1
|
Shi Q, Wang S, Wang G, Wang T, Du K, Gao C, Guo X, Fu S, Yun K. Serum metabolomics analysis reveals potential biomarkers of penicillins-induced fatal anaphylactic shock in rats. Sci Rep 2024; 14:23534. [PMID: 39384950 PMCID: PMC11464644 DOI: 10.1038/s41598-024-74623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Immunoglobulin E (IgE)-mediated immediate hypersensitivity reactions are the most concerning adverse events after penicillin antibiotics (PENs) administration because of their rapid progression and potential for fatal outcome. However, the diagnosis of allergic death is a forensic challenge because it mainly depends on nonspecific characteristic morphological changes, as well as exclusion and circumstantial evidence. In this study, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) was used to screen potential forensic biomarkers of fatal anaphylactic shock induced by four PENs (benzylpenicillin (BP), amoxicillin (AMX), oxacillin (OXA), and mezlocillin (MEZ)), and analyzed the metabolites, metabolic pathway and the mechanism which were closely related to the allergic reactions. The metabolomics results discovered that a total of 24 different metabolites in all four anaphylactic death (AD) groups, seven of which were common metabolites. A biomarker model consisting of six common metabolites (linoleic acid, prostaglandin D2, lysophosphatidylcholine (18:0), N-acetylhistamine, citric acid and indolelactic acid) AUC value of Receiver Operating Characteristic (ROC) curve was 0.978. Metabolism pathway analysis revealed that the pathogenesis of PENs-induced AD is closely related to linoleic acid metabolism. Our results revealed that the metabolomic profiling has potential in PENs-induced AD post-mortem diagnosis and metabolic mechanism investigations.
Collapse
Affiliation(s)
- Qianwen Shi
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Shuhui Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Gege Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Tao Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Kaili Du
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Department of Pathology, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Cairong Gao
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Xiangjie Guo
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Shanlin Fu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
- Centre for Forensic Science, University of Technology Sydney, Sydney, 2007, Australia
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China.
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China.
| |
Collapse
|
2
|
Cao M, Gao Y. Mast cell stabilizers: from pathogenic roles to targeting therapies. Front Immunol 2024; 15:1418897. [PMID: 39148726 PMCID: PMC11324444 DOI: 10.3389/fimmu.2024.1418897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Mast cells (MCs) are bone-marrow-derived haematopoietic cells that are widely distributed in human tissues. When activated, they will release tryptase, histamine and other mediators that play major roles in a diverse array of diseases/disorders, including allergies, inflammation, cardiovascular diseases, autoimmune diseases, cancers and even death. The multiple pathological effects of MCs have made their stabilizers a research hotspot for the treatment of related diseases. To date, the clinically available MC stabilizers are limited. Considering the rapidly increasing incidence rate and widespread prevalence of MC-related diseases, a comprehensive reference is needed for the clinicians or researchers to identify and choose efficacious MC stabilizers. This review analyzes the mechanism of MC activation, and summarizes the progress made so far in the development of MC stabilizers. MC stabilizers are classified by the action mechanism here, including acting on cell surface receptors, disturbing signal transduction pathways and interfering exocytosis systems. Particular emphasis is placed on the clinical applications and the future development direction of MC stabilizers.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Hamamura K, Yoshida Y, Oyama K, Li J, Kawano S, Inoue K, Toyooka K, Yamadera M, Matsunaga N, Matsumura T, Aritake K. Hematopoietic Prostaglandin D Synthase Is Increased in Mast Cells and Pericytes in Autopsy Myocardial Specimens from Patients with Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:1846. [PMID: 38339125 PMCID: PMC10855661 DOI: 10.3390/ijms25031846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The leading cause of death for patients with Duchenne muscular dystrophy (DMD), a progressive muscle disease, is heart failure. Prostaglandin (PG) D2, a physiologically active fatty acid, is synthesized from the precursor PGH2 by hematopoietic prostaglandin D synthase (HPGDS). Using a DMD animal model (mdx mice), we previously found that HPGDS expression is increased not only in injured muscle but also in the heart. Moreover, HPGDS inhibitors can slow the progression of muscle injury and cardiomyopathy. However, the location of HPGDS in the heart is still unknown. Thus, this study investigated HPGDS expression in autopsy myocardial samples from DMD patients. We confirmed the presence of fibrosis, a characteristic phenotype of DMD, in the autopsy myocardial sections. Additionally, HPGDS was expressed in mast cells, pericytes, and myeloid cells of the myocardial specimens but not in the myocardium. Compared with the non-DMD group, the DMD group showed increased HPGDS expression in mast cells and pericytes. Our findings confirm the possibility of using HPGDS inhibitor therapy to suppress PGD2 production to treat skeletal muscle disorders and cardiomyopathy. It thus provides significant insights for developing therapeutic drugs for DMD.
Collapse
Affiliation(s)
- Kengo Hamamura
- Laboratory of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; (Y.Y.); (J.L.); (S.K.); (N.M.)
| | - Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; (Y.Y.); (J.L.); (S.K.); (N.M.)
| | - Kosuke Oyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan;
| | - Junhao Li
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; (Y.Y.); (J.L.); (S.K.); (N.M.)
| | - Shimpei Kawano
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; (Y.Y.); (J.L.); (S.K.); (N.M.)
| | - Kimiko Inoue
- Department of Neurology and Rehabilitation Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toneyama 5-1-1, Toyonaka 560-8552, Japan;
| | - Keiko Toyooka
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toneyama 5-1-1, Toyonaka 560-8552, Japan; (K.T.); (T.M.)
| | - Misaki Yamadera
- Department of Clinical Research, National Hospital Organization Osaka Toneyama Medical Center, Toneyama 5-1-1, Toyonaka 560-8552, Japan;
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; (Y.Y.); (J.L.); (S.K.); (N.M.)
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toneyama 5-1-1, Toyonaka 560-8552, Japan; (K.T.); (T.M.)
| | - Kosuke Aritake
- Laboratory of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| |
Collapse
|
4
|
Akinnusi PA, Olubode SO, Adebesin AO, Alade AA, Nwoke VC, Shodehinde SA. Optimal molecular binding data and pharmacokinetic profiles of novel potential triple-action inhibitors of chymase, spleen tyrosine kinase, and prostaglandin D2 receptor in the treatment of asthma. J Genet Eng Biotechnol 2023; 21:113. [PMID: 37947895 PMCID: PMC10638233 DOI: 10.1186/s43141-023-00577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Asthma is a chronic and complex pulmonary condition that affects the airways. A total of 250,000 asthma-related deaths are recorded annually and several proteins including chymase, spleen tyrosine kinase, and prostaglandin D2 receptor have been implicated in the pathophysiology of asthma. Different anti-inflammatory drugs have been developed for the treatment of asthma, particularly corticosteroids, but the associated adverse reactions cannot be overlooked. It is therefore of interest to identify and develop small molecule inhibitors of the integral proteins associated with asthma that have very little or no side effects. Herein, a molecular modeling approach was employed to screen the bioactive compounds in Chromolaena odorata and identify compounds with high binding affinity to the protein targets. RESULTS Five compounds were identified after rigorous and precise molecular screening namely (-)-epicatechin, chlorogenic acid, ombuine, quercetagetin, and quercetin 3-O-rutinoside. These compounds generally showed impressive binding to all the targets understudy. However, chlorogenic acid, quercetagetin, and quercetin 3-O-rutinoside showed better prospects in terms of triple-action inhibition. Further pulmonary and oral pharmacokinetics showed positive results for all the reported compounds. The generated pharmacophore model showed hydrogen bond donor, hydrogen bond acceptor, and aromatic rings as basic structural features required for triple action inhibition. CONCLUSION These findings suggest that these compounds could be explored as triple-action inhibitors of the protein targets. They are, therefore, recommended for further analysis.
Collapse
Affiliation(s)
| | | | | | | | - Victor Chinedu Nwoke
- Department of Biochemistry, Enugu State University of Science and Technology, Enugu, Nigeria
| | | |
Collapse
|
5
|
Liu Y, Wang Z, Jiang W, Ma Y, Wang H, Xue Y, Li Y, Gao X, Hao J, Wang Y, Chen F, Chu M. Systemic Type 2 Inflammation-Associated Atopic Dermatitis Exacerbates Periodontitis. Int Arch Allergy Immunol 2023; 185:84-98. [PMID: 37866360 DOI: 10.1159/000533434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/02/2023] [Indexed: 10/24/2023] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin disease characterized by Th2 cell-mediated type 2 inflammation. Emerging evidence indicated that AD patients exhibit an increased incidence of oral disorders. In the present study, we sought mechanistic insights into how AD affects periodontitis. METHODS Onset of AD was induced by 2,4-dinitrochlorobenzene (DNCB). Furthermore, we induced periodontitis (P) in AD mice. The effect of AD in promoting inflammation and bone resorption in gingiva was evaluated. Hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, immunofluorescence assay, and flow cytometry were used to investigate histomorphology and cytology analysis, respectively. RNA sequencing of oral mucosa is used tissues to further understand the dynamic transcriptome changes. 16S rRNA microbial analysis is used to profile oral microbial composition. RESULTS Compared to control group, mice in AD group showed inflammatory signatures and infiltration of a proallergic Th2 (Th2A)-like subset in oral mucosa but not periodontitis, as identified by not substantial changes in mucosa swelling, alveolar bone loss, and TRAP+ osteoclasts infiltration. Similarly, more Th2A-like cell infiltration and interleukin-4 levels were significantly elevated in the oral mucosa of DNCB-P mice compared to P mice. More importantly, AD exacerbates periodontitis when periodontitis has occurred and the severity of periodontitis increased with aggravation of dermatitis. Transcriptional analysis revealed that aggravated periodontitis was positively correlated with more macrophage infiltration and abundant CCL3 secreted. AD also altered oral microbiota, indicating the re-organization of extracellular matrix. CONCLUSIONS These data provide solid evidence about exacerbation of periodontitis caused by type 2 dermatitis, advancing our understanding in cellular and microbial changes during AD-periodontitis progression.
