1
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
2
|
Greco G, Monteith T. Intranasal zavegepant for the acute treatment of migraine. Expert Rev Neurother 2024; 24:1131-1140. [PMID: 39314003 DOI: 10.1080/14737175.2024.2405741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Migraine is a highly prevalent chronic, inherited neurological condition of the brain which carries a significant level of disability. Despite advances, there is an unmet need for more effective therapies. AREAS COVERED Zavegepant nasal spray is a recent therapeutic option which acts as a calcitonin gene-related peptide receptor antagonist. The objective is to review the efficacy, safety, and additional results of the most recent trials investigating intranasal zavegepant for the acute treatment of migraine with or without aura. The authors searched PubMed using the keywords 'zavegepant,' 'Zavzpret,' 'migraine,' 'calcitonin gene-related peptide,' 'CGRP receptor antagonists.' This article covers Phase 1, Phase 2/3, and Phase 3 randomized, double-blind, placebo-controlled trials to evaluate the efficacy of intranasal zavegepant for treatment of acute migraine attacks. EXPERT OPINION Intranasal zavegepant is an efficacious, safe, and tolerable anti-migraine drug based on clinical trials and clinical experience. It is especially useful for patients who experience attacks of sudden onset, those with nausea or vomiting, or a high cardiovascular risk burden. Dysgeusia was common; future studies are needed to better characterize this adverse event. Head-to-head studies are lacking with other migraine-specific therapies; the decision to treat should be patient-centered, with attack-specific characteristics in mind.
Collapse
Affiliation(s)
- Guy Greco
- Department of Neurology, Headache Division, Miami, FL, USA
| | | |
Collapse
|
3
|
Melo-Carrillo A, Strassman AM, Broide R, Adams A, Dabruzzo B, Brin M, Burstein R. Novel insight into atogepant mechanisms of action in migraine prevention. Brain 2024; 147:2884-2896. [PMID: 38411458 PMCID: PMC11292906 DOI: 10.1093/brain/awae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Recently, we showed that while atogepant-a small-molecule calcitonin gene-related peptide (CGRP) receptor antagonist-does not fully prevent activation of meningeal nociceptors, it significantly reduces a cortical spreading depression (CSD)-induced early response probability in C fibres and late response probability in Aδ fibres. The current study investigates atogepant effect on CSD-induced activation and sensitization of high threshold (HT) and wide dynamic range (WDR) central dura-sensitive trigeminovascular neurons. In anaesthetized male rats, single-unit recordings were used to assess effects of atogepant (5 mg/kg) versus vehicle on CSD-induced activation and sensitization of HT and WDR trigeminovascular neurons. Single cell analysis of atogepant pretreatment effects on CSD-induced activation and sensitization of central trigeminovascular neurons in the spinal trigeminal nucleus revealed the ability of this small molecule CGRP receptor antagonist to prevent activation and sensitization of nearly all HT neurons (8/10 versus 1/10 activated neurons in the control versus treated groups, P = 0.005). In contrast, atogepant pretreatment effects on CSD-induced activation and sensitization of WDR neurons revealed an overall inability to prevent their activation (7/10 versus 5/10 activated neurons in the control versus treated groups, P = 0.64). Unexpectedly however, in spite of atogepant's inability to prevent activation of WDR neurons, it prevented their sensitization (as reflected their responses to mechanical stimulation of the facial receptive field before and after the CSD). Atogepant' ability to prevent activation and sensitization of HT neurons is attributed to its preferential inhibitory effects on thinly myelinated Aδ fibres. Atogepant's inability to prevent activation of WDR neurons is attributed to its lesser inhibitory effects on the unmyelinated C fibres. Molecular and physiological processes that govern neuronal activation versus sensitization can explain how reduction in CGRP-mediated slow but not glutamate-mediated fast synaptic transmission between central branches of meningeal nociceptors and nociceptive neurons in the spinal trigeminal nucleus can prevent their sensitization but not activation.
Collapse
Affiliation(s)
- Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ron Broide
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
| | - Aubrey Adams
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
| | | | - Mitchell Brin
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
- Department of Neurology, University of California, Irvine, CA 92697USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Condés-Lara M, Martínez-Lorenzana G, Espinosa de Los Monteros-Zúñiga A, López-Córdoba G, Córdova-Quiroga A, Flores-Bojórquez SA, González-Hernández A. Hypothalamic Paraventricular Stimulation Inhibits Nociceptive Wide Dynamic Range Trigeminocervical Complex Cells via Oxytocinergic Transmission. J Neurosci 2024; 44:e1501232024. [PMID: 38438259 PMCID: PMC11044117 DOI: 10.1523/jneurosci.1501-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 03/06/2024] Open
Abstract
Oxytocinergic transmission blocks nociception at the peripheral, spinal, and supraspinal levels through the oxytocin receptor (OTR). Indeed, a neuronal pathway from the hypothalamic paraventricular nucleus (PVN) to the spinal cord and trigeminal nucleus caudalis (Sp5c) has been described. Hence, although the trigeminocervical complex (TCC), an anatomical area spanning the Sp5c, C1, and C2 regions, plays a role in some pain disorders associated with craniofacial structures (e.g., migraine), the role of oxytocinergic transmission in modulating nociception at this level has been poorly explored. Hence, in vivo electrophysiological recordings of TCC wide dynamic range (WDR) cells sensitive to stimulation of the periorbital or meningeal region were performed in male Wistar rats. PVN electrical stimulation diminished the neuronal firing evoked by periorbital or meningeal electrical stimulation; this inhibition was reversed by OTR antagonists administered locally. Accordingly, neuronal projections (using Fluoro-Ruby) from the PVN to the WDR cells filled with Neurobiotin were observed. Moreover, colocalization between OTR and calcitonin gene-related peptide (CGRP) or OTR and GABA was found near Neurobiotin-filled WDR cells. Retrograde neuronal tracers deposited at the meningeal (True-Blue, TB) and infraorbital nerves (Fluoro-Gold, FG) showed that at the trigeminal ganglion (TG), some cells were immunopositive to both fluorophores, suggesting that some TG cells send projections via the V1 and V2 trigeminal branches. Together, these data may imply that endogenous oxytocinergic transmission inhibits the nociceptive activity of second-order neurons via OTR activation in CGRPergic (primary afferent fibers) and GABAergic cells.
Collapse
Affiliation(s)
- Miguel Condés-Lara
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro CP 76230, México
| | | | | | - Gustavo López-Córdoba
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro CP 76230, México
| | | | | | | |
Collapse
|
5
|
Coppola G, Abagnale C, Sebastianelli G, Goadsby PJ. Pathophysiology of cluster headache: From the trigeminovascular system to the cerebral networks. Cephalalgia 2024; 44:3331024231209317. [PMID: 38415635 DOI: 10.1177/03331024231209317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND Despite advances in neuroimaging and electrophysiology, cluster headache's pathogenesis remains unclear. This review will examine clinical neurophysiology studies, including electrophysiological and functional neuroimaging, to determine if they might help us construct a neurophysiological model of cluster headache. RESULTS Clinical, biochemical, and electrophysiological research have implicated the trigeminal-parasympathetic system in cluster headache pain generation, although the order in which these two systems are activated, which may be somewhat independent, is unknown. Electrophysiology and neuroimaging have found one or more central factors that may cause seasonal and circadian attacks. The well-known posterior hypothalamus, with its primary circadian pacemaker suprachiasmatic nucleus, the brainstem monoaminergic systems, the midbrain, with an emphasis on the dopaminergic system, especially when cluster headache is chronic, and the descending pain control systems appear to be involved. Functional connection investigations have verified electrophysiological evidence of functional changes in distant brain regions connecting to wide cerebral networks other than pain. CONCLUSION We propose that under the impact of external time, an inherited misalignment between the primary circadian pacemaker suprachiasmatic nucleus and other secondary extra- suprachiasmatic nucleus clocks may promote disturbance of the body's internal physiological clock, lowering the threshold for bout recurrence.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Peter J Goadsby
- NIHR King's Clinical Research Facility, and Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London UK
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Al-Khazali HM, Ashina H, Wiggers A, Rose K, Iljazi A, Christensen RH, Schytz HW, Amin FM, Ashina M. Calcitonin gene-related peptide causes migraine aura. J Headache Pain 2023; 24:124. [PMID: 37679723 PMCID: PMC10483878 DOI: 10.1186/s10194-023-01656-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Although the involvement of calcitonin gene-related peptide (CGRP) in migraines is well-established, its specific role in investigating the aura phase, which often precedes the headache, remains largely unexplored. This study aims to instigate CGRP's potential in triggering aura, thus establishing its role in the early stages of migraine. METHODS In this open-label, non-randomized, single-arm trial, 34 participants with migraine with aura received continuous intravenous infusion of CGRP (1.5 µg/min) over 20 min on a single experimental day. Participants were required to be free of headache and report no use of acute medications 24 h before infusion start. The primary endpoint was the incidence of migraine aura during the 12-hour observational period after the start of infusion. RESULTS Thirteen (38%) of 34 participants developed migraine aura after CGRP infusion. In addition, 24 (71%) of 34 participants developed migraine headache following CGRP infusion. CONCLUSIONS Our findings suggest that CGRP could play an important role in the early phases of a migraine attack, including during the aura phase. These insights offer a new perspective on the pathogenesis of migraines with aura. They underscore the need for additional research to further explore the role of CGRP in these initial stages of a migraine attack, and potentially inform future development of therapeutic interventions. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04592952.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Astrid Wiggers
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kathrine Rose
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Afrim Iljazi
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Henrik Winther Schytz
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Mitsikostas DD, Waeber C, Sanchez-Del-Rio M, Raffaelli B, Ashina H, Maassen van den Brink A, Andreou A, Pozo-Rosich P, Rapoport A, Ashina M, Moskowitz MA. The 5-HT 1F receptor as the target of ditans in migraine - from bench to bedside. Nat Rev Neurol 2023:10.1038/s41582-023-00842-x. [PMID: 37438431 DOI: 10.1038/s41582-023-00842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Migraine is a leading cause of disability in more than one billion people worldwide, yet it remains universally underappreciated, even by individuals with the condition. Among other shortcomings, current treatments (often repurposed agents) have limited efficacy and potential adverse effects, leading to low treatment adherence. After the introduction of agents that target the calcitonin gene-related peptide pathway, another new drug class, the ditans - a group of selective serotonin 5-HT1F receptor agonists - has just reached the international market. Here, we review preclinical studies from the late 1990s and more recent clinical research that contributed to the development of the ditans and led to their approval for acute migraine treatment by the US Food and Drug Administration and the European Medicines Agency.
