1
|
Thakuri B, Kumar Das J, Kumar Roy A, Chakraborty A. Circulating renin-angiotensin systems mediated feedback controls over the mean-arterial pressure. J Theor Biol 2023; 572:111589. [PMID: 37532028 DOI: 10.1016/j.jtbi.2023.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/03/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
The renin-angiotensin systems play pivotal role in cardiovascular physiology through its effects on regulating blood pressure and electrolyte homeostasis. Components of circulating RAS (cRAS) that include precursor angiotensinogen, two critical enzymes (renin and angiotensin-converting enzyme, ACE), their bioactive products, angiotensin- I, II together with its receptors (AT1R and AT2R) essentially determine this homeostasis. Most classical studies, however, showed the deleterious role of cRAS in elevating the blood pressure. Contemporary discovery of non-canonical components of the RAS has challenged this classic hypothesis that it can only exert deleterious effects on the cardiovascular systems. Using the classic cRAS model, we have designed in-silico experiments to test the hypothesis that AT2R-mediated feedback effects play pivotal role for maintaining the normal variation of the mean-arterial pressure (MAP).Beside the AT2R-mediation of downstream singling pathways consisting of several non-canonical RAS components, this study first time illustrated AT2R mediated feedback controls over the blood pressure regulation: one that impedes AT1R activity, and the other that downregulates renin. It has been shown that relatively stronger suppression of renin activity significantly contributes in maintaining the normal MAP and that tight AT2R-mediated regulation is relaxed in hyper-and hypotension. This control mechanism is noted to be robustly maintained with the MAP variations through an established linear steady-state relationship among renin, angiotensin I and angiotensin II. This examination suggests that AT2R-mediated downregulation of renin activities potentially counteracts the AT1R-mediated deleterious actions of Ang II. This study, therefore, provides a solid ground for considering different AT2 receptor adaptor protein and direct agonism at AT2R that can cause greater effects along with contemporary approaches of blocking AT1R mediation to attenuate hypertension or other cardiovascular disorders.
Collapse
Affiliation(s)
- Bikash Thakuri
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Jayanta Kumar Das
- Biomedical Research Centre, National Institute of Aging, National Institutes of Health, Bethesda, MD 20814, United States
| | - Amit Kumar Roy
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Amit Chakraborty
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India.
| |
Collapse
|
2
|
Abstract
Purpose of Review Although an independent brain renin-angiotensin system is often assumed to exist, evidence for this concept is weak. Most importantly, renin is lacking in the brain, and both brain angiotensinogen and angiotensin (Ang) II levels are exceptionally low. In fact, brain Ang II levels may well represent uptake of circulating Ang II via Ang II type 1 (AT1) receptors. Recent Findings Nevertheless, novel drugs are now aimed at the brain RAS, i.e., aminopeptidase A inhibitors should block Ang III formation from Ang II, and hence diminish AT1 receptor stimulation by Ang III, while AT2 and Mas receptor agonists are reported to induce neuroprotection after stroke. The endogenous agonists of these receptors and their origin remain unknown. Summary This review addresses the questions whether independent angiotensin generation truly occurs in the brain, what its relationship with the kidney is, and how centrally acting RAS blockers/agonists might work.
Collapse
Affiliation(s)
- Liwei Ren
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Xifeng Lu
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Moes AD, Severs D, Verdonk K, van der Lubbe N, Zietse R, Danser AHJ, Hoorn EJ. Mycophenolate Mofetil Attenuates DOCA-Salt Hypertension: Effects on Vascular Tone. Front Physiol 2018; 9:578. [PMID: 29867591 PMCID: PMC5968119 DOI: 10.3389/fphys.2018.00578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/01/2018] [Indexed: 12/28/2022] Open
Abstract
Inflammation is increasingly recognized as a driver of hypertension. Both genetic and pharmacological inhibition of B and T cells attenuates most forms of experimental hypertension. Accordingly, the immunosuppressive drug mycophenolate mofetil (MMF) reduces blood pressure in the deoxycorticosterone acetate (DOCA-) salt model. However, the mechanisms by which MMF prevent hypertension in the DOCA-salt model remain unclear. Recent studies indicate that immunosuppression can inhibit sodium transporter activity in the kidney, but its effect on vascular tone is not well characterized. Therefore, the aim of the present study was to analyze the vascular and renal tubular effects of MMF in the DOCA-salt model in rats (4 weeks without uninephrectomy). Co-treatment with MMF attenuated the rise in blood pressure from day 11 onward resulting in a significantly lower telemetric mean arterial pressure after 4 weeks of treatment (108 ± 7 vs. 130 ± 9 mmHg, P < 0.001 by two-way analysis of variance). MMF significantly reduced the number of CD3+ cells in kidney cortex and inner medulla, but not in outer medulla. In addition, MMF significantly reduced urinary interferon-γ excretion. Vascular tone was studied ex vivo using wire myographs. An angiotensin II type 2 (AT2) receptor antagonist blocked the effects of angiotensin II (Ang II) only in the vehicle group. Conversely, L-NAME significantly increased the Ang II response only in the MMF group. An endothelin A receptor blocker prevented vasoconstriction by endothelin-1 in the MMF but not in the vehicle group. MMF did not reduce the abundances of the kidney sodium transporters NHE3, NKCC2, NCC, or ENaC. Together, our ex vivo results suggest that DOCA-salt induces AT2 receptor-mediated vasoconstriction. MMF prevents this response and increases nitric oxide availability. These data provide insight in the antihypertensive mechanism of MMF and the role of inflammation in dysregulating vascular tone.
Collapse
Affiliation(s)
- Arthur D Moes
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - David Severs
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Koen Verdonk
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Nils van der Lubbe
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Robert Zietse
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - A H J Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
4
|
Endlich PW, Claudio ERG, Lima LCF, Ribeiro Júnior RF, Peluso AAB, Stefanon I, Bissoli NS, Lemos VS, Santos RASD, Abreu GRD. Exercise modulates the aortic renin-angiotensin system independently of estrogen therapy in ovariectomized hypertensive rats. Peptides 2017; 87:41-49. [PMID: 27884622 DOI: 10.1016/j.peptides.2016.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
The renin-angiotensin-system is an important component of cardiovascular control and is up-regulated under various conditions, including hypertension and menopause. The aim of this study was to evaluate the effects of swimming training and estrogen therapy (ET) on angiotensin-II (ANG II)-induced vasoconstriction and angiotensin-(1-7) [ANG-(1-7)]-induced vasorelaxation in aortic rings from ovariectomized spontaneously hypertensive rats. Animals were divided into Sham (SH), Ovariectomized (OVX), Ovariectomized treated with E2 (OE2), Ovariectomized plus swimming (OSW) and Ovariectomized treated with E2 plus swimming (OE2+SW) groups. ET entailed the administration of 5μg of 17β-Estradiol three times per week. Swimming was undertaken for sixty minutes each day, five times per week. Both, training and ET were initiated seven days following ovariectomy. Forty-eight hours after the last treatment or training session, the animals' systolic blood pressures were measured, and blood samples were collected to measure plasma ANG II and ANG-(1-7) levels via radioimmunoassay. In aortic rings, the vascular reactivity to ANG II and ANG-(1-7) was assessed. Expression of ANG-(1-7) in aortic wall was analyzed by immunohistochemistry. The results showed that both exercise and ET increased plasma ANG II levels despite attenuating systolic blood pressure. Ovariectomy increased constrictor responses to ANG II and decreased dilatory responses to ANG-(1-7), which were reversed by swimming independently of ET. Moreover, it was observed an apparent increase in ANG-(1-7) content in the aorta of the groups subjected to training and ET. Exercise training may play a cardioprotective role independently of ET and may be an alternative to ET in hypertensive postmenopausal women.
