis, Mrgprs were originally characterized in small-diameter nociceptive neurons of dorsal root ganglia (DRG) and trigeminal ganglia. This review will focus on the role Mrgpr's have in pain physiology, discussing recent discoveries as well as how Mrgpr's may provide a new target for the treatment of pathological pain.
Collapse
Affiliation(s)
- Dustin P Green
- Department of Neuroscience, Cell Biology, & Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
He SQ, Xu Q, Tiwari V, Yang F, Anderson M, Chen Z, Grenald SA, Raja SN, Dong X, Guan Y. Oligomerization of MrgC11 and μ-opioid receptors in sensory neurons enhances morphine analgesia. Sci Signal 2018; 11:eaao3134. [PMID: 29921657 PMCID: PMC6328051 DOI: 10.1126/scisignal.aao3134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The μ-opioid receptor (MOR) agonist morphine is commonly used for pain management, but it has severe adverse effects and produces analgesic tolerance. Thus, alternative ways of stimulating MOR activity are needed. We found that MrgC11, a sensory neuron-specific G protein-coupled receptor, may form heteromeric complexes with MOR. Peptide-mediated activation of MrgC11 enhanced MOR recycling by inducing coendocytosis and sorting of MOR for membrane reinsertion. MrgC11 activation also inhibited the coupling of MOR to β-arrestin-2 and enhanced the morphine-dependent inhibition of cAMP production. Intrathecal coadministration of a low dose of an MrgC agonist potentiated acute morphine analgesia and reduced chronic morphine tolerance in wild-type mice but not in Mrg-cluster knockout (Mrg KO) mice. BAM22, a bivalent agonist of MrgC and opioid receptors, enhanced the interaction between MrgC11 and MOR and produced stronger analgesia than did the individual monovalent agonists. Morphine-induced neuronal and pain inhibition was reduced in Mrg KO mice compared to that in wild-type mice. Our results uncover MrgC11-MOR interactions that lead to positive functional modulation of MOR. MrgC shares genetic homogeneity and functional similarity with human MrgX1. Thus, harnessing this positive modulation of MOR function by Mrg signaling may enhance morphine analgesia in a sensory neuron-specific fashion to limit central side effects.
Collapse
Affiliation(s)
- Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qian Xu
- Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vinod Tiwari
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Anderson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaness A Grenald
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Tiwari V, Tiwari V, He S, Zhang T, Raja SN, Dong X, Guan Y. Mas-Related G Protein-Coupled Receptors Offer Potential New Targets for Pain Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 904:87-103. [PMID: 26900065 DOI: 10.1007/978-94-017-7537-3_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The founding member of the Mas-related G-protein-coupled receptor (Mrgpr) family was discovered in 1986. Since then, many more members of this receptor family have been identified in multiple species, and their physiologic functions have been investigated widely. Because they are expressed exclusively in small-diameter primary sensory neurons, the roles of Mrgpr proteins in pain and itch have been best studied. This review will focus specifically on the current knowledge of their roles in pathological pain and the potential development of new pharmacotherapies targeted at some Mrgprs for the treatment of chronic pain. We will also discuss the limitations and future scope of this receptor family in pain treatment.
Collapse
Affiliation(s)
- Vineeta Tiwari
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Vinod Tiwari
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Shaoqiu He
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Tong Zhang
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Srinivasa N Raja
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xinzhong Dong
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yun Guan
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Solinski HJ, Gudermann T, Breit A. Pharmacology and signaling of MAS-related G protein-coupled receptors. Pharmacol Rev 2015; 66:570-97. [PMID: 24867890 DOI: 10.1124/pr.113.008425] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Signaling by heptahelical G protein-coupled receptors (GPCR) regulates many vital body functions. Consequently, dysfunction of GPCR signaling leads to pathologic states, and approximately 30% of all modern clinical drugs target GPCR. One decade ago, an entire new GPCR family was discovered, which was recently named MAS-related G protein-coupled receptors (MRGPR) by the HUGO Gene Nomenclature Committee. The MRGPR family consists of ∼40 members that are grouped into nine distinct subfamilies (MRGPRA to -H and -X) and are predominantly expressed in primary sensory neurons and mast cells. All members are formally still considered "orphan" by the Committee on Receptor Nomenclature and Drug Classification of the International Union of Basic and Clinical Pharmacology. However, several distinct peptides and amino acids are discussed as potential ligands, including β-alanine, angiotensin-(1-7), alamandine, GABA, cortistatin-14, and cleavage products of proenkephalin, pro-opiomelanocortin, prodynorphin, or proneuropeptide-FF-A. The full spectrum of biologic roles of all MRGPR is still ill-defined, but there is evidence pointing to a role of distinct MRGPR subtypes in nociception, pruritus, sleep, cell proliferation, circulation, and mast cell degranulation. This review article summarizes findings published in the last 10 years on the phylogenetic relationships, pharmacology, signaling, physiology, and agonist-promoted regulation of all MRGPR subfamilies. Furthermore, we highlight interactions between MRGPR and other hormonal systems, paying particular attention to receptor multimerization and morphine tolerance. Finally, we discuss the challenges the field faces presently and emphasize future directions of research.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Breit
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
5
|
Upregulation of pronociceptive mediators and downregulation of opioid peptide by adrenomedullin following chronic exposure to morphine in rats. Neuroscience 2014; 280:31-9. [PMID: 25218960 DOI: 10.1016/j.neuroscience.2014.08.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/28/2014] [Indexed: 01/16/2023]
Abstract
Adrenomedullin (AM) belongs to a calcitonin gene-related peptide (CGRP) family and has been demonstrated to recruit CGRP following chronic use of morphine and neuronal nitric oxide synthase (nNOS) in inflammation. The present study investigated the possibility that AM initiates the changes of other molecules contributing to the development of morphine tolerance in its chronic use. Intrathecal (i.t.) co-administration of the AM receptor antagonist AM22-52 (35.8 μg) inhibited tolerance to morphine-induced analgesia while a daily injection of the AM receptor agonist AM1-50 (8 μg, i.t., bolus) for 9 days induced a decrease in the potency of morphine analgesia and thermal hyperalgesia. Persistent exposure of cultured dorsal root ganglion (DRG) explants to morphine (3.3 μM) for 4 days resulted in an increase in AM and CGRP mRNA levels. However, morphine failed to produce these effects in the presence of AM22-52 (2 μM). The i.t. administration of morphine for 6 days increased the expression of nNOS in the spinal dorsal horn and DRG neurons but decreased expression of the endogenous opioid peptide bovine adrenal medulla 22 (BAM22) in small- and medium-sized neurons in DRG. Particularly, the co-administration of AM22-52 (35.8 μg) inhibited the morphine-induced alterations in nNOS and BAM22. These results indicated that the increase in nNOS and CGRP expressions and the decrease in BAM22 were attributed to the increased AM receptor signaling induced by chronic morphine. The present study supports the hypothesis that the enhancement of AM bioactivity triggered upregulation of pronociceptive mediators and downregulation of pain-inhibiting molecule in a cascade contributing to the development of morphine tolerance.