Collapse
Affiliation(s)
- Yuan Liu
- Central Laboratory, Peking University School of Stomatology, Beijing, China,
- School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, Peking University Health Science Center, Beijing, China,
| | - Ziyuan Wang
- School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Wenting Jiang
- School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases, Department of Periodontology, Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, China
| | - Yinchao Ma
- School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Haoyan Wang
- School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yintong Xue
- School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yan Li
- School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xiang Gao
- School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Jie Hao
- School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yuedan Wang
- School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Ming Chu
- School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Department of Immunology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Jeong M, Ju Y, Kwon H, Kim Y, Hyun KY, Choi GE. Protocatechuic Acid and Syringin from Saussurea neoserrata Nakai Attenuate Prostaglandin Production in Human Keratinocytes Exposed to Airborne Particulate Matter. Curr Issues Mol Biol 2023; 45:5950-5966. [PMID: 37504292 PMCID: PMC10378452 DOI: 10.3390/cimb45070376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
Saussurea neoserrata Nakai offers a reliable and efficient source of antioxidants that can help alleviate adverse skin reactions triggered by air pollutants. Air pollutants, such as particulate matter (PM), have the ability to infiltrate the skin and contribute to the higher occurrence of cardiovascular, cerebrovascular, and respiratory ailments. Individuals with compromised skin barriers are particularly susceptible to the impact of PM since it can be absorbed more readily through the skin. This study investigated the impact of protocatechuic acid and syringin, obtained from the n-BuOH extract of S. neoserrata Nakai, on the release of PGE2 and PGD2 induced by PM10. Additionally, it examined the gene expression of the synthesis of PGE2 and PGD2 in human keratinocytes. The findings of this research highlight the potential of utilizing safe and efficient plant-derived antioxidants in dermatological and cosmetic applications to mitigate the negative skin reactions caused by exposure to air pollution.
Collapse
Affiliation(s)
- Myeongguk Jeong
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Yeongdon Ju
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
- Medical Science Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyeokjin Kwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Yeeun Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Kyung-Yae Hyun
- Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Republic of Korea
| | - Go-Eun Choi
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| |
Collapse
|
7
|
Jing S, Liu W, Yang K, Lin Y, Yao X, Sun G. The randomized, single- and multiple- ascending dose studies of the safety, tolerability, pharmacokinetics of CSPCHA115 in healthy Chinese subjects. Clin Transl Sci 2023; 16:447-458. [PMID: 36495036 PMCID: PMC10014699 DOI: 10.1111/cts.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 12/14/2022] Open
Abstract
CSPCHA115 is a highly selective and potent antagonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2). This study aimed to evaluate the pharmacokinetics (PKs), safety, and tolerability of single and multiple ascending doses of CSPCHA115 in Chinese healthy subjects. Two phase I studies both adopted a randomized, double-blind, placebo-controlled, single-center, and ascending-dose design. In the single ascending dose (SAD) study, subjects were randomly allocated to receive a single dose of CSPCHA115 (25-1000 mg) or a placebo. In the multiple ascending dose (MAD) study, 100, 200, 400, or 600 mg of CSPCHA115 or placebo were given to subjects once daily for 7 days. PK parameters were estimated by noncompartmental analysis. Safety was assessed by monitoring treatment-emergent adverse events (TEAEs), clinical laboratory tests, electrocardiograms, vital signs, and physical examinations throughout the study period. Forty-eight healthy subjects were enrolled in the SAD study, and 40 healthy subjects were in the MAD study. Following single and multiple administrations, CSPCHA115 was rapidly absorbed with a median time to maximum concentration of ~0.5-3.5 h; and the systemic exposure of CSPCHA115 generally increased dose-proportionally within the dose range studied. Steady-state was approximately achieved by day 5, and <1.5-fold accumulation was observed following multiple doses. Mean terminal half-life was ~8.16-16.43 h after a single dose. CSPCHA115 was well-tolerated in both studies, with a low overall incidence of TEAEs. The most common TEAE related to CSPCHA115 was hypertriglyceridemia. No significant safety concerns were identified in healthy subjects.
Collapse
Affiliation(s)
- Shan Jing
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenfang Liu
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Kexu Yang
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang Lin
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuekun Yao
- Clinical Science Division, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, China
| | - Guilan Sun
- Clinical Science Division, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, China
| |
Collapse
|
8
|
Atluri K, Manne S, Nalamothu V, Mantel A, Sharma PK, Babu RJ. Advances in Current Drugs and Formulations for the Management of Atopic Dermatitis. Crit Rev Ther Drug Carrier Syst 2023; 40:1-87. [PMID: 37585309 DOI: 10.1615/critrevtherdrugcarriersyst.2023042979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with a complex pathophysiology. Treatment of AD remains challenging owing to the presence of a wide spectrum of clinical phenotypes and limited response to existing therapies. However, recent genetic, immunological, and pathophysiological insights into the disease mechanism resulted in the invention of novel therapeutic drug candidates. This review provides a comprehensive overview of current therapies and assesses various novel drug delivery strategies currently under clinical investigation. Further, this review majorly emphasizes on various topical treatments including emollient therapies, barrier repair agents, topical corticosteroids (TCS), phosphodiesterase 4 (PDE4) inhibitors, calcineurin inhibitors, and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway inhibitors. It also discusses biological and systemic therapies, upcoming treatments based on ongoing clinical trials. Additionally, this review scrutinized the use of pharmaceutical inactive ingredients in the approved topical dosage forms for AD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
9
|
Huang Z, Chu M, Chen X, Wang Z, Jiang L, Ma Y, Wang Y. Th2A cells: The pathogenic players in allergic diseases. Front Immunol 2022; 13:916778. [PMID: 36003397 PMCID: PMC9393262 DOI: 10.3389/fimmu.2022.916778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Proallergic type 2 helper T (Th2A) cells are a subset of memory Th2 cells confined to atopic individuals, and they include all the allergen-specific Th2 cells. Recently, many studies have shown that Th2A cells characterized by CD3+ CD4+ HPGDS+ CRTH2+ CD161high ST2high CD49dhigh CD27low play a crucial role in allergic diseases, such as atopic dermatitis (AD), food allergy (FA), allergic rhinitis (AR), asthma, and eosinophilic esophagitis (EoE). In this review, we summarize the discovery, biomarkers, and biological properties of Th2A cells to gain new insights into the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Ziyu Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Clinical Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ziyuan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Lin Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yinchao Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
10
|
Identification of potential inhibitors for Hematopoietic Prostaglandin D2 synthase: Computational modeling and molecular dynamics simulations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Sharma P, Dhanjal DS, Chopra C, Tambuwala MM, Sohal SS, van der Spek PJ, Sharma HS, Satija S. Targeting eosinophils in chronic respiratory diseases using nanotechnology-based drug delivery. Chem Biol Interact 2022; 365:110050. [DOI: 10.1016/j.cbi.2022.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
|
12
|
Hufnagl K, Kromp L, Bianchini R, Afify SM, Wiederstein M, Redegeld FA, Zuvalova I, Dvorak Z, Hofstetter G, Roth‐Walter F, Pacios LF, Jensen‐Jarolim E. Bet v 1 from birch pollen is a hypoallergen with vitamin D3 in the pocket. Allergy 2021; 76:3801-3804. [PMID: 34392548 DOI: 10.1111/all.15052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Karin Hufnagl
- Comparative Medicine The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of Vienna Vienna Austria
| | - Livia Kromp
- Comparative Medicine The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of Vienna Vienna Austria
| | - Rodolfo Bianchini
- Comparative Medicine The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of Vienna Vienna Austria
| | - Sheriene Moussa Afify
- Comparative Medicine The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of Vienna Vienna Austria
- Laboratory Medicine and Immunology Department Faculty of Medicine Menoufia University Shebin El‐Kom Egypt
| | - Markus Wiederstein
- Department of Biosciences Center of Applied Molecular Engineering University of Salzburg Salzburg Austria
| | - Frank A. Redegeld
- Division of Pharmacology Department of Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht Netherlands
| | - Iveta Zuvalova
- Department of Cell Biology and Genetics Faculty of Science Palacky University Olomouc Czech Republic
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics Faculty of Science Palacky University Olomouc Czech Republic
| | - Gerlinde Hofstetter
- Comparative Medicine The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of Vienna Vienna Austria
| | - Franziska Roth‐Walter
- Comparative Medicine The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of Vienna Vienna Austria
| | - Luis F. Pacios
- Center for Plant Biotechnology and Genomics and Department of Biotechnology‐Vegetal Biology ETSIAABTechnical University of Madrid Madrid Spain
| | - Erika Jensen‐Jarolim
- Comparative Medicine The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University Vienna Vienna Austria
- Biomedical Int. R+D GmbH Vienna Austria
| |
Collapse
|
13
|
The impact of CRTH2 antagonist OC 000459 on pulmonary function of asthma patients: a meta-analysis of randomized controlled trials. Postepy Dermatol Alergol 2021; 38:566-571. [PMID: 34658695 PMCID: PMC8501448 DOI: 10.5114/ada.2020.92296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/23/2019] [Indexed: 12/01/2022] Open
Abstract
Introduction The chemoattractant receptor expressed on T-helper (Th) type 2 cells (CRTH2) antagonist OC 000459 showed the potential in improving pulmonary function of asthma patients. Aim We conducted a systematic review and meta-analysis to explore the impact of CRTH2 antagonist OC 000459 on pulmonary function for asthma. Material and methods PubMed, Embase, Web of science, EBSCO, and Cochrane library databases were systematically searched. This meta-analysis included randomized controlled trials (RCTs) assessing the effect of CRTH2 antagonist OC 000459 on pulmonary function for asthma. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. Results Four RCTs were included in the meta-analysis. Overall, compared with the control intervention for asthma patients, CRTH2 antagonist OC 000459 could significantly improve FEV1 (SMD = 0.22; 95% CI: 0.02–0.42; p = 0.03), peak expiratory flow (SMD = 0.22; 95% CI: 0.01–0.42; p = 0.04) and reduce the respiratory tract infection (RR = 0.47; 95% CI: 0.26–0.85; p = 0.01), but revealed no remarkable effect on predicted FEV1 (SMD = 0.14; 95% CI: –0.18 to 0.45; p = 0.39), or treatment-related adverse events (RR = 0.84; 95% CI: 0.52–1.36; p = 0.48). Conclusions CRTH2 antagonist OC 000459 might be effective and safe to improve pulmonary function in asthma patients.