Collapse
Affiliation(s)
- Dimos D Mitsikostas
- 1st Neurology Department, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Christian Waeber
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Bianca Raffaelli
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Anaesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Antoinette Maassen van den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Anna Andreou
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Patricia Pozo-Rosich
- Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alan Rapoport
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael A Moskowitz
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
9
|
Abstract
Migraine is a complex neurovascular pain disorder linked to the meninges, a border tissue innervated by neuropeptide-containing primary afferent fibers chiefly from the trigeminal nerve. Electrical or mechanical stimulation of this nerve surrounding large blood vessels evokes headache patterns as in migraine, and the brain, blood, and meninges are likely sources of headache triggers. Cerebrospinal fluid may play a significant role in migraine by transferring signals released from the brain to overlying pain-sensitive meningeal tissues, including dura mater. Interactions between trigeminal afferents, neuropeptides, and adjacent meningeal cells and tissues cause neurogenic inflammation, a critical target for current prophylactic and abortive migraine therapies. Here we review the importance of the cranial meninges to migraine headaches, explore the properties of trigeminal meningeal afferents, and briefly review emerging concepts, such as meningeal neuroimmune interactions, that may one day prove therapeutically relevant.
Collapse
Affiliation(s)
- Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA;
| | - Michael A Moskowitz
- Center for Systems Biology and Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
10
|
Puledda F, Silva EM, Suwanlaong K, Goadsby PJ. Migraine: from pathophysiology to treatment. J Neurol 2023:10.1007/s00415-023-11706-1. [PMID: 37029836 DOI: 10.1007/s00415-023-11706-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Migraine is an extremely disabling, common neurological disorder characterized by a complex neurobiology, involving a series of central and peripheral nervous system areas and networks. A growing increase in the understanding of migraine pathophysiology in recent years has facilitated translation of that knowledge into novel treatments, which are currently becoming available to patients in many parts of the world and are substantially changing the clinical approach to the disease. In the first part of this review, we will provide an up to date overview of migraine pathophysiology by analyzing the anatomy and function of the main regions involved in the disease, focusing on how these give rise to the plethora of symptoms characterizing the attacks and overall disease. The second part of the paper will discuss the novel therapeutic agents that have emerged for the treatment of migraine, including molecules targeting calcitonin gene-related peptide (gepants and monoclonal antibodies), serotonin 5-HT1F receptor agonists (ditans) and non-invasive neuromodulation, as well as providing a brief overview of new evidence for classic migraine treatments.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and National Institute for Health Research (NIHR) SLaM Clinical Research Facility at King's, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK
| | | | - Kanokrat Suwanlaong
- Division of Neurology, Department of Medicine, Songkhla Medical Education Center, Songkhla, Thailand
| | - Peter J Goadsby
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and National Institute for Health Research (NIHR) SLaM Clinical Research Facility at King's, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK.
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Wang Z, Yang X, Zhao B, Li W. Primary headache disorders: From pathophysiology to neurostimulation therapies. Heliyon 2023; 9:e14786. [PMID: 37077680 PMCID: PMC10106918 DOI: 10.1016/j.heliyon.2023.e14786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 04/21/2023] Open
Abstract
Primary headache disorders including migraine, cluster headache, and tension-type headache are among the most common disabling diseases worldwide. The unclear pathogenesis of primary headache disorders has led to high rates of misdiagnosis and limited available treatment options. In this review, we have summarized the pathophysiological factors for a better understanding of primary headache disorders. Advances in functional neuroimaging, genetics, neurophysiology have indicated that cortical hyperexcitability, regional brain dysfunction, central sensitization and neuroplasticity changes play vital roles in the development of primary headache disorders. Moreover, we have also discussed a series of neurostimulation approaches with their stimulation mechanism, safety and efficacy for prevention and treatment of primary headache disorders. Noninvasive or implantable neurostimulation techniques show great promise for treating refractory primary headache disorders.
Collapse
Affiliation(s)
- Ziying Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, And Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- WLA Laboratories, World Laureates Association, Shanghai, China
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, And Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- WLA Laboratories, World Laureates Association, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Binglei Zhao
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, And Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- WLA Laboratories, World Laureates Association, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author. Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Andreou AP, Pereira AD. Migraine headache pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:61-69. [PMID: 38043971 DOI: 10.1016/b978-0-12-823356-6.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In both episodic and chronic migraine, headache is the most disabling symptom that requires medical care. The migraine headache is the most well-studied symptom of migraine pathophysiology. The trigeminal system and the central processing of sensory information transmitted by the trigeminal system are of considerable importance in the pathophysiology of migraine headache. Glutamate is the main neurotransmitter that drives activation of the ascending trigeminal and trigeminothalamic pathways. The neuropeptide, calcitonin gene-related peptide (CGRP) that is released by the trigeminal system, plays a crucial role in the neurobiology of headache. Peripheral and central sensitizations associated with trigeminal sensory processing are neurobiologic states that contribute to both the development of headache during a migraine attack and the maintenance of chronic migraine.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Research-Wolfson Centre for Age-Related Diseases (CARD), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Headache Centre, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| | - Ana D Pereira
- Headache Research-Wolfson Centre for Age-Related Diseases (CARD), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
15
|
Meyer T, Riabikin A, Werner CJ. Development of a cluster-like headache after a stent-assisted implantation of an endovascular WEB device. BMJ Case Rep 2022; 15:e251431. [PMID: 36379623 PMCID: PMC9668022 DOI: 10.1136/bcr-2022-251431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
After interdisciplinary consent, a male patient in his 50s received endovascular treatment of an innocent supraophthalmic aneurysm of the internal carotid artery with a WEB (woven endo bridge) device and stenting. In the medical history, a migraine with aura was reported. A week after intervention, the patient developed an ipsilateral cluster-like headache responsive to classical interventions. Inflammation of the carotid wall near the stent was demonstrated to be associated with the headaches and was responsive to steroid treatment.The presented case demonstrates that postinterventional headache comprises more headache entities than the often reported migraine and tension-type headache with a considerable impact on the patients' quality of life. The case supports the vascular hypothesis of cluster headache pathophysiology, potentially contradicting current models and assumptions.
