1
|
Simultaneous activation of the α1A-, α1B- and α1D-adrenoceptor subtypes in the nucleus accumbens reduces accumbal dopamine efflux in freely moving rats. Behav Pharmacol 2015; 26:73-80. [PMID: 25438092 DOI: 10.1097/fbp.0000000000000113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intra-accumbal infusion of the α1-adrenergic agonist methoxamine, which has comparable affinity for α1A-, α1B- and α1D-adrenoceptor subtypes, fails to alter noradrenaline efflux but reduces dopamine efflux in the nucleus accumbens of rats. In-vivo microdialysis experiments were carried out to analyse the putative contribution of α1A-, α1B- and α1D-adrenoceptor subtypes to the methoxamine-induced decrease in accumbal dopamine efflux in freely moving rats. The drugs used were dissolved in the infusion medium and administered locally through a dialysis membrane. Intra-accumbal infusions of the α1A-adrenoceptor antagonist 5-methylurapidil (6 pmol), the α1B-adrenoceptor antagonist cyclazosin (0.6 and 6 pmol) and the α1D-adrenoceptor antagonist BMY 7378 (0.6 pmol) did not alter accumbal efflux of noradrenaline or dopamine: pretreatment with each of these α1-adrenoceptor subtype-selective antagonists counteracted the methoxamine (24 pmol)-induced decrease in accumbal dopamine efflux. Doses indicated are the total amount of drug administered over a 60-min infusion period. These results clearly suggest that the α1A-, α1B- and α1D-adrenoceptor subtypes in the nucleus accumbens mediate the α1-adrenergic agonist methoxamine-induced decrease in accumbal dopamine efflux. The present study also provides in-vivo neurochemical evidence indicating that concomitant, but not separate, activation of the α1A-, α1B- and α1D-adrenoceptors in the nucleus accumbens is required for α1-adrenergic inhibition of accumbal dopaminergic activity.
Collapse
|
2
|
McGrath JC. Localization of α-adrenoceptors: JR Vane Medal Lecture. Br J Pharmacol 2015; 172:1179-94. [PMID: 25377869 PMCID: PMC4337695 DOI: 10.1111/bph.13008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/06/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED This review is based on the JR Vane Medal Lecture presented at the BPS Winter Meeting in December 2011 by J.C. McGrath. A recording of the lecture is included as supporting information. It covers his laboratory's work from 1990 to 2010 on the localization of vascular α1 -adrenoceptors in native tissues, mainly arteries. MAIN POINTS (i) α1 -adrenoceptors are present on several cell types in arteries, not only on medial smooth muscle, but also on adventitial, endothelial and nerve cells; (ii) all three receptor subtypes (α1 A , α1 B , α1 D ) are capable of binding ligands at the cell surface, strongly indicating that they are capable of function and not merely expressed. (iii) all of these cell types can take up an antagonist ligand into the intracellular compartments to which endocytosing receptors move; (iv) each individual subtype can exist at the cell surface and intracellularly in the absence of the other subtypes. As functional pharmacological experiments show variations in the involvement of the different subtypes in contractions of different arteries, it is concluded that the presence and disposition of α1 -adrenoceptors in arteries is not a simple guide to their involvement in function. Similar locations of the subtypes, even in different cell types, suggest that differences between the distribution of subtypes in model systems do not directly correlate with those in native tissues. This review includes a historical summary of the alternative terms used for adrenoceptors (adrenergic receptors, adrenoreceptors) and the author's views on the use of colours to illustrate different items, given his partial colour-blindness.
Collapse
Affiliation(s)
- John C McGrath
- School of Life Sciences, University of GlasgowGlasgow, UK
| |
Collapse
|
3
|
Lei B, Schwinn DA, Morris DP. Stimulation of α1a adrenergic receptors induces cellular proliferation or antiproliferative hypertrophy dependent solely on agonist concentration. PLoS One 2013; 8:e72430. [PMID: 23991110 PMCID: PMC3749976 DOI: 10.1371/journal.pone.0072430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/08/2013] [Indexed: 12/05/2022] Open
Abstract
Stimulation of α1aAdrenergic Receptors (ARs) is known to have anti-proliferative and hypertrophic effects; however, some studies also suggests this receptor can increase cell proliferation. Surprisingly, we find the α1aAR expressed in rat-1 fibroblasts can produce either phenotype, depending exclusively on agonist concentration. Stimulation of the α1aAR by high dose phenylephrine (>10−7 M) induces an antiproliferative, hypertrophic response accompanied by robust and extended p38 activation. Inhibition of p38 with SB203580 prevented the antiproliferative response, while inhibition of Erk or Jnk had no effect. In stark contrast, stimulation of the α1aAR with low dose phenylephrine (∼10−8 M) induced an Erk-dependent increase in cellular proliferation. Agonist-induced Erk phosphorylation was preceded by rapid FGFR and EGFR transactivation; however, only EGFR inhibition blocked Erk activation and proliferation. The general matrix metalloprotease inhibitor, GM6001, blocked agonist induced Erk activation within seconds, strongly suggesting EGFR activation involved extracellular triple membrane pass signaling. Erk activation required little Ca2+ release and was blocked by PLCβ or PKC inhibition but not by intracellular Ca2+ chelation, suggesting Ca2+ independent activation of novel PKC isoforms. In contrast, Ca2+ release was essential for PI3K/Akt activation, which was acutely maximal at non-proliferative doses of agonist. Remarkably, our data suggests EGFR transactivation leading to Erk induced proliferation has the lowest activation threshold of any α1aAR response. The ability of α1aARs to induce proliferation are discussed in light of evidence suggesting antagonistic growth responses reflect native α1aAR function.