Collapse
|
14
|
Oyesola OO, Shanahan MT, Kanke M, Mooney BM, Webb LM, Smita S, Matheson MK, Campioli P, Pham D, Früh SP, McGinty JW, Churchill MJ, Cahoon JL, Sundaravaradan P, Flitter BA, Mouli K, Nadjsombati MS, Kamynina E, Peng SA, Cubitt RL, Gronert K, Lord JD, Rauch I, von Moltke J, Sethupathy P, Tait Wojno ED. PGD2 and CRTH2 counteract Type 2 cytokine-elicited intestinal epithelial responses during helminth infection. J Exp Med 2021; 218:e20202178. [PMID: 34283207 PMCID: PMC8294949 DOI: 10.1084/jem.20202178] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/28/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Type 2 inflammation is associated with epithelial cell responses, including goblet cell hyperplasia, that promote worm expulsion during intestinal helminth infection. How these epithelial responses are regulated remains incompletely understood. Here, we show that mice deficient in the prostaglandin D2 (PGD2) receptor CRTH2 and mice with CRTH2 deficiency only in nonhematopoietic cells exhibited enhanced worm clearance and intestinal goblet cell hyperplasia following infection with the helminth Nippostrongylus brasiliensis. Small intestinal stem, goblet, and tuft cells expressed CRTH2. CRTH2-deficient small intestinal organoids showed enhanced budding and terminal differentiation to the goblet cell lineage. During helminth infection or in organoids, PGD2 and CRTH2 down-regulated intestinal epithelial Il13ra1 expression and reversed Type 2 cytokine-mediated suppression of epithelial cell proliferation and promotion of goblet cell accumulation. These data show that the PGD2-CRTH2 pathway negatively regulates the Type 2 cytokine-driven epithelial program, revealing a mechanism that can temper the highly inflammatory effects of the anti-helminth response.
Collapse
Affiliation(s)
- Oyebola O. Oyesola
- Department of Immunology, University of Washington, Seattle, WA
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Michael T. Shanahan
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | | - Lauren M. Webb
- Department of Immunology, University of Washington, Seattle, WA
| | - Shuchi Smita
- Department of Immunology, University of Washington, Seattle, WA
| | | | - Pamela Campioli
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Duc Pham
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Simon P. Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - John W. McGinty
- Department of Immunology, University of Washington, Seattle, WA
| | - Madeline J. Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | | | | | - Becca A. Flitter
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, CA
| | - Karthik Mouli
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, CA
| | | | - Elena Kamynina
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Seth A. Peng
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Rebecca L. Cubitt
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, CA
| | - James D. Lord
- Benaroya Research Institute at Virginia Mason Medical Center, Division of Gastroenterology, Seattle, WA
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | | | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | |
Collapse
|
15
|
Oyesola OO, Tait Wojno ED. Prostaglandin regulation of type 2 inflammation: From basic biology to therapeutic interventions. Eur J Immunol 2021; 51:2399-2416. [PMID: 34396535 PMCID: PMC8843787 DOI: 10.1002/eji.202048909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Type 2 immunity is critical for the protective and repair responses that mediate resistance to parasitic helminth infection. This immune response also drives aberrant inflammation during atopic diseases. Prostaglandins are a class of critical lipid mediators that are released during type 2 inflammation and are integral in controlling the initiation, activation, maintenance, effector functions, and resolution of Type 2 inflammation. In this review, we explore the roles of the different prostaglandin family members and the receptors they bind to during allergen‐ and helminth‐induced Type 2 inflammation and the mechanism through which prostaglandins promote or suppress Type 2 inflammation. Furthermore, we discuss the potential role of prostaglandins produced by helminth parasites in the regulation of host–pathogen interactions, and how prostaglandins may regulate the inverse relationship between helminth infection and allergy. Finally, we discuss opportunities to capitalize on our understanding of prostaglandin pathways to develop new therapeutic options for humans experiencing Type 2 inflammatory disorders that have a significant prostaglandin‐driven component including allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| |
Collapse
|
16
|
Shimamoto S, Nakagawa Y, Hidaka Y, Maruno T, Kobayashi Y, Kawahara K, Yoshida T, Ohkubo T, Aritake K, Kaushik MK, Urade Y. Substrate-induced product-release mechanism of lipocalin-type prostaglandin D synthase. Biochem Biophys Res Commun 2021; 569:66-71. [PMID: 34237429 DOI: 10.1016/j.bbrc.2021.06.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Prostaglandin D2 (PGD2), an endogenous somnogen, is a unique PG that is secreted into the cerebrospinal fluid. PGD2 is a relatively fragile molecule and should be transported to receptors localized in the basal forebrain without degradation. However, it remains unclear how PGD2 is stably carried to such remote receptors. Here, we demonstrate that the PGD2-synthesizing enzyme, Lipocalin-type prostaglandin D synthase (L-PGDS), binds not only its substrate PGH2 but also its product PGD2 at two distinct binding sites for both ligands. This behaviour implys its PGD2 carrier function. Nevertheless, since the high affinity (Kd = ∼0.6 μM) of PGD2 in the catalytic binding site is comparable to that of PGH2, it may act as a competitive inhibitor, while our binding assay exhibits only weak inhibition (Ki = 189 μM) of the catalytic reaction. To clarify this enigmatic behavior, we determined the solution structure of L-PGDS bound to one substrate analog by NMR and compared it with the two structures: one in the apo form and the other in substrate analogue complex with 1:2 stoichiometry. The structural comparisons showed clearly that open or closed forms of loops at the entrance of ligand binding cavity are regulated by substrate binding to two sites, and that the binding to a second non-catalytic binding site, which apparently substrate concentration dependent, induces opening of the cavity that releases the product. From these results, we propose that L-PGDS is a unique enzyme having a carrier function and a substrate-induced product-release mechanism.
Collapse
Affiliation(s)
- Shigeru Shimamoto
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Yusuke Nakagawa
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yuji Hidaka
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kosuke Aritake
- Chemical Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka, 815-8511, Japan
| | - Mahesh K Kaushik
- WPI-International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshihiro Urade
- The University of Tokyo Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
17
|
Bertschi NL, Bazzini C, Schlapbach C. The Concept of Pathogenic TH2 Cells: Collegium Internationale Allergologicum Update 2021. Int Arch Allergy Immunol 2021; 182:365-380. [PMID: 33845475 DOI: 10.1159/000515144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
T helper (TH) cells have evolved into distinct subsets that mediate specific immune responses to protect the host against a myriad of infectious and noninfectious challenges. However, if dysregulated, TH-cell subsets can cause inflammatory disease. Emerging evidence now suggests that human allergic disease is caused by a distinct subpopulation of pathogenic TH2 cells. Pathogenic TH2 cells from different type-2-driven diseases share a core phenotype and show overlapping functional attributes. The unique differentiation requirements, activating signals, and metabolic characteristics of pathogenic TH2 cells are just being discovered. A better knowledge of this particular TH2 cell population will enable the specific targeting of disease-driving pathways in allergy. In this review, we introduce a rational for classifying TH cells into distinct subsets, discuss the current knowledge on pathogenic TH2 cells, and summarize their involvement in allergic diseases.
