1
|
Kuczmarski AV, Welti LM, Moreau KL, Wenner MM. ET-1 as a Sex-Specific Mechanism Impacting Age-Related Changes in Vascular Function. FRONTIERS IN AGING 2022; 2:727416. [PMID: 35822003 PMCID: PMC9261354 DOI: 10.3389/fragi.2021.727416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/13/2021] [Indexed: 01/30/2023]
Abstract
Aging is a primary risk factor for cardiovascular disease (CVD), which is the leading cause of death in developed countries. Globally, the population of adults over the age of 60 is expected to double by the year 2050. CVD prevalence and mortality rates differ between men and women as they age in part due to sex-specific mechanisms impacting the biological processes of aging. Measures of vascular function offer key insights into cardiovascular health. Changes in vascular function precede changes in CVD prevalence rates in men and women and with aging. A key mechanism underlying these changes in vascular function is the endothelin (ET) system. Studies have demonstrated sex and sex hormone effects on endothelin-1 (ET-1), and its receptors ETA and ETB. However, with aging there is a dysregulation of this system resulting in an imbalance between vasodilation and vasoconstriction. Thus, ET-1 may play a role in the sex differences observed with vascular aging. While most research has been conducted in pre-clinical animal models, we describe more recent translational data in humans showing that the ET system is an important regulator of vascular dysfunction with aging and acts through sex-specific ET receptor mechanisms. In this review, we present translational evidence (cell, tissue, animal, and human) that the ET system is a key mechanism regulating sex-specific changes in vascular function with aging, along with therapeutic interventions to reduce ET-mediated vascular dysfunction associated with aging. More knowledge on the factors responsible for the sex differences with vascular aging allow for optimized therapeutic strategies to attenuate CVD risk in the expanding aging population.
Collapse
Affiliation(s)
- Andrew V Kuczmarski
- University of Delaware, Kinesiology and Applied Physiology, Newark, DE, United States
| | - Laura M Welti
- University of Delaware, Kinesiology and Applied Physiology, Newark, DE, United States
| | - Kerrie L Moreau
- University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Denver Veterans Administrative Medical Center, Geriatric Research Education and Clinical Center, Aurora, CO, United States
| | - Megan M Wenner
- University of Delaware, Kinesiology and Applied Physiology, Newark, DE, United States
| |
Collapse
|
2
|
Sugimoto K, Morais A, Sadeghian H, Qin T, Chung DY, Ashina M, Hougaard A, Ayata C. Intravascular Endothelin-1 does not trigger or increase susceptibility to Spreading Depolarizations. J Headache Pain 2020; 21:127. [PMID: 33109086 PMCID: PMC7590662 DOI: 10.1186/s10194-020-01194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022] Open
Abstract
Objectives Spreading depolarizations (SD) likely manifest as aura in migraineurs. Triggers are unknown although vascular events have been implicated. Direct carotid puncture has been reported to trigger migraine with aura. The potent vasoconstrictor endothelin-1 (ET-1), which can be released from the endothelium under pathological conditions, may play a role. Here, we tested whether intracarotid ET-1 infusion triggers SD and whether systemic ET-1 infusion increases the susceptibility to SD. Methods Carotid infusions were performed in mice (C57BL/6, male) through a catheter placed at the carotid bifurcation via the external carotid artery. Intracarotid ET-1 (1.25 nmol/ml) was infused at various rates (2–16 μl/min) with or without heparin in the catheter and compared with vehicle infusion (PBS with 0.01% acetic acid) or sham-operated mice (n = 5). Systemic infusions ET-1 (1 nmol/kg, n = 7) or vehicle (n = 7) infusions were performed in rats (Sprague-Dawley, male) via the tail vein. Electrical SD threshold and KCl-induced SD frequency were measured after the infusion. Results Intracarotid infusion of saline (n = 19), vehicle (n = 7) or ET-1 (n = 12) all triggered SDs at various proportions (21%, 14% and 50%, respectively). These were often associated with severe hypoperfusion prior to SD onset. Heparinizing the infusion catheter completely prevented SD occurrence during the infusions (n = 8), implicating microembolization from carotid thrombi as the trigger. Sham-operated mice never developed SD. Systemic infusion of ET-1 did not affect the electrical SD threshold or KCl-induced SD frequency. Conclusion Intravascular ET-1 does not trigger or increase susceptibility to SD. Microembolization was the likely trigger for migraine auras in patients during carotid puncture.
Collapse
Affiliation(s)
- Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 6408, Charlestown, MA, 02129, USA.,Department of Neurosurgery, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - Andreia Morais
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 6408, Charlestown, MA, 02129, USA
| | - Homa Sadeghian
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 6408, Charlestown, MA, 02129, USA
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 6408, Charlestown, MA, 02129, USA
| | - David Y Chung
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 6408, Charlestown, MA, 02129, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Anders Hougaard
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 6408, Charlestown, MA, 02129, USA. .,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
3
|
Hougaard A, Younis S, Iljazi A, Sugimoto K, Ayata C, Ashina M. Intravenous Endothelin-1 Infusion Does Not Induce Aura or Headache in Migraine Patients With Aura. Headache 2020; 60:724-734. [PMID: 31994720 DOI: 10.1111/head.13753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To investigate whether intravenously infused provokes migraine aura and migraine headache in migraine patients with aura. BACKGROUND Migraine with aura has been associated with endothelial dysfunction and increased stroke risk. The initiating mechanism of migraine aura symptoms is not known. Experimental provocation of migraine headache using vasoactive peptides has provided tremendous advances in the understanding of migraine pathophysiology but substances that can induce migraine aura have not been identified. Endothelin-1 (ET-1), an endogenous, potent vasoconstrictor peptide released from the vascular endothelium, has been proposed to trigger migraine aura. This hypothesis is based on reports of increased plasma ET-1 levels early during the migraine attacks and the observation that ET-1 applied to the cortical surface potently induces the cortical spreading depolarization, the underlying electrophysiological phenomenon of migraine aura, in animals. Further, endothelial damage due to, for example, carotid puncture and vascular pathology is known to trigger aura episodes. METHODS We investigated whether intravascular ET-1 would provoke migraine aura in patients. Using a two-way crossover, randomized, placebo-controlled, double-blind design, we infused high-dose (8 ng/kg/minutes for 20 minutes) intravenous ET-1 in patients with migraine with typical aura. The primary end-point was the difference in incidence of migraine aura between ET-1 and placebo. Experiments were carried out at a public tertiary headache center (Danish Headache Center, Rigshospitalet Glostrup, Denmark). RESULTS Fourteen patients received intravenous ET-1. No patients reported migraine aura symptoms or migraine headache during or up to 24 hours following the ET-1 infusion. Four patients reported mild to moderate headache only on the ET-1 day, 3 patients reported moderate headache on the placebo day, and 1 patient reported mild headache on both days. No serious adverse events occurred during or after infusion. CONCLUSIONS Provocation of migraine aura by procedures or conditions involving vascular irritation is unlikely to be mediated by ET-1.
Collapse
Affiliation(s)
- Anders Hougaard
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Samaira Younis
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Afrim Iljazi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurosurgery, Yamaguchi University School of Medicine, Yoshida, Japan
| | - Cenk Ayata
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
4
|
Role of endothelin-1 clearance in the haemodynamic responses to endothelin-1 in the pulmonary and hindquarter vasculature of anaesthetised rats. Eur J Pharmacol 2019; 855:124-136. [DOI: 10.1016/j.ejphar.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 11/17/2022]
|
5
|
Davenport AP, Kuc RE, Southan C, Maguire JJ. New drugs and emerging therapeutic targets in the endothelin signaling pathway and prospects for personalized precision medicine. Physiol Res 2018; 67:S37-S54. [PMID: 29947527 DOI: 10.33549/physiolres.933872] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the last thirty years since the discovery of endothelin-1, the therapeutic strategy that has evolved in the clinic, mainly in the treatment of pulmonary arterial hypertension, is to block the action of the peptide either at the ET(A) subtype or both receptors using orally active small molecule antagonists. Recently, there has been a rapid expansion in research targeting ET receptors using chemical entities other than small molecules, particularly monoclonal antibody antagonists and selective peptide agonists and antagonists. While usually sacrificing oral bio-availability, these compounds have other therapeutic advantages with the potential to considerably expand drug targets in the endothelin pathway and extend treatment to other pathophysiological conditions. Where the small molecule approach has been retained, a novel strategy to combine two vasoconstrictor targets, the angiotensin AT(1) receptor as well as the ET(A) receptor in the dual antagonist sparsentan has been developed. A second emerging strategy is to combine drugs that have two different targets, the ET(A) antagonist ambrisentan with the phosphodiesterase inhibitor tadalafil, to improve the treatment of pulmonary arterial hypertension. The solving of the crystal structure of the ET(B) receptor has the potential to identify allosteric binding sites for novel ligands. A further key advance is the experimental validation of a single nucleotide polymorphism that has genome wide significance in five vascular diseases and that significantly increases the amount of big endothelin-1 precursor in the plasma. This observation provides a rationale for testing this single nucleotide polymorphism to stratify patients for allocation to treatment with endothelin agents and highlights the potential to use personalized precision medicine in the endothelin field.
