1
|
Aisanjiang M, Dai W, Wu L, Yuan Y, Liu S, Liao G, Li L, Tong X, Zhang H, Chen Y, Liu J, Cheng J, Wang C, Lu Y. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell. Biochem Biophys Res Commun 2024; 737:150495. [PMID: 39126861 DOI: 10.1016/j.bbrc.2024.150495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to investigate the potential of mesenchymal stem cells (MSCs) in alleviating diabetic lung injury by decreasing inflammation, fibrosis and recovering tissue macrophage homeostasis. To induce pulmonary injuries in an in vivo murine model, we utilized a streptozotocin (STZ), and high-fat diet (HFD) induced diabetic C57 mouse model. Subsequently, human umbilical cord-derived MSCs (hUC-MSCs) were administered through the tail vein on a weekly basis for a duration of 4 weeks. In addition, in vitro experiments involved co-culturing of isolated primary abdominal macrophages from diabetic mice and high glucose-stimulated MLE-12 cells with hUC-MSCs. The objective was to evaluate if hUC-MSCs co-culturing could effectively mitigate cell inflammation and fibrosis. Following hUC-MSCs injection, diabetic mice displayed enhanced pulmonary functional parameters, reduced pulmonary fibrosis, and diminished inflammation. Notably, the dynamic equilibrium of lung macrophages shifted from the M1 phenotype to the M2 phenotype, accompanied by a notable reduction in various indicators associated with inflammation and fibrosis. Results from cell co-culturing experiments further supported this trend, demonstrating a reduction in inflammatory and fibrotic indicators. In conclusion, our findings suggest that hUC-MSCs treatment holds promise in mitigating diabetic pulmonary injury by significantly reducing inflammation, fibrosis and maintain tissue macrophage homeostasis within the lungs. This study sheds light on the therapeutic potential of hUC-MSCs in managing diabetic complications affecting the pulmonary system.
Collapse
Affiliation(s)
- Maikeliya Aisanjiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wenshu Dai
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Luna Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal experimental center of West China hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Heteng Zhang
- Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Younan Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Yanrong Lu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Lin M, Stewart MT, Zefi S, Mateti KV, Gauthier A, Sharma B, Martinez LR, Ashby CR, Mantell LL. Dual effects of supplemental oxygen on pulmonary infection, inflammatory lung injury, and neuromodulation in aging and COVID-19. Free Radic Biol Med 2022; 190:247-263. [PMID: 35964839 PMCID: PMC9367207 DOI: 10.1016/j.freeradbiomed.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
Abstract
Clinical studies have shown a significant positive correlation between age and the likelihood of being infected with SARS-CoV-2. This increased susceptibility is positively correlated with chronic inflammation and compromised neurocognitive functions. Postmortem analyses suggest that acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), with systemic and lung hyperinflammation, can cause significant morbidity and mortality in COVID-19 patients. Supraphysiological supplemental oxygen, also known as hyperoxia, is commonly used to treat decreased blood oxygen saturation in COVID-19 patients. However, prolonged exposure to hyperoxia alone can cause oxygen toxicity, due to an excessive increase in the levels of reactive oxygen species (ROS), which can overwhelm the cellular antioxidant capacity. Subsequently, this causes oxidative cellular damage and increased levels of aging biomarkers, such as telomere shortening and inflammaging. The oxidative stress in the lungs and brain can compromise innate immunity, resulting in an increased susceptibility to secondary lung infections, impaired neurocognitive functions, and dysregulated hyperinflammation, which can lead to ALI/ARDS, and even death. Studies indicate that lung inflammation is regulated by the central nervous system, notably, the cholinergic anti-inflammatory pathway (CAIP), which is innervated by the vagus nerve and α7 nicotinic acetylcholine receptors (α7nAChRs) on lung cells, particularly lung macrophages. The activation of α7nAChRs attenuates oxygen toxicity in the lungs and improves clinical outcomes by restoring hyperoxia-compromised innate immunity. Mechanistically, α7nAChR agonist (e.g., GAT 107 and GTS-21) can regulate redox signaling by 1) activating Nrf2, a master regulator of the antioxidant response and a cytoprotective defense system, which can decrease cellular damage caused by ROS and 2) inhibiting the activation of the NF-κB-mediated inflammatory response. Notably, GTS-21 has been shown to be safe and it improves neurocognitive functions in humans. Therefore, targeting the α7nAChR may represent a viable therapeutic approach for attenuating dysregulated hyperinflammation-mediated ARDS and sepsis in COVID-19 patients receiving prolonged oxygen therapy.