Collapse
Affiliation(s)
- Nicole L Bertschi
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cecilia Bazzini
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
The pharmacology of the prostaglandin D 2 receptor 2 (DP 2) receptor antagonist, fevipiprant. Pulm Pharmacol Ther 2021; 68:102030. [PMID: 33826946 DOI: 10.1016/j.pupt.2021.102030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022]
Abstract
Fevipiprant is an oral, non-steroidal, highly selective, reversible antagonist of the prostaglandin D2 (DP2) receptor. The DP2 receptor is a mediator of inflammation expressed on the membrane of key inflammatory cells, including eosinophils, Th2 cells, type 2 innate lymphoid cells, CD8+ cytotoxic T cells, basophils and monocytes, as well as airway smooth muscle and epithelial cells. The DP2 receptor pathway regulates the allergic and non-allergic asthma inflammatory cascade and is activated by the binding of prostaglandin D2. Fevipiprant is metabolised by several uridine 5'-diphospho glucuronosyltransferase enzymes to an inactive acyl-glucuronide (AG) metabolite, the only major human metabolite. Both fevipiprant and its AG metabolite are eliminated by urinary excretion; fevipiprant is also possibly cleared by biliary excretion. These parallel elimination pathways suggested a low risk of major drug-drug interactions (DDI), pharmacogenetic or ethnic variability for fevipiprant, which was supported by DDI and clinical studies of fevipiprant. Phase II clinical trials of fevipiprant showed reduction in sputum eosinophilia, as well as improvement in lung function, symptoms and quality of life in patients with asthma. While fevipiprant reached the most advanced state of development to date of an oral DP2 receptor antagonist in a worldwide Phase III clinical trial programme, the demonstrated efficacy did not support further clinical development in asthma.
Collapse
|
19
|
Afify SM, Pali-Schöll I, Hufnagl K, Hofstetter G, El-Bassuoni MAR, Roth-Walter F, Jensen-Jarolim E. Bovine Holo-Beta-Lactoglobulin Cross-Protects Against Pollen Allergies in an Innate Manner in BALB/c Mice: Potential Model for the Farm Effect. Front Immunol 2021; 12:611474. [PMID: 33746954 PMCID: PMC7977286 DOI: 10.3389/fimmu.2021.611474] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The lipocalin beta-lactoglobulin (BLG) is a major protein compound in cow's milk, and we detected it in cattle stable dust. BLG may be a novel player in the farm protective effect against atopic sensitization and hayfever. In previous studies, we demonstrated that only the ligand-filled holo-form of BLG prevented sensitization to itself. Here, we investigated whether holo-BLG could, in an innate manner, also protect against allergic sensitization to unrelated birch pollen allergens using a murine model. BALB/c mice were nasally pretreated four times in biweekly intervals with holo-BLG containing quercetin-iron complexes as ligands, with empty apo-BLG, or were sham-treated. Subsequently, mice were intraperitoneally sensitized two times with apo-BLG or with the unrelated birch pollen allergen apo-Bet v 1, adjuvanted with aluminum hydroxide. After subsequent systemic challenge with BLG or Bet v 1, body temperature drop was monitored by anaphylaxis imaging. Specific antibodies in serum and cytokines of BLG- and Bet v 1-stimulated splenocytes were analyzed by ELISA. Additionally, human peripheral blood mononuclear cells of pollen allergic subjects were stimulated with apo- versus holo-BLG before assessment by FACS. Prophylactic treatment with the holo-BLG resulted in protection against allergic sensitization and clinical reactivity also to Bet v 1 in an unspecific manner. Pretreatment with holo-BLG resulted in significantly lower BLG-as well as Bet v 1-specific antibodies and impaired antigen-presentation with significantly lower numbers of CD11c+MHCII+ cells expressing CD86. Pretreatment with holo-BLG also reduced the release of Th2-associated cytokines from Splenocytes in BLG-sensitized mice. Similarly, in vitro stimulation of PBMCs from birch pollen allergic subjects with holo-BLG resulted in a relative decrease of CD3+CD4+ and CD4+CRTh2 cells, but not of CD4+CD25+CD127- Treg cells, compared to apo-BLG stimulation. In conclusion, prophylactic treatment with holo-BLG protected against allergy in an antigen-specific and -unspecific manner by decreasing antigen presentation, specific antibody production and abrogating a Th2-response. Holo-BLG therefore promotes immune resilience against pollen allergens in an innate manner and may thereby contribute to the farm protective effect against atopic sensitization.
Collapse
Affiliation(s)
- Sheriene Moussa Afify
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria.,Laboratory Medicine and Immunology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hufnagl
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Gerlinde Hofstetter
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | | | - Franziska Roth-Walter
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Biomedical International R+D GmbH, Vienna, Austria
| |
Collapse
|
20
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, O’Mahony L, Sanak M, Dahlen S, Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy 2021; 76:114-130. [PMID: 32279330 DOI: 10.1111/all.14295] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G. Enrico Rovati
- Department of Pharmaceutical Sciences University of Milan Milan Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Skane University Hospital Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jargen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O’Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlen
- Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
- Centre for Allergy Research Karolinska Institute Stockholm Sweden
| | - Grzegorz Woszczek
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology & Microbial Sciences King's College London London UK
| |
Collapse
|
21
|
Jia D, Bai P, Wan N, Liu J, Zhu Q, He Y, Chen G, Wang J, Chen H, Wang C, Lyu A, Lazarus M, Su Y, Urade Y, Yu Y, Zhang J, Shen Y. Niacin Attenuates Pulmonary Hypertension Through H-PGDS in Macrophages. Circ Res 2020; 127:1323-1336. [PMID: 32912104 DOI: 10.1161/circresaha.120.316784] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is characterized by progressive pulmonary vascular remodeling, accompanied by varying degrees of perivascular inflammation. Niacin, a commonly used lipid-lowering drug, possesses vasodilating and proresolution effects by promoting the release of prostaglandin D2 (PGD2). However, whether or not niacin confers protection against PAH pathogenesis is still unknown. OBJECTIVE This study aimed to determine whether or not niacin attenuates the development of PAH and, if so, to elucidate the molecular mechanisms underlying its effects. METHODS AND RESULTS Vascular endothelial growth factor receptor inhibitor SU5416 and hypoxic exposure were used to induce pulmonary hypertension (PH) in rodents. We found that niacin attenuated the development of this hypoxia/SU5416-induced PH in mice and suppressed progression of monocrotaline-induced and hypoxia/SU5416-induced PH in rats through the reduction of pulmonary artery remodeling. Niacin boosted PGD2 generation in lung tissue, mainly through H-PGDS (hematopoietic PGD2 synthases). Deletion of H-PGDS, but not lipocalin-type PGDS, exacerbated the hypoxia/SU5416-induced PH in mice and abolished the protective effects of niacin against PAH. Moreover, H-PGDS was expressed dominantly in infiltrated macrophages in lungs of PH mice and patients with idiopathic PAH. Macrophage-specific deletion of H-PGDS markedly decreased PGD2 generation in lungs, aggravated hypoxia/SU5416-induced PH in mice, and attenuated the therapeutic effect of niacin on PAH. CONCLUSIONS Niacin treatment ameliorates the progression of PAH through the suppression of vascular remodeling by stimulating H-PGDS-derived PGD2 release from macrophages.
Collapse
Affiliation(s)
- Daile Jia
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen).,Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., P.B.).,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.)
| | - Peiyuan Bai
- Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., P.B.).,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.)
| | - Naifu Wan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.).,Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (N.W., Q.Z., A.L.)
| | - Jiao Liu
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen).,Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (J.L., Y.Y.)
| | - Qian Zhu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.).,Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (N.W., Q.Z., A.L.)
| | - Yuhu He
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.)
| | - Guilin Chen
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen)
| | - Jing Wang
- Cardiology, Cardiovascular Institute and Fuwai Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China (J.W.)
| | - Han Chen
- Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China (H.C., C.W.)
| | - Chen Wang
- Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China (H.C., C.W.)
| | - Ankang Lyu
- Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (N.W., Q.Z., A.L.)