Collapse
Affiliation(s)
- A P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
6
|
Angus JA, Hughes RJA, Wright CE. Distortion of K B estimates of endothelin-1 ET A and ET B receptor antagonists in pulmonary arteries: Possible role of an endothelin-1 clearance mechanism. Pharmacol Res Perspect 2018; 5. [PMID: 29226623 PMCID: PMC5723704 DOI: 10.1002/prp2.374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 11/08/2022] Open
Abstract
Dual endothelin ETA and ETB receptor antagonists are approved therapy for pulmonary artery hypertension (PAH). We hypothesized that ETB receptor‐mediated clearance of endothelin‐1 at specific vascular sites may compromise this targeted therapy. Concentration‐response curves (CRC) to endothelin‐1 or the ETB agonist sarafotoxin S6c were constructed, with endothelin receptor antagonists, in various rat and mouse isolated arteries using wire myography or in rat isolated trachea. In rat small mesenteric arteries, bosentan displaced endothelin‐1 CRC competitively indicative of ETA receptor antagonism. In rat small pulmonary arteries, bosentan 10 μmol L−1 left‐shifted the endothelin‐1 CRC, demonstrating potentiation consistent with antagonism of an ETB receptor‐mediated endothelin‐1 clearance mechanism. Removal of endothelium or L‐NAME did not alter the EC50 or Emax of endothelin‐1 nor increase the antagonism by BQ788. In the presence of BQ788 and L‐NAME, bosentan displayed ETA receptor antagonism. In rat trachea (ETB), bosentan was a competitive ETB antagonist against endothelin‐1 or sarafotoxin S6c. Modeling showed the importance of dual receptor antagonism where the potency ratio of ETA to ETB antagonism is close to unity. In conclusion, the rat pulmonary artery is an example of a special vascular bed where the resistance to antagonism of endothelin‐1 constriction by ET dual antagonists, such as bosentan or the ETB antagonist BQ788, is possibly due to the competition of potentiation of endothelin‐1 by blockade of ETB‐mediated endothelin‐1 clearance located on smooth muscle and antagonism of ETA‐ and ETB‐mediated contraction. This conclusion may have direct application for the efficacy of endothelin‐1 antagonists for treating PAH.
Collapse
Affiliation(s)
- James A Angus
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Vic., Australia
| | - Richard J A Hughes
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Vic., Australia
| | - Christine E Wright
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
7
|
Iljazi A, Ayata C, Ashina M, Hougaard A. The Role of Endothelin in the Pathophysiology of Migraine-a Systematic Review. Curr Pain Headache Rep 2018; 22:27. [PMID: 29557064 DOI: 10.1007/s11916-018-0682-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Vasoactive peptides play a key role in the attack-initiating cascade of migraine. Recent studies have highlighted a potentially important role for endothelin-1, a potent vasoconstrictor peptide, in migraine pathophysiology. Here, we review the current data on endothelin's involvement in migraine. RECENT FINDINGS We identified 23 articles. Nine studies reported on endothelin-1 plasma concentrations in patients with migraine, eight studies investigated relevant genetic associations, five studies investigated endothelin-1 and spreading depression in animals, and one randomized controlled clinical trial tested the efficacy of an endothelin antagonist in the acute treatment of migraine in patients both with and without aura. Elevated endothelin-1 plasma levels have been reported in the early phase of migraine attacks. Genetic abnormalities related to the endothelin type A receptor have been reported in migraineurs. Endothelin-1 potently induces spreading depression in animals, which may explain the connection between endothelial irritation and migraine aura. Endothelin-1 could be a primary factor in the attack-triggering cascade of migraine attacks with and without aura. Additional studies in humans and animal models are needed to further elucidate the role of endothelin-1 in migraine.
Collapse
Affiliation(s)
- Afrim Iljazi
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600, Glostrup, Denmark
| | - Cenk Ayata
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600, Glostrup, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hougaard
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600, Glostrup, Denmark.
| |
Collapse
|
8
|
Kansanen E, Kuosmanen SM, Ruotsalainen AK, Hynynen H, Levonen AL. Nitro-Oleic Acid Regulates Endothelin Signaling in Human Endothelial Cells. Mol Pharmacol 2017; 92:481-490. [DOI: 10.1124/mol.117.109751] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 11/22/2022] Open
|
9
|
Chan EAW, Buckley B, Farraj AK, Thompson LC. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction. Pharmacol Ther 2016; 165:63-78. [PMID: 27222357 PMCID: PMC6390286 DOI: 10.1016/j.pharmthera.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease have been explored, although linkage with specific factors or genes remains limited. These hypotheses may or may not also lead to particulate matter-induced cardiac dysfunction. Evidence pointing to autocrine/paracrine signaling systems as modulators of cardiac dysfunction has increased interest in the emerging role of endothelins as mediators of cardiac function following particulate matter exposure. Endothelin-1, a well-described small peptide expressed in the pulmonary and cardiovascular systems, is best known for its ability to constrict blood vessels, although it can also induce extravascular effects. Research on the role of endothelins in the context of air pollution has largely focused on vascular effects, with limited investigation of responses resulting from the direct effects of endothelins on cardiac tissue. This represents a significant knowledge gap in air pollution health effects research, given the abundance of endothelin receptors found on cardiac tissue and the ability of endothelin-1 to modulate cardiac contractility, heart rate, and rhythm. The plausibility of endothelin-1 as a mediator of particulate matter-induced cardiac dysfunction is further supported by the therapeutic utility of certain endothelin receptor antagonists. The present review examines the possibility that endothelin-1 release caused by exposure to PM directly modulates extravascular effects on the heart, deleteriously altering cardiac function.
Collapse
Affiliation(s)
- Elizabeth A W Chan
- Oak Ridge Institute for Science and Education (ORISE) Fellow at the National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - Barbara Buckley
- National Center for Environmental Assessment, U.S. EPA, Research Triangle Park, NC, USA
| | - Aimen K Farraj
- Environmental Public Health Division, U.S. EPA, Research Triangle Park, NC, USA
| | - Leslie C Thompson
- Environmental Public Health Division, U.S. EPA, Research Triangle Park, NC, USA.
| |
Collapse
|
10
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 502] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
11
|
Abstract
All three members of the endothelin (ET) family of peptides, ET-1, ET-2, and ET-3, are expressed in the human kidney, with ET-1 being the predominant isoform. ET-1 and ET-2 bind to two G-protein-coupled receptors, ETA and ETB, whereas at physiological concentrations ET-3 has little affinity for the ET(A) receptor. The human kidney is unusual among the peripheral organs in expressing a high density of ET(B). The renal vascular endothelium only expresses the ET(B) subtype and ET-1 acts in an autocrine or paracrine manner to release vasodilators. Endothelial ETB in kidney, as well as liver and lungs, also has a critical role in scavenging ET-1 from the plasma. The third major function is ET-1 activation of ET(B) in in the nephron to reduce salt and water re-absorption. In contrast, ET(A) predominate on smooth muscle, causing vasoconstriction and mediating many of the pathophysiological actions of ET-1. The role of the two receptors has been delineated using highly selective ET(A) (BQ123, TAK-044) and ET(B) (BQ788) peptide antagonists. Nonpeptide antagonists, bosentan, macitentan, and ambrisentan, that are either mixed ET(A)/ET(B) antagonists or display ET(A) selectivity, have been approved for clinical use but to date are limited to pulmonary hypertension. Ambrisentan is in clinical trials in patients with type 2 diabetic nephropathy. This review summarizes ET-receptor antagonism in the human kidney, and considers the relative merits of selective versus nonselective antagonism in renal disease.
Collapse
Affiliation(s)
- Janet J Maguire
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke׳s Hospital, Cambridge, United Kingdom
| | - Anthony P Davenport
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke׳s Hospital, Cambridge, United Kingdom.
| |
Collapse
|
12
|
Dupuis J, Harel F, Nguyen QT. Molecular imaging of the pulmonary circulation in health and disease. Clin Transl Imaging 2014; 2:415-426. [PMID: 25360422 PMCID: PMC4209091 DOI: 10.1007/s40336-014-0076-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/15/2014] [Indexed: 11/29/2022]
Abstract
The pulmonary circulation, at the unique crossroads between the left and the right heart, is submitted to large physiologic hemodynamic variations and possesses numerous important metabolic functions mediated through its vast endothelial surface. There are many pathologic conditions that can directly or indirectly affect the pulmonary vasculature and modify its physiology and functions. Pulmonary hypertension, the end result of many of these affections, is unfortunately diagnosed too late in the disease process, meaning that there is a crying need for earlier diagnosis and surrogate markers of disease progression and regression. By targeting endothelial, medial and adventitial targets of the pulmonary vasculature, novel molecular imaging agents could provide early detection of physiologic and biologic perturbation in the pulmonary circulation. This review provides the rationale for the development of molecular imaging agents for the diagnosis and follow-up of disorders of the pulmonary circulation and discusses promising targets for SPECT and positron emission tomographic imaging.
Collapse
Affiliation(s)
- Jocelyn Dupuis
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8 Canada ; Department of Medicine, Université de Montréal, Montreal, QC Canada
| | - François Harel
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8 Canada ; Department of Radiology, Radio-Oncology and Nuclear Medicine Université de Montréal, Montreal, QC Canada
| | - Quang T Nguyen
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8 Canada
| |
Collapse
|
13
|
Richards J, Welch AK, Barilovits SJ, All S, Cheng KY, Wingo CS, Cain BD, Gumz ML. Tissue-specific and time-dependent regulation of the endothelin axis by the circadian clock protein Per1. Life Sci 2014; 118:255-62. [PMID: 24721511 PMCID: PMC4387882 DOI: 10.1016/j.lfs.2014.03.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/01/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023]
Abstract
AIMS The present study is designed to consider a role for the circadian clock protein Per1 in the regulation of the endothelin axis in mouse kidney, lung, liver and heart. Renal endothelin-1 (ET-1) is a regulator of the epithelial sodium channel (ENaC) and blood pressure (BP), via activation of both endothelin receptors, ETA and ETB. However, ET-1 mediates many complex events in other tissues. MAIN METHODS Tissues were collected in the middle of murine rest and active phases, at noon and midnight, respectively. ET-1, ETA and ETB mRNA expressions were measured in the lung, heart, liver, renal inner medulla and renal cortex of wild type and Per1 heterozygous mice using real-time quantitative RT-PCR. KEY FINDINGS The effect of reduced Per1 expression on levels of mRNAs and the time-dependent regulation of expression of the endothelin axis genes appeared to be tissue-specific. In the renal inner medulla and the liver, ETA and ETB exhibited peaks of expression in opposite circadian phases. In contrast, expressions of ET-1, ETA and ETB in the lung did not appear to vary with time, but ET-1 expression was dramatically decreased in this tissue in Per1 heterozygous mice. Interestingly, ET-1 and ETA, but not ETB, were expressed in a time-dependent manner in the heart. SIGNIFICANCE Per1 appears to regulate expression of the endothelin axis genes in a tissue-specific and time-dependent manner. These observations have important implications for our understanding of the best time of day to deliver endothelin receptor antagonists.