Collapse
Affiliation(s)
- Tareq Meyer
- Department of Neurology, RWTH Aachen University Medical Faculty, Aachen, Nordrhein-Westfalen, Germany
| | - Alexander Riabikin
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University Medical Faculty, Aachen, Nordrhein-Westfalen, Germany
| | - Cornelius Johannes Werner
- Department of Neurology, RWTH Aachen University Medical Faculty, Aachen, Nordrhein-Westfalen, Germany
- Department of Neurology and Geriatrics, Johanniter-Krankenhaus Genthin-Stendal GmbH, Stendal, Saxony-Anhalt, Germany
| |
Collapse
|
16
|
Nie L, Sun K, Gong Z, Li H, Quinn JP, Wang M. Src Family Kinases Facilitate the Crosstalk between CGRP and Cytokines in Sensitizing Trigeminal Ganglion via Transmitting CGRP Receptor/PKA Pathway. Cells 2022; 11:cells11213498. [PMID: 36359895 PMCID: PMC9655983 DOI: 10.3390/cells11213498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The communication between calcitonin gene-related peptide (CGRP) and cytokines plays a prominent role in maintaining trigeminal ganglion (TG) and trigeminovascular sensitization. However, the underlying regulatory mechanism is elusive. In this study, we explored the hypothesis that Src family kinases (SFKs) activity facilitates the crosstalk between CGRP and cytokines in sensitizing TG. Mouse TG tissue culture was performed to study CGRP release by enzyme-linked immunosorbent assay, cytokine release by multiplex assay, cytokine gene expression by quantitative polymerase chain reaction, and phosphorylated SFKs level by western blot. The results demonstrated that a SFKs activator, pYEEI (YGRKKRRQRRREPQY(PO3H2)EEIPIYL) alone, did not alter CGRP release or the inflammatory cytokine interleukin-1β (IL-1β) gene expression in the mouse TG. In contrast, a SFKs inhibitor, saracatinib, restored CGRP release, the inflammatory cytokines IL-1β, C-X-C motif ligand 1, C-C motif ligand 2 (CCL2) release, and IL-1β, CCL2 gene expression when the mouse TG was pre-sensitized with hydrogen peroxide and CGRP respectively. Consistently with this, the phosphorylated SFKs level was increased by both hydrogen peroxide and CGRP in the mouse TG, which was reduced by a CGRP receptor inhibitor BIBN4096 and a protein kinase A (PKA) inhibitor PKI (14–22) Amide. The present study demonstrates that SFKs activity plays a pivotal role in facilitating the crosstalk between CGRP and cytokines by transmitting CGRP receptor/PKA signaling to potentiate TG sensitization and ultimately trigeminovascular sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Kai Sun
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Ziyang Gong
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Haoyang Li
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
- Correspondence:
| |
Collapse
|
17
|
Chen Y, Liu Y, Song Y, Zhao S, Li B, Sun J, Liu L. Therapeutic applications and potential mechanisms of acupuncture in migraine: A literature review and perspectives. Front Neurosci 2022; 16:1022455. [PMID: 36340786 PMCID: PMC9630645 DOI: 10.3389/fnins.2022.1022455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Acupuncture is commonly used as a treatment for migraines. Animal studies have suggested that acupuncture can decrease neuropeptides, immune cells, and proinflammatory and excitatory neurotransmitters, which are associated with the pathogenesis of neuroinflammation. In addition, acupuncture participates in the development of peripheral and central sensitization through modulation of the release of neuronal-sensitization-related mediators (brain-derived neurotrophic factor, glutamate), endocannabinoid system, and serotonin system activation. Clinical studies have demonstrated that acupuncture may be a beneficial migraine treatment, particularly in decreasing pain intensity, duration, emotional comorbidity, and days of acute medication intake. However, specific clinical effectiveness has not been substantiated, and the mechanisms underlying its efficacy remain obscure. With the development of biomedical and neuroimaging techniques, the neural mechanism of acupuncture in migraine has gained increasing attention. Neuroimaging studies have indicated that acupuncture may alter the abnormal functional activity and connectivity of the descending pain modulatory system, default mode network, thalamus, frontal-parietal network, occipital-temporal network, and cerebellum. Acupuncture may reduce neuroinflammation, regulate peripheral and central sensitization, and normalize abnormal brain activity, thereby preventing pain signal transmission. To summarize the effects and neural mechanisms of acupuncture in migraine, we performed a systematic review of literature about migraine and acupuncture. We summarized the characteristics of current clinical studies, including the types of participants, study designs, and clinical outcomes. The published findings from basic neuroimaging studies support the hypothesis that acupuncture alters abnormal neuroplasticity and brain activity. The benefits of acupuncture require further investigation through basic and clinical studies.
Collapse
|
18
|
Russo M, De Rosa MA, Calisi D, Consoli S, Evangelista G, Dono F, Santilli M, Granzotto A, Onofrj M, Sensi SL. Migraine Pharmacological Treatment and Cognitive Impairment: Risks and Benefits. Int J Mol Sci 2022; 23:11418. [PMID: 36232720 PMCID: PMC9569564 DOI: 10.3390/ijms231911418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Migraine is a common neurological disorder impairing the quality of life of patients. The condition requires, as an acute or prophylactic line of intervention, the frequent use of drugs acting on the central nervous system (CNS). The long-term impact of these medications on cognition and neurodegeneration has never been consistently assessed. The paper reviews pharmacological migraine treatments and discusses their biological and clinical effects on the CNS. The different anti-migraine drugs show distinct profiles concerning neurodegeneration and the risk of cognitive deficits. These features should be carefully evaluated when prescribing a pharmacological treatment as many migraineurs are of scholar or working age and their performances may be affected by drug misuse. Thus, a reconsideration of therapy guidelines is warranted. Furthermore, since conflicting results have emerged in the relationship between migraine and dementia, future studies must consider present and past pharmacological regimens as potential confounding factors.
Collapse
Affiliation(s)
- Mirella Russo
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo A. De Rosa
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Dario Calisi
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Consoli
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giacomo Evangelista
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fedele Dono
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo Santilli
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Granzotto
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Onofrj
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano L. Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Mind Impairments and Neurological Disorders-iMIND, University of California, Irvine, Irvine, CA 92697, USA
- ITAB—Institute of Advanced Biomedical Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
19
|
Holland PR, Goadsby PJ. A cell atlas for migraine research. Nature 2022; 607:39-40. [PMID: 35641609 DOI: 10.1038/d41586-022-01479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Iannone LF, De Cesaris F, Ferrari A, Benemei S, Fattori D, Chiarugi A. Effectiveness of anti-CGRP monoclonal antibodies on central symptoms of migraine. Cephalalgia 2022; 42:1323-1330. [PMID: 35775208 DOI: 10.1177/03331024221111526] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Clinical trials and observational studies with anti-calcitonin gene-related peptide antibodies poorly investigated their impact on migraine prodromal and accompanying symptoms. This information might help deciphering the biologics' pharmacodynamic and provide hints on migraine pathogenesis. Herein, we report the effects of erenumab, fremanezumab and galcanezumab on attack prodromal and accompanying symptoms and on neurological and psychiatric traits. . METHODS An explorative, prospective, questionnaire-based study was completed by a cohort (n = 80) of patients with chronic migraine patients presenting a sustained reduction of ≥50% of Migraine Disability Assessment Score and ≥30% of monthly migraine days three months after anti-calcitonin gene-related peptide antibodies treatment. RESULTS The majority of patients experienced a complete prevention of migraine symptoms without evidence of initial onset followed by attack abortion. Few patients reported the recurrence of prodromal (from 10% to 12.5%) or accompanying (from 1.3% to 8.8%) symptoms without headache. All patients with migraine with aura reported a decrease of aura incidence. Sleep changes (51.2%), increase in appetite (20.0%) and weight (18.8%) as well as a reduction in stress (45.0%), anxiety (26.3%), and panic attacks (15%) were also reported. CONCLUSION Anti-calcitonin gene-related peptide antibodies seems to significantly impact brain functions of migraineurs, preventing not only migraine headache but also its anticipatory and accompanying symptoms.