Collapse
Affiliation(s)
- Beilei Lei
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Debra A. Schwinn
- Departments of Anesthesiology, Pharmacology, Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Daniel P. Morris
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
4
|
Purkayastha S, Ford J, Kanjilal B, Diallo S, Del Rosario Inigo J, Neuwirth L, El Idrissi A, Ahmed Z, Wieraszko A, Azmitia EC, Banerjee P. Clozapine functions through the prefrontal cortex serotonin 1A receptor to heighten neuronal activity via calmodulin kinase II-NMDA receptor interactions. J Neurochem 2011; 120:396-407. [PMID: 22044428 DOI: 10.1111/j.1471-4159.2011.07565.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant dopamine release in the prefrontal cortex (PFC) is believed to underlie schizophrenia, but the mechanistic pathway through which a widely used antipsychotic, clozapine (Clz), evokes neurotransmitter-releasing electrical stimulation is unclear. We analyzed Clz-evoked regulation of neuronal activity in the PFC by stimulating axons in layers IV and V and recording the electrical effect in the post-synaptic pyramidal cells of layers II and III. We observed a Clz-evoked increase in population spike (PS), which was mediated by serotonin 1A receptor (5-HT(1A)-R), phospholipase Cβ, and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Immunoblotting demonstrated that the Clz-activation of CaMKII was 5-HT(1A)-R-mediated. Intriguingly, the NMDA receptor (NMDA-R) antagonist (±)2-amino-5-phosphonovaleric acid (APV) eliminated the Clz-mediated increase in PS, suggesting that the 5-HT(1A)-R, NMDA-R and CaMKII form a synergistic triad, which boosts excitatory post-synaptic potential (EPSP), thereby enhancing PS. In corroboration, Clz as well as NMDA augmented field EPSP (fEPSP), and WAY100635 (a 5-HT(1A)-R antagonist), APV, and a CaMKII inhibitor eliminated this increase. As previously shown, CaMKII binds to the NMDA-R 2B (NR2B) subunit to become constitutively active, thereby inducing α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor recruitment to the post-synaptic membrane and an increase in fEPSP. Co-immunoprecipitation demonstrated that Clz potentiates interactions among CaMKII, NR2B, and 5-HT(1A)-R, possibly in the membrane rafts of the post-synaptic density (PSD), because pretreatment with methyl-β-cyclodextrin (MCD), an agent that disrupts rafts, inhibited both co-immunoprecipitation as well as fEPSP. In summary, Clz functions in the PFC by orchestrating a synergism among 5-HT(1A)-R, CaMKII, and NMDA-R, which augments excitability in the PFC neurons of layers II/III.
Collapse
Affiliation(s)
- Sudarshana Purkayastha
- CSI/IBR Center for Developmental Neuroscience, The College of Staten Island, Staten Island, New York 10314, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Daly CJ, McGrath JC. Previously unsuspected widespread cellular and tissue distribution of β-adrenoceptors and its relevance to drug action. Trends Pharmacol Sci 2011; 32:219-26. [PMID: 21429599 DOI: 10.1016/j.tips.2011.02.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/11/2011] [Accepted: 02/11/2011] [Indexed: 01/05/2023]
Abstract
The discovery of β-adrenoceptors in previously unsuspected cell types is contributing to the rethinking of new drug targets. Recent developments in β-adrenoceptor pharmacology might have excited and surprised James Black, given his interest in developing drugs based on the selective manipulation of receptors to alter physiological responses. β-adrenoceptors continue to generate surprises at molecular and pharmacological levels that often require knowledge of receptor location to interpret. In this review, we emphasize the use of fluorescent ligands as the most selective means of demonstrating receptor localization. Fluorescent ligand binding in live tissues can provide quantitative pharmacological data, under carefully controlled conditions, relevant to other signalling parameters. Consideration of the role of β-adrenoceptors in many cell types (previously ignored) is needed to understand the actions of drugs at β-adrenoceptors throughout the body, particularly in the lung epithelium, vascular endothelium, immune cells and other 'structural' and 'restorative' cell types.