Collapse
Affiliation(s)
- Patrick W Endlich
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria, ES, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Federal University of Valleys of Jequitinhonha and Mucuri, Teófilo Otoni, MG, Brazil
| | - Erick R G Claudio
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | - Leandro C F Lima
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rogério F Ribeiro Júnior
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | - Antonio A B Peluso
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ivanita Stefanon
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | - Nazaré S Bissoli
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | - Virginia S Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson A S Dos Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Glaucia R de Abreu
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
5
|
Samson R, Lee A, Lawless S, Hsu R, Sander G. Novel Pathophysiological Mechanisms in Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:21-35. [PMID: 27981434 DOI: 10.1007/5584_2016_96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypertension is the most common disease affecting humans and imparts a significant cardiovascular and renal risk to patients. Extensive research over the past few decades has enhanced our understanding of the underlying mechanisms in hypertension. However, in most instances, the cause of hypertension in a given patient continues to remain elusive. Nevertheless, achieving aggressive blood pressure goals significantly reduces cardiovascular morbidity and mortality, as demonstrated in the recently concluded SPRINT trial. Since a large proportion of patients still fail to achieve blood pressure goals, knowledge of novel pathophysiologic mechanisms and mechanism based treatment strategies is crucial. The following chapter will review the novel pathophysiological mechanisms in hypertension, with a focus on role of immunity, inflammation and vascular endothelial homeostasis. The therapeutic implications of these mechanisms will be discussed where applicable.
Collapse
Affiliation(s)
- Rohan Samson
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Andrew Lee
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Sean Lawless
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Robert Hsu
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Gary Sander
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| |
Collapse
|
6
|
Pessôa BS, Slump DE, Ibrahimi K, Grefhorst A, van Veghel R, Garrelds IM, Roks AJM, Kushner SA, Danser AHJ, van Esch JHM. Angiotensin II type 2 receptor- and acetylcholine-mediated relaxation: essential contribution of female sex hormones and chromosomes. Hypertension 2015; 66:396-402. [PMID: 26056343 DOI: 10.1161/hypertensionaha.115.05303] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)-induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor-mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y(-)) from the Y chromosome, allowing XY(-) mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY(-)Sry and XXSry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY(-)Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XXSry male and XY(-) female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors.
Collapse
Affiliation(s)
- Bruno Sevá Pessôa
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Denise E Slump
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Khatera Ibrahimi
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Aldo Grefhorst
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Richard van Veghel
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Ingrid M Garrelds
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Steven A Kushner
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands.
| | - Joep H M van Esch
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116:960-75. [PMID: 25767283 DOI: 10.1161/circresaha.116.303587] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.
Collapse
Affiliation(s)
- Luuk Te Riet
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Lin YJ, Kwok CF, Juan CC, Hsu YP, Shih KC, Chen CC, Ho LT. Angiotensin II enhances endothelin-1-induced vasoconstriction through upregulating endothelin type A receptor. Biochem Biophys Res Commun 2014; 451:263-9. [DOI: 10.1016/j.bbrc.2014.07.119] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
|
9
|
Sgarra L, Leo V, Addabbo F, Iacobazzi D, Carratù MR, Montagnani M, Potenza MA. Intermittent losartan administration triggers cardiac post-conditioning in isolated rat hearts: role of BK2 receptors. PLoS One 2014; 9:e88542. [PMID: 24520397 PMCID: PMC3919762 DOI: 10.1371/journal.pone.0088542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/07/2014] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The angiotensin (Ang) and bradykinin (BK) tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R) blockers (ARBs) in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS) or irbesartan (IRB) post-ischemic administration. METHODS Isolated rat hearts underwent 30 min ischemia and 120 min reperfusion. Post-conditioning was obtained by intermittent (10 s/each) or continuous drug infusion during the first 3 min of reperfusion. Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (dLVP), coronary flow (CF), and left ventricular infarct mass (IM) were measured together with the activation status of RISK kinases Akt, p42/44 MAPK and GSK3β. RESULTS When compared to hearts subjected to ischemia/reperfusion (iI/R) alone, continuous IRB or LOS administration did not significantly reduce total infarct mass (cIRB or cLOS vs. iI/R, p = 0.2). Similarly, intermittent IRB (iIRB) was not able to enhance cardioprotection. Conversely, intermittent LOS administration (iLOS) significantly ameliorated cardiac recovery (iLOS vs iI/R, p<0.01). Differences between iLOS and iIRB persisted under continuous blockade of AT2R (iLOS+cPD vs. iIRB+cPD, p<0.05). Interestingly, iLOS cardioprotection was lost when BK2R was simultaneously blocked (iLOS+cHOE vs. iI/R, p = 0.6), whereas concurrent administration of iBK and iIRB replicated iLOS effects (iIRB+iBK vs. iLOS, p = 0.7). At the molecular level, iIRB treatment did not significantly activate RISK kinases, whereas both iLOS and iBK treatments were associated with activation of the Akt/GSK3β branch of the RISK pathways (p<0.05 vs. iI/R, for both). CONCLUSIONS Our results suggest that intermittent losartan is effective in mediating post-conditioning cardioprotection, whereas irbesartan is not. The infarct mass reduction by intermittent losartan seem mainly related on its specific ability to modulate BK2R, and only modestly associated on AT1R blocking properties.