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba City, Japan (M.L.)
| | - Yunchao Su
- Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Georgia, United States of America (Y. Su)
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo, Japan (Y.U.)
| | - Ying Yu
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen).,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.).,Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (J.L., Y.Y.)
| | - Jian Zhang
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen)
| | - Yujun Shen
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen)
| |
Collapse
|
22
|
Oyesola OO, Früh SP, Webb LM, Tait Wojno ED. Cytokines and beyond: Regulation of innate immune responses during helminth infection. Cytokine 2020; 133:154527. [PMID: 30241895 PMCID: PMC6422760 DOI: 10.1016/j.cyto.2018.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Parasitic helminth infection elicits a type 2 cytokine-mediated inflammatory response. During type 2 inflammation, damaged or stimulated epithelial cells exposed to helminths and their products produce alarmins and cytokines including IL-25, IL-33, and thymic stromal lymphopoietin. These factors promote innate immune cell activation that supports the polarization of CD4+ T helper type 2 (Th2) cells. Activated innate and Th2 cells produce the cytokines IL-4, -5, -9, and -13 that perpetuate immune activation and act back on the epithelium to cause goblet cell hyperplasia and increased epithelial cell turnover. Together, these events facilitate worm expulsion and wound healing processes. While the role of Th2 cells in this context has been heavily studied, recent work has revealed that epithelial cell-derived cytokines are drivers of key innate immune responses that are critical for type 2 anti-helminth responses. Cutting-edge studies have begun to fully assess how other factors and pathways, including lipid mediators, chemokines, Fc receptor signaling, danger-associated molecular pattern molecules, and direct cell-cell interactions, also participate in shaping innate cell-mediated type 2 inflammation. In this review, we discuss how these pathways intersect and synergize with pathways controlled by epithelial cell-derived cytokines to coordinate innate immune responses that drive helminth-induced type 2 inflammation.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Simon P Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Lauren M Webb
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
23
|
Lucendo AJ. Pharmacological treatments for eosinophilic esophagitis: current options and emerging therapies. Expert Rev Clin Immunol 2020; 16:63-77. [PMID: 31842634 DOI: 10.1080/1744666x.2019.1705784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The epidemiology of eosinophilic esophagitis (EoE) has increased rapidly to represent a common cause of chronic and recurrent esophageal symptoms. Current treatment options have limitations so the development of novel therapies is a matter of growing interest.Areas covered: This article provides an up-to-date discussion of current therapies and investigational options for EoE. Established anti-inflammatory treatments for EoE at present include dietary therapy, proton pump inhibitors and swallowed topic steroids, which should be combined with endoscopic dilation in case of strictures. Refractoriness, high recurrence rates, and need for long-term therapies have promoted the investigation of novel, esophageal-targeted formulas of topic corticosteroids, and monoclonal antibodies (including mepolizumab, reslizumab, QAX576, RPC4046, dupilumab, omalizumab, infliximab, and vedolizumab) for EoE, with some having been demonstrated as effective and safe in the short term. Several additional promising therapies are also discussed.Expert opinion: Several therapeutic targets have shown efficacy and will be approved to treat EoE, especially corticosteroid-sparing options and those for patients with multiple Th2-associated diseases. Personalized therapeutic strategies for initial and maintenance treatments of EoE must be rationally designed, to reduce the burden of disease and answer meaningfully the needs of all stakeholders involved in EoE.
Collapse
Affiliation(s)
- Alfredo J Lucendo
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| |
Collapse
|
24
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
25
|
Prostaglandin D 2 stimulates phenotypic changes in vascular smooth muscle cells. Exp Mol Med 2019; 51:1-10. [PMID: 31735914 PMCID: PMC6859158 DOI: 10.1038/s12276-019-0330-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 01/28/2023] Open
Abstract
Since chronic inflammation is associated with the pathogenesis of atherosclerosis, inflammatory cytokines might contribute to the phenotypic modulation of vascular smooth muscle cells (VSMCs). Tumor necrosis factor α (TNFα) facilitated the transformation of contractile VSMCs to the synthetic phenotype, as determined by the expression of marker proteins and a collagen gel contraction assay. Western blot analysis and a cyclooxygenase-2 (COX2) promoter assay revealed that TNFα stimulation resulted in the induction of COX2. The overexpression, silencing, or pharmacological inhibition of COX2 significantly affected TNFα-induced phenotypic conversion, and of the tested prostaglandins, only PGD2 significantly induced phenotypic conversion. ERK was significantly activated by PGD2 stimulation, and the pharmacological inhibition of ERK blocked the PGD2-induced phenotypic conversion of VSMCs. However, antagonists or agonists of PGD2 receptors did not affect VSMC conversion. In contrast, spontaneously dehydrated forms of PGD2, such as PGJ2, Δ12-PGJ2, and 15-d-PGJ2, strongly induced phenotypic conversion. A reporter gene assay showed that TNFα, PGD2, and 15-d-PGJ2 significantly activated the peroxisome proliferator-responsive element (PPRE) promoter. In addition, the overexpression or silencing of peroxisome proliferator-activated receptor δ (PPARδ) significantly influenced 15-d-PGJ2-induced phenotypic conversion. Finally, atherosclerotic neointima formation was significantly suppressed in mice lacking TNFα. In addition, mice fed celecoxib exhibited complete inhibition of carotid artery ligation-induced neointima formation. This study shows that PGD2 regulates the phenotypic conversion of VSMCs by generating an endogenous ligand of PPAR, and that this leads to neointima formation in occlusive arterial disease. A lipid compound that stimulates muscle cells to change type is instrumental in the development of arterial plaque formation in artherosclerosis. Sun Sik Bae at Pusan National University School of Medicine in Gyungnam, South Korea, and co-workers examined the role of inflammatory proteins in the development of artherosclerosis, a condition involving the build-up of scar tissue or ‘plaques’ on artery walls. The behavior of vascular smooth muscle cells (VSMCs) is crucial to plaque development because, triggered by inflammatory protein activity, the cells switch from contractile-type cells to faster proliferating VSMCs, accelerating plaque growth. The team found that a compound called prostaglandin D2, a direct by-product of inflammatory protein behavior, together with a protein regulating gene expression, are key factors triggering this VSMC change. These insights may prove valuable in developing therapies for artherosclerosis.
Collapse
|
26
|
Pelaia C, Crimi C, Vatrella A, Busceti MT, Gaudio A, Garofalo E, Bruni A, Terracciano R, Pelaia G. New treatments for asthma: From the pathogenic role of prostaglandin D 2 to the therapeutic effects of fevipiprant. Pharmacol Res 2019; 155:104490. [PMID: 31682916 DOI: 10.1016/j.phrs.2019.104490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Prostaglandin D2 (PGD2) is a pleiotropic mediator, significantly involved in the pathogenesis of type 2 (T2) asthma because of its biologic actions exerted on both immune/inflammatory and airway structural cells. In particular, the pro-inflammatory and pro-remodelling effects of PGD2 are mainly mediated by stimulation of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). This receptor is the target of the oral competitive antagonist fevipiprant, which on the basis of recent phase II studies is emerging as a potential very promising anti-asthma drug. Indeed, fevipiprant appears to be safe and effective, especially in consideration of its ability to inhibit eosinophilic bronchial inflammation and improve forced expiratory volume in one second (FEV1). Further ongoing phase III trials will definitely clarify if fevipiprant can prospectively become a valid option for an efficacious add-on treatment of moderate-to-severe T2-high asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Achille Gaudio
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Eugenio Garofalo
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
27
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
28
|
Diwakar BT, Yoast R, Nettleford S, Qian F, Lee TJ, Berry S, Huffnagle I, Rossi RM, Trebak M, Paulson RF, Prabhu KS. Crth2 receptor signaling down-regulates lipopolysaccharide-induced NF-κB activation in murine macrophages via changes in intracellular calcium. FASEB J 2019; 33:12838-12852. [PMID: 31518163 DOI: 10.1096/fj.201802608r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prostaglandin D2 and its cyclopentenone metabolites [cyclopentenone prostaglandins (CyPGs)], Δ12prostaglandin J2 and 15-deoxy-Δ12,14-prostaglandin J2, act through 2 GPCRs, d-type prostanoid 1 and the chemoattractant receptor homologous molecule expressed on type 2 T-helper cells (Crth2). In addition to its role in allergy and asthma, the role of Crth2 in the resolution of inflammation, to mediate the proresolving functions of endogenous CyPGs, is not well understood. We investigated the regulation of LPS or zymosan-induced inflammatory response by signals from the Crth2 receptor in macrophages that lack Crth2 expression [knockout (KO)]. Increased expression of proinflammatory genes, including Tnf-α, was observed in Crth2 KO cells. Targeting the endogenous biosynthetic pathway of CyPGs with indomethacin or HQL79, which inhibit cyclooxygenases or hematopoietic prostaglandin D synthase, respectively, or use of Crth2 antagonists recapitulated the proinflammatory phenotype as in Crth2 KO cells. Ligand-dependent activation of Crth2 by 13,14-dihydro-15-keto-prostaglandin D2 increased Ca2+ influx through store-operated Ca2+ entry (SOCE) accompanied by the up-regulation of stromal interaction molecule 1 and calcium release-activated calcium modulator 1 expression, suggesting that the proresolution effects of CyPG-dependent activation of SOCE could be mediated by Crth2 during inflammation. Interestingly, Crth2 signaling down-regulated the Ca2+-regulated heat stable protein 1 that stabilizes Tnf-α mRNA via the increased expression of microRNA 155 to dampen inflammatory responses triggered through the TNF-α-NF-κB axis. In summary, these studies present a novel regulatory role for Crth2 during inflammatory response in macrophages.-Diwakar, B. T., Yoast, R., Nettleford, S., Qian, F., Lee, T.-J., Berry, S., Huffnagle, I., Rossi, R. M., Trebak, M., Paulson, R. F., Prabhu, K. S. Crth2 receptor signaling down-regulates lipopolysaccharide-induced NF-κB activation in murine macrophages via changes in intracellular calcium.