Collapse
Affiliation(s)
- C J Daly
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
6
|
White CW, Short JL, Haynes JM, Evans RJ, Ventura S. The residual nonadrenergic contractile response to nerve stimulation of the mouse prostate is mediated by acetylcholine but not ATP in a comparison with the mouse vas deferens. J Pharmacol Exp Ther 2010; 335:489-96. [PMID: 20724483 PMCID: PMC2967401 DOI: 10.1124/jpet.110.172130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/18/2010] [Indexed: 11/22/2022] Open
Abstract
Neuronal release of noradrenaline is primarily responsible for the contraction of prostatic smooth muscle in all species, and this forms the basis for the use of α(1)-adrenoceptor antagonists as pharmacotherapies for benign prostatic hyperplasia. Previous studies in mice have demonstrated that a residual nonadrenergic component to nerve stimulation remains after α(1)-adrenoceptor antagonism. In the guinea pig and rat prostate and the vas deferens of guinea pigs, rats, and mice, ATP is the mediator of this residual contraction. This study investigates the mediator of residual contraction in the mouse prostate. Whole prostates from wild-type, α(1A)-adrenoceptor, and P2X1-purinoceptor knockout mice were mounted in organ baths, and the isometric force that tissues developed in response to electrical field stimulation or exogenously applied agonists was recorded. Deletion of the P2X1 purinoceptor did not affect nerve-mediated contraction. Furthermore, the P2-purinoceptor antagonist suramin (30 μM) failed to attenuate nerve-mediated contractions in wild-type, α(1A)-adrenoceptor, or P2X1-purinoceptor knockout mice. Atropine (1 μM) attenuated contraction in prostates taken from wild-type mice. In the presence of prazosin (0.3 μM) or guanethidine (10 μM), or in prostates taken from α(1A)-adrenoceptor knockout mice, residual nerve-mediated contraction was abolished by atropine (1 μM), but not suramin (30 μM). Exogenously administered acetylcholine elicited reproducible concentration-dependent contractions of the mouse prostate that were atropine-sensitive (1 μM), but not prazosin-sensitive (0.3 μM). Acetylcholine, but not ATP, mediates the nonadrenergic component of contraction in the mouse prostate. This cholinergic component of prostatic contraction is mediated by activation of muscarinic receptors.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Adenosine Triphosphate/metabolism
- Adrenergic alpha-1 Receptor Agonists
- Adrenergic alpha-1 Receptor Antagonists
- Animals
- Atropine/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation
- Male
- Mice
- Mice, Knockout
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/metabolism
- Organ Culture Techniques
- Prazosin/pharmacology
- Prostate/drug effects
- Prostate/innervation
- Prostate/metabolism
- Prostate/physiology
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Purinergic P2X1/agonists
- Receptors, Purinergic P2X1/antagonists & inhibitors
- Receptors, Purinergic P2X1/genetics
- Vas Deferens/drug effects
- Vas Deferens/innervation
- Vas Deferens/metabolism
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Carl W White
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
7
|
Segura V, Flacco N, Oliver E, Barettino D, D'Ocon P, Ivorra MD. Alpha1-adrenoceptors in the rat cerebral cortex: new insights into the characterization of alpha1L- and alpha1D-adrenoceptors. Eur J Pharmacol 2010; 641:41-8. [PMID: 20511116 DOI: 10.1016/j.ejphar.2010.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 04/14/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Among the three alpha(1)-adrenoceptor subtypes (alpha(1A), alpha(1B) and alpha(1D)) a peculiar intracellular localization and poor coupling to membrane signals of cloned alpha(1D)-adrenoceptor have been reported. In addition, the alpha(1L)-adrenoceptor (low affinity for prazosin), a functional phenotype of alpha(1A), has been described. The purpose of this work was to analyze the expression, cellular localization and coupling to membrane signalling (inositol phosphate accumulation) of alpha(1)-adrenoceptor subtypes in a native tissue, the rat cerebral cortex. mRNA for the three subtypes was quantified by real-time RT-PCR (alpha(1D)>alpha(1B)>>alpha(1A)). alpha(1)-Adrenoceptors were also detected by immunoblotting, revealing alpha(1A)- and alpha(1B)-adrenoceptors to be predominantly expressed in the membrane fraction and the alpha(1D)-adrenoceptor to be localized in the cytosolic fraction. Competitive radioligand binding studies revealed the presence of alpha(1D)-adrenoceptor in tissue homogenates, whereas only alpha(1A)- and alpha(1B)-subtypes were detected in membranes. The proportion of alpha(1A)-adrenoceptor increased after treatment with noradrenaline, suggesting differences in agonist-mediated trafficking. Saturation experiments detected high- and low (alpha(1A/L))-prazosin binding sites, the latter of which disappeared on incubation with GppNHp. The alpha(1A/L)-adrenoceptor was heavily implicated in the inositol phosphate response, while the alpha(1D)-subtype did not play a relevant role. These results suggest that the predominant cytosolic localization of alpha(1D)-adrenoceptor lies behind its poor coupling to membrane signalling such as inositol phosphate pathway. The fact that the alpha(1L)-adrenoceptor detected in radioligand binding studies disappeared in the presence of GppNHp implies that it represents a conformational state of the alpha(1A)-adrenoceptor coupled to G-protein.