Collapse
Affiliation(s)
- Luca Sgarra
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| | - Valentina Leo
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| | - Francesco Addabbo
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| | - Dominga Iacobazzi
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
- * E-mail:
| | - Maria Assunta Potenza
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro,” Bari, Italy
| |
Collapse
|
10
|
Crestani S, Gasparotto Júnior A, Marques MCA, Sullivan JC, Webb RC, da Silva-Santos JE. Enhanced angiotensin-converting enzyme activity and systemic reactivity to angiotensin II in normotensive rats exposed to a high-sodium diet. Vascul Pharmacol 2013; 60:67-74. [PMID: 24321189 DOI: 10.1016/j.vph.2013.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 11/24/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
Abstract
A high salt diet is associated with reduced activity of the renin-angiotensin-aldosterone system (RAAS). However, normotensive rats exposed to high sodium do not show changes in systemic arterial pressure. We hypothesized that, despite the reduced circulating amounts of angiotensin II induced by a high salt diet, the cardiovascular system's reactivity to angiotensin II is increased in vivo, contributing to maintain arterial pressure at normal levels. Male Wistar rats received chow containing 0.27% (control), 2%, 4%, or 8% NaCl for six weeks. The high-sodium diet did not lead to changes in arterial pressure, although plasma levels of angiotensin II and aldosterone were reduced in the 4% and 8% NaCl groups. The 4% and 8% NaCl groups showed enhanced pressor responses to angiotensin I and II, accompanied by unchanged and increased angiotensin-converting enzyme activity, respectively. The 4% NaCl group showed increased expression of angiotensin II type 1 receptors and reduced expression of angiotensin II type 2 receptors in the aorta. In addition, the hypotensive effect of losartan was reduced in both 4% and 8% NaCl groups. In conclusion these results explain, at least in part, why the systemic arterial pressure is maintained at normal levels in non-salt sensitive and healthy rats exposed to a high salt diet, when the functionality of RAAS appears to be blunted, as well as suggest that angiotensin II has a crucial role in the vascular dysfunction associated with high salt intake, even in the absence of hypertension.
Collapse
Affiliation(s)
- Sandra Crestani
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil; Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA
| | | | - Maria C A Marques
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Jennifer C Sullivan
- Department of Medicine, Georgia Health Sciences University, Augusta, GA, USA
| | - R Clinton Webb
- Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA
| | - J Eduardo da Silva-Santos
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil; Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
How does the angiotensin II type 1 receptor 'trump' the type 2 receptor in blood pressure control? J Hypertens 2013; 31:705-12. [PMID: 23325393 DOI: 10.1097/hjh.0b013e32835d6d11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A kinetic model for the binding of angiotensin II (Ang II) to AT1 receptors (AT1Rs) in arterioles did suggest a novel mechanism of association rate amplification and facilitated Ang II diffusion in vivo. AIM OF STUDY To examine how this mechanism, acting on AT1R, will affect the stimulation of AT2R. METHOD The model distinguishes between the diffusion of plasma Ang II across the endothelium layer (thickness 10(-4) - 5 × 10(-4) cm) into the vascular smooth muscle (VSM) layer (5 × 10(-4) cm), and the diffusion of tissue Ang II from perivascular interstitium (thickness of micromilieu fluid layer at abluminal VSM surface 10(-6) - 10(-5) cm, i.e. 1 to 10 times the glycocalyx). Thus, Ang II concentration [Ang II] is taken to be 0 at the abluminal and adluminal VSM cell surfaces, respectively. Tissue Ang II is defined as originating from local generation and/or from the capillary circulation. [Ang II]/AT1R and [Ang II]/AT2R occupancy curves for the two directions of diffusion are constructed from the model-based calculations. RESULTS Ang II, at 10(-15)-10(-13) mol/ml (~1-100 pg/ml), is much less likely to react with vascular AT2R than AT1R, though it has similar affinity for the receptor types. With plasma [Ang II] = 10(-15)-10(-13) mol/ml, AT2R occupancy is less than 10% of maximum on endothelium, and virtually 0 on VSM, whereas AT1R occupancy on VSM is virtually 0 at plasma [Ang II] < 10(-14) mol/ml, and between 0 and 30% at plasma [Ang II] = 10(-13) mol/ml. With tissue [Ang II] = 10(-15)-10(-13) mol/ml, VSM AT2R occupancy is close to 0, whereas VSM AT1R occupancy is 40-60% in the absence of endocytotic AT1R down-regulation, and up to 70-90% in its presence. CONCLUSION The threshold concentration of Ang II needed for response is much higher for AT2R than for AT1R. Plasma Ang II rather than tissue Ang II is the agonist of AT2R, and the reverse applies to AT1R. Thus, AT2R stimulation may come into play only at unusually high circulating levels of Ang II.
Collapse
|
12
|
Sevá Pessôa B, van der Lubbe N, Verdonk K, Roks AJM, Hoorn EJ, Danser AHJ. Key developments in renin-angiotensin-aldosterone system inhibition. Nat Rev Nephrol 2012; 9:26-36. [PMID: 23165302 DOI: 10.1038/nrneph.2012.249] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) was initially thought to be fairly simple. However, this idea has been challenged following the development of RAAS blockers, including renin inhibitors, angiotensin-converting-enzyme (ACE) inhibitors, type 1 angiotensin II (AT(1))-receptor blockers and mineralocorticoid-receptor antagonists. Consequently, new RAAS components and pathways that might contribute to the effectiveness of these drugs and/or their adverse effects have been identified. For example, an increase in renin levels during RAAS blockade might result in harmful effects via stimulation of the prorenin receptor (PRR), and prorenin-the inactive precursor of renin-might gain enzymatic activity on PRR binding. The increase in angiotensin II levels that occurs during AT(1)-receptor blockade might result in beneficial effects via stimulation of type 2 angiotensin II receptors. Moreover, angiotensin 1-7 levels increase during ACE inhibition and AT(1)-receptor blockade, resulting in Mas receptor activation and the induction of cardioprotective and renoprotective effects, including stimulation of tissue repair by stem cells. Finally, a role of angiotensin II in sodium and potassium handling in the distal nephron has been identified. This finding is likely to have important implications for understanding the effects of RAAS inhibition on whole body sodium and potassium balance.
Collapse
Affiliation(s)
- Bruno Sevá Pessôa
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Verdonk K, Durik M, Abd-Alla N, Batenburg WW, van den Bogaerdt AJ, van Veghel R, Roks AJ, Danser AJ, van Esch JH. Compound 21 Induces Vasorelaxation via an Endothelium- and Angiotensin II Type 2 Receptor-Independent Mechanism. Hypertension 2012; 60:722-9. [DOI: 10.1161/hypertensionaha.112.196022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II type 2 (AT
2
) receptor stimulation has been linked to vasodilation. Yet, AT
2
receptor-independent hypertension and hypotension (or no effect on blood pressure) have been observed in vivo after application of the AT
2
receptor agonist compound 21 (C21). We, therefore, studied its effects in vitro, using preparations known to display AT
2
receptor-mediated responses. Hearts of Wistar rats, spontaneously hypertensive rats (SHRs), C57Bl/6 mice, and AT
2
receptor knockout mice were perfused according to Langendorff. Mesenteric and iliac arteries of these animals, as well as coronary microarteries from human donor hearts, were mounted in Mulvany myographs. In the coronary vascular bed of Wistar rats, C57Bl/6 mice, and AT
2
receptor knockout mice, C21 induced constriction followed by dilation. SHR hearts displayed enhanced constriction and no dilation. Irbesartan (angiotensin II type 1 receptor blocker) abolished the constriction and enhanced or (in SHRs) reintroduced dilation, and PD123319 (AT
2
receptor blocker) did not block the latter. C21 relaxed preconstricted vessels of all species, and this did not depend on angiotensin II receptors, the endothelium, or the NO-guanylyl cyclase-cGMP pathway. C21 constricted SHR iliac arteries but none of the other vessels, and irbesartan prevented this. C21 shifted the concentration-response curves to U46619 (thromboxane A
2
analog) and phenylephrine (α-adrenoceptor agonist) but not ionomycine (calcium ionophore) to the right. In conclusion, C21 did not cause AT
2
receptor-mediated vasodilation. Yet, it did induce vasodilation by blocking calcium transport into the cell and constriction via angiotensin II type 1 receptor stimulation. The latter effect is enhanced in SHRs. These data may explain the varying effects of C21 on blood pressure in vivo.