Collapse
Affiliation(s)
- Luigi Francesco Iannone
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco De Cesaris
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
| | - Anita Ferrari
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Silvia Benemei
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
| | - Davide Fattori
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
| | - Alberto Chiarugi
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy.,Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
21
|
Sevivas H, Fresco P. Treatment of resistant chronic migraine with anti-CGRP monoclonal antibodies: a systematic review. Eur J Med Res 2022; 27:86. [PMID: 35659086 PMCID: PMC9167529 DOI: 10.1186/s40001-022-00716-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Resistant chronic migraine is a highly disabling condition which is very difficult to treat. The majority of the treatments for migraine prophylaxis are nonspecific and present weak safety profiles, leading to low adherence and discontinuation. Currently, monoclonal antibodies (mAb) targeting the trigeminal sensory neuropeptide, calcitonin gene-related peptide (CGRP), are available for migraine prophylaxis being the first drugs developed specifically to target migraine pathogenesis. The main objective of the current work is to carry out a systematic review of randomised controlled trials that specifically analyse the effectivity and safety of anti-CGRP mAb, comparatively to placebo, in patients with resistant chronic migraine and possibly fill the literature gap or be a source of information to health professionals. Additionally the current knowledge on migraine, particularly resistant chronic migraine, was revisited and summarised. METHODS Literature search was carried out on MEDLINE, Scopus, Science Direct and ClinicalTrials.gov database, from inception to December 2021. Articles were selected according to prespecified criteria of inclusion and exclusion. Efficacy and safety outcomes included were: change from baseline in monthly migraine days (MMD); ≥50% reduction of MMD values from baseline; change from baseline in monthly acute migraine-specific medication days (MAMD); Migraine-specific Quality of Life Questionnaire (MSQ); and registered adverse events. Additionally, we used the Cochrane risk of bias tool (RoB 2) to assess the risk of bias of the included studies. RESULTS Four studies were included in this systematic review, involving 2811 resistant chronic migraine patients, 667 in a study using erenumab, 838 in a study using fremanezumab and 1306 in two studies using galcanezumab. When compared to placebo, all investigated anti-CGRP mAb and respective doses demonstrate effectiveness in decreasing MMD, reducing acute medication use and improving the MSQ scores, including, sometimes, reversion of chronic to episodic migraine (efficacy outcomes). Regarding the safety outcomes, the number and type of adverse events did not differ between anti-CGRP mAb-treated and placebo groups. CONCLUSIONS Anti-CGRP or anti-CGRP receptor monoclonal antibodies are a promising preventive migraine therapy which can be particularly useful for resistant chronic migraine patients.
Collapse
Affiliation(s)
- Hugo Sevivas
- Faculdade de Medicina da Universidade Do Porto (FMUP), Al. Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal.
| | - Paula Fresco
- Laboratório de Farmacologia, Departamento de Ciências Do Medicamento, Faculdade de Farmácia da Universidade Do Porto (FFUP), Porto, Portugal
- I3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| |
Collapse
|
22
|
Casillo F, Sebastianelli G, Renzo AD, Cioffi E, Parisi V, Lorenzo CD, Serrao M, Coppola G. The monoclonal CGRP-receptor blocking antibody erenumab has different effects on brainstem and cortical sensory-evoked responses. Cephalalgia 2022; 42:1236-1245. [DOI: 10.1177/03331024221103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives It is unclear whether the electrophysiological effects of erenumab, a monoclonal antibody against the calcitonin gene-related peptide receptor, occur only at the periphery of the trigeminal system or centrally and at the cortical level. Methods We prospectively enrolled 20 patients with migraine who had failed at least two preventative treatments. We measured the nociceptive blink reflex and non-noxious somatosensory evoked potentials in all participants. The area under the curve and habituation of the second polysynaptic nociceptive blink reflex component (R2) as well as the amplitude and habituation of somatosensory evoked potentials N20-P25 were measured. Electrophysiological data were collected at baseline (T0), 28 days (T1), and 56 days (T2) before each injection of erenumab (70 mg). Results Erenumab reduced the patients’ mean monthly headache days, headache intensity, and acute medication intake considerably at T1 and T2 (all p < 0.05). The nociceptive blink reflex area under the curve was considerably lower at T1 and T2 than at baseline without changing the habituation slope. At T2, there was a significant increase in the delayed somatosensory evoked potentials amplitude reduction (habituation) but not in the initial cortical activation. Conclusion Our findings showed that erenumab, in addition to its well-known peripheral effects, can induce central effects earlier in the brainstem and later in the cortex. We cannot rule out whether these results are due to a direct effect of erenumab on the central nervous system or an indirect effect secondary to peripheral drug modulation.
Collapse
Affiliation(s)
- Francesco Casillo
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Gabriele Sebastianelli
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | | | - Ettore Cioffi
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | | | - Cherubino Di Lorenzo
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Mariano Serrao
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Gianluca Coppola
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| |
Collapse
|
23
|
The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow. Cells 2022; 11:cells11111768. [PMID: 35681463 PMCID: PMC9179471 DOI: 10.3390/cells11111768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) belong to a new generation of therapeutics that are effective in the prevention of migraine. CGRP, a potent vasodilator, is strongly implicated in the pathophysiology of migraine, but its role remains to be fully elucidated. The hemisected rat head preparation and laser Doppler flowmetry were used to examine the effects on CGRP release from the dura mater and meningeal blood flow of the subcutaneously injected anti-CGRP monoclonal antibody fremanezumab at 30 mg/kg, when compared to an isotype control antibody. Some rats were administered glycerol trinitrate (GTN) intraperitoneally to produce a migraine-like sensitized state. When compared to the control antibody, the fremanezumab injection was followed by reduced basal and capsaicin-evoked CGRP release from day 3 up to 30 days. The difference was enhanced after 4 h of GTN application. The samples from the female rats showed a higher CGRP release compared to that of the males. The increases in meningeal blood flow induced by acrolein (100 µM) and capsaicin (100 nM) were reduced 13–20 days after the fremanezumab injection, and the direct vasoconstrictor effect of high capsaicin (10 µM) was intensified. In conclusion, fremanezumab lowers the CGRP release and lasts up to four weeks, thereby lowering the CGRP-dependent meningeal blood flow. The antibody may not only prevent the released CGRP from binding but may also influence the CGRP release stimulated by noxious agents relevant for the generation of migraine pain.
Collapse
|
24
|
Strassman AM, Melo-Carrillo A, Houle TT, Adams A, Brin MF, Burstein R. Atogepant - an orally-administered CGRP antagonist - attenuates activation of meningeal nociceptors by CSD. Cephalalgia 2022; 42:933-943. [PMID: 35332801 DOI: 10.1177/03331024221083544] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study investigated the mechanism of action of atogepant, a small-molecule CGRP receptor antagonist recently approved for the preventive treatment of episodic migraine, by assessing its effect on activation of mechanosensitive C- and Aδ-meningeal nociceptors following cortical spreading depression. METHODS Single-unit recordings of trigeminal ganglion neurons (32 Aδ and 20 C-fibers) innervating the dura was used to document effects of orally administered atogepant (5 mg/kg) or vehicle on cortical spreading depression-induced activation in anesthetized male rats. RESULTS Bayesian analysis of time effects found that atogepant did not completely prevent the activation of nociceptors at the tested dose, but it significantly reduced response amplitude and probability of response in both the C- and the Aδ-fibers at different time intervals following cortical spreading depression induction. For C-fibers, the reduction in responses was significant in the early phase (first hour), but not delayed phase of activation, whereas in Aδ-fibers, significant reduction in activation was apparent in the delayed phase (second and third hours) but not early phase of activation. CONCLUSIONS These findings identify differences between the actions of atogepant, a small molecule CGRP antagonist (partially inhibiting both Aδ and C-fibers) and those found previously for fremanezumab, a CGRP-targeted antibody (inhibiting Aδ fibers only) and onabotulinumtoxinA (inhibiting C-fibers only)- suggesting that these agents differ in their mechanisms for the preventive treatment of migraine.
Collapse
Affiliation(s)
- Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston, Massachusetts, USA
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy T Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, USA
| | - Aubrey Adams
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, USA
| | - Mitchell F Brin
- Allergan, an AbbVie Company, Irvine, CA, USA.,Dept of Neurology, University of California, Irvine, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Carneiro-Nascimento S, Levy D. Cortical spreading depression and meningeal nociception. NEUROBIOLOGY OF PAIN 2022; 11:100091. [PMID: 35518782 PMCID: PMC9065921 DOI: 10.1016/j.ynpai.2022.100091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
CSD evoked persistent activation and mechanical sensitization of dural nociceptors is likely to drive the headache phase in migraine with aura. The development of neurogenic-mediated dural vasodilatation and increased plasma protein extravasation in the wake of CSD may not contribute to meningeal nociception. Cortical vasoconstriction and reduced oxygen availability following CSD do not contribute to meningeal nociception. Cortical neuroinflammation, involving neuronal pannexin1 and calcium-independent astrocytic signaling drive meningeal nociception following CSD. CSD-related closing of K(ATP) channels and release of COX-driven prostanoids mediate the activation and sensitization of dural nociceptors respectively.
Migraine results in an enormous burden on individuals and societies due to its high prevalence, significant disability, and considerable economic costs. Current treatment options for migraine remain inadequate, and the development of novel therapies is severely hindered by the incomplete understanding of the mechanisms responsible for the pain. The sensory innervation of the cranial meninges is now considered a key player in migraine headache genesis. Recent studies have significantly advanced our understanding of some of the processes that drive meningeal nociceptive neurons, which may be targeted therapeutically to abort or prevent migraine pain. In this review we will summarize our current understanding of the mechanisms that contribute to the genesis of the headache in one migraine subtype – migraine with aura. We will focus on animal studies that address the notion that cortical spreading depression is a critical process that drives meningeal nociception in migraine with aura, and discuss recent insights into some of the proposed underlying mechanisms.