Collapse
|
6
|
Gupta A, Gomes I, Wardman J, Devi LA. Opioid receptor function is regulated by post-endocytic peptide processing. J Biol Chem 2014; 289:19613-26. [PMID: 24847082 DOI: 10.1074/jbc.m113.537704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most neuroendocrine peptides are generated in the secretory compartment by proteolysis of the precursors at classical cleavage sites consisting of basic residues by well studied endopeptidases belonging to the subtilisin superfamily. In contrast, a subset of bioactive peptides is generated by processing at non-classical cleavage sites that do not contain basic residues. Neither the peptidases responsible for non-classical cleavages nor the compartment involved in such processing has been well established. Members of the endothelin-converting enzyme (ECE) family are considered good candidate enzymes because they exhibit functional properties that are consistent with such a role. In this study we have explored a role for ECE2 in endocytic processing of δ opioid peptides and its effect on modulating δ opioid receptor function by using selective inhibitors of ECE2 that we had identified previously by homology modeling and virtual screening of a library of small molecules. We found that agonist treatment led to intracellular co-localization of ECE2 with δ opioid receptors. Furthermore, selective inhibitors of ECE2 and reagents that increase the pH of the acidic compartment impaired receptor recycling by protecting the endocytosed peptide from degradation. This, in turn, led to a substantial decrease in surface receptor signaling. Finally, we showed that treatment of primary neurons with the ECE2 inhibitor during recycling led to increased intracellular co-localization of the receptors and ECE2, which in turn led to decreased receptor recycling and signaling by the surface receptors. Together, these results support a role for differential modulation of opioid receptor signaling by post-endocytic processing of peptide agonists by ECE2.
Collapse
Affiliation(s)
- Achla Gupta
- From the Department of Pharmacology and Systems Therapeutics and
| | - Ivone Gomes
- From the Department of Pharmacology and Systems Therapeutics and
| | - Jonathan Wardman
- From the Department of Pharmacology and Systems Therapeutics and
| | - Lakshmi A Devi
- From the Department of Pharmacology and Systems Therapeutics and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
7
|
MrgC agonism at central terminals of primary sensory neurons inhibits neuropathic pain. Pain 2013; 155:534-544. [PMID: 24333779 DOI: 10.1016/j.pain.2013.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 11/22/2022]
Abstract
Chronic neuropathic pain is often refractory to current pharmacotherapies. The rodent Mas-related G-protein-coupled receptor subtype C (MrgC) shares substantial homogeneity with its human homologue, MrgX1, and is located specifically in small-diameter dorsal root ganglion neurons. However, evidence regarding the role of MrgC in chronic pain conditions has been disparate and inconsistent. Accordingly, the therapeutic value of MrgX1 as a target for pain treatment in humans remains uncertain. Here, we found that intrathecal injection of BAM8-22 (a 15-amino acid peptide MrgC agonist) and JHU58 (a novel dipeptide MrgC agonist) inhibited both mechanical and heat hypersensitivity in rats after an L5 spinal nerve ligation (SNL). Intrathecal JHU58-induced pain inhibition was dose dependent in SNL rats. Importantly, drug efficacy was lost in Mrg-cluster gene knockout (Mrg KO) mice and was blocked by gene silencing with intrathecal MrgC siRNA and by a selective MrgC receptor antagonist in SNL rats, suggesting that the drug action is MrgC dependent. Further, in a mouse model of trigeminal neuropathic pain, microinjection of JHU58 into ipsilateral subnucleus caudalis inhibited mechanical hypersensitivity in wild-type but not Mrg KO mice. Finally, JHU58 attenuated the miniature excitatory postsynaptic currents frequency both in medullary dorsal horn neurons of mice after trigeminal nerve injury and in lumbar spinal dorsal horn neurons of mice after SNL. We provide multiple lines of evidence that MrgC agonism at spinal but not peripheral sites may constitute a novel pain inhibitory mechanism that involves inhibition of peripheral excitatory inputs onto postsynaptic dorsal horn neurons in different rodent models of neuropathic pain.