Collapse
Affiliation(s)
- Vanessa Segura
- Departamento de Farmacología, Facultat de Farmàcia, Universitat de València, Avda. Vicent Andrés Estelles s/n, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Methven L, Simpson PC, McGrath JC. Alpha1A/B-knockout mice explain the native alpha1D-adrenoceptor's role in vasoconstriction and show that its location is independent of the other alpha1-subtypes. Br J Pharmacol 2010; 158:1663-75. [PMID: 19888965 DOI: 10.1111/j.1476-5381.2009.00462.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Theoretically, three alpha(1)-adrenoceptor subtypes can interact at the signalling level to alter vascular contraction or at the molecular level to alter each other's cellular location. The alpha(1A/B)-adrenoceptor knockout mouse (alpha(1A/B)-KO) was used to study the isolated alpha(1D)-adrenoceptor to consider these potential interactions in native tissue. EXPERIMENTAL APPROACH Pharmacological analysis of carotid and mesenteric arteries employed wire myography and fluorescent ligand binding (alpha(1)-adrenoceptor ligand BODIPY FL-prazosin, QAPB). KEY RESULTS alpha(1A/B)-KO carotid had clear alpha(1D)-adrenoceptor-induced contractions. In WT carotid alpha(1D)-adrenoceptor dominated but all three alpha(1)-subtypes participated. alpha(1A/B)-KO mesenteric had alpha(1D)-adrenoceptor responses with high sensitivity and small maximum, explaining how alpha(1D)-adrenoceptor could determine agonist sensitivity in WT. In both arteries alpha(1A/B)-KO fluorescence levels were reduced but pharmacologically more consistent with 'pure'alpha(1D)-adrenoceptors. alpha(1D)-Adrenoceptor binding in alpha(1A/B)-KO was observed on the cell surface and intracellularly and was present in a high proportion of smooth-muscle cells in both strains, regardless of artery type. CONCLUSIONS AND IMPLICATIONS 'Pure'alpha(1D)-adrenoceptor pharmacology in alpha(1A/B)-KO provides a quantitative standard. Functionally, the alpha(1D)- and alpha(1A)-adrenoceptors produce additive responses and do not significantly compensate for each other. alpha(1D)-Adrenoceptor contributes to sensitivity even in resistance arteries. In alpha(1A/B)-KO, the loss of alpha(1A)- and alpha(1B)-adrenoceptors is reflected by a general decrease in fluorescence, but similar binding distribution to WT indicates that the alpha(1D)-adrenoceptor location in native smooth-muscle cells is not influenced by other alpha(1)-adrenoceptors. Equivalent levels of receptors did not correspond to equivalent responses. In conclusion, alpha(1)-subtypes do not interact but provide independent alternative signals for vascular regulation.
Collapse
Affiliation(s)
- L Methven
- Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | |
Collapse
|
9
|
Methven L, McBride M, Wallace GA, McGrath JC. The alpha 1B/D-adrenoceptor knockout mouse permits isolation of the vascular alpha 1A-adrenoceptor and elucidates its relationship to the other subtypes. Br J Pharmacol 2009; 158:209-24. [PMID: 19572943 PMCID: PMC2795267 DOI: 10.1111/j.1476-5381.2009.00269.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/30/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Mesenteric and carotid arteries from the alpha(1B/D)-adrenoceptor knockout (alpha(1B/D)-KO) were employed to isolate alpha(1A)-adrenoceptor pharmacology and location and to reveal these features in the wild-type (WT) mouse. EXPERIMENTAL APPROACH Functional pharmacology by wire myography and receptor localization by confocal microscopy, using the fluorescent alpha(1)-adrenoceptor ligand BODIPY FL-Prazosin (QAPB), on mesenteric (an 'alpha(1A)-adrenoceptor' tissue) and carotid (an 'alpha(1D)-adrenoceptor' tissue) arteries. KEY RESULTS Alpha(1B/D)-KO mesenteric arteries showed straightforward alpha(1A)-adrenoceptor agonist/antagonist pharmacology. WT had complex pharmacology with alpha(1A)- and alpha(1D)-adrenoceptor components. alpha(1B/D)-KO had a larger alpha(1A)-adrenoceptor response suggesting compensatory up-regulation: no increase in fluorescent ligand binding suggests up-regulation of signalling. alpha(1B/D)-KO carotid arteries had low efficacy alpha(1A)-adrenoceptor responses. WT had complex pharmacology consistent with co-activation of all three subtypes. Fluorescent binding had straightforward alpha(1A)-adrenoceptor characteristics in both arteries of alpha(1B/D)-KO. Fluorescent binding varied between cells in relative intracellular and surface distribution. Total fluorescence was reduced in the alpha(1B/D)-KO due to fewer smooth muscle cells showing fluorescent binding. WT binding was greater and sensitive to alpha(1A)- and alpha(1D)-adrenoceptor antagonists. CONCLUSIONS AND IMPLICATIONS The straightforward pharmacology and fluorescent binding in the alpha(1B/D)-KO was used to interpret the properties of the alpha(1A)-adrenoceptor in the WT. Reduced total fluorescence in alpha(1B/D)-KO arteries, despite a clear difference in the functionally dominant subtype, indicates that measurement of receptor protein is unlikely to correlate with function. Fewer cells bound QAPB in the alpha(1B/D)-KO suggesting different cellular phenotypes of alpha(1A)-adrenoceptor exist. The alpha(1B/D)-KO provides robust assays for the alpha(1A)-adrenoceptor and takes us closer to understanding multi-receptor subtype interactions.