Collapse
Affiliation(s)
- Koen Verdonk
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Matej Durik
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Nalina Abd-Alla
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Wendy W. Batenburg
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Antoon J. van den Bogaerdt
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Richard van Veghel
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Anton J.M. Roks
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - A.H. Jan Danser
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Joep H.M. van Esch
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Abstract
Tissue angiotensin generation depends on the uptake of circulating (kidney-derived) renin and/or its precursor prorenin [together denoted as (pro)renin]. Since tissue renin levels are usually somewhat higher than expected based upon the amount of (renin-containing) blood in tissue, an active uptake mechanism has been proposed. Several candidates have been evaluated in the past three decades, including a renin-binding protein, the mannose 6-phosphate/insulin-like growth factor II receptor and the (pro)renin receptor. Although the latter seemed the most promising, its nanomolar affinity for renin and prorenin is several orders of magnitude above their actual (picomolar) levels in blood, raising doubt on whether (pro)renin–(pro)renin receptor interaction will ever occur in vivo. A wide range of in vitro studies have now demonstrated (pro)renin-receptor-induced effects at nanomolar renin and prorenin concentrations, resulting in a profibrotic phenotype. In addition, beneficial in vivo effects of the putative (pro)renin receptor blocker HRP (handle region peptide) have been observed, particularly in diabetic animal models. Despite these encouraging results, many other studies have reported either no or even contrasting effects of HRP, and (pro)renin-receptor-knockout studies revealed lethal consequences that are (pro)renin-independent, most probably due to the fact that the (pro)renin receptor co-localizes with vacuolar H+-ATPase and possibly determines the stability of this vital enzyme. The present review summarizes all of the recent findings on the (pro)renin receptor and its blockade, and critically compares it with the other candidates that have been proposed to mediate (pro)renin uptake from blood. It ends with the conclusion that the (pro)renin–(pro)renin receptor interaction, if it occurs in vivo, is limited to (pro)renin-synthesizing organs such as the kidney.
Collapse
|
15
|
Renal responses to three types of renin-angiotensin system blockers in patients with diabetes mellitus on a high-salt diet: a need for higher doses in diabetic patients? J Hypertens 2012; 29:2454-61. [PMID: 22002336 DOI: 10.1097/hjh.0b013e32834c627a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Activation of the renal renin-angiotensin system in patients with diabetes mellitus appears to contribute to the risk of nephropathy. Recently, it has been recognized than an elevation of prorenin in plasma also provides a strong indication of risk of nephropathy. This study was designed to examine renin-angiotensin system control mechanisms in the patient with diabetes mellitus. METHODS We enrolled 43 individuals with type 2 diabetes mellitus. All individuals were on a high-salt diet to minimize the contribution of the systemic renin-angiotensin system. After an acute exposure to captopril (25 mg), they were randomized to treatment with either irbesartan (300 mg) or aliskiren (300 mg) for 2 weeks. RESULTS All agents acutely lowered blood pressure and plasma aldosterone, and increased renal plasma flow and glomerular filtration rate. Yet, only captopril and aliskiren acutely increased plasma renin and decreased plasma angiotensin II, whereas irbesartan acutely affected neither renin nor angiotensin II. Plasma renin and angiotensin II subsequently did increase upon chronic irbesartan treatment. When given on day 14, irbesartan and aliskiren again induced the above hemodynamic, renal and adrenal effects, yet without significantly changing plasma renin. Irbesartan at that time did not affect plasma angiotensin II, whereas aliskiren lowered it to almost zero. CONCLUSION The relative resistance of the renal renin response to acute (irbesartan) and chronic (irbesartan and aliskiren) renin-angiotensin system blockade supports the concept of an activated renal renin-angiotensin system in diabetes, particularly at the level of the juxtaglomerular cell, and implies that diabetic patients might require higher doses of renin-angiotensin system blockers to fully suppress the renal renin-angiotensin system.
Collapse
|
16
|
Jansen PM, Hofland J, van den Meiracker AH, de Jong FH, Danser AHJ. Renin and prorenin have no direct effect on aldosterone synthesis in the human adrenocortical cell lines H295R and HAC15. J Renin Angiotensin Aldosterone Syst 2012; 13:360-6. [PMID: 22396488 DOI: 10.1177/1470320312438792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Transgenic rats expressing the human (pro)renin receptor (h(P)RR) have elevated plasma aldosterone levels despite unaltered levels, in plasma and adrenal, of renin and angiotensin II. MATERIALS AND METHODS To investigate whether renin/prorenin-(P)RR interaction underlies these elevated aldosterone levels, the effect of (pro)renin on steroidogenesis was compared with that of angiotensin II in two (P)RR-expressing human adrenocortical cell lines, H295R and HAC15. Angiotensin II rapidly induced extracellular signal-regulated kinase (ERK) phosphorylation and increased the expression of STAR, CYP21A2, CYP11B2, and CYP17A1 at 6 and 24 hours, whereas the expression of CYP11A1 and HSD3B2 remained unaltered. Incubation with renin or prorenin at nanomolar concentrations had no effect on the expression of any of the steroidogenic enzymes tested, nor resulted in ERK phosphorylation. Angiotensin II, but not renin or prorenin, induced aldosterone production. CONCLUSION Although the (P)RR is present in adrenocortical cells, renin and prorenin do not elicit ERK phosphorylation nor directly affect steroid production via this receptor at nanomolar concentrations. Thus, direct (pro)renin-(P)RR interaction is unlikely to contribute to the elevated aldosterone levels in human (P)RR transgenic rats. This conclusion also implies that the aldosterone rise that often occurs during prolonged renin-angiotensin system blockade is rather due to the angiotensin II 'escape' during such blockade.