Collapse
Affiliation(s)
- Jacob Richards
- Department of Medicine, University of Florida, USA; Department of Biochemistry and Molecular Biology, University of Florida, USA
| | - Amanda K Welch
- Department of Medicine, University of Florida, USA; North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Sarah J Barilovits
- Department of Medicine, University of Florida, USA; Department of Biochemistry and Molecular Biology, University of Florida, USA
| | - Sean All
- Department of Medicine, University of Florida, USA
| | | | - Charles S Wingo
- Department of Medicine, University of Florida, USA; North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, USA
| | - Michelle L Gumz
- Department of Medicine, University of Florida, USA; Department of Biochemistry and Molecular Biology, University of Florida, USA.
| |
Collapse
|
14
|
Jacobs ME, Jeffers LA, Welch AK, Wingo CS, Cain BD. MicroRNA regulation of endothelin-1 mRNA in renal collecting duct cells. Life Sci 2014; 118:195-9. [PMID: 24632479 DOI: 10.1016/j.lfs.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/11/2014] [Accepted: 03/01/2014] [Indexed: 12/21/2022]
Abstract
AIMS Recently, microRNAs (miRNAs) have been implicated in control of Edn1 mRNA in several tissues. Here we examined the role of miRNA action on Edn1 mRNA expression in renal distal collecting duct cells. MAIN METHODS A microarray study was conducted to provide a comprehensive assessment of miRNAs present in a murine inner medullary collecting duct (mIMCD-3) cell line. The experiment was designed as a comparison between mIMCD-3 cells grown in the presence and absence of aldosterone. Argonaute (Ago) immunoprecipitation experiments were used to investigate binding of the RNA induced silencing complex (RISC) to Edn1 mRNA. KEY FINDINGS Thirty-four miRNAs were detected in very high abundance in mIMCD-3 cells, and a large number of others were present at lower levels. The microarray experiments were validated by quantitative PCR analysis of selected miRNAs. The microarray data, in combination with in silico examination of the Edn1 3' UTR provided a panel of candidate miRNAs that could act upon the Edn1 expression. Edn1 mRNA was co-immunoprecipitated with an Argonaute protein antibody, and this interaction was blocked by anti-miR-709 oligonucleotides. SIGNIFICANCE These results define the miRNA landscape of the mIMCD-3 cell line. Moreover, Edn1 was shown to interact with Argonaute protein suggesting that it is a target of the RNA induced silencing complex (RISC).
Collapse
Affiliation(s)
- Mollie E Jacobs
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A Jeffers
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Amanda K Welch
- Department of Nephrology, University of Florida, Gainesville, FL 32610, USA; North Florida/South Georgia Veterans Health System, Gainesville, FL 32610, USA
| | - Charles S Wingo
- Department of Nephrology, University of Florida, Gainesville, FL 32610, USA; North Florida/South Georgia Veterans Health System, Gainesville, FL 32610, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
15
|
Virdis A, Duranti E, Rossi C, Dell'Agnello U, Santini E, Anselmino M, Chiarugi M, Taddei S, Solini A. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. Eur Heart J 2014; 36:784-94. [PMID: 24578389 DOI: 10.1093/eurheartj/ehu072] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 02/02/2014] [Indexed: 11/14/2022] Open
Abstract
AIMS We assessed the impact of vascular and perivascular tumour necrosis factor-alpha (TNF-α) on the endothelin (ET)-1/nitric oxide (NO) system and the molecular pathways involved in small arteries from visceral fat of obese patients (Obese) and Controls. METHODS AND RESULTS Isolated small arteries from 16 Obese and 14 Controls were evaluated on a pressurized micromyograph. Endogenous ET-1 activity was assessed by the ETA blocker BQ-123. TNF-α and NO were tested by anti-TNF-α infliximab (IFX) and N(ω)-nitro-l-arginine methylester (L-NAME). Gene and protein expression of TNF-α, ET-1, ETA, and ETB receptors were determined by RT-PCR and IHC on arterial wall and in isolated adipocytes. Obese showed a blunted L-NAME-induced vasoconstriction, which was potentiated by IFX, and an increased relaxation to BQ-123, unaffected by L-NAME but attenuated by IFX. Perivascular adipose tissue (PVAT) removal reversed these effects. Obese showed intravascular superoxide excess, which was decreased by apocynin (NAD(P)H oxidase inhibitor), L-NAME, and BQ-123 incubations, and abolished by IFX. An increased vascular expression of ET-1, ETA, and ETB receptors, and higher vascular/perivascular TNF-α and TNF-α receptor expression were also detected. The arterial expression and phosphorylation of c-Jun N-terminal kinase (JNK) were higher in Obese vs. Controls, and downregulated by IFX. CONCLUSIONS In small arteries of Obese, PVAT-derived TNF-α excess, and an increased vascular expression of ET-1 and ETA receptor, contribute to the ET-1/NO system imbalance, by impairing tonic NO release. Reactive oxygen species excess, via NAD(P)H oxidase activation, induces the endothelial nitric oxide synthase uncoupling, which in turn generates superoxide and impairs NO production. The up-regulated JNK pathway represents a crucial molecular signalling involved in this process.
Collapse
Affiliation(s)
- Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Emiliano Duranti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Chiara Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Umberto Dell'Agnello
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Eleonora Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | | | - Massimo Chiarugi
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Anna Solini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| |
Collapse
|
16
|
Kuc RE, Carlebur M, Maguire JJ, Yang P, Long L, Toshner M, Morrell NW, Davenport AP. Modulation of endothelin receptors in the failing right ventricle of the heart and vasculature of the lung in human pulmonary arterial hypertension. Life Sci 2014; 118:391-6. [PMID: 24582810 PMCID: PMC4288792 DOI: 10.1016/j.lfs.2014.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/08/2014] [Accepted: 02/11/2014] [Indexed: 01/08/2023]
Abstract
AIMS In pulmonary arterial hypertension (PAH), increases in endothelin-1 (ET-1) contribute to elevated pulmonary vascular resistance which ultimately causes death by right ventricular (RV) heart failure. ET antagonists are effective in treating PAH but lack efficacy in treating left ventricular (LV) heart failure, where ETA receptors are significantly increased. The aim was to quantify the density of ETA and ETB receptors in cardiopulmonary tissue from PAH patients and the monocrotaline (MCT) rat, which recapitulates some of the pathophysiological features, including increased RV pressure. MAIN METHODS Radioligand binding assays were used to quantify affinity, density and ratio of ET receptors. KEY FINDINGS In RV from human PAH hearts, there was a significant increase in the ratio of ETA to ETB receptors compared with normal hearts. In the RV of the MCT rat, the ratio also changed but was reversed. In both human and rat, there was no change in LV. In human PAH lungs, ETA receptors were significantly increased in the medial layer of small pulmonary arteries with no change detectable in MCT rat vessels. SIGNIFICANCE Current treatments for PAH focus mainly on pulmonary vasodilatation. The increase in ETA receptors in arteries provides a mechanism for the beneficial vasodilator actions of ET antagonists. The increase in the ratio of ETA in RV also implicates changes to ET signalling although it is unclear if ET antagonism is beneficial but the results emphasise the unexploited potential for therapies that target the RV, to improve survival in patients with PAH.
Collapse
Affiliation(s)
- Rhoda E Kuc
- Clinical Pharmacology Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Myrna Carlebur
- Clinical Pharmacology Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Janet J Maguire
- Clinical Pharmacology Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Peiran Yang
- Clinical Pharmacology Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lu Long
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Mark Toshner
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | | |
Collapse
|
17
|
Ou M, Dang Y, Mazzuca MQ, Basile R, Khalil RA. Adaptive regulation of endothelin receptor type-A and type-B in vascular smooth muscle cells during pregnancy in rats. J Cell Physiol 2014; 229:489-501. [PMID: 24105843 DOI: 10.1002/jcp.24469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/06/2013] [Indexed: 12/26/2022]
Abstract
Normal pregnancy is associated with systemic vasodilation and decreased vascular contraction, partly due to increased release of endothelium-derived vasodilator substances. Endothelin-1 (ET-1) is an endothelium-derived vasoconstrictor acting via endothelin receptor type A (ETA R) and possibly type B (ETB R) in vascular smooth muscle cells (VSMCs), with additional vasodilator effects via endothelial ETB R. However, the role of ET-1 receptor subtypes in the regulation of vascular function during pregnancy is unclear. We investigated whether the decreased vascular contraction during pregnancy reflects changes in the expression/activity of ETAR and ETBR. Contraction was measured in single aortic VSMCs isolated from virgin, mid-pregnant (mid-Preg, day 12), and late-Preg (day 19) Sprague-Dawley rats, and the mRNA expression, protein amount, tissue and cellular distribution of ETAR and ETBR were examined using RT-PCR, Western blots, immunohistochemistry, and immunofluorescence. Phenylephrine (Phe, 10(-5) M), KCl (51 mM), and ET-1 (10(-6) M) caused VSMC contraction that was in late-Preg < mid-Preg and virgin rats. In VSMCs treated with ETB R antagonist BQ788, ET-1 caused significant contraction that was still in late-Preg < mid-Preg and virgin rats. In VSMCs treated with the ETAR antagonist BQ123, ET-1 caused a small contraction; and the ETBR agonists IRL-1620 and sarafotoxin 6c (S6c) caused similar contraction that was in late-Preg < mid-Preg and virgin rats. RT-PCR revealed similar ETAR, but greater ETBR mRNA expression in pregnant versus virgin rats. Western blots revealed similar ETAR, and greater protein amount of ETBR in endothelium-intact vessels, but reduced ETBR in endothelium-denuded vessels of pregnant versus virgin rats. Immunohistochemistry revealed prominent ETBR staining in the intima, but reduced ETAR and ETBR in the aortic media of pregnant rats. Immunofluorescence signal for ETAR and ETBR was less in VSMCs of pregnant versus virgin rats. The pregnancy-associated decrease in ETAR- and ETBR-mediated VSMC contraction appears to involve downregulation of ETAR and ETBR expression/activity in VSM, and may play a role in the adaptive vasodilation during pregnancy.