Collapse
MESH Headings
- Adrenergic Agonists/pharmacology
- Adrenergic Antagonists/pharmacology
- Adrenergic alpha-1 Receptor Agonists
- Animals
- Carotid Arteries/drug effects
- Carotid Arteries/physiology
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Protein Subunits/classification
- Protein Subunits/physiology
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/deficiency
- Receptors, Adrenergic, alpha-1/physiology
Collapse
Affiliation(s)
- L Methven
- Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | |
Collapse
|
10
|
Han C, Bowen WC, Michalopoulos GK, Wu T. Alpha-1 adrenergic receptor transactivates signal transducer and activator of transcription-3 (Stat3) through activation of Src and epidermal growth factor receptor (EGFR) in hepatocytes. J Cell Physiol 2008; 216:486-97. [PMID: 18314882 DOI: 10.1002/jcp.21420] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocytes express adrenergic receptors (ARs) that modulate several functions, including liver regeneration, hepatocyte proliferation, glycogenolysis, gluconeogenesis, synthesis of urea and fatty acid metabolism. Adrenergic hepatic function in adults is mainly under the control of alpha(1)-ARs; however, the mechanism through which they influence diverse processes remains incompletely understood. This study describes a novel alpha(1)-AR-mediated transactivation of signal transducer and activator of transcription-3 (Stat3) in primary and transformed hepatocytes. Treatment of primary rat hepatocytes with the alpha(1)-AR agonist, phenylephrine (PE), induced a rapid phosphorylation of Stat3. PE also increased Stat3 phosphorylation, DNA binding and transcription activity in transformed human hepatocellular carcinoma cells (Hep3B). The PE-induced Stat3 phosphorylation, DNA binding and reporter activity were completely blocked by the selective alpha(1)-AR antagonist, prazosin. In addition, transfection of Hep3B cells with human alpha(1B)-AR expression vector also enhanced Stat3 phosphorylation and reporter activity. Moreover, overexpression of RGS2, a protein inhibitor of G(q/11) signaling, blocked PE-induced Stat3 phosphorylation and reporter activity. The observations that PE induced the formation of c-Src-Stat3 binding complex and phosphorylation of epidermal growth factor receptor (EGFR) and that inhibiting Src and EGFR prevented PE-induced Stat3 activation indicate the involvement of Src and EGFR. Taken together, these observations demonstrate a novel alpha(1)-AR-mediated Stat3 activation that involves G(q/11), Src, and EGFR in hepatic cells.