Collapse
|
26
|
Abstract
Migraine is a common and disabling neurological disorder, with several manifestations, of which pain is just one. Despite its worldwide prevalence, there remains a paucity of targeted and effective treatments for the condition, leaving many of those affected underserved by available treatments. Work over the last 30+ years has recently led to the emergence of the first targeted acute and preventive treatments in our practice since the triptan era in the early 1990s, which are changing the landscape of migraine treatment. These include the monoclonal antibodies targeting calcitonin gene-related peptide or its receptor. Evolving work on novel therapeutic targets, as well as continuing to exploit drugs used in other disorders that may also have a therapeutic effect in migraine, is likely to lead to more and more treatments being able to be offered to migraineurs. Future work involves the development of agents that lack vasoconstrictive effects, such as lasmiditan, do not contribute to medication overuse, such as the gepants, and do not interact with other drugs that may be used for the disorder, as well as agents that can act both acutely and preventively, thereby utilising the quantum between acute and preventive drug effects which has been demonstrated with different migraine drugs before. Here we discuss the evolution of oral migraine treatments over the last 5 years, including those that have gained regulatory approval and reached clinical practice, those in development and potential other targets for the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility and South London and Maudsley Biomedical Research Centre, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- NIHR King's Clinical Research Facility and South London and Maudsley Biomedical Research Centre, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK.
- Department of Neurology, University of California, Los Angeles, USA.
| |
Collapse
|
27
|
Peripheral Nerve Stimulation: A Review of Techniques and Clinical Efficacy. Pain Ther 2021; 10:961-972. [PMID: 34331668 PMCID: PMC8586305 DOI: 10.1007/s40122-021-00298-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic pain is a common source of morbidity in many patient populations worldwide. There are growing concerns about the potential side effects of currently prescribed medications and a continued need for effective treatment. Related to these concerns, peripheral nerve stimulation has been regaining popularity as a potential treatment modality. Peripheral nerve stimulation components include helically coiled electrical leads, which direct an applied current to afferent neurons providing sensory innervation to the painful area. In theory, the applied current to the peripheral nerve will alter the large-diameter myelinated afferent nerve fibers, which interfere with the central processing of pain signals through small-diameter afferent fibers at the level of the spinal cord. Multiple studies have shown success in the use of peripheral nerve stimulation for acute post-surgical pain for orthopedic surgery, including post total knee arthroplasty and anterior cruciate ligament surgery, and chronic knee pain. Many studies have investigated the utility of peripheral nerve stimulation for the management of chronic shoulder pain. Peripheral nerve stimulation also serves as one of the potential non-pharmacologic therapies to treat back pain along with physical therapy, application of transcutaneous electrical neurostimulation unit, radiofrequency ablation, epidural steroid injections, permanently implanted neurostimulators, and surgery. Studies regarding back pain treatment have shown that peripheral nerve stimulation led to significant improvement in all pain and quality-of-life measures and a reduction in the use of opioids. Further studies are needed as the long-term risks and benefits of peripheral nerve stimulation have not been well studied as most information available on the effectiveness of peripheral nerve stimulation is based on shorter-term improvements in chronic pain.
Collapse
|
28
|
Martins-Oliveira M, Tavares I, Goadsby PJ. Was it something I ate? Understanding the bidirectional interaction of migraine and appetite neural circuits. Brain Res 2021; 1770:147629. [PMID: 34428465 DOI: 10.1016/j.brainres.2021.147629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022]
Abstract
Migraine attacks can involve changes of appetite: while fasting or skipping meals are often reported triggers in susceptible individuals, hunger or food craving are reported in the premonitory phase. Over the last decade, there has been a growing interest and recognition of the importance of studying these overlapping fields of neuroscience, which has led to novel findings. The data suggest additional studies are needed to unravel key neurobiological mechanisms underlying the bidirectional interaction between migraine and appetite. Herein, we review information about the metabolic migraine phenotype and explore migraine therapeutic targets that have a strong input on appetite neuronal circuits, including the calcitonin gene-related peptide (CGRP), the pituitary adenylate cyclase-activating polypeptide (PACAP) and the orexins. Furthermore, we focus on potential therapeutic peptide targets that are involved in regulation of feeding and play a role in migraine pathophysiology, such as neuropeptide Y, insulin, glucagon and leptin. We then examine the orexigenic - anorexigenic circuit feedback loop and explore glucose metabolism disturbances. Additionally, it is proposed a different perspective on the most reported feeding-related trigger - skipping meals - as well as a link between contrasting feeding behaviors (skipping meals vs food craving). Our review aims to increase awareness of migraine through the lens of appetite neurobiology in order to improve our understanding of the earlier phase of migraine, encourage better studies and cross-disciplinary collaborations, and provide novel migraine-specific therapeutic opportunities.
Collapse
Affiliation(s)
- Margarida Martins-Oliveira
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Nutrition and Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas de Lisboa, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal.
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Institute of Investigation and Innovation in Health (i3S), University of Porto, Portugal.
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Zobdeh F, Ben Kraiem A, Attwood MM, Chubarev VN, Tarasov VV, Schiöth HB, Mwinyi J. Pharmacological treatment of migraine: Drug classes, mechanisms of action, clinical trials and new treatments. Br J Pharmacol 2021; 178:4588-4607. [PMID: 34379793 DOI: 10.1111/bph.15657] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
Migraine is the sixth most prevalent disease globally, a major cause of disability, and it imposes an enormous personal and socioeconomic burden. Migraine treatment is often limited by insufficient therapy response, leading to the need for individually adjusted treatment approaches. In this review, we analyse historical and current pharmaceutical development approaches in acute and chronic migraine based on a comprehensive and systematic analysis of Food and Drug Administration (FDA)-approved drugs and those under investigation. The development of migraine therapeutics has significantly intensified during the last 3 years, as shown by our analysis of the trends of drug development between 1970 and 2020. The spectrum of drug targets has expanded considerably, which has been accompanied by an increase in the number of specialised clinical trials. This review highlights the mechanistic implications of FDA-approved and currently investigated drugs and discusses current and future therapeutic options based on identified drug classes of interest.
Collapse
Affiliation(s)
- Farzin Zobdeh
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Aziza Ben Kraiem
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
30
|
Abstract
Cluster headache is a primary headache form occurring in paroxysmal excruciatingly severe unilateral head pain attacks usually grouped in periods lasting 1-2months, the cluster periods. A genetic component is suggested by the familial occurrence of the disease but a genetic linkage is yet to be identified. Contemporary activation of trigeminal and cranial parasympathetic systems-the so-called trigemino-parasympathetic reflex-during the headache attacks seem to cause the pain and accompanying oculo-facial autonomic phenomena respectively. At peripheral level, the increased calcitonin gene related peptide (CGRP) plasma levels suggests trigeminal system activation during cluster headache attacks. The temporal pattern of the disease both in terms of circadian rhythmicity and seasonal recurrence has suggested involvement of the hypothalamic biological clock in the pathophysiology of cluster headache. The posterior hypothalamus was investigate as the cluster generator leading to activation of the trigemino-parasympathetic reflex, but the accumulated experience after 20 years of hypothalamic electrical stimulation to treat the condition indicate that this brain region rather acts as pain modulator. Efficacy of monoclonal antibodies to treat episodic cluster headache points to a key role of CGRP in the pathophysiology of the condition.
Collapse
|
31
|
Akerman S, Romero-Reyes M, Karsan N, Bose P, Hoffmann JR, Holland PR, Goadsby PJ. Therapeutic targeting of nitroglycerin-mediated trigeminovascular neuronal hypersensitivity predicts clinical outcomes of migraine abortives. Pain 2021; 162:1567-1577. [PMID: 33181579 DOI: 10.1097/j.pain.0000000000002142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
ABSTRACT Cranial hypersensitivity is a prominent symptom of migraine, exhibited as migraine headache exacerbated with physical activity, and cutaneous facial allodynia and hyperalgesia. The underlying mechanism is believed to be, in part, activation and sensitization of dural-responsive trigeminocervical neurons. Validated preclinical models that exhibit this phenotype have great utility for understanding putative mechanisms and as a tool to screen therapeutics. We have previously shown that nitroglycerin triggers cranial allodynia in association with migraine-like headache, and this translates to neuronal cranial hypersensitivity in rats. Furthermore, responses in both humans and rats are aborted by triptan administration, similar to responses in spontaneous migraine. Here, our objective was to study the nitroglycerin model examining the effects on therapeutic targets with newly approved treatments, specifically gepants and ditans, for the acute treatment of migraine. Using electrophysiological methods, we determined changes to ongoing firing and somatosensory-evoked cranial sensitivity, in response to nitroglycerin, followed by treatment with a calcitonin gene-related peptide receptor antagonist, gepant (olcegepant), a 5-HT1F receptor agonist, ditan (LY344864), and an NK1 receptor antagonist (GR205171). Nitroglycerin induced activation of migraine-like central trigeminocervical neurons, and intracranial and extracranial neuronal hypersensitivity. These responses were aborted by olcegepant and LY344864. However, GR205171, which failed in clinical trial for both abortive and preventive treatment of migraine, had no effect. These data support the nitroglycerin model as a valid approach to study cranial hypersensitivity and putative mechanisms involved in migraine and as a screen to dissect potentially efficacious migraine therapeutic targets.