Collapse
Affiliation(s)
- Minghui Ou
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
18
|
Moorhouse RC, Webb DJ, Kluth DC, Dhaun N. Endothelin Antagonism and Its Role in the Treatment of Hypertension. Curr Hypertens Rep 2013; 15:489-96. [DOI: 10.1007/s11906-013-0380-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Higuchi T, Rischpler C, Fukushima K, Isoda T, Xia J, Javadi MS, Szabo Z, Dannals RF, Mathews WB, Bengel FM. Targeting of endothelin receptors in the healthy and infarcted rat heart using the PET tracer 18F-FBzBMS. J Nucl Med 2013; 54:277-82. [PMID: 23315664 DOI: 10.2967/jnumed.112.106096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED The endothelin subtype-A receptor (ET-A) is a promising therapeutic target in cardiovascular disease. We sought to determine the feasibility of an (18)F-labeled ligand, (18)F-(N-[[29-[[(4,5-dimethyl-3-isoxazolyl)amino]sulfonyl]-4-(2-oxazolyl)[1,19-biphenyl]-2-yl]methyl]-N,4-fluorobenzamide) ((18)F-FBzBMS), for imaging ET-A in the healthy and injured rat heart. METHODS Male Wistar rats were used for all experiments. The specificity of cardiac (18)F-FBzBMS uptake was determined in healthy animals (n = 23) using pretreatment with various blocking agents and doses. Myocardial infarction (MI) was induced by permanent left coronary ligation in 32 animals. Autoradiography was conducted to determine regional FBzBMS distribution relative to tissue perfusion at various times after MI. Histology and immunohistochemistry were performed for validation. The feasibility of in vivo detection of the tracer signal was tested using dedicated small-animal PET (n = 6). RESULTS At autoradiography, intravenous pretreatment with the selective ET-A blocker BMS-207940 reduced myocardial FBzBMS uptake by 93% ± 0.7%. Oral pretreatment with the clinical blocker bosentan resulted in a dose-dependent partial blockade (5 mg/kg, 48% ± 6%; 50 mg/kg, 61% ± 7%; and 100 mg/kg, 88% ± 0.7%). After MI, FBzBMS uptake was preserved in the infarct region from day 1 to month 6, whereas the perfusion tracer (201)Tl showed a persistent defect (MI-to-remote ratios: (201)Tl, 0.23 ± 0.28, 0.39 ± 0.07, 0.31 ± 0.07, 0.24 ± 0.12, 0.29 ± 0.10, and 0.23 ± 0.09; and FBzBMS, 0.94 ± 0.28, 0.92 ± 0.20, 0.88 ± 0.13, 0.82 ± 0.12, 0.80 ± 0.11, and 0.84 ± 0.08 at day 1, day 3, week 1, month 1, month 2, and month 6, respectively) (P < 0.01 vs. (201)Tl). Ex vivo analysis confirmed ET-A expression in the infarct area, where the signal was partially colocalized with CD31 expression on endothelial cells. In vivo small-animal PET successfully confirmed specific uptake and blockade of FBzBMS in healthy myocardium. CONCLUSION Cardiac uptake of the PET tracer (18)F-FBzBMS is specific for ET-A expression in rats, shows infarct-related alterations, and can be imaged noninvasively. Further efforts to establish myocardial ET-A imaging methodology are warranted, with the perspective of determining role, efficacy, and benefit of ET-A targeted drug treatment in cardiovascular disease.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ling L, Maguire JJ, Davenport AP. Endothelin-2, the forgotten isoform: emerging role in the cardiovascular system, ovarian development, immunology and cancer. Br J Pharmacol 2013; 168:283-95. [PMID: 22118774 PMCID: PMC3572556 DOI: 10.1111/j.1476-5381.2011.01786.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/14/2011] [Accepted: 10/31/2011] [Indexed: 12/11/2022] Open
Abstract
Endothelin-2 [ET-2; also known as vasoactive intestinal contractor (VIC), in rodents] differs from endothelin-1 (ET-1) by only two amino acids, and unlike the third isoform, endothelin-3 (ET-3), it has the same affinity as ET-1 for both ET(A) and ET(B) receptors. It is often assumed that ET-2 would mimic the actions of the more abundant ET-1 and current pharmacological interventions used to inhibit the ET system would also block the actions of ET-2. These assumptions have focused research on ET-1 with ET-2 studied in much less detail. Recent research suggests that our understanding of the ET family requires re-evaluation. Although ET-2 is very similar in structure as well as pharmacology to ET-1, and may co-exist in the same tissue compartments, there is converging evidence for an important and distinct ET-2 pathway. Specifically is has been demonstrated that ET-2 has a key role in ovarian physiology, with ET-2-mediated contraction proposed as a final signal facilitating ovulation. Furthermore, ET-2 may also have a pathophysiological role in heart failure, immunology and cancer. Comparison of ET-2 versus ET-1 mRNA expression suggests this may be accomplished at the level of gene expression but differences may also exist in peptide synthesis by enzymes such as endothelin converting enzymes (ECEs) and chymase, which may allow the two pathways to be distinguished pharmacologically and become separate drug targets. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- Lowell Ling
- Clinical Pharmacology Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
21
|
Ohkita M, Tawa M, Kitada K, Matsumura Y. Pathophysiological roles of endothelin receptors in cardiovascular diseases. J Pharmacol Sci 2012; 119:302-13. [PMID: 22863667 DOI: 10.1254/jphs.12r01cr] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Endothelin (ET)-1 derived from endothelial cells has a much more important role in cardiovascular system regulation than the ET-2 and ET-3 isoforms. Numerous lines of evidence indicate that ET-1 possesses a number of biological activities leading to cardiovascular diseases (CVD) including hypertension and atherosclerosis. Physiological and pathophysiological responses to ET-1 in various tissues are mediated by interactions with ET(A)- and ET(B)-receptor subtypes. Both subtypes on vascular smooth muscle cells mediate vasoconstriction, whereas the ET(B)-receptor subtype on endothelial cells contributes to vasodilatation and ET-1 clearance. Although selective ET(A)- or nonselective ET(A)/ET(B)-receptor antagonisms have been assumed as potential strategies for the treatment of several CVD based on clinical and animal experiments, it remains unclear which antagonisms are suitable for individuals with CVD because upregulation of the nitric oxide system via the ET(B) receptor is responsible for vasoprotective effects such as vasodilatation and anti-cell proliferation. In this review, we have summarized the current understanding regarding the role of ET receptors, especially the ET(B) receptor, in CVD.
Collapse
Affiliation(s)
- Mamoru Ohkita
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Japan
| | | | | | | |
Collapse
|
22
|
Johnström P, Fryer TD, Bird JL, Richards HK, Davenport AP. Dynamic in vivo imaging of receptors in small animals using positron emission tomography. Methods Mol Biol 2012; 897:221-37. [PMID: 22674168 DOI: 10.1007/978-1-61779-909-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Positron emission tomography (PET) is a functional imaging technique with the potential to image and quantify receptors in vivo with high sensitivity. PET has been used extensively to study major neurotransmitters such as dopamine, serotonin, and benzodiazepine in humans as well as proving to be a very powerful tool to accelerate development and assessment of existing and novel drugs. With the recent development of dedicated PET scanners for small animals, such as the microPET, it is now possible to perform functional imaging in small animals such as rodents at high resolution. This will allow the study of animal models of disease and longitudinal studies in these models to monitor disease progression or effect of treatment in the same animal. Furthermore, the complete pharmacokinetics of a drug as well as pharmacodynamic information can be obtained in a single animal. Thus, small animal imaging will significantly reduce the number of animals needed for this type of experiment as well as reducing the effect of inter-animal variation. Experimental protocols in small animal imaging potentially can be very labor intensive. In this chapter, we discuss methods and practical aspects related to this type of experiment using the microPET system.
Collapse
|
23
|
Endothelin and endothelin receptors in the renal and cardiovascular systems. Life Sci 2012; 91:490-500. [PMID: 22480517 DOI: 10.1016/j.lfs.2012.03.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/12/2012] [Accepted: 03/16/2012] [Indexed: 01/08/2023]
Abstract
Endothelin-1 (ET-1) is a multifunctional hormone which regulates the physiology of the cardiovascular and renal systems. ET-1 modulates cardiac contractility, systemic and renal vascular resistance, salt and water renal reabsorption, and glomerular function. ET-1 is responsible for a variety of cellular events: contraction, proliferation, apoptosis, etc. These effects take place after the activation of the two endothelin receptors ET(A) and ET(B), which are present - among others - on cardiomyocytes, fibroblasts, smooth muscle and endothelial cells, glomerular and tubular cells of the kidney. The complex and numerous intracellular pathways, which can be contradictory in term of functional response depending on the receptor type, cell type and physiological situation, are described in this review. Many diseases share an enhanced ET-1 expression as part of the pathophysiology. However, the use of endothelin blockers is currently restricted to pulmonary arterial hypertension, and more recently to digital ulcer. The complexity of the endothelin system does not facilitate the translation of the molecular knowledge to clinical applications. Endothelin antagonists can prevent disease development but secondary undesirable effects limit their usage. Nevertheless, the increasing understanding of the effects of ET-1 on the cardiac and renal physiology maintains the endothelin system as a promising therapeutic target.