Collapse
Affiliation(s)
- Pieter M Jansen
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Centre Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Verdonk K, Danser AHJ, van Esch JHM. Angiotensin II type 2 receptor agonists: where should they be applied? Expert Opin Investig Drugs 2012; 21:501-13. [PMID: 22348403 DOI: 10.1517/13543784.2012.664131] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Angiotensin II, the active endproduct of the renin-angiotensin system (RAS), exerts its effects via angiotensin II type 1 and type 2 (AT(1), AT(2)) receptors. AT(1) receptors mediate all well-known effects of angiotensin II, ranging from vasoconstriction to tissue remodeling. Thus, to treat cardiovascular disease, RAS blockade aims at preventing angiotensin II-AT(1) receptor interaction. Yet RAS blockade is often accompanied by rises in angiotensin II, which may exert beneficial effects via AT(2) receptors. AREAS COVERED This review summarizes our current knowledge on AT(2) receptors, describing their location, function(s), endogenous agonist(s) and intracellular signaling cascades. It discusses the beneficial effects obtained with C21, a recently developed AT(2) receptor agonist. Important questions that are addressed are do these receptors truly antagonize AT(1) receptor-mediated effects? What about their role in the diseased state and their heterodimerization with other receptors? EXPERT OPINION The general view that AT(2) receptors exclusively exert beneficial effects has been challenged, and in pathological models, their function sometimes mimics that of AT(1) receptors, for example, inducing vasoconstriction and cardiac hypertrophy. Yet given its upregulation in various pathological conditions, the AT(2) receptor remains a promising target for treatment, allowing effects beyond blood pressure-lowering, for example, in stroke, aneurysm formation, inflammation and myocardial fibrosis.
Collapse
Affiliation(s)
- Koen Verdonk
- Erasmus Medical Center, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Rotterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Gembardt F, van Veghel R, Coffman TM, Schultheiss HP, Danser AHJ, Walther T. Hemodynamic effects of vasorelaxant compounds in mice lacking one, two or all three angiotensin II receptors. Hypertens Res 2012; 35:547-51. [DOI: 10.1038/hr.2012.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Coexistence of functional angiotensin II type 2 receptors mediating both vasoconstriction and vasodilation in humans. J Hypertens 2011; 29:1743-8. [DOI: 10.1097/hjh.0b013e328349ae0d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Moltzer E, Essers J, van Esch JHM, Roos-Hesselink JW, Danser AHJ. The role of the renin-angiotensin system in thoracic aortic aneurysms: clinical implications. Pharmacol Ther 2011; 131:50-60. [PMID: 21504760 DOI: 10.1016/j.pharmthera.2011.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 03/26/2011] [Indexed: 01/06/2023]
Abstract
Thoracic aortic aneurysms (TAAs) are a potential life-threatening disease with limited pharmacological treatment options. Current treatment options are aimed at lowering aortic hemodynamic stress, predominantly with β-adrenoceptor blockers. Increasing evidence supports a role for the renin-angiotensin system (RAS) in aneurysm development. RAS blockade would not only lower blood pressure, but might also target the molecular pathways involved in aneurysm formation, in particular the transforming growth factor-β and extracellular signal-regulated kinase 1/2 pathways. Indeed, the angiotensin II type 1 (AT₁) receptor blocker losartan was effective in lowering aortic root growth in mice and patients with Marfan's syndrome. RAS inhibition (currently possible at 3 levels, i.e. renin, ACE and the AT₁ receptor) is always accompanied by a rise in renin due to interference with the negative feedback loop between renin and angiotensin II. Only during AT₁ receptor blockade will this result in stimulation of the non-blocked angiotensin II type 2 (AT₂) receptor. This review summarizes the clinical aspects of TAAs, provides an overview of the current mouse models for TAAs, and focuses on the RAS as a new target for TAA treatment, discussing in particular the possibility that AT₂ receptor stimulation might be crucial in this regard. If true, this would imply that AT₁ receptor blockers (and not ACE inhibitors or renin inhibitors) should be the preferred treatment option for TAAs.
Collapse
Affiliation(s)
- Els Moltzer
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Beneficial cardiac effects of the renin inhibitor aliskiren in spontaneously hypertensive rats. J Hypertens 2011; 28:2145-55. [PMID: 20625318 DOI: 10.1097/hjh.0b013e32833d01ae] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The blood pressure-lowering effect of the renin inhibitor aliskiren equals that of angiotensin-converting enzyme (ACE) inhibitors and angiotensin (Ang) II type 1 (AT1) receptor blockers. Whether aliskiren offers end-organ protection remains to be investigated. Here, we compared the cardiac effects of aliskiren, the AT1 receptor blocker irbesartan and the ACE inhibitor captopril in spontaneously hypertensive rats (SHR) at equi-hypotensive doses. METHODS AND RESULTS SHR were treated for 1-3 weeks with vehicle, aliskiren, captopril or irbesartan (100, 3 and 15 mg/kg per day, respectively) using an osmotic minipump, and compared to vehicle-treated Wistar-Kyoto (WKY) controls. All drugs lowered (but not normalized) mean arterial pressure in SHR equi-effectively, as monitored by radiotelemetry, without altering heart rate. All drugs also reduced the increased cardiomyocyte area in SHR, and tended to normalize the elevated brain natriuretic peptide plasma levels. In the Langendorff set-up, all drugs normalized the diminished endothelium-dependent vasodilator response to bradykinin in SHR. Moreover, aliskiren and irbesartan, but not captopril, decreased the enhanced coronary Ang II response in SHR. Aliskiren reduced plasma renin activity and the plasma and tissue angiotensin levels at 1 week of treatment; yet, after 3 weeks of aliskiren treatment only the cardiac angiotensin levels remained suppressed, whereas no tissue angiotensin reductions were seen with captopril or irbesartan. CONCLUSION For a given decrease in blood pressure, aliskiren improves coronary endothelial function and decreases cardiac hypertrophy in SHR to at least the same degree as ACE inhibition and AT1 receptor blockade. In addition, aliskiren diminishes the enhanced Ang II response in the coronary circulation of SHR and offers superior long-term cardiac angiotensin suppression.
Collapse
|
22
|
Sourris KC, Morley AL, Koitka A, Samuel P, Coughlan MT, Penfold SA, Thomas MC, Bierhaus A, Nawroth PP, Yamamoto H, Allen TJ, Walther T, Hussain T, Cooper ME, Forbes JM. Receptor for AGEs (RAGE) blockade may exert its renoprotective effects in patients with diabetic nephropathy via induction of the angiotensin II type 2 (AT2) receptor. Diabetologia 2010; 53:2442-51. [PMID: 20631980 PMCID: PMC4926314 DOI: 10.1007/s00125-010-1837-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/20/2010] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS The receptor for AGEs (RAGE) contributes to the development and progression of diabetic nephropathy. In this study, we examined whether the protective effects of RAGE blockade are exerted via modulation of the renal angiotensin II type 2 (AT2) receptor. METHODS Control and streptozotocin diabetic mice, wild-type or deficient in the AT2 receptor (At2 knockout [KO]) or RAGE (Rage KO), were studied for 24 weeks. Adenoviral overexpression of full-length Rage in primary rat mesangial cells was also used to determine the effects on AT2 production. RESULTS With diabetes, Rage-deficient mice had less albuminuria, and an attenuation of hyperfiltration and glomerulosclerosis as compared with diabetic wild-type and At2 KO mice. Renal gene and protein expression of RAGE was elevated with diabetes. Diabetic Rage KO mice had a greater increase in renal AT2 receptor protein than was seen in diabetic wild-type mice. Diabetes-induced increases in renal cytosolic and mitochondrial superoxide generation were prevented in diabetic Rage KO mice, but enhanced in all At2 KO mice. Adenoviral overexpression of RAGE or AGE treatment decreased cell surface AT2 expression, in association with increasing superoxide generation; both were reversed using antioxidants N-acetylcysteine and apocynin, and soluble RAGE in primary mesangial cells. CONCLUSIONS/INTERPRETATION RAGE appears to be a common and key modulator of AT2 receptor expression, a finding that would implicate a newly defined RAGE-AT2 axis in the development and progression of diabetic nephropathy.