Collapse
Affiliation(s)
- Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Maleka T Stewart
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Sidorela Zefi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Kranthi Venkat Mateti
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lauren R Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
3
|
Aslan A, Hussein YT, Gok O, Beyaz S, Erman O, Baspinar S. Ellagic acid ameliorates lung damage in rats via modulating antioxidant activities, inhibitory effects on inflammatory mediators and apoptosis-inducing activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7526-7537. [PMID: 31885062 DOI: 10.1007/s11356-019-07352-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Phytochemicals is considered one of the most effective and safe alternative therapy against oxidative linked lung diseases. Ellagic acid (EA), an important component of fruits, nuts, and vegetables, are partly responsible for their beneficial health effects against oxidation-related diseases. In the present study, we investigated the ameliorative effect of EA on lung damage induced by carbon tetrachloride (CCl4) in Wistar male albino rats. Thirty-six male rats (n = 36, 8-week old) were divided into 4 groups, each with 9 rats. The groups were: Control group: received standard diet; EA group: administered with EA (10 mg/kg body weight, intraperitoneal); CCl4 group: administered with CCl4 (1.5 mg/kg body weight, intraperitoneal); EA+CCl4 group: administered with EA and CCl4. . The rats were decapitated at the end of experimental period of 8 weeks and the lung tissues were examined. CCl4-induced rats showed elevation in the expressions of inflammatory proteins, nuclear factor kappa b (NF-κB), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α); and the indicator of lipid peroxidation, malondialdehyde (MDA). Intraperitoneal administration of EA significantly reduced the levels of these markers. EA administration increased the protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf-2) and enhanced the activity of glutathione (GSH) and catalase enzyme (CAT). In addition, EA administration increased the expression levels of the executioner protein of apoptosis, caspase-3, and decreasing pro-survival protein, B cell lymphoma-2 (Bcl-2). In conclusion, these results establishes the protective role of EA in the treatment of lung damage and that in the future, this may have the potential to be used as a medication for the prevention or attenuation of lung diseases. Graphical abstract.
Collapse
Affiliation(s)
- Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey.
| | - Yousif Taha Hussein
- Faculty of Science, Department of Biology, Firat University, Elazig, Turkey
- Nursing Department, Halabja Technical Institute, Sulaimani Polytechnic University, Sulaimani, Iraq
| | - Ozlem Gok
- Faculty of Science, Department of Biology, Firat University, Elazig, Turkey
| | - Seda Beyaz
- Faculty of Science, Department of Biology, Firat University, Elazig, Turkey
| | - Orhan Erman
- Faculty of Science, Department of Biology, Firat University, Elazig, Turkey
| | - Serpil Baspinar
- Health Services Vocational High School, Department of Medical Imaging, Firat University, Elazig, Turkey
| |
Collapse
|
4
|
Probucol attenuates hyperoxia-induced lung injury in mice. PLoS One 2017; 12:e0175129. [PMID: 28384256 PMCID: PMC5383131 DOI: 10.1371/journal.pone.0175129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Hyperoxic lung injury is pathologically characterized by alveolar edema, interlobular septal edema, hyaline membrane disease, lung inflammation, and alveolar hemorrhage. Although the precise mechanism by which hyperoxia causes lung injury is not well defined, oxidative stress, epithelial cell death, and proinflammatory cytokines are thought to be involved. Probucol—a commercially available drug for treating hypercholesterolemia—has been suggested to have antioxidant and antiapoptotic effects. This study aimed to assess whether probucol could attenuate hyperoxic lung injury in mice. Mice were exposed to 95% O2 for 72 h, with or without pre-treatment with 130 μg/kg probucol intratracheally. Probucol treatment significantly decreased both the number of inflammatory cells in the bronchoalveolar lavage fluid and the degree of lung injury in hyperoxia-exposed mice. Probucol treatment reduced the number of cells positive for 8-hydroxyl-2′-deoxyguanosine or terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and suppressed NF-κB activation, Bax expression, and caspase-9 activation in lung tissues from hyperoxia-exposed mice. These results suggest that probucol can reduce oxidative DNA damage, apoptotic cell death, and inflammation in lung tissues. Intratracheal administration of probucol may be a novel treatment for lung diseases induced by oxidative stress, such as hyperoxic lung injury and acute respiratory distress syndrome.