Collapse
|
24
|
Maguire JJ, Kuc RE, Pell VR, Green A, Brown M, Kumar S, Wehrman T, Quinn E, Davenport AP. Comparison of human ETA and ETB receptor signalling via G-protein and β-arrestin pathways. Life Sci 2012; 91:544-9. [PMID: 22480514 DOI: 10.1016/j.lfs.2012.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 02/04/2023]
Abstract
AIMS To determine the pharmacology of ET(A)- and ET(B)-mediated β-arrestin recruitment and compare this to established human pharmacology of these receptors to identify evidence for endothelin receptor biased signalling and pathway specific blockade by antagonists. MAIN METHODS The ability of ET-1, ET-2, ET-3, sarafotoxin 6b and sarafotoxin 6c to activate ET(A) and ET(B)-mediated β-arrestin recruitment was determined in CHO-K1 cells. Affinities were obtained for ET(A) selective (BQ123, sitaxentan, ambrisentan), ET(B) selective (BQ788) and mixed (bosentan) antagonists using ET-1 and compared to affinities obtained in competition experiments in human heart and by Schild analysis in human saphenous vein. Agonist dependence of affinities was compared for BQ123 and BQ788 in the ET(A) and ET(B) β-arrestin assays respectively. KEY FINDINGS For β-arrestin recruitment, order of potency was as expected for the ET(A) (ET-1≥ET-2>>ET-3) and ET(B) (ET-1=ET-2=ET-3) receptors. However, at the ET(A) receptor sarafotoxin 6b and ET-3 were partial agonists. Antagonism of ET peptides by selective and mixed antagonists appeared non-competitive. BQ123, but not BQ788, exhibited agonist-dependent affinities. Bosentan was significantly more effective an inhibitor of β-arrestin recruitment mediated by ET(A) compared to the ET(B) receptor. In the ET(A) vasoconstrictor assay, ET-1, ET-2 and S6b were equipotent, full agonists and antagonists tested behaved in a competitive manner, although affinities were lower than predicted from the competition binding experiments in left ventricle. SIGNIFICANCE These data suggest that the pharmacology of ET(A) and ET(B) receptors linked to G-protein- and β-arrestin mediated responses was different and bosentan appeared to show bias, preferentially blocking ET(A) mediated β-arrestin recruitment.
Collapse
Affiliation(s)
- Janet J Maguire
- Clinical Pharmacology Unit, University of Cambridge, Level 6 ACCI, Box 110 Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ling L, Kuc RE, Maguire JJ, Davie NJ, Webb DJ, Gibbs P, Alexander GJM, Davenport AP. Comparison of endothelin receptors in normal versus cirrhotic human liver and in the liver from endothelial cell-specific ETB knockout mice. Life Sci 2012; 91:716-22. [PMID: 22365955 DOI: 10.1016/j.lfs.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/20/2012] [Accepted: 02/03/2012] [Indexed: 01/06/2023]
Abstract
AIMS Endothelin (ET) antagonists show promise in animal models of cirrhosis and portal hypertension. The aim was to pharmacologically characterise the expression of endothelin receptors in human liver, hepatic artery and portal vein. MAIN METHODS Immunofluorescence staining, receptor autoradiography and competition binding assays were used to localise and quantify ET receptors on hepatic parenchyma, hepatic artery and portal vein in human cirrhotic or normal liver. Additional experiments were performed to determine the affinity and selectivity of ET antagonists for liver ET endothelin receptors. An endothelial cell ET(B) knockout murine model was used to examine the function of sinusoid endothelial ET(B) receptors. KEY FINDINGS ET(B) receptors predominated in normal human liver and displayed the highest ratio (ET(B):ET(A) 63:47) compared with other peripheral tissues. In two patients examined, liver ET(B) expression was up-regulated in cirrhosis (ET(B):ET(A) 83:17). Both sub-types localised to the media of normal portal vein but ET(B) receptors were downregulated fivefold in the media of cirrhotic portal vein. Sinusoid diameter was fourfold smaller in endothelial cell ET(B) knockout mice. The liver morphology of ET(B) knockout mice was markedly different to normal murine liver, with loss of the wide spread sinusoidal pattern. In the knockout mice, sinusoids were reduced in both number and absolute diameter, while large intrahepatic veins were congested with red blood cells. SIGNIFICANCE These data support a role for the ET system in cirrhosis of the liver and suggest that endothelial ET(B) blockade may cause sinusoidal constriction which may contribute to hepatotoxicity associated with some endothelin antagonists.
Collapse
Affiliation(s)
- Lowell Ling
- Clinical Pharmacology Unit, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Johnström P, Bird JL, Davenport AP. Quantitative phosphor imaging autoradiography of radioligands for positron emission tomography. Methods Mol Biol 2012; 897:205-220. [PMID: 22674167 DOI: 10.1007/978-1-61779-909-9_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Imaging using phosphor screens have increasingly been employed for the analysis of radioactive samples in molecular biology, pharmacology, and receptor autoradiography. The major advantages of phosphor screens compared to radiation sensitive film are their greatly increased sensitivity, reducing exposure times with at least one order of magnitude, and their increased linear dynamic range. These features make phosphor screens ideal for imaging short-lived radionuclides, where exposure times are limited, such as (11)C and (18)F widely used to label radioligands for positron emission tomography (PET). Phosphor imaging can also considerably reduce exposure times for weak β-particle emitters such as (3)H. In this chapter, we present methods for the characterization and evaluation of novel PET radioligands using quantitative phosphor imaging autoradiography.
Collapse
|
27
|
Venugopal C, Mariappan N, Holmes E, Koch C, Francis J, Eades S. Oxidative Stress and Interaction of Endothelin Receptors in Airways of Clinically Healthy Horses. J Equine Vet Sci 2011. [DOI: 10.1016/j.jevs.2011.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
De Mey JG, Compeer MG, Lemkens P, Meens MJ. ETA-receptor antagonists or allosteric modulators? Trends Pharmacol Sci 2011; 32:345-51. [DOI: 10.1016/j.tips.2011.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/27/2011] [Accepted: 02/28/2011] [Indexed: 01/14/2023]
|
29
|
Kelland NF, Kuc RE, McLean DL, Azfer A, Bagnall AJ, Gray GA, Gulliver-Sloan FH, Maguire JJ, Davenport AP, Kotelevtsev YV, Webb DJ. Endothelial cell-specific ETB receptor knockout: autoradiographic and histological characterisation and crucial role in the clearance of endothelin-1. Can J Physiol Pharmacol 2011; 88:644-51. [PMID: 20628430 DOI: 10.1139/y10-041] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inactivation of endothelin B receptors (ETB), either through selective pharmacological antagonism or genetic mutation, increases the circulating concentration of endothelin-1 (ET-1), suggesting ETB plays an important role in clearance of this peptide. However, the cellular site of ETB-mediated clearance has not yet been determined. We have used a novel mouse model of endothelial cell-specific knockout (KO) of ETB (EC ETB(-/-)) to evaluate the relative contribution of EC-ETB to the clearance of ET-1. Phenotypic evidence of EC-specific ETB KO was confirmed by immunocytochemistry and autoradiography. Binding of the radiolabelled selective ETB ligand BQ3020 was significantly and selectively decreased in EC-rich tissues of EC ETB(-/-) mice, including the lung, liver, and kidney. By contrast, ETA binding was unaltered. RT-PCR confirmed equal expression of ET-1 in tissue from EC ETB(-/-) mice and controls, despite increased concentration of plasma ET-1 in EC ETB(-/-). Clearance of an intravenous bolus of [(125)I]ET-1 was impaired in EC ETB(-/-) mice. Pretreatment with the selective ETB antagonist A192621 impaired [(125)I]ET-1 clearance in control animals to a similar extent, but did not further impair clearance in EC ETB(-/-) mice. These studies suggest that EC-ETB are largely responsible for the clearance of ET-1 from the circulation.
Collapse
Affiliation(s)
- N F Kelland
- Clinical Pharmacology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Johnström P, Fryer TD, Richards HK, Maguire JJ, Clark JC, Pickard JD, Davenport AP. Positron emission tomography of [18F]-big endothelin-1 reveals renal excretion but tissue-specific conversion to [18F]-endothelin-1 in lung and liver. Br J Pharmacol 2010; 159:812-9. [PMID: 20388128 DOI: 10.1111/j.1476-5381.2010.00641.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Big endothelin-1 (ET-1) circulates in plasma but does not bind to ET receptors until converted to ET-1 by smooth muscle converting enzymes. We hypothesized that tissue-specific conversion of [(18)F]-big ET-1 to [(18)F]-ET-1 could be imaged dynamically in vivo within target organs as binding to ET receptors. METHODS [(18)F]-big ET-1 conversion imaged in vivo following infusion into rats using positron emission tomography (PET). KEY RESULTS [(18)F]-big ET-1 was rapidly cleared from the circulation (t(1/2)= 2.9 +/- 0.1 min). Whole body microPET images showed highest uptake of radioactivity in three major organs. In lungs and liver, time activity curves peaked within 2.5 min, then plateaued reaching equilibrium after 10 min, with no further decrease after 120 min. Phosphoramidon did not alter half life of [(18)F]-big ET-1 but uptake was reduced in lung (42%) and liver (45%) after 120 min, consistent with inhibition of enzyme conversion and reduction of ET-1 receptor binding. The ET(A) antagonist, FR139317 did not alter half-life of [(18)F]-big ET-1 (t(1/2)= 2.5 min) but radioactivity was reduced in all tissues except for kidney consistent with reduction in binding to ET(A) receptors. In kidney, however, the peak in radioactivity was higher but time to maximum accumulation was slower ( approximately 30 min), which was increased by phosphoramidon, reflecting renal excretion with low conversion and binding to ET receptors. CONCLUSIONS AND IMPLICATIONS A major site for conversion was within the vasculature of the lung and liver, whereas uptake in kidney was more complex, reflecting excretion of [(18)F]-big ET-1 without conversion to ET-1.