Collapse
Affiliation(s)
- Chang Han
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
11
|
Sun B, Kintsurashvili E, Ona D, Ignjacev-Lazich I, Gavras I, Gavras H. Inhibition of the alpha(1D)-adrenergic receptor gene by RNA interference (RNAi) in rat vascular smooth muscle cells and its effects on other adrenergic receptors. Vascul Pharmacol 2007; 46:367-72. [PMID: 17307398 PMCID: PMC1868522 DOI: 10.1016/j.vph.2007.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/06/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Sympathetic-induced vasoconstriction is mediated by various adrenergic receptor (AR) subtypes located on membranes of vascular smooth muscle cells (VSMC) located on the arterial wall, but is mostly attributed to activation of the alpha(1D)-AR. In order to study interaction and cross-talk among AR genes, we induced post-transcriptional silencing of the alpha(1D)-AR gene in cultured VSMC using the RNAi technique. A pSEC neo expression plasmid vector containing a small interfering RNA (siRNA) sequence selected to bind to the targeted mRNA of the alpha(1D)-AR gene was transfected into cultured VSMC from rat aorta. The RNA expression of all AR-subtype genes was assessed by Q-RT-PCR and the alpha(1D) and alpha(2A)-AR proteins quantified by Western blot. In siRNA-transfected cells, the alpha(1D)-AR protein levels decreased by 55%, 69% and 75% at 24 h, 48 h and 72 h, respectively (p<0.03-0.01) with progressive increases in its gene expression by 50%-61% and concurrent increase in alpha(2A)-AR protein peaking at 48 h. Decreases were noted in expression of the alpha(1A), alpha(2A), and beta(3) AR genes. We conclude that post-transcriptional silencing of the alpha(1D)-AR gene leads to significant decrease in receptor protein despite reactive increase in gene expression. However, suppression of one AR leads to reactive changes in other subtypes, indicating that cross-talk among related genes, whose products have overlapping functions, may partly offset anticipated effects in vivo.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/metabolism
- Cells, Cultured
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Bei Sun
- Hypertension and Atherosclerosis Section of the Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
12
|
Koshimizu TA, Tanoue A, Tsujimoto G. Clinical implications from studies of alpha1 adrenergic receptor knockout mice. Biochem Pharmacol 2006; 73:1107-12. [PMID: 17141736 DOI: 10.1016/j.bcp.2006.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/27/2006] [Accepted: 11/02/2006] [Indexed: 11/18/2022]
Abstract
alpha1-Adrenergic receptors (alpha1-ARs) modulate a large number of physiological functions in cardiovascular and noncardiovascular tissues. Because individual members of the alpha1-AR family (alpha1A-, alpha1B-, and alpha1D-ARs) have overlapping expression profiles in most tissues, elucidation of the precise physiological roles of individual alpha1-AR subtypes remains a challenging task. To alleviate this constraint, a gene targeting approach has been employed to generate mutant mice lacking one or two alpha1-AR genes. Recent studies on these mutant mouse strains are discussed in this article, with an emphasis on the role of alpha1-AR in the central nervous system and lower urinary tracts. These are two major tissues of particular interest for the development of new therapeutic strategies targeted to the alpha1-ARs. By combining gene targeting techniques with pharmacological tools, the specific roles of alpha1-AR subtypes could be delineated.
Collapse
Affiliation(s)
- Taka-aki Koshimizu
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
13
|
Lázaro-Suárez ML, Gómez-Zamudio JH, Gallardo-Ortíz IA, Tanoue A, Tsujimoto G, Farias-Rodríguez VM, Villalobos-Molina R. Chloroethylclonidine reveals that alpha (1 A)-adrenoceptors mediate contraction in aorta of alpha (1 D)-adrenoceptor knockout mice. ACTA ACUST UNITED AC 2006; 25:179-83. [PMID: 16176450 DOI: 10.1111/j.1474-8673.2005.00348.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1 We have characterized the alpha(1)-adrenoceptor subtypes present in isolated aorta of the alpha(1D)-adrenoceptor knockout (KO) mice, by chloroethylclonidine (CEC)-induced alkylation and their protection by selective alpha(1)-adrenoceptor antagonists. 2 The alpha(1D)-adrenoceptor is involved in the contractile response to noradrenaline in wild type (WT) mouse aorta. 3 In WT mice 5-methylurapidil (5-MU, an alpha(1A)-adrenoceptor antagonist) or BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl]-8-azaspiro[4.5] decane-7,9 dione, a selective alpha(1D)-adrenoceptor antagonist), protected the receptors from CEC-induced (alpha(1B/D)-adrenoceptor) alkylation, the combination of both antagonists resulted in complete protection, while AH11110A (1-[biphenyl-2-yloxy]-4-imino-4-piperidin-1-yl-butan-2-ol, an alpha(1B)-adrenoceptor antagonist) did not protect. 4 In aorta of KO mice there was a 19-fold rightward shift in noradrenaline effective concentration (EC(50)) compared with WT; while 5-MU alone or in combination with AH11110A protected alpha(1)-adrenoceptors to the same extent. 5 The data indicate that alpha(1A)-adrenoceptors mediate contraction and suggest their role in maintaining homeostasis in the alpha(1D)-adrenoceptors KO mice.