Collapse
|
5
|
Zhang L, Zhao S, Yuan L, Wu H, Jiang H, Luo G. Placenta growth factor contributes to cell apoptosis and epithelial-to-mesenchymal transition in the hyperoxia-induced acute lung injury. Life Sci 2016; 156:30-37. [DOI: 10.1016/j.lfs.2016.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023]
|
6
|
Michaelis KA, Agboke F, Liu T, Han K, Muthu M, Galambos C, Yang G, Dennery PA, Wright CJ. IκBβ-mediated NF-κB activation confers protection against hyperoxic lung injury. Am J Respir Cell Mol Biol 2014; 50:429-38. [PMID: 24066808 DOI: 10.1165/rcmb.2013-0303oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Supplemental oxygen is frequently used in an attempt to improve oxygen delivery; however, prolonged exposure results in damage to the pulmonary endothelium and epithelium. Although NF-κB has been identified as a redox-responsive transcription factor, whether NF-κB activation exacerbates or attenuates hyperoxic lung injury is unclear. We determined that sustained NF-κB activity mediated by IκBβ attenuates lung injury and prevents mortality in adult mice exposed to greater than 95% O2. Adult wild-type mice demonstrated evidence of alveolar protein leak and 100% mortality by 6 days of hyperoxic exposure, and showed NF-κB nuclear translocation that terminated after 48 hours. Furthermore, these mice showed increased expression of NF-κB-regulated proinflammatory and proapoptotic cytokines. In contrast, mice overexpressing the NF-κB inhibitory protein, IκBβ (AKBI), demonstrated significant resistance to hyperoxic lung injury, with 50% surviving through 8 days of exposure. This was associated with NF-κB nuclear translocation that persisted through 96 hours of exposure. Although induction of NF-κB-regulated proinflammatory cytokines was not different between wild-type and AKBI mice, significant up-regulation of antiapoptotic proteins (BCL-2, BCL-XL) was found exclusively in AKBI mice. We conclude that sustained NF-κB activity mediated by IκBβ protects against hyperoxic lung injury through increased expression of antiapoptotic genes.
Collapse
Affiliation(s)
- Katherine A Michaelis
- 1 Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jia SH, Parodo J, Charbonney E, Tsang JLY, Jia SY, Rotstein OD, Kapus A, Marshall JC. Activated neutrophils induce epithelial cell apoptosis through oxidant-dependent tyrosine dephosphorylation of caspase-8. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1030-1040. [PMID: 24589337 DOI: 10.1016/j.ajpath.2013.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/19/2013] [Accepted: 12/16/2013] [Indexed: 01/12/2023]
Abstract
Activated neutrophils can injure host cells through direct effects of oxidants on membrane phospholipids, but an ability to induce apoptotic cell death has not previously been reported. We show that neutrophils activated in vivo in patients who have sustained multiple trauma or in vitro by exposure to bacterial lipopolysaccharide promote epithelial cell apoptosis through SHP-1-mediated dephosphorylation of epithelial cell caspase-8. Epithelial cell apoptosis induced by circulating neutrophils from patients who had sustained serious injury depended on the generation of neutrophil-derived reactive oxygen intermediates and was blocked by inhibition of NADPH oxidase or restoration of intracellular glutathione. Caspase-8 was constitutively tyrosine phosphorylated in a panel of resting epithelial cells, but underwent SHP-1-dependent dephosphorylation in response to hydrogen peroxide, activated neutrophils, or inhibition of Src kinases. Cells transfected with a mutant caspase-8 in which tyrosine residues at Tyr397 or Tyr465 are replaced by nonphosphorylatable phenylalanine underwent accelerated apoptosis, whereas either mutation of these residues to phosphomimetic glutamic acid or transfection with the Src kinases Lyn or c-Src inhibited hydrogen peroxide-induced apoptosis. Exposure to either hydrogen peroxide or lipopolysaccharide-stimulated neutrophils increased phosphorylation and activity of the phosphatase SHP-1, increased activity of caspases 8 and 3, and accelerated epithelial cell apoptosis. These observations reveal a novel mechanism for neutrophil-mediated tissue injury through oxidant-dependent, SHP-1-mediated dephosphorylation of caspase-8 resulting in enhanced epithelial cell apoptosis.