Collapse
Affiliation(s)
- Peter Johnström
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Toole JM, Ikonomidis JS, Szeto WY, Zellner JL, Mulcahy J, Deardorff RL, Spinale FG. Selective endothelin-1 receptor type A inhibition in subjects undergoing cardiac surgery with preexisting left ventricular dysfunction: Influence on early postoperative hemodynamics. J Thorac Cardiovasc Surg 2010; 139:646-54. [PMID: 20074751 DOI: 10.1016/j.jtcvs.2009.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/13/2009] [Accepted: 11/22/2009] [Indexed: 12/18/2022]
Abstract
OBJECTIVE A robust release of endothelin-1 with subsequent endothelin-A subtype receptor activation occurs in patients after cardiac surgery requiring cardiopulmonary bypass. Increased endothelin-A subtype receptor activation has been identified in patients with poor left ventricular function (reduced ejection fraction). Accordingly, this study tested the hypothesis that a selective endothelin-A subtype receptor antagonist administered perioperatively would favorably affect post-cardiopulmonary bypass hemodynamic profiles in patients with a preexisting poor left ventricular ejection fraction. METHODS Patients (n = 29; 66 +/- 2 years) with a reduced left ventricular ejection fraction (37% +/- 2%) were prospectively randomized in a blinded fashion, at the time of elective coronary revascularization or valve replacement requiring cardiopulmonary bypass, to infusion of the highly selective and potent endothelin-A subtype receptor antagonist sitaxsentan at 1 or 2 mg/kg (intravenous bolus; n = 9, 10 respectively) or vehicle (saline; n = 10). Infusion of the endothelin-A subtype receptor antagonist/vehicle was performed immediately before separation from cardiopulmonary bypass and again at 12 hours after cardiopulmonary bypass. Endothelin and hemodynamic measurements were performed at baseline, at separation from cardiopulmonary bypass (time 0), and at 0.5, 6, 12, and 24 hours after cardiopulmonary bypass. RESULTS Baseline plasma endothelin (4.0 +/- 0.3 fmol/mL) was identical across all 3 groups, but when compared with preoperative values, baseline values obtained from age-matched subjects with a normal left ventricular ejection fraction (n = 37; left ventricular ejection fraction > 50%) were significantly increased (2.9 +/- 0.2 fmol/mL, P < .05). Baseline systemic (1358 +/- 83 dynes/sec/cm(-5)) and pulmonary (180 +/- 23 dynes/sec/cm(-5)) vascular resistance were equivalent in all 3 groups. As a function of time 0, systemic vascular resistance changed in an equivalent fashion in the post-cardiopulmonary bypass period, but a significant endothelin-A subtype receptor antagonist effect was observed for pulmonary vascular resistance (analysis of variance; P < .05). For example, at 24 hours post-cardiopulmonary bypass, pulmonary vascular resistance increased by 40 dynes/sec/cm(-5) in the vehicle group but directionally decreased by more than 40 dynes/sec/cm(-5) in the 2 mg/kg endothelin-A subtype receptor antagonist group (P < .05). Total adverse events were equivalently distributed across the endothelin-A subtype receptor antagonist/placebo groups. CONCLUSION These unique findings demonstrated that infusion of an endothelin-A subtype receptor antagonist in high-risk patients undergoing cardiac surgery was not associated with significant hemodynamic compromise. Moreover, the endothelin-A subtype receptor antagonist favorably affected pulmonary vascular resistance in the early postoperative period. Thus, the endothelin-A subtype receptor serves as a potential pharmacologic target for improving outcomes after cardiac surgery in patients with compromised left ventricular function.
Collapse
Affiliation(s)
- John M Toole
- Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Meens MJPMT, Fazzi GE, van Zandvoort MA, De Mey JGR. Calcitonin gene-related peptide selectively relaxes contractile responses to endothelin-1 in rat mesenteric resistance arteries. J Pharmacol Exp Ther 2009; 331:87-95. [PMID: 19628632 DOI: 10.1124/jpet.109.155143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We tested the hypothesis that endothelin-1 (ET-1) modulates sensory-motor nervous arterial relaxation by prejunctional and postjunctional mechanisms. Isolated rat mesenteric resistance arteries were investigated with immunohistochemistry, wire-myography, and pharmacological tools. ET(A)- and ET(B)-receptors could be visualized on the endothelium and smooth muscle and on periarterial fibers containing calcitonin gene-related peptide (CGRP). Arterial contractile responses to ET-1 (0.25-16 nM) were not modified by blockade of ET(B)-receptors, NO-synthase, and cyclooxygenase or desensitization of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) with capsaicin. ET-1 reversed relaxing responses to CGRP in depolarized arteries. This effect was inhibited by ET(A)-antagonists. It was not selective because ET-1 also reversed relaxing responses to Na-nitroprusside (SNP) and because phenylephrine (PHE; 0.25-16 microM) similarly reversed relaxing responses to CGRP or SNP. Conversely, contractile responses to ET-1 were, compared with PHE, hypersensitive to the relaxing effects of the TRPV1-agonist capsaicin and to exogenous CGRP, but not to acetylcholine, forskolin, pinacidil, or SNP. In conclusion, ET-1 does not stimulate sensory-motor nervous arterial relaxation, but ET(A)-mediated arterial contractions are selectively sensitive to relaxation by the sensory neurotransmitter CGRP. This does not involve NO, cAMP, or ATP-sensitive K(+) channels.
Collapse
Affiliation(s)
- Merlijn J P M T Meens
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | | | | | | |
Collapse
|
34
|
|
35
|
Dupont P, Warwick J. Kinetic modelling in small animal imaging with PET. Methods 2009; 48:98-103. [PMID: 19318124 DOI: 10.1016/j.ymeth.2009.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022] Open
Abstract
Small animal imaging with positron emission tomography has undergone a major evolution. This has been driven by technical improvements and the development of dedicated PET camera's for small animals. The focus has shifted from detection of tracer uptake and visualization of the tracer distribution towards the quantification of the physiological parameters necessary to use this technique for kinetic modelling of tracers. At the moment there are still several issues which need further research and evaluation before we can fully employ the possibilities of PET as an in-vivo measurement of underlying molecular biology. These issues relate to improved quantification of measurements, improved image reconstruction and processing, and the use of blood plasma data in combination with kinetic models. Besides the more technical issues, there are two more issues which need further clarification: the effect of the anaesthesia, and the effect of radiation on the experiment itself. In this review, we will give an overview of how the technique can be used but we will also discuss the issues mentioned above. The focus will be on the three major parts of the imaging procedure: acquisition, reconstruction of images, and kinetic modelling of the data.
Collapse
Affiliation(s)
- Patrick Dupont
- Laboratory for Cognitive Neurology, KU Leuven, O&N II, Herestraat 49, Bus 1022, 3000 Leuven, Belgium.
| | | |
Collapse
|
36
|
Abstract
Most of the late diabetic complications such as retinopathy, nephropathy, and neuropathy, have their basis in disturbed microvascular function. Structural and functional changes in the micro-circulation are present in diabetes mellitus irrespective of the organ studied, and the pathogenesis is complex. Endothelial dysfunction, characterized by an imbalance between endothelium-derived vasodilator and vasoconstrictor substances, plays an important role in the pathogenesis of diabetic microangiopathy. Increased circulating levels of endothelin-1 (ET-1), a potent vasoconstrictor peptide, has been found in patients with diabetes, and a positive correlation between plasma ET-1 levels and microangiopathy in patients with type 2 diabetes has been demonstrated. In addition to its direct vasoconstrictor effects, enhanced levels of ET-1 may contribute to endothelial dysfunction through inhibitory effects on nitric oxide (NO) production. Vascular endothelial dysfunction may precede insulin resistance, although the feature of insulin resistance syndrome includes factors that have negative effects on endothelial function. Furthermore, ET-1 induces a reduction in insulin sensitivity and may take part in the development of the metabolic syndrome. In the following, the mechanisms by which ET-1 contributes to the development of diabetic microangiopathy and the potentially beneficial effect of selective ETA receptor antagonists are discussed.
Collapse
Affiliation(s)
- Majid Kalani
- Department of Clinical Sciences, Karolinska Institutet, Dept of Cardiology, Danderyd Hospital, Stockholm, Sweden.
| |
Collapse
|
37
|
Khodorova A, Montmayeur JP, Strichartz G. Endothelin receptors and pain. THE JOURNAL OF PAIN 2009; 10:4-28. [PMID: 19111868 DOI: 10.1016/j.jpain.2008.09.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/08/2008] [Accepted: 09/30/2008] [Indexed: 12/11/2022]
Abstract
UNLABELLED The endogenous endothelin (ET) peptides participate in a remarkable variety of pain-relatedprocesses. Pain that is elevated by inflammation, by skin incision, by cancer, during a Sickle Cell Disease crisis and by treatments that mimic neuropathic and inflammatory pain and are all reduced by local administration of antagonists of endothelin receptors. Many effects of endogenously released endothelin are simulated by acute, local subcutaneous administration of endothelin, which at very high concentrations causes pain and at lower concentrations sensitizes the nocifensive reactions to mechanical, thermal and chemical stimuli. PERSPECTIVE In this paper we review the biochemistry, second messenger pathways and hetero-receptor coupling that are activated by ET receptors, the cellular physiological responses to ET receptor activation, and the contribution to pain of such mechanisms occurring in the periphery and the CNS. Our goal is to frame the subject of endothelin and pain for a broad readership, and to present the generally accepted as well as the disputed concepts, including important unanswered questions.