Collapse
Affiliation(s)
- Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Nazia Karsan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, United Kingdom
| | - Pyari Bose
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, United Kingdom
| | - Jan R Hoffmann
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, United Kingdom
| | - Philip R Holland
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, United Kingdom
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United Kingdom
| |
Collapse
|
32
|
Cluster headache pathophysiology - insights from current and emerging treatments. Nat Rev Neurol 2021; 17:308-324. [PMID: 33782592 DOI: 10.1038/s41582-021-00477-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 02/01/2023]
Abstract
Cluster headache is a debilitating primary headache disorder that affects approximately 0.1% of the population worldwide. Cluster headache attacks involve severe unilateral pain in the trigeminal distribution together with ipsilateral cranial autonomic features and a sense of agitation. Acute treatments are available and are effective in just over half of the patients. Until recently, preventive medications were borrowed from non-headache indications, so management of cluster headache is challenging. However, as our understanding of cluster headache pathophysiology has evolved on the basis of key bench and neuroimaging studies, crucial neuropeptides and brain structures have been identified as emerging treatment targets. In this Review, we provide an overview of what is known about the pathophysiology of cluster headache and discuss the existing treatment options and their mechanisms of action. Existing acute treatments include triptans and high-flow oxygen, interim treatment options include corticosteroids in oral form or for greater occipital nerve block, and preventive treatments include verapamil, lithium, melatonin and topiramate. We also consider emerging treatment options, including calcitonin gene-related peptide antibodies, non-invasive vagus nerve stimulation, sphenopalatine ganglion stimulation and somatostatin receptor agonists, discuss how evidence from trials of these emerging treatments provides insights into the pathophysiology of cluster headache and highlight areas for future research.
Collapse
|
33
|
Excitatory Effects of Calcitonin Gene-Related Peptide (CGRP) on Superficial Sp5C Neurons in Mouse Medullary Slices. Int J Mol Sci 2021; 22:ijms22073794. [PMID: 33917574 PMCID: PMC8038766 DOI: 10.3390/ijms22073794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022] Open
Abstract
The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels.
Collapse
|
34
|
Dolgorukova A, Isaeva JE, Verbitskaya E, Lyubashina OA, Giniatullin RА, Sokolov AY. Differential effects of the Piezo1 agonist Yoda1 in the trigeminovascular system: An electrophysiological and intravital microscopy study in rats. Exp Neurol 2021; 339:113634. [PMID: 33549548 DOI: 10.1016/j.expneurol.2021.113634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023]
Abstract
Migraine is associated with the activation and sensitisation of the trigeminovascular system and is often accompanied by mechanical hyperalgesia and allodynia. The mechanisms of mechanotransduction during a migraine attack are yet unknown. We have proposed that the ion channel Piezo1 may be involved, since it is expressed in endothelial cells as well as in trigeminal ganglion neurons, and thus, may contribute to the activation of both the vascular and neuronal component of the trigeminovascular system. We took advantage of extracellular recordings from the trigeminocervical complex - a key relay centre in the migraine pain pathway, to directly assess the impact of the differently applied Piezo1 agonist Yoda1 on the sensory processing at the spinal level. At a low dose, Yoda1 slightly facilitated the ongoing firing of central trigeminovascular neurons, however, at a high dose, this substance contributed to the suppression of their activity. Using intravital microscopy, we have revealed that Yoda1 at high dose can also induce the dilation of meningeal arteries innervated by trigeminal afferents. Collectively, here we have identified both neuronal and vascular modulation via selective activation of mechanosensitive Piezo1 channels, which provide new evidence in favour of the Piezo1 role in migraine pathogenesis. We propose several mechanisms that may underlie the revealed effects of Yoda1.
Collapse
Affiliation(s)
- Antonina Dolgorukova
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia.
| | - Julia E Isaeva
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Elena Verbitskaya
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Olga A Lyubashina
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg 199034, Russia
| | - Rashid А Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Alexey Y Sokolov
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
35
|
Moreno-Ajona D, Pérez-Rodríguez A, Goadsby PJ. Gepants, calcitonin-gene-related peptide receptor antagonists: what could be their role in migraine treatment? Curr Opin Neurol 2021; 33:309-315. [PMID: 32251023 DOI: 10.1097/wco.0000000000000806] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Migraine is the second leading cause of years lived with disability after back pain. Poor tolerability, contraindications, drug-drug interactions and efficacy limited to a subpopulation make new approaches necessary for the acute and preventive treatment of migraine. The study of the calcitonin-gene-related peptide (CGRP) pathway over the last decades is a good example of translational medicine leading to directed therapies for patients. RECENT FINDINGS After some of the first-generation CGRP receptor antagonists, gepants, were not fully developed because of hepatotoxicity, the second generation of gepants have shown efficacy, safety and tolerability in recent clinical trials. SUMMARY Both rimegepant and ubrogepant have published positive randomized placebo-controlled clinical trials data. Vazegepant is the first intranasal gepant for the acute treatment of migraine and has announced a positive phase II/III study. Daily rimegepant use has preliminary data to suggest efficacy. Atogepant has shown efficacy in migraine prevention in a phase II/III study. Most importantly, hepatotoxicity has not been reported in specifically designed phase I studies or long-term extension studies, with rimegepant or ubrogepant, or in a preventive study with atogepant. Given the preventive effect, it seems likely that gepants will not lead to medication overuse headache. They will likely have no cardiovascular warnings. Because of the particular benefit gepants may represent for these groups of patients, specific studies in patients with medication overuse headache, as well as those with comorbid cardiovascular diseases, would be of considerable interest.
Collapse
Affiliation(s)
- David Moreno-Ajona
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK
| | - Abigail Pérez-Rodríguez
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK.,Department of Neurology, Hospital Nuestra Señora Del Rosario, Calle del Príncipe de Vergara, Madrid, Spain
| | - Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK
| |
Collapse
|
36
|
Villar-Martínez MD, Moreno-Ajona D, Goadsby PJ. Eptinezumab for the preventive treatment of migraine. Pain Manag 2020; 11:113-121. [PMID: 33280422 DOI: 10.2217/pmt-2020-0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our knowledge of the pathophysiology of migraine and the molecules implicated in the disorder have evolved over time. Among these, calcitonin gene-related peptide has shown a crucial role that led to the development of therapies specifically targeting the molecule. Four monoclonal antibodies targeting the calcitonin gene-related peptide pathway are currently available after the US FDA approval of eptinezumab for the indication of migraine prevention. This is the only one of the class to be administered intravenously. The pharmacology of eptinezumab and the four studies that led to the approval, two Phase II and two Phase III clinical trials, are reviewed in this paper. Eptinezumab has demonstrated efficacy, tolerability and safety in patients with episodic and chronic migraine. Studies including migraineurs who have failed previous preventives, and comparison with other options administered quarterly, as well as real-world experience data will all be welcome.