Collapse
Affiliation(s)
- Song Hui Jia
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, Tortonto, Ontario, Canada
| | - Jean Parodo
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, Tortonto, Ontario, Canada
| | - Emmanuel Charbonney
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, Tortonto, Ontario, Canada; Department of Critical Care Medicine, St. Michael's Hospital, Tortonto, Ontario, Canada
| | - Jennifer L Y Tsang
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, Tortonto, Ontario, Canada; Department of Critical Care Medicine, St. Michael's Hospital, Tortonto, Ontario, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sang Yang Jia
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, Tortonto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, Tortonto, Ontario, Canada; Department of Surgery, St. Michael's Hospital, Tortonto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, Tortonto, Ontario, Canada; Department of Surgery, St. Michael's Hospital, Tortonto, Ontario, Canada
| | - John C Marshall
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, Tortonto, Ontario, Canada; Department of Critical Care Medicine, St. Michael's Hospital, Tortonto, Ontario, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, St. Michael's Hospital, Tortonto, Ontario, Canada.
| |
Collapse
|
8
|
Steer JH, Mann TS, Lo SZY, Inglis JJ, Yap HS, Henry PJ, Joyce DA. Early induction of uncoupling protein-2 in pulmonary macrophages in hyperoxia-associated lung injury. Inhal Toxicol 2014; 25:544-52. [PMID: 23905971 DOI: 10.3109/08958378.2013.810679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT High concentrations of inspired oxygen contribute to the pathogenesis of neonatal bronchopulmonary dysplasia and adult acute respiratory distress syndrome. Animal models of hyperoxia-associated lung injury (HALI) are characterized by enhanced generation of reactive oxygen species (ROS) and an adaptive antioxidant response. ROS contribute to pathogenesis, partly through enhancing pro-inflammatory activity in macrophages. Uncoupling protein-2 (UCP2) is an inner mitochondrial membrane protein whose expression lowers mitochondrial superoxide (O₂ⁱ⁻) production. UCP2, therefore, has potential to contribute to antioxidant response. It is inducible in macrophages. OBJECTIVES AND METHODS We hypothesized that induction of UCP2 occurred in response to pulmonary hyperoxia in vivo and that expression localized to pulmonary macrophages. We then investigated mechanisms of UCP2 regulation in hyperoxia-exposed macrophages in vitro and correlated changing UCP2 expression with mitochondrial membrane potential (Δψm) and O₂ⁱ⁻ production. RESULTS UCP2 is induced in lungs of mice within 1 h of hyperoxia exposure. Induction occurs in pulmonary alveolar macrophages in vivo, and can be replicated in vitro in isolated macrophages. UCP2 mRNA does not change. UCP2 increases quickly after the first hyperoxia-induced burst of mitochondrial O₂ⁱ⁻ generation. Suppression of Δψm and mitochondrial O₂ⁱ⁻ production follow and persist while UCP2 is elevated. DISCUSSION AND CONCLUSIONS Induction of UCP2 is an early response to hyperoxia in pulmonary macrophages. The mechanism is post-transcriptional. UCP2 induction follows a transient rise in mitochondrial ROS generation. The subsequent falls in Δψm and mitochondrial O₂ⁱ⁻ support the notion that regulable UCP2 expression in macrophages acts to contain mitochondrial ROS generation. That, in turn, may limit inappropriate pro-inflammatory activation in HALI.
Collapse
Affiliation(s)
- James H Steer
- School of Medicine & Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
9
|
Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury. Redox Biol 2014; 2:314-22. [PMID: 24563849 PMCID: PMC3926109 DOI: 10.1016/j.redox.2014.01.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 01/07/2023] Open
Abstract
Prolonged exposure to hyperoxia results in acute lung injury (ALI), accompanied by a significant elevation in the levels of proinflammatory cytokines and leukocyte infiltration in the lungs. However, the mechanisms underlying hyperoxia-induced proinflammatory ALI remain to be elucidated. In this study, we investigated the role of the proinflammatory cytokine high mobility group box protein 1 (HMGB1) in hyperoxic inflammatory lung injury, using an adult mouse model. The exposure of C57BL/6 mice to ≥99% O2 (hyperoxia) significantly increased the accumulation of HMGB1 in the bronchoalveolar lavage fluids (BALF) prior to the onset of severe inflammatory lung injury. In the airways of hyperoxic mice, HMGB1 was hyperacetylated and existed in various redox forms. Intratracheal administration of recombinant HMGB1 (rHMGB1) caused a significant increase in leukocyte infiltration into the lungs compared to animal treated with a non-specific peptide. Neutralizing anti-HMGB1 antibodies, administrated before hyperoxia significantly attenuated pulmonary edema and inflammatory responses, as indicated by decreased total protein content, wet/dry weight ratio, and numbers of leukocytes in the airways. This protection was also observed when HMGB1 inhibitors were administered after the onset of the hyperoxic exposure. The aliphatic antioxidant, ethyl pyruvate (EP), inhibited HMGB1 secretion from hyperoxic macrophages and attenuated hyperoxic lung injury. Overall, our data suggest that HMGB1 plays a critical role in mediating hyperoxic ALI through the recruitment of leukocytes into the lungs. If these results can be translated to humans, they suggest that HMGB1 inhibitors provide treatment regimens for oxidative inflammatory lung injury in patients receiving hyperoxia through mechanical ventilation. Exposure to hyperoxia results in accumulation of high levels of airway HMGB1 that precede inflammatory acute lung injury (ALI). Airway HMGB1 is critical in mediating hyperoxia-induced inflammatory ALI via recruiting leukocytes including neutrophils. Extracellular HMGB1-accumulated upon prolonged exposure to hyperoxia is hyperacetylated, existing in different redox states. Small molecule EP, administrated even after the onset of hyperoxic exposure, can mitigate hyperoxia-induced inflammatory ALI by inhibiting HMGB1 release into the extracellular milieu.