Collapse
Affiliation(s)
- Bastihalli T Diwakar
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,The Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Ohio, USA
| | - Ryan Yoast
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Shaneice Nettleford
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,The Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Fenghua Qian
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,The Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tai-Jung Lee
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,The Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Svanjita Berry
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,The Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ian Huffnagle
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,The Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Randall M Rossi
- Transgenic Mouse Facility, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Robert F Paulson
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,The Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - K Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,The Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
29
|
Pharmacotherapies for the Treatment of Eosinophilic Esophagitis: State of the Art Review. Drugs 2019; 79:1419-1434. [DOI: 10.1007/s40265-019-01173-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Matthias J, Zielinski CE. Shaping the diversity of Th2 cell responses in epithelial tissues and its potential for allergy treatment. Eur J Immunol 2019; 49:1321-1333. [PMID: 31274191 DOI: 10.1002/eji.201848011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Th2 cells have evolved to protect from large helminth infections and to exert tissue protective functions in response to nonmicrobial noxious stimuli. The initiation, maintenance, and execution of these functions depend on the integration of diverse polarizing cues by cellular sensors and molecular programs as well as the collaboration with cells that are coopted for signal exchange. The complexity of input signals and cellular collaboration generates tissue specific Th2 cell heterogeneity and specialization. In this review, we aim to discuss the advances and recent breakthroughs in our understanding of Th2 cell responses and highlight developmental and functional differences among T cells within the diversifying field of type 2 immunity. We will focus on factors provided by the tissue microenvironment and highlight factors with potential implications for the pathogenesis of allergic skin and lung diseases. Especially new insights into the role of immunometabolism, the microbiota and ionic signals enhance the complexity of Th2 cell regulation and warrant a critical evaluation. Finally, we will discuss how this ensemble of established knowledge and recent breakthroughs about Th2 immunobiology advance our understanding of the pathogenesis of allergic diseases and how this could be exploited for future immunotherapies.
Collapse
Affiliation(s)
- Julia Matthias
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Christina E Zielinski
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany.,TranslaTUM, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
31
|
Kabata H, Moro K, Koyasu S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms. Immunol Rev 2019; 286:37-52. [PMID: 30294963 DOI: 10.1111/imr.12706] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) play critical roles in the induction of type 2 inflammation, response to parasite infection, metabolic homeostasis, and tissue repair. These multifunctional roles of ILC2s are tightly controlled by complex regulatory systems in the local microenvironment, the disruption of which may cause various health problems. This review summarizes up-to-date knowledge regarding positive and negative regulators for ILC2s based on their function and signaling pathways, including activating cytokines (IL-33, IL-25; MAPK, NF-κB pathways), co-stimulatory cytokines (IL-2, IL-7, IL-9, TSLP; STAT5, IL-4; STAT6, TNF superfamily; MAPK, NF-κB pathways), suppressive cytokines (type1 IFNs, IFN-γ, IL-27; STAT1, IL-10, TGF-β), transdifferentiation cytokines (IL-12; STAT4, IL-1β, IL-18), lipid mediators (LTC4, LTD4, LTE4, PGD2; Ca2+ -NFAT pathways, PGE2, PGI2; AC/cAMP/PKA pathways, LXA4, LTB4), neuropeptides (NMU; Ca2+ -NFAT, MAPK pathways, VIP, CGRP, catecholamine, acetylcholine), sex hormones (androgen, estrogen), nutrients (butyrate; HDAC inhibitors, vitamins), and cell-to-cell interactions (ICOSL-ICOS; STAT5, B7-H6-NKp30, E-cadherin-KLRG1). This comprehensive review affords a better understanding of the regulatory network system for ILC2s, providing impetus to develop new treatment strategies for ILC2-related health problems.
Collapse
Affiliation(s)
- Hiroki Kabata
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, USA.,Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Therapeutic Potential of Hematopoietic Prostaglandin D 2 Synthase in Allergic Inflammation. Cells 2019; 8:cells8060619. [PMID: 31226822 PMCID: PMC6628301 DOI: 10.3390/cells8060619] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Worldwide, there is a rise in the prevalence of allergic diseases, and novel efficient therapeutic approaches are still needed to alleviate disease burden. Prostaglandin D2 (PGD2) has emerged as a central inflammatory lipid mediator associated with increased migration, activation and survival of leukocytes in various allergy-associated disorders. In the periphery, the hematopoietic PGD synthase (hPGDS) acts downstream of the arachidonic acid/COX pathway catalysing the isomerisation of PGH2 to PGD2, which makes it an interesting target to treat allergic inflammation. Although much effort has been put into developing efficient hPGDS inhibitors, no compound has made it to the market yet, which indicates that more light needs to be shed on potential PGD2 sources and targets to determine which particular condition and patient will benefit most and thereby improve therapeutic efficacy. In this review, we want to revisit current knowledge about hPGDS function, expression in allergy-associated cell types and their contribution to PGD2 levels as well as beneficial effects of hPGDS inhibition in allergic asthma, rhinitis, atopic dermatitis, food allergy, gastrointestinal allergic disorders and anaphylaxis.
Collapse
|
33
|
Ahmad AS, Ottallah H, Maciel CB, Strickland M, Doré S. Role of the L-PGDS-PGD2-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep 2019; 42:zsz073. [PMID: 30893431 PMCID: PMC6559173 DOI: 10.1093/sleep/zsz073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
To meet the new challenges of modern lifestyles, we often compromise a good night's sleep. In preclinical models as well as in humans, a chronic lack of sleep is reported to be among the leading causes of various physiologic, psychologic, and neurocognitive deficits. Thus far, various endogenous mediators have been implicated in inter-regulatory networks that collectively influence the sleep-wake cycle. One such mediator is the lipocalin-type prostaglandin D2 synthase (L-PGDS)-Prostaglandin D2 (PGD2)-DP1 receptor (L-PGDS-PGD2-DP1R) axis. Findings in preclinical models confirm that DP1R are predominantly expressed in the sleep-regulating centers. This finding led to the discovery that the L-PGDS-PGD2-DP1R axis is involved in sleep regulation. Furthermore, we showed that the L-PGDS-PGD2-DP1R axis is beneficial in protecting the brain from ischemic stroke. Protein sequence homology was also performed, and it was found that L-PGDS and DP1R share a high degree of homology between humans and rodents. Based on the preclinical and clinical data thus far pertaining to the role of the L-PGDS-PGD2-DP1R axis in sleep regulation and neurologic conditions, there is optimism that this axis may have a high translational potential in human therapeutics. Therefore, here the focus is to review the regulation of the homeostatic component of the sleep process with a special focus on the L-PGDS-PGD2-DP1R axis and the consequences of sleep deprivation on health outcomes. Furthermore, we discuss whether the pharmacological regulation of this axis could represent a tool to prevent sleep disturbances and potentially improve outcomes, especially in patients with acute brain injuries.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Haneen Ottallah
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Carolina B Maciel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL
| | - Michael Strickland
- Division of Biology and Biomedical Sciences, Washington University in Saint Louis, Saint Louis, MO
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Psychiatry, University of Florida, Gainesville, FL
- Department of Pharmaceutics, University of Florida, Gainesville, FL
- Department of Psychology, University of Florida, Gainesville, FL
- Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
34
|
Géhin M, Lott D, Farine H, Issac M, Strasser D, Sidharta P, Dingemanse J. Pharmacokinetics, pharmacodynamics, tolerability and prediction of clinically effective dose of ACT‐774312: A novel CRTH2 antagonist. Basic Clin Pharmacol Toxicol 2019; 124:711-721. [DOI: 10.1111/bcpt.13197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Martine Géhin
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Dominik Lott
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Hervé Farine
- Department of Translational Science Biology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Milena Issac
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Daniel Strasser
- Department of Translational Science Biology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Patricia Sidharta
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| |
Collapse
|
35
|
Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev 2019; 282:151-167. [PMID: 29431215 DOI: 10.1111/imr.12638] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the origin of the phrase "birds of a feather flock together" is unclear, it has been in use for centuries and is typically employed to describe the phenomenon that people with similar tastes or interests tend to seek each other out and congregate together. In this review, we have co-opted this phrase to compare innate immune cells of related origin, the eosinophil and mast cell, because they very often accumulate together in tissue sites under both homeostatic and inflammatory conditions. To highlight overlapping yet distinct features, their hematopoietic development, cell surface phenotype, mediator release profiles and roles in diseases have been compared and contrasted. What emerges is a sense that these two cell types often interact with each other and their tissue environment to provide synergistic contributions to a variety of normal and pathologic immune responses.