Collapse
Affiliation(s)
- María Dolores Villar-Martínez
- Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, SE5 9RS, London, United Kingdom
| | - David Moreno-Ajona
- Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, SE5 9RS, London, United Kingdom
| | - Peter J Goadsby
- Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, SE5 9RS, London, United Kingdom
| |
Collapse
|
37
|
Akerman S, Romero-Reyes M. Preclinical studies investigating the neural mechanisms involved in the co-morbidity of migraine and temporomandibular disorders: the role of CGRP. Br J Pharmacol 2020; 177:5555-5568. [PMID: 32929719 DOI: 10.1111/bph.15263] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Temporomandibular disorders (TMD) and migraine can be co-morbid. This can be a significant factor in exacerbating and increasing the prevalence of migraine-like symptoms. However, the underlying mechanisms involved are unknown. Our objective was to investigate these neural mechanisms and the role of CGRP as a key modulator in this co-morbidity. EXPERIMENTAL APPROACH We combined experimental approaches using CGRP, which triggers a migraine-like response in patients, with that of masseteric muscle injection of complete Freund's adjuvant (CFA), to model myofascial TMD-like inflammation. Using validated electrophysiological methods to assess each of the above approaches independently or in combination, we examined their effects on the response properties of migraine-like dural-trigeminocervical neurons. KEY RESULTS Independently, in ~2/3 of animals (rats) each approach caused delayed migraine-like activation and sensitisation of dural-trigeminocervical neurons. The response to masseteric-CFA was attenuated by a selective CGRP receptor antagonist. The combination approach caused a migraine-like neuronal response in all animals tested, with somatosensory-evoked cranial hypersensitivity significantly exacerbated. CONCLUSION AND IMPLICATIONS The data demonstrate a neuronal phenotype that translates to the exacerbated clinical co-morbid phenotype, supporting this combination approach as a relevant model to study the mechanisms involved. It provides a pathophysiological rationale for this exacerbated phenotype, strongly implicating the involvement of CGRP. The results provide support for targeting the CGRP pathway as a novel monotherapy approach for treating this co-morbid condition. This has key implications into our understanding of this co-morbid condition, as well as potentially addressing the major unmet need for novel and effective therapeutic approaches.
Collapse
Affiliation(s)
- Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| |
Collapse
|
38
|
Ashina H, Iljazi A, Al-Khazali HM, Christensen CE, Amin FM, Ashina M, Schytz HW. Hypersensitivity to Calcitonin Gene-Related Peptide in Post-Traumatic Headache. Ann Neurol 2020; 88:1220-1228. [PMID: 32959458 DOI: 10.1002/ana.25915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To demonstrate that calcitonin gene-related peptide (CGRP) induces headache exacerbation with migraine-like features in patients with persistent post-traumatic headache (PTH) attributed to mild traumatic brain injury (TBI). METHODS A randomized, double-blind, placebo-controlled, two-way crossover study was conducted. Analyses were intention-to-treat. Eligible patients were aged 18 to 65 years and had a history of persistent PTH after mild TBI for at least 12 months. Patients were randomized to receive an intravenous infusion of 1.5μg/min of CGRP or placebo (isotonic saline) over 20 minutes on two separate experimental days. A 12-hour observational period was used to evaluate the following outcomes: (1) difference in incidence of headache exacerbation with migraine-like features and (2) difference in area under the curve for headache intensity scores. RESULTS Thirty patients (mean age = 37 years, 25 women [83%]) were randomized and completed the study. During the 12-hour observational period, 21 of 30 patients (70%) developed headache exacerbation with migraine-like features after CGRP, compared with 6 patients (20%) after placebo (p < 0.001). The baseline-corrected area under the curve for headache intensity scores was significantly larger after CGRP, compared with placebo (p < 0.001). INTERPRETATION Patients with persistent PTH are hypersensitive to CGRP, which underscores its pathophysiological importance. Furthermore, CGRP-targeted therapies might provide a novel mechanism-based treatment option for patients with persistent PTH. ANN NEUROL 2020;88:1220-1228.
Collapse
Affiliation(s)
- Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Afrim Iljazi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Haidar M Al-Khazali
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Casper E Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal M Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik W Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Hoffmann J. The analysis of calcitonin gene-related peptide - a narrow path between useful and misleading findings. Cephalalgia 2020; 40:1271-1273. [PMID: 32689825 PMCID: PMC7605040 DOI: 10.1177/0333102420941114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jan Hoffmann
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
40
|
Small-molecule CGRP receptor antagonists: A new approach to the acute and preventive treatment of migraine. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
41
|
Giani L, Proietti Cecchini A, Leone M. Galcanezumab for the prevention of cluster headache. Expert Opin Biol Ther 2020; 20:1133-1142. [PMID: 32702245 DOI: 10.1080/14712598.2020.1800635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cluster headache (CH) is among the worst painful conditions. The available therapies are scarce and not specific, leaving many patients unsatisfied because of poor efficacy and/or tolerability. Patients not responding to common treatments are offered semi-invasive and invasive procedures with uncertain results. Based on the current understanding of CH pathophysiology, new possible therapeutic approaches come from drugs interfering with Calcitonin Gene Related Peptide (CGRP). AREAS COVERED After summarizing the evidence for CGRP involvement in CH pathophysiology, we review the published literature (PubMed) and information (clinicaltrials.gov, EudraCT, EMA and FDA websites) regarding a novel anti-CGRP monoclonal antibody, Galcanezumab, its pharmacological properties, development, and evidence for the treatment of CH. Publications regarding other indications (migraine) are considered for completeness and safety/tolerability profile. EXPERT OPINION In one randomized clinical trial, Galcanezumab has proven to be effective and safe as a preventive treatment in episodic CH, with a favorable tolerability profile offering a potential new option in the therapeutic arsenal. Inefficacy of galcanezumab in chronic CH as well as the inefficacy of another monoclonal antibody against CGRP (fremanezumab) in both episodic and chronic CH question the scalability of the drug in CH management. Further, studies comparing galcanezumab to the current standard treatments are highly desirable.
Collapse
Affiliation(s)
- Luca Giani
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , 20133, Milano (MI), Italy
| | | | - Massimo Leone
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , 20133, Milano (MI), Italy
| |
Collapse
|
42
|
Meßlinger K. [Pathophysiological role of calcitonin gene-related peptide (CGRP) in migraine and cluster headache]. Schmerz 2020; 34:181-187. [PMID: 32103345 DOI: 10.1007/s00482-020-00448-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is released from trigeminal afferents during migraine and cluster headache attacks and can be detected in the jugular plasma. Infusion of CGRP can induce headache attacks in migraine and cluster patients. Inhibition of the CGRP signal system is therapeutic in migraine and cluster headache. CGRP is a potent dilator of intracranial arteries but does not immediately activate the trigeminal pain system. CGRP may act as a signal molecule between different cells in the trigeminal ganglion and enhances nociceptive transmission in the spinal trigeminal nucleus. Peripheral inhibition of the CGRP system reduces these actions. Outside the trigeminovascular system, CGRP is important for maintaining the perfusion of organs in critical situations, promotes growth and repair functions and is an immunomodulatory factor. These actions should be considered when the CGRP system is suppressed for a long time.
Collapse
Affiliation(s)
- Karl Meßlinger
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 17, 91054, Erlangen, Deutschland.
| |
Collapse
|
43
|
Hoffmann J, Miller S, Martins-Oliveira M, Akerman S, Supronsinchai W, Sun H, Shi L, Wang J, Zhu D, Lehto S, Liu H, Yin R, Moyer BD, Xu C, Goadsby PJ. PAC1 receptor blockade reduces central nociceptive activity: new approach for primary headache? Pain 2020; 161:1670-1681. [PMID: 32142016 PMCID: PMC7302332 DOI: 10.1097/j.pain.0000000000001858] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/31/2020] [Indexed: 11/26/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide-38 (PACAP38) may play an important role in primary headaches. Preclinical evidence suggests that PACAP38 modulates trigeminal nociceptive activity mainly through PAC1 receptors while clinical studies report that plasma concentrations of PACAP38 are elevated in spontaneous attacks of cluster headache and migraine and normalize after treatment with sumatriptan. Intravenous infusion of PACAP38 induces migraine-like attacks in migraineurs and cluster-like attacks in cluster headache patients. A rodent-specific PAC1 receptor antibody Ab181 was developed, and its effect on nociceptive neuronal activity in the trigeminocervical complex was investigated in vivo in an electrophysiological model relevant to primary headaches. Ab181 is potent and selective at the rat PAC1 receptor and provides near-maximum target coverage at 10 mg/kg for more than 48 hours. Without affecting spontaneous neuronal activity, Ab181 effectively inhibits stimulus-evoked activity in the trigeminocervical complex. Immunohistochemical analysis revealed its binding in the trigeminal ganglion and sphenopalatine ganglion but not within the central nervous system suggesting a peripheral site of action. The pharmacological approach using a specific PAC1 receptor antibody could provide a novel mechanism with a potential clinical efficacy in the treatment of primary headaches.