Collapse
|
8
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
9
|
Distinct Expression of Mas1-Related G-Protein-Coupled Receptor B4 in Dorsal Root and Trigeminal Ganglia—Implications for Altered Behaviors in Acid-Sensing Ion Channel 3-Deficient Mice. J Mol Neurosci 2013; 51:820-34. [DOI: 10.1007/s12031-013-0070-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/08/2013] [Indexed: 01/23/2023]
|
10
|
Akiyama T, Tominaga M, Davoodi A, Nagamine M, Blansit K, Horwitz A, Carstens MI, Carstens E. Cross-sensitization of histamine-independent itch in mouse primary sensory neurons. Neuroscience 2012; 226:305-12. [PMID: 23000623 DOI: 10.1016/j.neuroscience.2012.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/10/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Overexpression of pruritogens and their precursors may contribute to the sensitization of histamine-dependent and -independent itch-signaling pathways in chronic itch. We presently investigated self- and cross-sensitization of scratching behavior elicited by various pruritogens, and their effects on primary sensory neurons. The MrgprC11 agonist BAM8-22 exhibited self- and reciprocal cross-sensitization of scratching evoked by the protease-activated receptor-2 (PAR-2) agonist SLIGRL. The MrgprA3 agonist chloroquine unidirectionally cross-sensitized BAM8-22-evoked scratching. Histamine unidirectionally cross-sensitized scratching evoked by chloroquine and BAM8-22. SLIGRL unidirectionally cross-sensitized scratching evoked by chloroquine. Dorsal root ganglion (DRG) cells responded to various combinations of pruritogens and algogens. Neither chloroquine, BAM8-22 nor histamine had any effect on responses of DRG cell responses to subsequently applied pruritogens, implying that their behavioral self- and cross-sensitization effects are mediated indirectly. SLIGRL unilaterally cross-sensitized responses of DRG cells to chloroquine and BAM8-22, consistent with the behavioral data. These results indicate that unidirectional cross-sensitization of histamine-independent itch-signaling pathways might occur at a peripheral site through PAR-2. PAR-2 expressed in pruriceptive nerve endings is a potential target to reduce sensitization associated with chronic itch.
Collapse
Affiliation(s)
- T Akiyama
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen T, Jiang J, Huang H, Wang D, Liu Y, Hong Y. Role of bovine adrenal medulla 22 (BAM22) in the pathogenesis of neuropathic pain in rats with spinal nerve ligation. Eur J Pharmacol 2012; 685:24-9. [DOI: 10.1016/j.ejphar.2012.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 01/23/2023]
|
12
|
Wang D, Chen P, Li Q, Quirion R, Hong Y. Blockade of adrenomedullin receptors reverses morphine tolerance and its neurochemical mechanisms. Behav Brain Res 2011; 221:83-90. [PMID: 21382419 DOI: 10.1016/j.bbr.2011.02.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 11/29/2022]
Abstract
Adrenomedullin (AM) has been demonstrated to be involved in the development of opioid tolerance. The present study further investigated the role of AM in the maintenance of morphine tolerance, morphine-associated hyperalgesia and its cellular mechanisms. Intrathecal (i.t.) injection of morphine for 6 days induced a decline of its analgesic effect and hyperalgesia. Acute administration of the AM receptor antagonist AM(22-52) resumed the potency of morphine in a dose-dependent manner (12, 35.8 and 71.5 μg, i.t.). The AM(22-52) treatment also suppressed morphine tolerance-associated hyperalgesia. Furthermore, i.t. administration of AM(22-52) at a dose of 35.8 μg reversed the morphine induced-enhancement of nNOS (neuronal nitric oxide synthase) and CGRP immunoreactivity in the spinal dorsal horn and/or dorsal root ganglia (DRG). Interestingly, chronic administration of morphine reduced the expression of the endogenous opioid peptide bovine adrenal medulla 22 (BAM22) in small- and medium-sized neurons in DRG and this reduction was partially reversed by the administration of AM(22-52) (35.8 μg). These results suggest that the activation of AM receptors was involved in the maintenance of morphine tolerance mediating by not only upregulation of the pronociceptive mediators, nNOS and CGRP but also the down-regulation of pain-inhibiting molecule BAM22. Our data support the hypothesis that the level of both pronociceptive mediators and endogenous pain-inhibiting molecules has an impact on the potency of morphine analgesia. Targeting AM receptors is a promising approach to maintain the potency of morphine analgesia during chronic use of this drug.
Collapse
Affiliation(s)
- Dongmei Wang
- Provincial Key Laboratory of Developmental Biology and Neuroscience, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Mas-related G-protein-coupled receptors inhibit pathological pain in mice. Proc Natl Acad Sci U S A 2010; 107:15933-8. [PMID: 20724664 DOI: 10.1073/pnas.1011221107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An important objective of pain research is to identify novel drug targets for the treatment of pathological persistent pain states, such as inflammatory and neuropathic pain. Mas-related G-protein-coupled receptors (Mrgprs) represent a large family of orphan receptors specifically expressed in small-diameter nociceptive primary sensory neurons. To determine the roles of Mrgprs in persistent pathological pain states, we exploited a mouse line in which a chromosomal locus spanning 12 Mrgpr genes was deleted (KO). Initial studies indicated that these KO mice show prolonged mechanical- and thermal-pain hypersensitivity after hind-paw inflammation compared with wild-type littermates. Here, we show that this mutation also enhances the windup response of dorsal-horn wide dynamic-range neurons, an electrophysiological model for the triggering of central pain sensitization. Deletion of the Mrgpr cluster also blocked the analgesic effect of intrathecally applied bovine adrenal medulla peptide 8-22 (BAM 8-22), an MrgprC11 agonist, on both inflammatory heat hyperalgesia and neuropathic mechanical allodynia. Spinal application of bovine adrenal medulla peptide 8-22 also significantly attenuated windup in wild-type mice, an effect eliminated in KO mice. These data suggest that members of the Mrgpr family, in particular MrgprC11, may constitute an endogenous inhibitory mechanism for regulating persistent pain in mice. Agonists for these receptors may, therefore, represent a class of antihyperalgesics for treating persistent pain with minimal side effects because of the highly specific expression of their targets.