Collapse
Affiliation(s)
- M L Lázaro-Suárez
- Facultad de Ciencias Médicas y Biológicas 'Dr. Ignacio Chávez', Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich., México
| | | | | | | | | | | | | |
Collapse
|
14
|
Girard BA, Lelievre V, Braas KM, Razinia T, Vizzard MA, Ioffe Y, El Meskini R, Ronnett GV, Waschek JA, May V. Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J Neurochem 2006; 99:499-513. [PMID: 17029602 DOI: 10.1111/j.1471-4159.2006.04112.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are closely related neurotrophic peptides of the secretin/glucagon family. The two peptides are derived from a common ancestral gene and share many functional attributes in neuronal development/regeneration which occur not only from overlapping receptor subtype signaling but also through common mechanisms regulating their expression. Although PACAP or VIP null mice have been generated for study, it is unclear whether the expression of the complementary peptide or their receptor systems are altered in a compensatory manner during nervous system development. By radioimmunoassay and quantitative PCR measurements, we first show that PACAP and VIP have very different temporal patterns of expression in developing postnatal mouse brain. In wild-type animals, PACAP transcript and peptide levels increased rapidly 2- and 5-fold, respectively, within 1 week of age. These levels at 1 week of age were maintained through adulthood. VIP transcript and peptide levels, by contrast, increased 25- and 50-fold, respectively, over a later time course. In parallel studies of development, there were no apparent compensatory increases in brain VIP expression in the PACAP knockout animals, PACAP expression in the VIP-deficient animals, or receptor mRNA levels in either genotype. To the contrary, there was evidence for developmental delays in the expression of peptide and receptor transcripts in the knockout animals. A series of behavioral and neurological tests demonstrated differences between the knockout genotypes, revealing some functional distinctions between the two genes. These results suggest that the PACAP and VIP have evolved to possess distinct biological activities and intimate that the respective knockout phenotypes represent deficits unmitigated by the actions of the complementary related peptide.
Collapse
Affiliation(s)
- Beatrice A Girard
- Department of Anatomy, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Alpha1-Adrenergic receptors (AR) play an important role in the regulation of physiological responses mediated by norepinephrine and epinephrine, particularly in the cardiovascular system. The three cloned alpha1-AR subtypes (alpha1A, alpha1B, and alpha1D) are G protein-coupled receptors that signal through the Gq/11 signaling pathway, each showing distinct pharmacological properties and tissue distributions. However, due to the lack of highly subtype-selective drugs, the functional roles of individual subtypes are still not clear. Development of new subtype-specific drugs will greatly facilitate the identification of the functions of each subtype. Conopeptide rho-TIA has been found to be a new alpha1B-AR selective antagonist with different modes of inhibition at alpha1-AR subtypes. In addition, recent studies using genetically engineered mice have shed some light on alpha1-AR functions in vivo, especially in the cardiovascular system and brain. Several proteins have been shown to interact directly with particular alpha1-AR, and may be important in regulating receptor function. Receptor heterodimerization has been shown to be important for cell surface expression, signaling and internalization. These new observations are likely to help elucidate the functional roles of individual alpha1-AR subtypes.
Collapse
Affiliation(s)
- Zhong-jian Chen
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
16
|
Deighan C, Methven L, Naghadeh MM, Wokoma A, Macmillan J, Daly CJ, Tanoue A, Tsujimoto G, McGrath JC. Insights into the functional roles of alpha(1)-adrenoceptor subtypes in mouse carotid arteries using knockout mice. Br J Pharmacol 2005; 144:558-65. [PMID: 15655508 PMCID: PMC1576034 DOI: 10.1038/sj.bjp.0706089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. alpha(1)-Adrenoceptor (AR) subtypes in mouse carotid arteries were characterised using a combination of agonist/antagonist pharmacology and knockout (KO) mice. 2. Phenylephrine (PE) was most potent in the alpha(1B)-KO (pEC(50)=6.9+/-0.2) followed by control (pEC(50)=6.3+/-0.06) and alpha(1D)-KO (pEC(50)=5.5+/-0.07). Both N-[5-(4,5-dihydro-1H-imidazol-2yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl] methanesulphonamide hydrobromide (A-61603) and 5-hydroxytryptamine (5-HT) were more potent in the alpha(1D)-KO (pEC(50)=7.4+/-0.27 and 7.4+/-0.05, respectively) than the control (pEC(50)=6.9+/-0.09 and 6.9+/-0.08, respectively) and equipotent with the control in the alpha(1B)-KO (pEC(50)=6.7+/-0.07 and 6.8+/-0.04). Maximum responses to PE and A-61603 were reduced in the alpha(1D)-KO compared to control; there was no difference in maximum responses to 5-HT. 3. In control arteries, prazosin and 5-methylurapidil acted competitively with pA(2) of 9.6 and 7.5, respectively. BMY7378 produced antagonism only at the highest concentration used (100 nM; pK(B) 8.3). 4. Prazosin, 5-methylurapidil and BMY7378 acted competitively in alpha(1B)-KO carotid arteries with pA(2) of 10.3, 7.6 and 9.6, respectively. 5. In the alpha(1D)-KO, against PE, 5-methylurapidil produced a pA(2) of 8.1. pK(B) values were calculated for prazosin (10.6) and BMY7378 (7.0). Against A-61603, 5-methylurapidil had a pA(2) of 8.5, prazosin 8.6, while BMY7378 had no effect. 6. In conclusion, the alpha(1B)-KO mediates contraction solely through alpha(1D)-ARs and the alpha(1D)-KO through alpha(1A)-ARs. Extrapolating back to the control from the knockout data suggests that all three subtypes could be involved in the responses, but we propose that the alpha(1D)-AR causes the contractile response and that the role of the alpha(1B)-AR is mainly regulatory.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Agonists