Collapse
Affiliation(s)
- Jan Hoffmann
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
- Department of Neurology, UCSF Headache Group, University of California, San Francisco, San Francisco, CA, United States. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Silke Miller
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Margarida Martins-Oliveira
- Department of Neurology, UCSF Headache Group, University of California, San Francisco, San Francisco, CA, United States. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Simon Akerman
- Department of Neurology, UCSF Headache Group, University of California, San Francisco, San Francisco, CA, United States. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Weera Supronsinchai
- Department of Neurology, UCSF Headache Group, University of California, San Francisco, San Francisco, CA, United States. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Hong Sun
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Licheng Shi
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Judy Wang
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Dawn Zhu
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Sonya Lehto
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Hantao Liu
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Ruoyuan Yin
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Bryan D. Moyer
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Cen Xu
- Department of Neuroscience, Amgen, Inc, Thousand Oaks, CA, United States
| | - Peter J. Goadsby
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
- Department of Neurology, UCSF Headache Group, University of California, San Francisco, San Francisco, CA, United States. Dr. Akerman is now with the Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
44
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
45
|
Andreou AP, Fuccaro M, Lambru G. The role of erenumab in the treatment of migraine. Ther Adv Neurol Disord 2020; 13:1756286420927119. [PMID: 32523630 PMCID: PMC7257830 DOI: 10.1177/1756286420927119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
Calcitonin gene related peptide (CGRP) monoclonal antibodies (mAbs) have been the
first class of specifically developed preventive treatments for migraine.
Clinical trials data suggest superiority of the CGRP mAbs to placebo in terms of
prevention of migraine symptoms, migraine-specific quality of life and headache
related disability. Treatment-related side effects overall did not differ
significantly from placebo and discontinuation rate due to side effects has been
low across the clinical trials, perhaps in view of their peripheral mode of
action. Along with their route and frequency of administration, these novel
class of drugs may constitute an improvement compared with the established
arsenal of migraine treatments. Erenumab is a fully human antibody and the only
mAb acting on the CGRP pathway by blocking its receptor. It is the first of the
CGRP mAb class approved by the US Food and Drug Administration (May 2018) and
the European Medicines Agency (July 2018). Erenumab exists in two different
doses (70 mg and 140 mg) and it is administered with monthly subcutaneous
injections. This review summarises erenumab pharmacological characteristics,
clinical trials data, focusing on the potential role of this treatment in
clinical practice.
Collapse
Affiliation(s)
- Anna P Andreou
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Matteo Fuccaro
- Department of Neurology, Treviso Hospital, Treviso, Italy
| | - Giorgio Lambru
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
46
|
Al-Karagholi MAM, Gram C, Nielsen CAW, Ashina M. Targeting BK Ca Channels in Migraine: Rationale and Perspectives. CNS Drugs 2020; 34:325-335. [PMID: 32060729 DOI: 10.1007/s40263-020-00706-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Large (big)-conductance calcium-activated potassium (BKCa) channels are expressed in migraine-related structures such as the cranial arteries, trigeminal ganglion and trigeminal spinal nucleus, and they play a substantial role in vascular tonus and neuronal excitability. Using synthetic BKCa channels openers was associated with headache as a frequent adverse effect in healthy volunteers. Additionally, BKCa channels are downstream molecules in migraine signalling pathways that are activated by several compounds known to provoke migraine, including calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP) and glyceryl trinitrate (GTN). Also, there is a high affinity and a close coupling between BKCa channels and ATP-sensitive potassium (KATP) channels, the role of which has recently been established in migraine pathophysiology. These observations raise the question as to whether direct BKCa channel activation can provoke migraine in migraine patients, and whether the BKCa channel could be a potential novel anti-migraine target. Hence, randomized and placebo-controlled clinical studies on BKCa channel openers or blockers in migraine patients are needed.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Christian Gram
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark. .,Glostrup Research Park, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
47
|
Na H, Gan Q, Mcparland L, Yang JB, Yao H, Tian H, Zhang Z, Qiu WQ. Characterization of the effects of calcitonin gene-related peptide receptor antagonist for Alzheimer's disease. Neuropharmacology 2020; 168:108017. [PMID: 32113968 DOI: 10.1016/j.neuropharm.2020.108017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 10/25/2022]
Abstract
Calcitonin gene-related peptide (cGRP) receptor antagonists effectively treat migraine through reducing neuroinflammation, vasoconstriction and possibly neruogenesis. Since neuroinflammation is also involved in the pathogenesis of Alzheimer's diseases (AD), we hypothesized and tested if a cGRP receptor antagonist, BIBN 4096 BS (BIBN), has effects on AD pathology. Using an AD mouse model, 5XFAD, with different ages, here we report that the BIBN treatment significantly increased the brain expression of PSD95, a postsynaptic protein, in both young and old AD mice. In parallel, BIBN improved learning and memory in the behavior test in the young, but not old, AD mice. The BIBN treatment reduced α-synuclein aggregation in both young and old AD mice. BIBN significantly decreased neuroinflammatory markers of ionized calcium binding adapter molecules-1 (Iba-1) and the p38 MAPK and NFκB signaling pathways in young, but not old, AD mice. The treatment also reduced the accumulation of amyloid-β (Aβ), and decreased tau phosphorylation through the pathway of CDK5/p25 in young mice only. Our study provides the evidence and suggests that the cGRP antagonists might be a therapeutic target to attenuate the pathological cascade and delay cognitive decline of AD in humans.
Collapse
Affiliation(s)
- Hana Na
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Liam Mcparland
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Jack B Yang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Hongbo Yao
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Histology and Embriology, Qiqihaer Medical University, China
| | - Hua Tian
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Histology and Embriology, Qiqihaer Medical University, China
| | - Zhengrong Zhang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
48
|
Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm (Vienna) 2020; 127:431-444. [PMID: 32088764 PMCID: PMC7148261 DOI: 10.1007/s00702-020-02161-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022]
Abstract
The trigeminal ganglion with its three trigeminal nerve tracts consists mainly of clusters of sensory neurons with their peripheral and central processes. Most neurons are surrounded by satellite glial cells and the axons are wrapped by myelinating and non-myelinating Schwann cells. Trigeminal neurons express various neuropeptides, most notably, calcitonin gene-related peptide (CGRP), substance P, and pituitary adenylate cyclase-activating polypeptide (PACAP). Two types of CGRP receptors are expressed in neurons and satellite glia. A variety of other signal molecules like ATP, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion neurons and signal to neighboring neurons or satellite glial cells, which can signal back to neurons with same or other mediators. This potential cross-talk of signals involves intracellular mechanisms, including gene expression, that can modulate mediators of sensory information, such as neuropeptides, receptors, and neurotrophic factors. From the ganglia cell bodies, which are outside the blood–brain barrier, the mediators are further distributed to peripheral sites and/or to the spinal trigeminal nucleus in the brainstem, where they can affect neural transmission. A major question is how the sensory neurons in the trigeminal ganglion differ from those in the dorsal root ganglion. Despite their functional overlap, there are distinct differences in their ontogeny, gene expression, signaling pathways, and responses to anti-migraine drugs. Consequently, drugs that modulate cross-talk in the trigeminal ganglion can modulate both peripheral and central sensitization, which may potentially be distinct from sensitization mediated in the dorsal root ganglion.
Collapse
|
49
|
Holland PR, Sureda-Gibert P, Vila-Pueyo M. Rapid uptake of sumatriptan into the brain: An ongoing question of blood-brain barrier permeability. Cephalalgia 2020; 40:327-329. [PMID: 32000507 PMCID: PMC7605048 DOI: 10.1177/0333102420905131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Philip R Holland
- Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paula Sureda-Gibert
- Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marta Vila-Pueyo
- Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
50
|
Gao B, Yang Y, Wang Z, Sun Y, Chen Z, Zhu Y, Wang Z. Efficacy and Safety of Rimegepant for the Acute Treatment of Migraine: Evidence From Randomized Controlled Trials. Front Pharmacol 2020; 10:1577. [PMID: 32038251 PMCID: PMC6992660 DOI: 10.3389/fphar.2019.01577] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
Background As one of the novel therapeutic drugs that targets Calcitonin gene-related peptide (CGRP), 75 mg rimegepant has been used for the acute management of migraine, which is one of the most common neurological diseases worldwide. Several clinical trials have been conducted to investigate the efficacy and safety of rimegepant for the acute management of migraine, but no systematic review of existing literature has been performed. We therefore performed a meta-analysis to investigate the efficacy and safety of rimegepant in treatment of patients with migraine. Method Pubmed, Embased, and Cochrane Library were searched from January 2001 to August 2019 for randomized controlled trials (RCTs). Four RCTs with 3,827 patients were finally included in our study. Result We pooled 3,827 patients from four RCTs, and the primary endpoints were freedom from pain, most bothersome symptom, and pain relief at 2 hr post dose. We found that 75 mg rimegepant led to significant freedom from pain (P < 0.001), pain relief (P < 0.001), and freedom from the most bothersome symptom (P < 0.001) at 2 hr post dose compared with the placebo. In addition, there was no statistically significant increase in adverse events compared with the placebo. Conclusions 75 mg rimegepant had good efficacy and safety for acute treatment of migraine. Further studies are needed to compare the efficacy of rimegepant with traditional drugs for acute management of migraine.
Collapse
Affiliation(s)
- Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanbo Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|