Collapse
|
14
|
Wei C, Huang W, Xing X, Dong S. Dual effects of [Tyr6
]-γ2-MSH(6-12) on pain perception and in vivo
hyperalgesic activity of its analogues. J Pept Sci 2010; 16:451-5. [DOI: 10.1002/psc.1255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
The Mrg Family and Pain*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Solinski HJ, Boekhoff I, Bouvier M, Gudermann T, Breit A. Sensory neuron-specific MAS-related gene-X1 receptors resist agonist-promoted endocytosis. Mol Pharmacol 2010; 78:249-59. [PMID: 20424127 DOI: 10.1124/mol.110.063867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human sensory neuron-specific mas-related gene X1 receptors (hMrgX1s) belong to the superfamily of G protein-coupled receptors (GPCRs), bind cleavage products of pro-enkephalin with high affinity, and have been suggested to participate in pain sensation. Murine or rat MrgC receptors exhibit high similarities with hMrgX1 in terms of expression pattern, sequence homology, and binding profile. Therefore, rodents have been used as an in vivo model to explore the physiological functions and pharmacodynamics of the hMrgX1. Agonist-promoted receptor endocytosis significantly affects the pharmacodynamics of a GPCR but is not yet investigated for hMrgX1. Therefore, we analyzed the effects of prolonged agonist exposure on cell surface protein levels of hMrgX1 and murine or rat MrgC in human embryonic kidney 293, Cos, F11, and ND-C cells. We observed that hMrgX1 are resistant and both MrgC are prone to agonist-promoted receptor endocytosis. In Cos cells, coexpression of beta-arrestins strongly enhanced endocytosis of murine MrgC but did not alter cell surface expression of hMrgX1 receptors. These data define the hMrgX1 as one of the few members within the superfamily of GPCRs whose signaling is not regulated by agonist-promoted endocytosis and reveal species-specific differences in the regulation of Mrg receptor signaling. Given the importance of receptor endocytosis for the pharmacodynamics of a given ligand, our results may have a strong impact on the development of future drugs that suppose to control pain in humans but were tested in rodents.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | | | | | | | | |
Collapse
|
17
|
Eyvazzadeh AD, Pennington KP, Pop-Busui R, Sowers M, Zubieta JK, Smith YR. The role of the endogenous opioid system in polycystic ovary syndrome. Fertil Steril 2009; 92:1-12. [PMID: 19560572 DOI: 10.1016/j.fertnstert.2009.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 04/29/2009] [Accepted: 05/07/2009] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To review the complex role of the opioid system in reproduction and carbohydrate metabolism, abnormalities in the opioid system in women with polycystic ovary syndrome (PCOS), and the role of opioid antagonists in the management of PCOS-related infertility. DESIGN Pertinent articles were identified through a computer PubMed search. References of selected articles were hand searched for additional citations. CONCLUSION(S) Endogenous opioids are generally considered inhibitory central neurotransmitters. Peripherally, opioids are involved in the regulation of pancreatic islet function, hepatic insulin clearance, and glucose metabolism, potentially contributing to the pathogenesis of hyperinsulinemia and insulin resistance in PCOS. The presence of sex steroids is required for normal function of the opioid system in both GnRH secretion and carbohydrate metabolism. In women with PCOS, growing evidence suggests dysregulation of the opioid system both centrally and peripherally, with complex interactions. The opioid system effects on carbohydrate metabolism appear to be modulated by obesity. Finally, naltrexone has been demonstrated to successfully augment traditional ovulation induction regimens, but has limited support as a single ovulation induction agent for PCOS.
Collapse
Affiliation(s)
- Aimee D Eyvazzadeh
- Department of Obstetrics and Gynecology, School of Medicine and School of Public Health, University of Michigan, 1500 East Medical Center Drive, Women's Hospital, Ann Arbor, MI 48109-0276, USA
| | | | | | | | | | | |
Collapse
|
18
|
Chang M, Li W, Peng YL, Gao YH, Yao J, Han RW, Wang R. Involvement of NMDA receptor in nociceptive effects elicited by intrathecal [Tyr6] gamma2-MSH(6-12), and the interaction with nociceptin/orphanin FQ in pain modulation in mice. Brain Res 2009; 1271:36-48. [PMID: 19332041 DOI: 10.1016/j.brainres.2009.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 01/21/2023]
Abstract
The mas-related genes (Mrgs, also known as sensory neuron-specific receptors, SNSRs) are specifically expressed in small diameter sensory neurons in the trigeminal and dorsal root ganglia, suggesting an important role of the receptors in pain transmission. The present study aimed to investigate the underlying mechanism of the nociceptive effects after activation of MrgC, and the interaction between MrgC and N/OFQ-NOP receptor system in modulation of nociception in mice. Intrathecal (i.t.) administration of [Tyr(6)] gamma2-MSH(6-12), the most potent agonist for MrgC receptor, produced a significant hyperalgesic response as assayed by tail withdrawal test and a series of characteristic nociceptive responses, including biting, licking and scratching, in a dose-dependent manner (0.01-10 pmol and 0.01-10 nmol, respectively) in mice. These pronociceptive effects induced by [Tyr(6)] gamma2-MSH(6-12) were inhibited dose-dependently by co-injection of competitive NMDA receptor antagonist D-APV, non-competitive NMDA receptor antagonist MK-801, and nitric oxide (NO) synthase inhibitor L-NAME. However, the tachykinin NK(1) receptor antagonist L-703,606, and tachykinin NK(2) receptor antagonist MEN-10,376, had no influence on pronociceptive effects elicited by [Tyr(6)] gamma2-MSH(6-12). In other groups, [Tyr(6)] gamma2-MSH(6-12)-induced nociceptive responses were bidirectionally regulated by the co-injection of N/OFQ. N/OFQ inhibited nociceptive responses at high doses (0.01-1 nmol), but potentiated the behaviors at low doses (1 fmol-3 pmol). Furthermore, both hyperalgesia and nociceptive responses were enhanced after the co-administration with NOP receptor antagonist [Nphe(1)]N/OFQ(1-13)-NH(2). These results suggest that intrathecal [Tyr(6)] gamma2-MSH(6-12)-induced pronociceptive effects may be mediated through NMDA receptor-NO system in the spinal cord, and demonstrate the interaction between MrgC and N/OFQ-NOP receptor system in pain transmission.