Collapse
Affiliation(s)
- Piper A Robida
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
36
|
Marone G, Galdiero MR, Pecoraro A, Pucino V, Criscuolo G, Triassi M, Varricchi G. Prostaglandin D 2 receptor antagonists in allergic disorders: safety, efficacy, and future perspectives. Expert Opin Investig Drugs 2018; 28:73-84. [PMID: 30513028 DOI: 10.1080/13543784.2019.1555237] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prostaglandin D2 (PGD2) is a major cyclooxygenase mediator that is synthesized by activated human mast cells and other immune cells. The biological effects of PGD2 are mediated by D-prostanoid (DP1), DP2 (CRTH2) and thromboxane prostanoid (TP) receptors that are expressed on several immune and non-immune cells involved in allergic inflammation. PGD2 exerts various proinflammatory effects relevant to the pathophysiology of allergic disorders. Several selective, orally active, DP2 receptor antagonists and a small number of DP1 receptor antagonists are being developed for the treatment of allergic disorders. AREAS COVERED The role of DP2 and DP1 receptor antagonists in the treatment of asthma and allergic rhinitis. EXPERT OPINION Head-to-head studies that compare DP1 antagonists with the standard treatment for allergic rhinitis are necessary to verify the role of these novel drugs as mono- or combination therapies. Further clinical trials are necessary to verify whether DP2 antagonists as monotherapies or, more likely, as add-on therapies, will be effective for the treatment of different phenotypes of adult and childhood asthma. Long-term studies are necessary to evaluate the safety of targeted anti-PGD2 treatments.
Collapse
Affiliation(s)
- Giancarlo Marone
- a Department of Public Health , University of Naples Federico II , Naples , Italy.,b Monaldi Hospital Pharmacy , Naples , Italy
| | - Maria Rosaria Galdiero
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Antonio Pecoraro
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Valentina Pucino
- e William Harvey Research Institute, Barts and The London School of Medicine &Dentistry , Queen Mary University of London , London , UK
| | - Gjada Criscuolo
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Maria Triassi
- a Department of Public Health , University of Naples Federico II , Naples , Italy
| | - Gilda Varricchi
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| |
Collapse
|
37
|
Rahman MS, Syeda PK, Nartey MNN, Chowdhury MMI, Shimizu H, Nishimura K, Jisaka M, Shono F, Yokota K. Comparison of pro-adipogenic effects between prostaglandin (PG) D 2 and its stable, isosteric analogue, 11-deoxy-11-methylene-PGD 2, during the maturation phase of cultured adipocytes. Prostaglandins Other Lipid Mediat 2018; 139:71-79. [PMID: 30393164 DOI: 10.1016/j.prostaglandins.2018.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
Prostaglandin (PG) D2 is relatively unstable and dehydrated non-enzymatically into PGJ2 derivatives, which are known to serve as pro-adipogenic factors by activating peroxisome proliferator-activated receptor (PPAR) γ, a master regulator of adipogenesis. 11-Deoxy-11-methylene-PGD2 (11d-11m-PGD2) is a novel, chemically stable, isosteric analogue of PGD2 in which the 11-keto group is replaced by an exocyclic methylene. Here we attempted to investigate pro-adipogenic effects of PGD2 and 11d-11m-PGD2 and to compare the difference in their ways during the maturation phase of cultured adipocytes. The dose-dependent study showed that 11d-11m-PGD2 was significantly more potent than natural PGD2 to stimulate the storage of fats suppressed in the presence of indomethacin, a cyclooxygenase inhibitor. These pro-adipogenic effects were caused by the up-regulation of adipogenesis as evident with higher gene expression levels of adipogenesis markers. Analysis of transcript levels revealed the enhanced gene expression of two subtypes of cell-surface membrane receptors for PGD2, namely the prostanoid DP1 and DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2)) receptors together with lipocalin-type PGD synthase during the maturation phase. Specific agonists for DP1, CRTH2, and PPARγ were appreciably effective to rescue adipogenesis attenuated by indomethacin. The action of PGD2 was attenuated by specific antagonists for DP1 and PPARγ. By contrast, the effect of 11d-11m-PGD2 was more potently interfered by a selective antagonist for CRTH2 than that for DP1 while PPARγ antagonist GW9662 had almost no inhibitory effects. These results suggest that PGD2 exerts its pro-adipogenic effect principally through the mediation of DP1 and PPARγ, whereas the stimulatory effect of 11d-11m-PGD2 on adipogenesis occurs preferentially by the interaction with CRTH2.
Collapse
Affiliation(s)
- Mohammad Shahidur Rahman
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Michael N N Nartey
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Md Mazharul Islam Chowdhury
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Hidehisa Shimizu
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Kohji Nishimura
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Mitsuo Jisaka
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Fumiaki Shono
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tokushima-shi, Tokushima 770-8514, Japan
| | - Kazushige Yokota
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
38
|
Domingo C, Palomares O, Sandham DA, Erpenbeck VJ, Altman P. The prostaglandin D 2 receptor 2 pathway in asthma: a key player in airway inflammation. Respir Res 2018; 19:189. [PMID: 30268119 PMCID: PMC6162887 DOI: 10.1186/s12931-018-0893-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Asthma is characterised by chronic airway inflammation, airway obstruction and hyper-responsiveness. The inflammatory cascade in asthma comprises a complex interplay of genetic factors, the airway epithelium, and dysregulation of the immune response.Prostaglandin D2 (PGD2) is a lipid mediator, predominantly released from mast cells, but also by other immune cells such as TH2 cells and dendritic cells, which plays a significant role in the pathophysiology of asthma. PGD2 mainly exerts its biological functions via two G-protein-coupled receptors, the PGD2 receptor 1 (DP1) and 2 (DP2). The DP2 receptor is mainly expressed by the key cells involved in type 2 immune responses, including TH2 cells, type 2 innate lymphoid cells and eosinophils. The DP2 receptor pathway is a novel and important therapeutic target for asthma, because increased PGD2 production induces significant inflammatory cell chemotaxis and degranulation via its interaction with the DP2 receptor. This interaction has serious consequences in the pulmonary milieu, including the release of pro-inflammatory cytokines and harmful cationic proteases, leading to tissue remodelling, mucus production, structural damage, and compromised lung function. This review will discuss the importance of the DP2 receptor pathway and the current understanding of its role in asthma.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonary Service, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, One Health Plaza East Hanover, East Hanover, NJ 07936-1080 USA
| |
Collapse
|
39
|
Samuchiwal SK, Boyce JA. Role of lipid mediators and control of lymphocyte responses in type 2 immunopathology. J Allergy Clin Immunol 2018; 141:1182-1190. [PMID: 29477727 DOI: 10.1016/j.jaci.2018.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022]
Abstract
Type 2 immunopathology is a cardinal feature of allergic diseases and involves cooperation between adaptive immunity and innate effector responses. Virtually all cell types relevant to this pathology generate leukotriene and/or prostaglandin mediators that derive from arachidonic acid, express receptors for such mediators, or both. Recent studies highlight prominent functions for these mediators in communication between the innate and adaptive immune systems, as well as amplification or suppression of type 2 effector responses. This review focuses on recent advances and insights, and highlights existing and potential therapeutic applications of drugs that target these mediators or their receptors, with a special emphasis on their regulation of the innate and adaptive lymphocytes relevant to type 2 immunopathology.
Collapse
Affiliation(s)
- Sachin K Samuchiwal
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
40
|
Kumar S, Palaia T, Hall C, Ragolia L. DP1 receptor agonist, BW245C inhibits diet-induced obesity in ApoE −/− mice. Obes Res Clin Pract 2018; 12:229-241. [PMID: 28602634 DOI: 10.1016/j.orcp.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/22/2023]
|
41
|
Straumann A, Katzka DA. Diagnosis and Treatment of Eosinophilic Esophagitis. Gastroenterology 2018; 154:346-359. [PMID: 28756235 DOI: 10.1053/j.gastro.2017.05.066] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
Eosinophilic esophagitis (EoE) is a new disease. It is caused by a T-helper type 2 cell response to food antigens in contact with the esophageal mucosa. Although no single feature defines EoE, a constellation of compatible demographic, clinical, endoscopic, and histologic findings establish the diagnosis. Children present with symptoms and endoscopic patterns characteristic of inflammation, whereas adolescents and adults have manifestations of fibrosis and gross esophageal strictures. Clinical and endoscopic scoring systems have helped to standardize diagnosis. There is controversy in EoE research over the optimal endpoint for treatment. Although the most common endpoint is a reduced number of eosinophils in biopsies, changes in symptoms and endoscopic features are becoming important targets of therapy. We should improve our understanding of EoE progression and the need for maintenance therapy, and continue development of diagnostic tools that avoid endoscopy and biopsy analyses to more easily monitor disease activity.
Collapse
Affiliation(s)
- Alex Straumann
- Swiss EoE Clinic, Praxis Römerhof, Olten, Switzerland; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - David A Katzka
- Swiss EoE Clinic, Praxis Römerhof, Olten, Switzerland; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
42
|
Abstract
AbstractEssential oils (EOs) exhibit a wide range of pharmacological properties, which have been reported over the years in various studies. The aim of this literature review is to present the latest findings of the immunomodulatory effects of EOs. From 2008 to 2016in vivo- and/orin vitro-studies, most of which were published in the last couple of years, have been selected based on their topic relevance, namely immunomodulatory, anti-inflammatory, antileishmanial, antiallergic, and anticancer effects of various EOs. These findings show modulation of pro- and anti-inflammatory cytokines, antiproliferative, chemotactic properties and also exert antiparasitic effects by inhibiting the pro, axenic and intramacrophagic amastigote forms of Leishmania parasites or by modulating the TH1 and TH2 immune responses. Furthermore, the EOs of some plants show the ability to reduce the mast cell degranulation and improve the airway inflammation and mucus obstruction in the cases of immediate hypersensitivity in murine models. Additionally, the cytotoxicity of some EOs against human melanoma, hepatoma, lung, prostate and breast cancer cell lines proposed their potential antitumor effect by an increased immunosuppressive (cytostatic) activity.