- Adrenergic alpha-1 Receptor Antagonists
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/metabolism
- Dose-Response Relationship, Drug
- In Vitro Techniques
- Male
- Mice
- Mice, Knockout
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/genetics
Collapse
Affiliation(s)
- Clare Deighan
- Autonomic Physiology Unit, Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12-8QQ
- Author for correspondence:
| | - Laura Methven
- Autonomic Physiology Unit, Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12-8QQ
| | - Mustafa M Naghadeh
- Department of Physiology, Faculty of Medicine, University of Medical Sciences & Health Services, Tabriz, Iran
| | - Alexis Wokoma
- Autonomic Physiology Unit, Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12-8QQ
| | - Joyce Macmillan
- Autonomic Physiology Unit, Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12-8QQ
| | - Craig J Daly
- Autonomic Physiology Unit, Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12-8QQ
| | - Akito Tanoue
- Department of Genomic Drug Discovery Science, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Gozoh Tsujimoto
- Department of Genomic Drug Discovery Science, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - John C McGrath
- Autonomic Physiology Unit, Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12-8QQ
| |
Collapse
|
17
|
McGrath JC, Deighan C, Briones AM, Shafaroudi MM, McBride M, Adler J, Arribas SM, Vila E, Daly CJ. New aspects of vascular remodelling: the involvement of all vascular cell types. Exp Physiol 2005; 90:469-75. [PMID: 15894533 DOI: 10.1113/expphysiol.2005.030130] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.
Collapse
MESH Headings
- Animals
- Arteriosclerosis/pathology
- Blood Vessels/cytology
- Blood Vessels/pathology
- Blood Vessels/physiology
- Endothelial Cells/physiology
- Endothelium, Vascular/physiology
- Extracellular Matrix/physiology
- Humans
- Hypertension/pathology
- Intracellular Membranes/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/physiology
- Oxidative Stress/physiology
- Receptors, Adrenergic, alpha-1/physiology
Collapse
Affiliation(s)
- John C McGrath
- Autonomic Physiology Unit, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pediani JD, Colston JF, Caldwell D, Milligan G, Daly CJ, McGrath JC. Beta-arrestin-dependent spontaneous alpha1a-adrenoceptor endocytosis causes intracellular transportation of alpha-blockers via recycling compartments. Mol Pharmacol 2005; 67:992-1004. [PMID: 15626751 DOI: 10.1124/mol.104.008417] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antagonist ligand BODIPY-FL-prazosin (QAPB) fluoresces when bound to bovine alpha(1a)-adrenoceptors (ARs). Data indicate that the receptor-ligand complex is spontaneously internalized by beta-arrestin-dependent endocytosis. Internalization of the ligand did not occur in beta-arrestin-deficient cells; was blocked or reversed by another alpha(1) ligand, phentolamine, indicating it to reflect binding to the orthosteric recognition site; and was prevented by blocking clathrin-mediated endocytosis. The ligand showed rapid, diffuse, low-intensity, surface binding, superseded by punctate intracellular binding that developed to equilibrium in 50 to 60 min and was reversible on ligand removal, indicating a dynamic equilibrium. In cells expressing a human alpha(1a)-AR-enhanced green fluorescent protein (EGFP) 2 fusion protein, BODIPY-R-558/568-prazosin (RQAPB) colocalized with the fusion, indicating that the ligand gained access to all compartments containing the receptor, and, conversely, that the receptor has affinity for the ligand at all of these sites. The distribution of QAPB binding sites was similar for receptors with or without EGFP2, validating the fusion protein as an indicator of receptor location. The ligand partially colocalized with beta-arrestin in recycling and late endosomes, indicating receptor transit without destruction. Organelles containing receptors showed considerable movement consistent with a transportation function. This was absent in beta-arrestin-deficient cells, indicating that both constitutive receptor internalization and subsequent intracellular transportation are beta-arrestin-dependent. Calculations of relative receptor number indicate that at steady state, less than 30% of receptors reside on the cell surface and that recycling is rapid. We conclude that alpha(1a)-ARs recycle rapidly by an agonist-independent, constitutive, beta-arrestin-dependent process and that this can transport "alpha-blockers" into cells carrying these receptors.
Collapse
Affiliation(s)
- John D Pediani
- Autonomic Physiology Unit, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Hieble JP. Alpha1-adrenoceptor subtype substitution in knockout mice. Br J Pharmacol 2004; 142:919. [PMID: 15210582 PMCID: PMC1575117 DOI: 10.1038/sj.bjp.0705871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- J Paul Hieble
- Department of Urology Research, GlaxoSmithKline, King of Prussia, PA, USA.
| |
Collapse
|