Collapse
Affiliation(s)
- Min Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Ndong C, Pradhan A, Puma C, Morello JP, Hoffert C, Groblewski T, O’Donnell D, Laird JM. Role of rat sensory neuron-specific receptor (rSNSR1) in inflammatory pain: Contribution of TRPV1 to SNSR signaling in the pain pathway. Pain 2009; 143:130-7. [DOI: 10.1016/j.pain.2009.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/07/2009] [Accepted: 02/17/2009] [Indexed: 02/03/2023]
|
20
|
Identification of the Na+/H+ exchanger 1 in dorsal root ganglion and spinal cord: Its possible role in inflammatory nociception. Neuroscience 2009; 160:156-64. [DOI: 10.1016/j.neuroscience.2009.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 11/24/2022]
|
21
|
Jun IG, Park JY, Choi YS, Kim TH. Intrathecal lamotrigine blocks and reverses antinociceptive morphine tolerance in rats. Korean J Anesthesiol 2009; 56:687-692. [DOI: 10.4097/kjae.2009.56.6.687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- In-Gu Jun
- Department of Anesthesiology and Pain Medicine, Seoul Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Jong-Yeon Park
- Department of Anesthesiology and Pain Medicine, Seoul Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Yun-Sik Choi
- Department of Anesthesiology and Pain Medicine, Seoul Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Tae-hee Kim
- Department of Anesthesiology and Pain Medicine, Seoul Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| |
Collapse
|
22
|
Chen P, Liu Y, Hong Y. Effect of chronic administration of morphine on the expression of bovine adrenal medulla 22-like immunoreactivity in the spinal cord of rats. Eur J Pharmacol 2008; 589:110-3. [PMID: 18577380 DOI: 10.1016/j.ejphar.2008.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 05/21/2008] [Accepted: 06/05/2008] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to investigate the effects of chronic administration of morphine on the expression of an endogenous opioid peptide in the spinal dorsal horn. Bovine adrenal medulla 22-like immunoreactivity (BAM22-IR) was found in the superficial layers of the spinal cord. Intrathecal (i.t.) administration of morphine (20 microg) for 6 days, but not 2 days, significantly reduced the expression of BAM22-IR whereas i.t. administration of saline for 2 and 6 days did not alter the expression of BAM22-IR. The present study suggests that reduction of BAM22-IR in the spinal cord is involved in the development of morphine tolerance.
Collapse
Affiliation(s)
- Peiwen Chen
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, PR China
| | | | | |
Collapse
|
23
|
Chen T, Hu Z, Quirion R, Hong Y. Modulation of NMDA receptors by intrathecal administration of the sensory neuron-specific receptor agonist BAM8-22. Neuropharmacology 2007; 54:796-803. [PMID: 18249418 DOI: 10.1016/j.neuropharm.2007.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 12/07/2007] [Accepted: 12/07/2007] [Indexed: 11/16/2022]
Abstract
The sensory neuron-specific receptor (SNSR) is exclusively distributed in dorsal root ganglion (DRG) cells. We have demonstrated that intrathecal (i.t.) administration of SNSR agonists inhibits formalin-evoked responses and the development of morphine tolerance [Chen, T., Cai, Q., Hong, Y., 2006. Intrathecal sensory neuron-specific receptor agonists bovine adrenal medulla 8-22 and (tyr(6))-gamma2-msh-6-12 inhibit formalin-evoked nociception and neuronal fos-like immunoreactivity in the spinal cord of the rat. Neuroscience 141, 965-975]. The present study was undertaken to examine the possible impact of the activation of SNSR on NMDA receptors. I.t. administration of NMDA (6.8 nmol) induced nociceptive behaviors, including scratching, biting and lifting, followed by thermal hypoalgesia and hyperalgesia. These responses were associated with the expression of Fos-like immunoreactivity (FLI) throughout the spinal dorsal horn with highest effect seen in laminae I-II. I.t. NMDA also induced an increase in nitric oxide synthase (NOS) activity in superficial layers of the dorsal horn, but not around the central canal, as revealed by NADPH diaphorase histochemistry. Pretreatment with the SNSR agonist bovine adrenal medulla 8-22 (3, 10 and 30 nmol) dose-dependently diminished NMDA-evoked nocifensive behaviors and hyperalgesia. This agonist also reduced NMDA-evoked expression of FLI and NADPH reactivity in the spinal dorsal horn. Taken together, these data suggest that the activation of SNSR induces spinal analgesia by suppressing NMDA receptor-mediated activation of spinal dorsal horn neurons and an increase in NOS activity.