Collapse
Affiliation(s)
- K C Sourris
- JDRF Einstein Centre for Diabetes Complications, Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Victoria, 8008, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Steroidogenesis vs. steroid uptake in the heart: do corticosteroids mediate effects via cardiac mineralocorticoid receptors? J Hypertens 2010; 28:1044-53. [PMID: 20179635 DOI: 10.1097/hjh.0b013e328335c381] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To test whether glucocorticoids act as the endogenous agonist of cardiac mineralocorticoid receptors, we evaluated the cardiac effects of aldosterone and corticosterone and cardiac steroidogenesis vs. steroid uptake from plasma. METHODS AND RESULTS Both corticosterone and aldosterone increased left ventricular pressure in the rat heart. Aldosterone decreased coronary flow, whereas corticosterone increased it. All corticosterone effects were blocked by the glucocorticoid receptor antagonist, RU486, and unaltered by the mineralocorticoid receptor antagonist, canrenoate, or the 11beta-hydroxysteroid dehydrogenase (HSD11B)2 inhibitor, carbenoxolone. Unlike mineralocorticoid receptor blockade, RU486 did not ameliorate postischemia infarct size and arrhythmias. Corticosterone, when added to the perfusion buffer, rapidly accumulated at cardiac tissue sites, reaching steady-state levels that were identical to those in coronary effluent, independently of the presence of aldosterone, RU486 or canrenoate. After stopping the perfusion, cardiac corticosterone fully washed away with a half-life of less than 1 min. Measurements of steroid-synthesizing enzyme gene expression levels in human ventricular and atrial tissue pieces from heart-beating organ donors, patients with end-stage heart failure and hypertrophic cardiomyopathy patients revealed that under no condition, the human heart was capable of synthesizing aldosterone or cortisol de novo. Yet, expression of HSD11B1, HSD11B2, mineralocorticoid receptors and glucocorticoid receptors was found, and HSD11B2 and mineralocorticoid receptors were upregulated in pathological conditions. Moreover, aldosterone reduced cardiac inotropy in a Na/K/2Cl cotransporter-dependent manner. CONCLUSION Both cortisol/corticosterone and aldosterone accumulate in the cardiac interstitium. The presence of HSD11B2 and mineralocorticoid receptors/glucocorticoid receptors at cardiac tissue sites allows both steroids to exert their effects via separate mechanisms.
Collapse
|
24
|
van Esch JH, Gembardt F, Sterner-Kock A, Heringer-Walther S, Le TH, Laßner D, Stijnen T, Coffman TM, Schultheiss HP, Danser AJ, Walther T. Cardiac phenotype and angiotensin II levels in AT1a, AT1b, and AT2 receptor single, double, and triple knockouts. Cardiovasc Res 2010; 86:401-9. [PMID: 20071356 PMCID: PMC2868177 DOI: 10.1093/cvr/cvq004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 12/15/2009] [Accepted: 01/05/2010] [Indexed: 12/22/2022] Open
Abstract
AIMS Our aim was to determine the contribution of the three angiotensin (Ang) II receptor subtypes (AT(1a), AT(1b), AT(2)) to coronary responsiveness, cardiac histopathology, and tissue Ang II levels using mice deficient for one, two, or all three Ang II receptors. METHODS AND RESULTS Hearts of knockout mice and their wild-type controls were collected for histochemistry or perfused according to Langendorff, and kidneys were removed to measure tissue Ang II. Ang II dose-dependently decreased coronary flow (CF) and left ventricular systolic pressure (LVSP), and these effects were absent in all genotypes deficient for AT(1a), independently of AT(1b) and AT(2). The deletion of Ang II receptors had an effect neither on the morphology of medium-sized vessels in the heart nor on the development of fibrosis. However, the lack of both AT(1) subtypes was associated with atrophic changes in the myocardium, a reduced CF and a reduced LVSP. AT(1a) deletion alone, independently of the presence or absence of AT(1b) and/or AT(2), reduced renal Ang II by 50% despite a five-fold rise of plasma Ang II. AT(1b) deletion, on top of AT(1a) deletion (but not alone), further decreased tissue Ang II, while increasing plasma Ang II. In mice deficient for all three Ang II receptors, renal Ang II was located only extracellularly. CONCLUSION The lack of both AT(1) subtypes led to a baseline reduction of CF and LVSP, and the effects of Ang II on CF and LVSP were found to be exclusively mediated via AT(1a). The lack of AT(1a) or AT(1b) does not influence the development or maintenance of normal cardiac morphology, whereas deficiency for both receptors led to atrophic changes in the heart. Renal Ang II levels largely depend on AT(1) binding of extracellularly generated Ang II, and in the absence of all three Ang II receptors, renal Ang II is only located extracellularly.
Collapse
MESH Headings
- Angiotensin II/administration & dosage
- Angiotensin II/blood
- Angiotensin II/metabolism
- Animals
- Atrophy
- Coronary Circulation
- Fibrosis
- Genotype
- Kidney/metabolism
- Male
- Mice
- Mice, Knockout
- Myocardium/metabolism
- Myocardium/pathology
- Natriuretic Peptide, Brain/metabolism
- Perfusion
- Phenotype
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Ventricular Function, Left
- Ventricular Pressure
- Ventricular Remodeling
Collapse
Affiliation(s)
- Joep H.M. van Esch
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Florian Gembardt
- Centre for Biomedical Research, Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK
- Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Anja Sterner-Kock
- Institute of Experimental Medicine, University Hospital of Cologne, Cologne, Germany
| | | | - Thu H. Le
- Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA
| | | | - Theo Stijnen
- Department of Epidemiology and Biostatistics, Erasmus MC, Rotterdam, The Netherlands
| | - Thomas M. Coffman
- Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA
| | | | - A.H. Jan Danser
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Thomas Walther
- Centre for Biomedical Research, Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK
- Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
25
|
Renal vasoconstrictor and pressor responses to angiotensin IV in mice are AT1a-receptor mediated. J Hypertens 2010; 28:487-94. [PMID: 19907343 DOI: 10.1097/hjh.0b013e3283343250] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Angiotensin (Ang) IV was reported to induce renal vasoconstriction or vasodilation in rats via AT1 or AT4 receptors, respectively, whereby the latter one has been identified to be the insulin-regulated aminopeptidase (IRAP). We investigated the effects of Ang IV on mean arterial pressure (MAP) and renal cortical blood flow (CBF) in AT1a, AT1b, AT2 receptor and IRAP knockout (-/-) mice and their corresponding wild-type littermates. Ang II, known as a renal vasoconstrictor in mice, was used as a reference. METHODS MAP was recorded via a femoral catheter and CBF was measured using a light amplification by stimulated emission of radiation (LASER) Doppler probe; cortical vascular resistance (CVR) was calculated as MAP divided by CBF. RESULTS Baseline MAP, CBF and CVR in AT1a (-/-) mice were significantly lower than wild-type mice. AT2 (-/-) mice had a significantly higher baseline MAP, but similar CBF. In wild-type mice, Ang IV and Ang II induced dose-dependent pressor and renal vasoconstrictor responses, which were antagonized by the AT1 receptor blocker candesartan. These responses were almost completely absent in AT1a (-/-) mice, but were enhanced in AT2 (-/-) mice; responses in AT1b (-/-) and IRAP (-/-) mice were comparable to those in corresponding wild-type mice. CONCLUSION Ang IV mediates pressure and renal vasoconstrictor effects in mice via AT1a receptors, whereas IRAP/AT4 is not involved.