Collapse
Affiliation(s)
- Alla Khodorova
- Department of Anesthesiology, Perioperative and Pain Medicine, Pain Research Center, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115-6110, USA
| | | | | |
Collapse
|
38
|
Höltke C, Waldeck J, Kopka K, Heindel W, Schober O, Schäfers M, Bremer C. Biodistribution of a Nonpeptidic Fluorescent Endothelin a Receptor Imaging Probe. Mol Imaging 2009. [DOI: 10.2310/7290.2009.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Carsten Höltke
- From the Departments of Clinical Radiology and Nuclear Medicine, University Hospital Muenster; and Interdisciplinary Center for Clinical Research and European Institute of Molecular Imaging, University of Muenster, Muenster, Germany
| | - Jens Waldeck
- From the Departments of Clinical Radiology and Nuclear Medicine, University Hospital Muenster; and Interdisciplinary Center for Clinical Research and European Institute of Molecular Imaging, University of Muenster, Muenster, Germany
| | - Klaus Kopka
- From the Departments of Clinical Radiology and Nuclear Medicine, University Hospital Muenster; and Interdisciplinary Center for Clinical Research and European Institute of Molecular Imaging, University of Muenster, Muenster, Germany
| | - Walter Heindel
- From the Departments of Clinical Radiology and Nuclear Medicine, University Hospital Muenster; and Interdisciplinary Center for Clinical Research and European Institute of Molecular Imaging, University of Muenster, Muenster, Germany
| | - Otmar Schober
- From the Departments of Clinical Radiology and Nuclear Medicine, University Hospital Muenster; and Interdisciplinary Center for Clinical Research and European Institute of Molecular Imaging, University of Muenster, Muenster, Germany
| | - Michael Schäfers
- From the Departments of Clinical Radiology and Nuclear Medicine, University Hospital Muenster; and Interdisciplinary Center for Clinical Research and European Institute of Molecular Imaging, University of Muenster, Muenster, Germany
| | - Christoph Bremer
- From the Departments of Clinical Radiology and Nuclear Medicine, University Hospital Muenster; and Interdisciplinary Center for Clinical Research and European Institute of Molecular Imaging, University of Muenster, Muenster, Germany
| |
Collapse
|
39
|
Mitchell JD, Maguire JJ, Kuc RE, Davenport AP. Expression and vasoconstrictor function of anorexigenic peptides neuromedin U-25 and S in the human cardiovascular system. Cardiovasc Res 2008; 81:353-61. [PMID: 18987052 DOI: 10.1093/cvr/cvn302] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Neuromedin U-25 (NMU-25), a brain-gut peptide with anorexigenic actions, was paired with the G-protein-coupled receptors NMU1 and NMU2 in 2000. NMU-25 elicited a potent hypertensive effect in rats but little is known about its cardiovascular effects in humans. We examined the hypothesis that NMU fulfils the criteria for controlling vascular reactivity within the human cardiovascular system. METHODS AND RESULTS The radioligand [125I]-NMU-25 demonstrated specific, saturable, and high affinity (K(D) = 0.26 +/- 0.06 nM) binding in the human left ventricle and coronary artery, and quantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding NMU1 predominated in these tissues. NMU-25-like immunoreactivity was detected in human plasma, left ventricle, coronary artery, saphenous vein, and epicardial adipose tissue, and both NMU-25 and a related peptide, neuromedin S (NMS), were identified by high-performance liquid chromatography in the left ventricle. NMU receptor and peptide were localized to endothelial cells, with the receptor also present on vascular smooth muscle cells. NMU-25 was a potent vasoconstrictor of isolated rings of human coronary and mammary artery and saphenous vein. Compared with NMU-25, NMS had a significantly reduced maximum response in saphenous vein, and the Arg165Trp variant of NMU-25, associated with childhood-onset obesity, was without effect. NMU-25 precursor mRNA was upregulated in the left ventricle from patients with dilated cardiomyopathy and ischaemic heart disease. CONCLUSION We have detected the expression of both NMU receptor and peptide in human cardiovascular tissues and have shown that NMU-25 and NMS act as potent vasoconstrictors in human vascular beds.
Collapse
Affiliation(s)
- John D Mitchell
- Clinical Pharmacology Unit, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, University of Cambridge, Cambridge CB22QQ, UK.
| | | | | | | |
Collapse
|
40
|
Automated synthesis of the generic peptide labelling agent N-succinimidyl 4-[18F]fluorobenzoate and application to 18F-label the vasoactive transmitter urotensin-II as a ligand for positron emission tomography. Nucl Med Biol 2008; 35:725-31. [DOI: 10.1016/j.nucmedbio.2008.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 04/14/2008] [Indexed: 11/30/2022]
|
41
|
Farhat N, Matouk CC, Mamarbachi AM, Marsden PA, Allen BG, Thorin E. Activation of ETB receptors regulates the abundance of ET-1 mRNA in vascular endothelial cells. Br J Pharmacol 2008; 153:1420-31. [PMID: 18278064 DOI: 10.1038/bjp.2008.25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The factors that influence the cellular levels of endothelin-1 (ET-1) include transcription, mRNA localization, stability and translation, post-translational maturation of preproET-1 and degradation of ET-1. We investigated the regulation of ET-1 mRNA abundance by extracellular ET-1 in porcine aortic endothelial cells (PAECs). EXPERIMENTAL APPROACH Passsage one cultures of PAECs were incubated in starving medium in the presence or absence of ET-1 and antagonists or pharmacological inhibitors. PreproET-1 mRNA, endothelin-1 promoter activity, Erk and p38 MAPK activation were determined. KEY RESULTS Exogenous ET-1 reduced cellular ET-1 mRNA content: a reduction of 10 000-fold was observed after 4 h. ET-1 simultaneously reduced the stability of ET-1 mRNA and increased the loading of RNA Polymerase II at the endothelin-1 promoter. In the absence of exogenous ET-1, the ETB-selective antagonist, BQ788, increased ET-1 mRNA. An ETA-selective antagonist had no effect. ET-1 mRNA returned to control levels within 24 h. Whereas activation of p38 MAPK induced by ET-1 peaked at 30 min and returned to control levels within 90 min, Erk1/2 remained active after 4 h of stimulation. Inhibition of p38 MAPK prevented the ET-1-induced decrease in ET-1 mRNA. In contrast, Erk1/2 inhibition increased ET-1 mRNA. Similarly, inhibition of receptor internalization increased ET-1 mRNA in the presence or absence of exogenous ET-1. CONCLUSIONS AND IMPLICATIONS These results suggest that extracellular ET-1 regulates the abundance of ET-1 mRNA in PAECs, in an ETB receptor-dependent manner, by modulating both mRNA stability and transcription via mechanisms involving receptor endocytosis and both ERK and p38 MAPK pathways.
Collapse
Affiliation(s)
- N Farhat
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The ETs (endothelins) comprise a family of three 21-amino-acid peptides (ET-1, ET-2 and ET-3) and 31-amino-acid ETs (ET-1(1-31), ET-2(1-31) and ET-3(1-31)). ET-1 is synthesized from a biologically inactive precursor, big ET-1, by ECEs (ET-converting enzymes). The actions of ET-1 are mediated through activation of the G-protein-coupled ET(A) and ET(B) receptors, which are found in a variety of cells in the cardiovascular and renal systems. ET-1 has potent vasoconstrictor, mitogenic, pro-inflammatory and antinatriuretic properties, which have been implicated in the pathophysiology of a number of cardiovascular diseases. Overexpression of ET-1 has been consistently described in salt-sensitive models of hypertension and in models of renal failure, and has been associated with disease progression. Sex differences are observed in many aspects of mammalian cardiovascular function and pathology. Hypertension, as well as other cardiovascular diseases, is more common in men than in women of similar age. In experimental models of hypertension, males develop an earlier and more severe form of hypertension than do females. Although the reasons for these differences are not well established, the effects of gonadal hormones on arterial, neural and renal mechanisms that control blood pressure are considered contributing factors. Sex differences in the ET-1 pathway, with males displaying higher ET-1 levels, greater ET-1-mediated vasoconstrictor and enhanced pressor responses in comparison with females, are addressed in the present review. Sex-associated differences in the number and function of ET(B) receptors appear to be particularly important in the specific characteristics of hypertension between females and males. Although the gonadal hormones modulate some of the differences in the ET pathway in the cardiovascular system, a better understanding of the exact mechanisms involved in sex-related differences in this peptidergic system is needed. With further insights into these differences, we may learn that men and women could require different antihypertensive regimens.