Collapse
Affiliation(s)
- Tingjun Chen
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology Neuroscience, Fujian Normal University Fuzhou, Fujian 350108, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Cai M, Chen T, Quirion R, Hong Y. The involvement of spinal bovine adrenal medulla 22-like peptide, the proenkephalin derivative, in modulation of nociceptive processing. Eur J Neurosci 2007; 26:1128-38. [PMID: 17767492 DOI: 10.1111/j.1460-9568.2007.05755.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bovine adrenal medulla 22 (BAM22), one of the cleavage products of proenkephalin A, possesses high affinity for opioid receptors and sensory neuron-specific receptor (SNSR). The present study was designed to examine the expression of BAM22 in the spinal cord and dorsal root ganglion (DRG) of naive rats as well as in a model of inflammation. BAM22-like immunoreactivity (BAM22-IR) was expressed in fibers in the spinal cord, with high density seen in lamina I in naïve rats. The expression of BAM22-IR in the superficial laminae was greatly reduced following dorsal rhizotomy. BAM22-IR was also located in 19% of DRG cells, mainly in the small- and medium-sized subpopulations. Following injection of complete Freund's adjuvant (CFA) in the hindpaw, the expression of BAM22-IR in the superficial laminae of the spinal cord and small-sized DRG neurons on the ipsilateral side was markedly increased. Double labeling showed that the Fos-positive nucleus was surrounded by BAM22-IR cytoplasm in the spinal dorsal horn neurons or closely associated with BAM22-IR fibers in the superficial laminae. Furthermore, CFA-induced mechanical allodynia in the inflamed paw was potentiated by intrathecal administration of anti-BAM22 antibody. Together, these results demonstrate for the first time that BAM22-like peptide is mainly located in the superficial laminae of the spinal cord and mostly originates from nociceptive DRG neurons. BAM22 could thus act as a ligand for presynaptic opioid receptors and SNSR. Our study also provides evidence suggesting that BAM22 plays a role in the modulation of nociceptive processing at the spinal level under normal and inflammatory conditions.
Collapse
Affiliation(s)
- Meifang Cai
- Key Provincial Laboratory of Developmental Biology and Neuroscience, College of Life Sciences, Fujian Normal University, Fuzhou, People's Republic of China, 350108
| | | | | | | |
Collapse
|
25
|
Cai Q, Jiang J, Chen T, Hong Y. Sensory neuron-specific receptor agonist BAM8-22 inhibits the development and expression of tolerance to morphine in rats. Behav Brain Res 2007; 178:154-9. [PMID: 17227682 DOI: 10.1016/j.bbr.2006.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 11/23/2022]
Abstract
We observed that intrathecal (i.t.) bovine adrenal medulla 22, an endogenous opioid peptide, partially reverses morphine tolerance. However, its mechanism remains unclear. The present study determined the effects of BAM8-22, a derivative of BAM22 and selective sensory neuron-specific receptor (SNSR) agonist, on the development and maintenance of tolerance to spinal morphine. Intrathecal administration of BAM8-22 at various doses (0.1, 1 and 10nmol) did not alter withdraw latencies assessed in both paw withdraw and tail flick tests. Co-administration of BAM8-22 (0.1nmol) every other day, but not daily, with morphine remarkably attenuated the development of morphine tolerance. Pretreatment and co-treatment with BAM8-22 (0.1nmol) significantly reversed established morphine tolerance. Furthermore, intermittent administration of BAM8-22 with morphine consistently resumed morphine-induced antinociception. However, i.t. BAM8-22 did not alter morphine-induced hyperalgesia. These results suggested that SNSR may be able to modulate the sensitivity of opioid receptor serving as a most probable underlying mechanism for the effects of BAM8-22 on morphine tolerance. This study also demonstrated that intermittent combination of SNSR agonist BAM8-22 with morphine might be better regimen for long-term use of opioids to treat chronic pain.
Collapse
Affiliation(s)
- Qiaoyan Cai
- College of Life Sciences, Fujian Normal University, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Zhang R, Yan PK, Zhou CH, Liao JY, Wang MW. Development of a homogeneous calcium mobilization assay for high throughput screening of mas-related gene receptor agonists. Acta Pharmacol Sin 2007; 28:125-31. [PMID: 17184592 DOI: 10.1111/j.1745-7254.2007.00451.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM To develop homogeneous calcium mobilization assay for high-throughput screening (HTS) of mas-related gene (Mrg) receptor agonists. METHODS CHO-K1 cells stably expressing the full-length MrgD receptor and a calcium-sensitive dye were used to develop an HTS assay based on intracellular calcium influx. This method was applied to large-scale screening of a library containing 8000 synthetic compounds and natural product extracts. cAMP measurements were carried out to verify the bioactivities of the hits found by the calcium mobilization assay. Similar approaches were also employed in the identification of the MrgA1 receptor agonists following HTS of 16,000 samples. RESULTS EC(50) values of the positive control compounds (beta-alanine for MrgD receptor and dynorphin A for MrgA1 receptor) determined by the calcium mobilization assay were consistent with those reported in the literature, and the Z' factors were 0.65 and 0.50 for MrgD and MrgA1 receptor assay, respectively. About 31 compounds for the MrgD receptor and 48 compounds for the MrgA1 receptor showing > or =20% of the maximal agonist activities found in the controls were initially identified as hits. Secondary screening confirmed that 2 compounds for each receptor possessed specific agonist activities. Intracellular cAMP level measurements indicated that the 2 confirmed hits displayed the functionality of the MrgD receptor agonists. CONCLUSION A series of validation studies demonstrated that the homogeneous calcium mobilization assay developed was highly efficient, amenable to automation and a robust tool to screen potential MrgD and MrgA1 receptor agonists. Its application may be expanded to other G-protein coupled receptors that mobilize calcium influx upon activation.