Collapse
|
26
|
Krop M, Ozünal ZG, Chai W, de Vries R, Fekkes D, Bouhuizen AM, Garrelds IM, Danser AHJ. Mast cell degranulation mediates bronchoconstriction via serotonin and not via renin release. Eur J Pharmacol 2010; 640:185-9. [PMID: 20462506 DOI: 10.1016/j.ejphar.2010.04.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 01/23/2023]
Abstract
To verify the recently proposed concept that mast cell-derived renin facilitates angiotensin II-induced bronchoconstriction bronchial rings from male Sprague-Dawley rats were mounted in Mulvany myographs, and exposed to the mast cell degranulator compound 48/80 (300 microg/ml), angiotensin I, angiotensin II, bradykinin or serotonin (5-hydroxytryptamine, 5-HT), in the absence or presence of the renin inhibitor aliskiren (10 micromol/l), the ACE inhibitor captopril (10 micromol/l), the angiotensin II type 1 (AT1) receptor blocker irbesartan (1 micromol/l), the mast cell stabilizer cromolyn (0.3 mmol/l), the 5-HT2A/2C receptor antagonist ketanserin (0.1 micromol/l) or the alpha1-adrenoceptor antagonist phentolamine (1 micromol/l). Bath fluid was collected to verify angiotensin generation. Bronchial tissue was homogenized to determine renin, angiotensinogen and serotonin content. Compound 48/80 contracted bronchi to 24+/-4% of the KCl-induced contraction. Ketanserin fully abolished this effect, while cromolyn reduced the contraction to 16+/-5%. Aliskiren, captopril, irbesartan and phentolamine did not affect this response, and the angiotensin I and II levels in the bath fluid after 48/80 exposure were below the detection limit. Angiotensin I and II equipotently contracted bronchi. Captopril shifted the angiotensin I curve approximately 10-fold to the right, whereas irbesartan fully blocked the effect of angiotensin II. Bradykinin-induced constriction was shifted approximately 100-fold to the left with captopril. Serotonin contracted bronchi, and ketanserin fully blocked this effect. Finally, bronchial tissue contained serotonin at micromolar levels, whereas renin and angiotensinogen were undetectable in this preparation. In conclusion, mast cell degranulation results in serotonin-induced bronchoconstriction, and is unlikely to involve renin-induced angiotensin generation.
Collapse
Affiliation(s)
- Manne Krop
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Moltzer E, Verkuil AV, van Veghel R, Danser AHJ, van Esch JH. Effects of Angiotensin Metabolites in the Coronary Vascular Bed of the Spontaneously Hypertensive Rat. Hypertension 2010; 55:516-22. [DOI: 10.1161/hypertensionaha.109.145037] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Els Moltzer
- From the Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anna V.A. Verkuil
- From the Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Richard van Veghel
- From the Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- From the Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H.M. van Esch
- From the Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
28
|
van den Heuvel M, Batenburg WW, Danser AHJ. Diabetic complications: a role for the prorenin-(pro)renin receptor-TGF-beta1 axis? Mol Cell Endocrinol 2009; 302:213-8. [PMID: 18840499 DOI: 10.1016/j.mce.2008.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 08/28/2008] [Accepted: 09/05/2008] [Indexed: 11/23/2022]
Abstract
Morbidity and mortality of diabetes mellitus are strongly associated with cardiovascular disease including nephropathy. A discordant tissue renin-angiotensin system (RAS) might be a mediator of the endothelial dysfunction leading to both micro- and macrovascular complications of diabetes. The elevated plasma levels of prorenin in diabetic subjects with microvascular complications might be part of this discordant RAS, especially since the plasma renin levels in diabetes are low. Prorenin, previously thought of as an inactive precursor of renin, is now known to bind to a (pro)renin receptor, thus activating locally angiotensin-dependent and -independent pathways. In particular, the stimulation of the transforming growth factor-beta (TGF-beta) system by prorenin could be an important contributor to diabetic disease complications. This review discusses the concept of the prorenin-(pro)renin receptor-TGF-beta(1) axis, concluding that interference with this pathway might be a next logical step in the search for new therapeutic regimens to reduce diabetes-related morbidity and mortality.
Collapse
Affiliation(s)
- Mieke van den Heuvel
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
29
|
Axelband F, Assunção-Miranda I, de Paula IR, Ferrão FM, Dias J, Miranda A, Miranda F, Lara LS, Vieyra A. Ang-(3-4) suppresses inhibition of renal plasma membrane calcium pump by Ang II. ACTA ACUST UNITED AC 2009; 155:81-90. [PMID: 19345245 DOI: 10.1016/j.regpep.2009.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 03/20/2009] [Accepted: 03/25/2009] [Indexed: 01/27/2023]
Abstract
We previously demonstrated that Ang II inhibits the renal plasma membrane Ca(2+)-ATPase. In the present work we have studied the effect of Ang II, at concentrations similar to those found in the renal interstitium, on the Ca(2+)-ATPase from proximal tubule cells. High Ang II concentration (5 x 10(-7) mol/L) led to the recovery of Ca(2+)-ATPase activity previously inhibited by 50% at low Ang II concentration (10(-10) mol/L). Reactivation occurred in parallel with: (i) formation of only two dead-end metabolites [Ang-(3-4) and Tyr] after incubation of isolated membranes with micromolar Ang II; and (ii) dissociation of constitutive AT(1)R/AT(2)R heterodimers, which are preserved with 10(-10) mol/L Ang II. When the membranes were incubated with 10(-14) mol/L Ang-(3-4), inhibition by 10(-10) mol/L Ang II was no longer observed. The counteracting effect of Ang-(3-4) was abolished by PD123319, an antagonist of AT(2)R, and mimicked by CGP42112A, an agonist of AT(2)R. Ang-(1-7) is an intermediate in the formation of Ang-(3-4) via a pathway involving angiotensin-converting enzyme (ACE), and complete dipeptide breakdown to Tyr and Val is impaired by low Ang II. We conclude that Ang-(3-4) may be a physiological regulator of active Ca(2+) fluxes in renal proximal cells by acting within the renin-angiotensin axis.