Collapse
|
43
|
Otani IM, Nadeau KC. Biologic Therapies for Immunoglobulin E-mediated Food Allergy and Eosinophilic Esophagitis. Immunol Allergy Clin North Am 2017; 37:369-396. [PMID: 28366483 DOI: 10.1016/j.iac.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunoglobulin (Ig) E-mediated food allergy and eosinophilic esophagitis (EoE) are chronic, allergen-mediated disorders characterized by an aberrant TH2 immune response. The development and investigation of biologics for the treatment of IgE-mediated food allergy and eosinophilic esophagitis have provided further insight into the pathophysiology and management of these disorders. This article provides an overview of biologic therapies that are being investigated or have potential as treatments for IgE-mediated food allergy and eosinophilic esophagitis. Identification of EoE phenotypes that are responsive to biologics and investigation of biologics combined with other therapies may help elucidate a role for biologics in EoE.
Collapse
Affiliation(s)
- Iris M Otani
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA.
| | - Kari C Nadeau
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
44
|
Management of eosinophilic esophagitis and celiac disease. Curr Opin Pharmacol 2017; 37:118-125. [DOI: 10.1016/j.coph.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/23/2022]
|
45
|
Mitson-Salazar A, Prussin C. Pathogenic Effector Th2 Cells in Allergic Eosinophilic Inflammatory Disease. Front Med (Lausanne) 2017; 4:165. [PMID: 29057225 PMCID: PMC5635264 DOI: 10.3389/fmed.2017.00165] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
There is an absolute requirement for Th2 cells in the pathogenesis of allergen-driven eosinophil-rich type 2 inflammation. Although Th2 cells are generally regarded as a homogeneous population, in the past decade there has been increasing evidence for a minority subpopulation of IL-5+ Th2 cells that have enhanced effector function. This IL-5+ Th2 subpopulation has been termed pathogenic effector Th2 (peTh2), as it exhibits greater effector function and disease association than conventional Th2 cells. peTh2 cells have a different expression profile, differentially express transcription factors, and preferentially use specific signaling pathways. As such, peTh2 cells are a potential target in the treatment of allergic eosinophilic inflammation. This review examines peTh2 cells, both in mouse models and human disease, with an emphasis on their role in the pathogenesis of allergic eosinophilic inflammation.
Collapse
Affiliation(s)
- Alyssa Mitson-Salazar
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
46
|
Pharmacokinetic/Pharmacodynamic Modelling of Receptor Internalization with CRTH2 Antagonists to Optimize Dose Selection. Clin Pharmacokinet 2017; 55:813-821. [PMID: 26692193 DOI: 10.1007/s40262-015-0354-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE The chemoattractant receptor-homologous molecule expressed on T helper-2 cells (CRTH2) is a G-protein-coupled receptor for prostaglandin D2 (PGD2), a key mediator in inflammatory disorders. Two selective and potent CRTH2 antagonists currently in clinical development, ACT-453859 and setipiprant, were compared with respect to their (predicted) clinical efficacy. METHODS Population pharmacokinetic (PK) and pharmacodynamic (PD) models were developed to characterize how plasma concentrations (PK) of ACT-453859, its active metabolite ACT-463036 and setipiprant related to their effect on blocking PGD2-induced internalization of CRTH2 on eosinophils (PD). Simulations were used to identify doses and dosing regimens leading to 90 % of maximum blockade of CRTH2 internalization at trough. RESULTS A combined concentration of ACT-453859 and its metabolite ACT-463036, with weights proportional to potency (based on an eosinophil shape change assay), enabled good characterization of the PD effect. The modelling and simulation results facilitated decision making by suggesting an ACT-453859 dose of 400 mg once daily (or 100 mg twice daily) for clinically relevant CRTH2 antagonism. CONCLUSION Pharmacometric quantification demonstrated that CRTH2 internalization is a useful new biomarker to study CRTH2 antagonism. Ninety percent of maximum blockade of CRTH2 internalization at trough is suggested as a quantitative PD target in clinical studies.
Collapse
|
47
|
Talavera-Adame D, Newman D, Newman N. Conventional and novel stem cell based therapies for androgenic alopecia. Stem Cells Cloning 2017; 10:11-19. [PMID: 28979149 PMCID: PMC5588753 DOI: 10.2147/sccaa.s138150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The prevalence of androgenic alopecia (AGA) increases with age and it affects both men and women. Patients diagnosed with AGA may experience decreased quality of life, depression, and feel self-conscious. There are a variety of therapeutic options ranging from prescription drugs to non-prescription medications. Currently, AGA involves an annual global market revenue of US$4 billion and a growth rate of 1.8%, indicating a growing consumer market. Although natural and synthetic ingredients can promote hair growth and, therefore, be useful to treat AGA, some of them have important adverse effects and unknown mechanisms of action that limit their use and benefits. Biologic factors that include signaling from stem cells, dermal papilla cells, and platelet-rich plasma are some of the current therapeutic agents being studied for hair restoration with milder side effects. However, most of the mechanisms exerted by these factors in hair restoration are still being researched. In this review, we analyze the therapeutic agents that have been used for AGA and emphasize the potential of new therapies based on advances in stem cell technologies and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Nathan Newman
- American Advanced Medical Corp. (Private Practice), Beverly Hills, CA
| |
Collapse
|
48
|
The expansive role of oxylipins on platelet biology. J Mol Med (Berl) 2017; 95:575-588. [PMID: 28528513 DOI: 10.1007/s00109-017-1542-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
In mammals, three major oxygenases, cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450 (CYP450), generate an assortment of unique lipid mediators (oxylipins) from polyunsaturated fatty acids (PUFAs) which exhibit pro- or anti-thrombotic activity. Over the years, novel oxylipins generated from the interplay of theoxygenase activity in various cells, such as the specialized pro-resolving mediators (SPMs), have been identified and investigated in inflammatory disease models. Although platelets have been implicated in inflammation, the role and mechanism of these SPMs produced from immune cells on platelet function are still unclear. This review highlights the burgeoning classes of oxylipins that have been found to regulate platelet function; however, their mechanism of action still remains to be elucidated.
Collapse
|
49
|
Efficacy and safety of setipiprant in seasonal allergic rhinitis: results from Phase 2 and Phase 3 randomized, double-blind, placebo- and active-referenced studies. Allergy Asthma Clin Immunol 2017; 13:18. [PMID: 28392807 PMCID: PMC5379543 DOI: 10.1186/s13223-017-0183-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background Antagonism of chemoattractant receptor-homologous molecule on T-helper type-2 cells (CRTH2), a G-protein coupled receptor for prostaglandin D2, could be beneficial for treating allergic disorders. We present findings on the efficacy and safety/tolerability of a CRTH2 antagonist (setipiprant) in participants with seasonal allergic rhinitis (AR) in a real-life setting over 2 weeks. Methods A Phase 2 trial and a Phase 3 trial were conducted at seven centers in Texas, USA during the Mountain Cedar pollen season. Both were prospective, randomized, double-blind, placebo- and active-referenced (cetirizine) studies. The Phase 2 trial assessed setipiprant 100–1000 mg b.i.d. and 1000 mg o.d. versus placebo in adult and elderly participants. The Phase 3 trial assessed setipiprant 1000 mg b.i.d. in adolescent, adult, and elderly participants. Efficacy was assessed using daytime nasal symptom scores (DNSS), night-time nasal symptom scores (NNSS) and daytime eye symptom scores (DESS). Results 579 participants were randomized in the Phase 2 trial (mean age 41.6–43.4 years); 630 were randomized in the Phase 3 trial (mean age 37.5–40.7 years). A statistically significant, dose-related improvement in mean change from baseline DNSS was observed over 2 weeks with setipiprant 1000 mg b.i.d. versus placebo in the Phase 2 trial (−0.15 [95% CI −0.29, −0.01]; p = 0.030). Setipiprant 1000 mg b.i.d. had no significant effect on this endpoint in the Phase 3 trial (−0.02 [95% CI −0.12, 0.07]; p = 0.652). Total and individual NNSS and DESS symptom scores were significantly improved with setipiprant 1000 mg b.i.d. versus placebo in the Phase 2 but not the Phase 3 trial. Setipiprant showed a favorable safety/tolerability profile. Conclusions The Phase 2 trial was the first large clinical study to assess a CRTH2 antagonist in seasonal AR in a real-life setting. Setipiprant dose-related efficacy in the Phase 2 trial was not confirmed during Phase 3. Setipiprant was well tolerated in both studies. Trial registration NCT01241214 and NCT01484119 Electronic supplementary material The online version of this article (doi:10.1186/s13223-017-0183-z) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|