Collapse
Affiliation(s)
- Rui Zhang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | |
Collapse
|
27
|
Breit A, Gagnidze K, Devi LA, Lagacé M, Bouvier M. Simultaneous activation of the delta opioid receptor (deltaOR)/sensory neuron-specific receptor-4 (SNSR-4) hetero-oligomer by the mixed bivalent agonist bovine adrenal medulla peptide 22 activates SNSR-4 but inhibits deltaOR signaling. Mol Pharmacol 2006; 70:686-96. [PMID: 16682504 DOI: 10.1124/mol.106.022897] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hetero-oligomerization among G protein-coupled receptors has been proposed to contribute to signal integration. Because sensory neuron-specific receptors (SNSRs) and the opioid receptors (OR) share a common ligand, the bovine adrenal medulla peptide (BAM) 22, and have opposite effects on pain modulation, we investigated the possible consequences of deltaOR/SNSR-4 hetero-oligomerization on the signaling properties of both receptor subtypes. Bioluminescence resonance energy transfer revealed that the human deltaOR has similar propensity to homo-oligomerize and to form hetero-oligomers with human SNSR-4 when coexpressed in human embryonic kidney 293 cells. The hetero-oligomerization leads to a receptor form displaying unique functional properties. Individual activation of either deltaOR or SNSR-4 in cells coexpressing the two receptors led to the modulation of their respective signaling pathways; inhibition of adenylyl cyclase and activation of phospholipase C, respectively. In contrast, the deltaOR/SNSR-4 bivalent agonist BAM22, which could activate each receptor expressed individually, fully activated the SNSR-4-dependent phospholipase C but did not promote deltaOR-mediated inhibition of adenylyl cyclase in deltaOR/SNSR-4-coexpressing cells. Likewise, concomitant activation of the deltaOR/SNSR-4 hetero-oligomer by selective deltaOR and SNSR-4 agonists promoted SNSR-4 but not deltaOR signaling, revealing an agonist-dependent dominant-negative effect of SNSR-4 on deltaOR signaling. Furthermore, the deltaOR selective antagonist naltrexone trans-inhibited the SNSR-4-promoted phospholipase C activation mediated by BAM22 but not by the SNSR-4-selective agonists, suggesting a bivalent binding mode of BAM22 to the deltaOR/SNSR-4 hetero-oligomer. The observation that BAM22 inhibited the Leu-enkephalin-promoted cAMP inhibition in rat dorsal root ganglia neurons supports the potential physiological implication of such regulatory mechanism.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Animals
- Cells, Cultured
- Endocytosis
- Enkephalin, Methionine/analogs & derivatives
- Enkephalin, Methionine/pharmacology
- Ganglia, Spinal/drug effects
- Humans
- Naltrexone/pharmacology
- Neurons, Afferent/metabolism
- Protein Kinase C/physiology
- Protein Precursors/pharmacology
- Rats
- Rats, Long-Evans
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/drug effects
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Andreas Breit
- Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
28
|
Jiang J, Huang J, Hong Y. Bovine adrenal medulla 22 reverses antinociceptive morphine tolerance in the rat. Behav Brain Res 2006; 168:167-71. [PMID: 16337015 DOI: 10.1016/j.bbr.2005.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/30/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Acute intrathecal (i.t.) bovine adrenal medulla 22 (BAM22, 10 nmol), an endogenous opioid peptide, induced equipotent thermal antinociception in naïve and morphine-tolerant rats while chronic BAM22 resulted in hyperalgesia and decrease in the effectiveness of antinociception. In rats made tolerant to morphine, prior administration of BAM22 (10 nmol, i.t.) significantly resumed antinociceptive response of morphine. The present study demonstrated that BAM22 was able to modulate maintenance of morphine tolerance.
Collapse
Affiliation(s)
- Jianping Jiang
- Department of Anatomy and Physiology, Bioengineering School, Fujian Normal University, Fuzhou, Fujian 350000, People's Republic of China
| | | | | |
Collapse
|
29
|
Chen T, Cai Q, Hong Y. Intrathecal sensory neuron-specific receptor agonists bovine adrenal medulla 8-22 and (Tyr6)-γ2-msh-6-12 inhibit formalin-evoked nociception and neuronal Fos-like immunoreactivity in the spinal cord of the rat. Neuroscience 2006; 141:965-975. [PMID: 16713112 DOI: 10.1016/j.neuroscience.2006.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 04/01/2006] [Accepted: 04/05/2006] [Indexed: 10/24/2022]
Abstract
The finding that sensory neuron-specific G-protein-coupled receptor mRNA is solely expressed in small primary sensory neurons suggests involvement of the receptor in nociceptive modulation. The present study was designed to assess effects of intrathecal administration of bovine adrenal medulla 8-22 and (Tyr6)-gamma2-MSH-6-12, selective sensory neuron-specific receptor agonists, on nocifensive behaviors and expression of spinal c-Fos-like immunoreactivity evoked by intraplantar injection of 2.5% formalin in rats. The agonists were administered 10 min before (pretreatment) and/or after (post-treatment) injection of formalin. Pretreatment with bovine adrenal medulla 8-22 dose-dependently (3, 10 and 30 nmol) decreased time lifting and licking the paw mainly in the second phase. Intrathecal bovine adrenal medulla 8-22 (30 nmol) remarkably suppressed nocifensive behaviors in the first and second phases and the expression of formalin-evoked c-Fos-like immunoreactivity in laminae I-II and V-VI of the spinal dorsal horn at L4-5. Moreover, naloxone (20 microg, intrathecal) failed to antagonize the inhibitory effects of bovine adrenal medulla 8-22. Post-treatment with bovine adrenal medulla 8-22 also exerted inhibition on the second phase behaviors in a dose-dependent manner with a similar efficacy observed in pretreatment groups. Furthermore, post-treatment with (Tyr6)-gamma2-MSH-6-12 (0.5, 1.5 and 5 nmol) also suppressed formalin-evoked nocifensive behaviors in the second phase and c-Fos-like immunoreactivity in the spinal dorsal horn similar with bovine adrenal medulla 8-22. Our results suggest that sensory neuron-specific receptor may play an important role in modulation of spinal nociceptive transmission. This is the first to demonstrate that activation of sensory neuron-specific receptor produces analgesia in the persistent pain model.