Collapse
|
43
|
The endothelin system as a therapeutic target in cardiovascular disease: great expectations or bleak house? Br J Pharmacol 2007; 153:1105-19. [PMID: 17965745 DOI: 10.1038/sj.bjp.0707516] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
There is considerable evidence that the potent vasoconstrictor endothelin-1 (ET-1) contributes to the pathogenesis of a variety of cardiovascular diseases. As such, pharmacological manipulation of the ET system might represent a promising therapeutic goal. Many clinical trials have assessed the potential of ET receptor antagonists in cardiovascular disease, the most positive of which have resulted in the licensing of the mixed ET receptor antagonist bosentan, and the selective ET(A) receptor antagonists, sitaxsentan and ambrisentan, for the treatment of pulmonary arterial hypertension (PAH). In contrast, despite encouraging data from in vitro and animal studies, outcomes in human heart failure have been disappointing, perhaps illustrating the risk of extrapolating preclinical work to man. Many further potential applications of these compounds, including resistant hypertension, chronic kidney disease, connective tissue disease and sub-arachnoid haemorrhage are currently being investigated in the clinic. Furthermore, experience from previous studies should enable improved trial design and scope remains for development of improved compounds and alternative therapeutic strategies. Although ET-converting enzyme inhibitors may represent one such alternative, there have been relatively few suitable compounds developed, and consequently, clinical experience with these agents remains extremely limited. Recent advances, together with an increased understanding of the biology of the ET system provided by improved experimental tools (including cell-specific transgenic deletion of ET receptors), should allow further targeting of clinical trials to diseases in which ET is involved and allow the therapeutic potential for targeting the ET system in cardiovascular disease to be fully realized.
Collapse
|
44
|
Neuhaus SJ, Byers MR. Endothelin receptors and endothelin-1 in developing rat teeth. Arch Oral Biol 2007; 52:655-62. [PMID: 17316550 DOI: 10.1016/j.archoralbio.2006.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 12/20/2006] [Accepted: 12/20/2006] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The endothelins are a family of small peptides with multiple roles in a variety of tissues. Signaling is mediated through two receptor subtypes, the endothelin A receptor (ET(A)) specific for Et-1 and the non-specific endothelin B receptor (ET(B)). OBJECTIVE Our goal was to determine the location of immunoreactivity (IR) for ET(A) and ET(B) in developing and mature rat teeth as indicators of endothelin (Et) regulatory sites and to compare this to the Et-1 (ligand)-IR expression patterns. DESIGN We used immunohistochemistry to study developing and mature rat molars and continuously developing incisors. RESULTS We demonstrate ET(A), ET(B), and Et-1 expression patterns in teeth, for the first time. ET(A) was found in developing molar root pulp, pulpal vasculature, and preodontoblasts, and then persisted in odontoblasts or cellular cementocytes at the root apices of mature teeth. ET(B) was found at the molar (Hertwig's) root sheath during root formation and in molar ameloblasts, nerve fibers and odontoblasts of immature and mature teeth. In incisors, ET(B)-IR was associated with ameloblasts and the stem cell niche of the cervical loop while ET(A) was located in the substratum layer. Et-1 was found throughout the dental and periodontal tissues with higher concentrations associated with odontoblasts, nerves and incisor layers that expressed ET(B). CONCLUSION The patterns of ET(A) and ET(B) in teeth differ from each other and from those of adjacent tissues suggesting multiple tooth-specific functions for endothelin during development and mature dental function.
Collapse
Affiliation(s)
- Scott J Neuhaus
- Department of Restorative Dentistry, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
45
|
Wester HJ, Schottelius M. Fluorine-18 labeling of peptides and proteins. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2007:79-111. [PMID: 17172153 DOI: 10.1007/978-3-540-49527-7_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The pool of promising peptides worthy of investigation and evaluation for clinical use is continuously filled from different sources. Driven by the promising results obtained with peptides addressing somatostatin-2 receptor positive (sst2+) neuroendocrine tumours, other peptides targeting further receptor systems are being studied and evaluated. Progress in profiling the density and incidence of peptide hormone receptors in human cancer has initiated and will further promote research on the corresponding peptidic binders. In addition, industrial pharmaceutical research will be another significant source of peptides in the future. A recent prognosis revealed that about 50% of the drugs entering clinical trials in the next years will be peptides. The extensive research activities in genomics and proteomics will point out and quantify new and already known target structures upregulated in specific diseases. Based on the knowledge of their endogenous ligands or via selection of suitable candidates by phage display, suitable peptide ligands for e.g. membrane associated receptors can be identified and thus allow targeting of such binding sites. Thus, bioactive peptides specifically addressing relevant molecular targets are expected to become an important class of tracers, also due to the possibility of bridging imaging with therapeutic approaches. In this brief overview a summary of methods and strategies for the 18F-labeling of peptides and proteins is given.
Collapse
Affiliation(s)
- H J Wester
- Nuklearmedizinische Klinik und Poliklinik und Institut für Radiochemie, Technische Universität Müchen, Germany.
| | | |
Collapse
|
46
|
Abstract
In humans, the endothelins (ETs) comprise a family of three 21-amino-acid peptides, ET-1, ET-2 and ET-3. ET-1 is synthesised from a biologically inactive precursor, Big ET-1, by an unusual hydrolysis of the Trp21 -Val22 bond by the endothelin converting enzyme (ECE-1). In humans, there are four isoforms (ECE-1a-d) derived from a single gene by the action of alternative promoters. Structurally, they differ only in the amino acid sequence of the extreme N-terminus. A second enzyme, ECE-2, also exists as four isoforms and differs from ECE-1 in requiring an acidic pH for optimal activity. Human chymase can also cleave Big ET-1 to ET-1, which is cleaved, in turn, to the mature peptide as an alternative pathway. ET-1 is the principal isoform in the human cardiovascular system and remains one of the most potent constrictors of human vessels discovered. ET-1 is unusual in being released from a dual secretory pathway. The peptide is continuously released from vascular endothelial cells by the constitutive pathway, producing intense constriction of the underlying smooth muscle and contributing to the maintenance of endogenous vascular tone. ET-1 is also released from endothelial cell-specific storage granules (Weibel-Palade bodies) in response to external stimuli. ETs mediate their action by activating two G protein-coupled receptor sub-types, ETA and ET(B). Two therapeutic strategies have emerged to oppose the actions of ET-1, namely inhibition of the synthetic enzyme by combined ECE/neutral endopeptidase inhibitors such as SLV306, and receptor antagonists such as bosentan. The ET system is up-regulated in atherosclerosis, and ET antagonists may be of benefit in reducing blood pressure in essential hypertension. Bosentan, the first ET antagonist approved for clinical use, represents a significant new therapeutic strategy in the treatment of pulmonary arterial hypertension (PAH).
Collapse
Affiliation(s)
- A P Davenport
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK.
| | | |
Collapse
|
47
|
Brunner F, Brás-Silva C, Cerdeira AS, Leite-Moreira AF. Cardiovascular endothelins: essential regulators of cardiovascular homeostasis. Pharmacol Ther 2006; 111:508-31. [PMID: 16457892 DOI: 10.1016/j.pharmthera.2005.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 11/01/2005] [Indexed: 02/04/2023]
Abstract
The endothelin (ET) system consists of 3 ET isopeptides, several isoforms of activating peptidases, and 2 G-protein-coupled receptors, ETA and ETB, that are linked to multiple signaling pathways. In the cardiovascular system, the components of the ET family are expressed in several tissues, notably the vascular endothelium, smooth muscle cells, and cardiomyocytes. There is general agreement that ETs play important physiological roles in the regulation of normal cardiovascular function, and excessive generation of ET isopeptides has been linked to major cardiovascular pathologies, including hypertension and heart failure. However, several recent clinical trials with ET receptor antagonists were disappointing. In the present review, the authors take the stance that ETs are mainly and foremost essential regulators of cardiovascular function, hence that antagonizing normal ET actions, even in patients, will potentially do more harm than good. To support this notion, we describe the predominant roles of ETs in blood vessels, which are (indirect) vasodilatation and ET clearance from plasma and interstitial spaces, against the background of the subcellular mechanisms mediating these effects. Furthermore, important roles of ETs in regulating and adapting heart functions to different needs are addressed, including recent progress in understanding the effects of ETs on diastolic function, adaptations to changes in preload, and the interactions between endocardial-derived ET-1 and myocardial pump function. Finally, the potential dangers (and gains) resulting from the suppression of excessive generation or activity of ETs occurring in some cardiovascular pathological states, such as hypertension, myocardial ischemia, and heart failure, are discussed.
Collapse
Affiliation(s)
- Friedrich Brunner
- Department of Pharmacology and Toxicology, University of Graz, Universitätsplatz 2, 8010-Graz, Austria.
| | | | | | | |
Collapse
|
48
|
Höltke C, Law MP, Wagner S, Breyholz HJ, Kopka K, Bremer C, Levkau B, Schober O, Schäfers M. Synthesis, in vitro pharmacology and biodistribution studies of new PD 156707-derived ET(A) receptor radioligands. Bioorg Med Chem 2005; 14:1910-7. [PMID: 16289856 DOI: 10.1016/j.bmc.2005.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 08/16/2005] [Indexed: 12/31/2022]
Abstract
It is assumed that the regulation of cardiac endothelin (ET) receptor density is abnormal in heart diseases. From that perspective, an ET receptor radioligand is needed to assess ET receptor density in vivo. The nonpeptidyl ET(A) receptor antagonist PD 169390 was labelled with radioiodine to give a putative radioligand for SPECT. Labelling with [125I]iodide and [123I]iodide was accomplished with good to excellent radiochemical yields. The affinities of the nonradioactive reference and those of selected precursor compounds for ET(A) receptors were determined, using [125I]iodine labelled endothelin-1 with mouse ventricular membranes. All employed substances exhibited potent in vitro pharmacological characteristics with Ki values comparable to that of the lead compound PD 156707. Biodistribution studies and scintigraphic imaging experiments in mice, however, showed no significant uptake of the [123I] derivative in the heart.
Collapse
Affiliation(s)
- Carsten Höltke
- Department of Nuclear Medicine, Albert-Schweitzer-Str. 33, University Hospital Münster, 48149 Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|