Collapse
Affiliation(s)
- Flavia Axelband
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gembardt F, Heringer-Walther S, van Esch JHM, Sterner-Kock A, van Veghel R, Le TH, Garrelds IM, Coffman TM, Danser AHJ, Schultheiss HP, Walther T. Cardiovascular phenotype of mice lacking all three subtypes of angiotensin II receptors. FASEB J 2008; 22:3068-77. [PMID: 18497303 DOI: 10.1096/fj.08-108316] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II activates two distinct receptors, the angiotensin II receptors type 1 (AT(1)) and type 2 (AT(2)). In rodents, two AT(1) subtypes were identified (AT(1a) and AT(1b)). To determine receptor-specific functions and possible angiotensin II effects independent of its three known receptors we generated mice deficient in either one of the angiotensin II receptors, in two, or in all three (triple knockouts). Triple knockouts were vital and fertile, but survival was impaired. Hypotension and renal histological abnormalities in triple knockouts were comparable to those in mice lacking both AT(1) subtypes. All combinations lacking AT(1a) were distinguished by reduced heart rate. AT(1a) deletion impaired the in vivo pressor response to angiotensin II bolus injection, whereas deficiency for AT(1b) and/or AT(2) had no effect. However, the additional lack of AT(1b) in AT(1a)-deficient mice further impaired the vasoconstrictive capacity of angiotensin II. Although general vasoconstrictor properties were not changed, angiotensin II failed to alter blood pressure in triple knockouts, indicating that there are no other receptors involved in direct angiotensin II pressor effects. Our data identify mice deficient in all three angiotensin II receptors as an ideal tool to better understand the structure and function of the renin-angiotensin system and to search for angiotensin II effects independent of AT(1) and AT(2).
Collapse
Affiliation(s)
- Florian Gembardt
- Department of Cardiology, Charité Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effects of angiotensin II and its metabolites in the rat coronary vascular bed: is angiotensin III the preferred ligand of the angiotensin AT2 receptor? Eur J Pharmacol 2008; 588:286-93. [PMID: 18511032 DOI: 10.1016/j.ejphar.2008.04.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/12/2008] [Accepted: 04/17/2008] [Indexed: 01/06/2023]
Abstract
Aminopeptidases metabolize angiotensin II to angiotensin-(2-8) (=angiotensin III) and angiotensin-(3-8) (=angiotensin IV), and carboxypeptidases generate angiotensin-(1-7) from angiotensin I and II. Angiotensin-converting enzyme (ACE) inhibitors and/or angiotensin II type 1 (AT1) receptor blockers affect the concentrations of these metabolites, and they may thus contribute to the beneficial effects of these drugs, possibly through stimulation of non-classical angiotensin AT receptors. Here, we investigated the effects of angiotensin II, angiotensin III, angiotensin IV and angiotensin-(1-7) in the rat coronary vascular bed, with or without angiotensin AT1 - or angiotensin II type 2 (AT2) receptor blockade. Results were compared to those in rat iliac arteries and abdominal aortas. Angiotensin II, angiotensin III and angiotensin IV constricted coronary arteries via angiotensin AT1 receptor stimulation, angiotensin III and angiotensin IV being approximately 20- and approximately 8000-fold less potent than angiotensin II. The angiotensin AT2 receptor antagonist PD123319 greatly enhanced the constrictor effects of angiotensin III, starting at angiotensin III concentrations in the low nanomolar range. PD123319 enhanced the angiotensin II-induced constriction at submicromolar angiotensin II concentrations only. Angiotensin-(1-7) exerted no effects in the coronary circulation, although, at micromolar concentrations, it blocked angiotensin AT1 receptor-induced constriction. Angiotensin AT2 receptor-mediated relaxation did not occur in iliac arteries and abdominal aortas, and the constrictor effects of the angiotensin metabolites in these vessels were identical to those in the coronary vascular bed. In conclusion, angiotensin AT2 receptor activation in the rat coronary vascular bed results in vasodilation, and angiotensin III rather than angiotensin II is the preferred endogenous agonist of these receptors. Angiotensin II, angiotensin III, angiotensin IV and angiotensin-(1-7) do not exert effects through non-classical angiotensin AT receptors in the rat coronary vascular bed, iliac artery or aorta.
Collapse
|
32
|
The (pro)renin receptor: a new addition to the renin-angiotensin system? Eur J Pharmacol 2008; 585:320-4. [PMID: 18417113 DOI: 10.1016/j.ejphar.2008.02.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 01/28/2008] [Accepted: 02/07/2008] [Indexed: 11/21/2022]
Abstract
The renin-angiotensin system is still incompletely understood. In particular, the function of prorenin, the inactive precursor of renin, is unknown. Yet, prorenin levels are >10-fold higher than renin levels, and prorenin increases even further in subjects with diabetes mellitus displaying microvascular complications. The recent discovery of a (pro)renin binding receptor may shed light on the role of prorenin. This review discusses the possibility that prorenin binding to this receptor results in prorenin activation, thereby allowing angiotensin generation, and that prorenin simultaneously acts as an agonist of this receptor, inducing angiotensin-independent effects. Transgenic animals overexpressing the receptor, as well as a receptor antagonist are now available, and future studies should reveal to what degree this concept is applicable to humans as well.
Collapse
|
33
|
Abstract
For many years, prorenin has been considered to be nothing more than the inactive precursor of renin. Yet, its elevated levels in diabetic subjects with microvascular complications and its extrarenal production at various sites in the body suggest otherwise. This review discusses the origin, regulation, and enzymatic activity of prorenin, its role during renin inhibition, and the angiotensin-dependent and angiotensin-independent consequences of its binding to the recently discovered (pro)renin receptor. The review ends with the concept that prorenin rather than renin determines tissue angiotensin generation.
Collapse
|
34
|
|
35
|
Abstract
The first renin inhibitor, aliskiren, will soon enter the clinical arena. This review summarizes the potential differences between renin inhibitors and the currently existing blockers of the renin-angiotensin system (RAS) [ie, the ACE inhibitors and the angiotensin II type 1 (AT(1)) receptor antagonists], taking also into consideration the recently discovered (pro)renin receptor. This receptor not only activates the inactive precursor of renin, prorenin, but it also exerts direct renin/prorenin-induced effects, independently of angiotensin. The review ends with a brief overview of the available (pre)clinical aliskiren data and a description of its safety profile.
Collapse
Affiliation(s)
- A H Jan Danser
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Esch JHV, Danser AJ. Local Angiotensin Generation and AT2 Receptor Activation. FRONTIERS IN RESEARCH OF THE RENIN-ANGIOTENSIN SYSTEM ON HUMAN DISEASE 2007. [PMCID: PMC7119946 DOI: 10.1007/978-1-4020-6372-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Carey RM, Park J. Role of Angiotensin Type 2 Receptors in Vasodilation of Resistance and Capacitance Vessels. Hypertension 2006; 48:824-5. [PMID: 17015780 DOI: 10.1161/01.hyp.0000244109.55948.bc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|