Collapse
Affiliation(s)
- T Chen
- Department of Anatomy and Physiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350000, People's Republic of China
| | - Q Cai
- Department of Anatomy and Physiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350000, People's Republic of China
| | - Y Hong
- Department of Anatomy and Physiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350000, People's Republic of China.
| |
Collapse
|
30
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
31
|
Ribeiro SC, Kennedy SE, Smith YR, Stohler CS, Zubieta JK. Interface of physical and emotional stress regulation through the endogenous opioid system and mu-opioid receptors. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1264-80. [PMID: 16256255 DOI: 10.1016/j.pnpbp.2005.08.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 12/30/2022]
Abstract
Unraveling the pathways and neurobiological mechanisms that underlie the regulation of physical and emotional stress responses in humans is of critical importance to understand vulnerability and resiliency factors to the development of a number of complex physical and psychopathological states. Dysregulation of central stress response circuits have been implicated in the establishment of conditions as diverse as persistent pain, mood and personality disorders and substance abuse and dependence. The present review examines the contribution of the endogenous opioid system and mu-opioid receptors to the modulation and adaptation of the organism to challenges, such as sustained pain and negative emotional states, which threaten its internal homeostasis. Data accumulated in animal models, and more recently in humans, point to this neurotransmitter system as a critical modulator of the transition from acute (warning signals) to sustained (stressor) environmental adversity. The existence of pathways and regulatory mechanisms common to the regulation of both physical and emotional states transcend classical categorical disease classifications, and point to the need to utilize dimensional, "symptom"-related approximations to their study. Possible future areas of study at the interface of "mind" (cognitive-emotional) and "body" (physical) functions are delineated in this context.
Collapse
Affiliation(s)
- Saulo C Ribeiro
- University of Michigan, Department of Psychiatry and Molecular and Behavioral Neuroscience Institute, MBNI, 205 Zine Pitcher Place, 48109-0720, USA
| | | | | | | | | |
Collapse
|
32
|
Zhang L, Taylor N, Xie Y, Ford R, Johnson J, Paulsen JE, Bates B. Cloning and expression of MRG receptors in macaque, mouse, and human. ACTA ACUST UNITED AC 2005; 133:187-97. [PMID: 15710235 DOI: 10.1016/j.molbrainres.2004.10.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 01/17/2023]
Abstract
Members of the MRG family of G-protein coupled receptors (GPCRs) are expressed predominately in small diameter sensory neurons of the dorsal root ganglia (DRG) suggesting a possible role in nociception. However, the large expansion of this gene family in rodents, combined with the lack of strict rodent orthologs for many of the human MRG genes, limits the usefulness of rodent models to evaluate human MRG involvement in nociception. Furthermore, the high degree of similarity between related rodent Mrg genes suggests that pharmacological approaches to define the function of individual receptors will prove difficult. The creation of an animal model to examine human MRG function will, therefore, require the identification of human MRG orthologs in a non-rodent species. Here we report the identification of MRGD, MRGE, and several MRGX orthologs in the crab-eating macaque, Macaca fascicularis. Similar to their human counterparts, all isolated macaque genes were expressed in dorsal root ganglia neurons. In the case of macaque MrgX2 and MrgD, expression was co-localized with the known nociceptive neuronal markers, IB4, VR1, and SP. Although expression in DRG neurons was the prominent feature of this family, we also found that MrgE was expressed in numerous brain regions of macaque, mouse, and human.
Collapse
Affiliation(s)
- Lin Zhang
- Wyeth Research, Functional Genomics Department, 87 Cambridge Park Drive, Cambridge, MA 02140, United States
| | | | | | | | | | | | | |
Collapse
|
33
|
Zeng X, Huang H, Hong Y. Effects of intrathecal BAM22 on noxious stimulus-evoked c-fos expression in the rat spinal dorsal horn. Brain Res 2004; 1028:170-9. [PMID: 15527742 DOI: 10.1016/j.brainres.2004.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2004] [Indexed: 01/28/2023]
Abstract
The effects of bovine adrenal medulla 22 (BAM22), a cleaved product of proenkephalin A, were investigated on the noxious stimulus-evoked expressions of spinal c-fos-like immunoreactivity (FLI). Heat (51 degrees C) applied to the tail evoked FLI predominantly in laminae I-II of the sacral spinal cord. Intrathecal (i.t.) BAM22 at a dose of 7 nmol decreased the expressions of the heat-evoked FLI by 68%, 64% and 56% in laminae I-II, III-IV and V-VI, respectively, and the decrease pattern was comparable to that induced by i.t. morphine (10 mug). Naloxone (1 mg/kg, i.p.) significantly enhanced the heat-evoked FLI in laminae III-VI, prevented the morphine-induced inhibition, and decreased the potencies of BAM22 in laminae I-II and V-VI by 23-40%. Higher dose of naloxone (10 mg/kg, i.p.) also partially reduced the BAM22-induced suppression. Following intraplantar injection of formalin (2.5%), FLI neurons were preferentially distributed not only in laminae I-II but also in laminae III-IV and V-VI of segments L4-L5. Pretreatment with BAM22 (7 nmol, i.t.) reduced the formalin-evoked FLI neurons by 72%, 61% and 58%, in laminae I-II, III-IV and V-VI, respectively. Naloxone (1 mg/kg. i.p.) enhanced the formalin-evoked expressions of FLI in laminae III-VI and decreased the potencies of BAM22 by 22-38% in laminae I-II and V-VI. The present study provided evidence at a cellular level showing that opioid and non-opioid effects of BAM22 on nociceptive processing in acute and persistent pain models were associated with modulation of noxious stimulus-evoked activity of the spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Xueai Zeng
- Department of Anatomy and Physiology, Bioengineering School, Fujian Normal University, Fuzhou, People's Republic of China
| | | | | |
Collapse
|