Collapse
Key Words
- ALI, acute lung injury
- BALF, bronchoalveolar lavage fluids
- EP, ethyl pyruvate
- GST, gluthatione-s-transferase
- HMGB1
- HMGB1, high mobility group box protein 1
- Hyperacetylation
- Hyperoxia
- MV, mechanical ventilation
- Macrophage
- NLS, nuclear localization signal
- PMNs, polymorphonuclear neutrophils
- RA, room air
- ROS, reactive oxygen species
- Redox state
- rHMGB1, recombinant HMGB1
Collapse
|
10
|
Liang X, Wei SQ, Lee SJ, Fung JK, Zhang M, Tanaka A, Choi AMK, Jin Y. p62 sequestosome 1/light chain 3b complex confers cytoprotection on lung epithelial cells after hyperoxia. Am J Respir Cell Mol Biol 2013; 48:489-96. [PMID: 23333919 PMCID: PMC3653608 DOI: 10.1165/rcmb.2012-0017oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
Lung epithelial cell death is a prominent feature of hyperoxic lung injury, and has been considered a very important underlying mechanism of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Here we report on a novel mechanism involved in epithelial cytoprotection and homeostasis after oxidative stress. p62 (sequestosome 1; SQSTM1) is a ubiquitously expressed cellular protein. It interacts with ubiquitinated proteins and autophagic marker light chain 3b (LC3b), thus mediating the degradation of selective targets. In this study, we explored the role of p62 in mitochondria-mediated cell death after hyperoxia. Lung alveolar epithelial cells demonstrate abundant p62 expression, and p62 concentrations are up-regulated by oxidative stress at both the protein and mRNA levels. The p62/LC3b complex interacts with Fas and truncated BID (tBID) physically. These interactions abruptly diminish after hyperoxia. The deletion of p62 robustly increases tBID and cleaved caspase-3, implying an antiapoptotic effect. This antiapoptotic effect of p62 is further confirmed by measuring caspase activities, cleaved poly ADP ribose polymerase, and cell viability. The deletion of the p62 PBI domain or the ubiquitin-associated domain both lead to elevated tBID, cleaved caspase-3, and significantly more cell death after hyperoxia. Moreover, p62 traffics in an opposite direction with LC3b after hyperoxia, leading to the dissociation of the p62/Cav-1/LC3b/BID complex. Subsequently, the LC3b-mediated lysosomal degradation of tBID is eliminated. Taken together, our data suggest that the p62/LC3b complex regulates lung alveolar epithelial cell homeostasis and cytoprotection after hyperoxia.
Collapse
Affiliation(s)
- Xiaoliang Liang
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shu-Quan Wei
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Seon-Jin Lee
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; and
| | - James K. Fung
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Meng Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Akihiko Tanaka
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Showa University, Tokyo, Japan
| | - Augustine M. K. Choi
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yang Jin
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Patel VS, Sitapara RA, Gore A, Phan B, Sharma L, Sampat V, Li JH, Yang H, Chavan SS, Wang H, Tracey KJ, Mantell LL. High Mobility Group Box-1 mediates hyperoxia-induced impairment of Pseudomonas aeruginosa clearance and inflammatory lung injury in mice. Am J Respir Cell Mol Biol 2012; 48:280-7. [PMID: 23087050 DOI: 10.1165/rcmb.2012-0279oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanical ventilation with supraphysiological concentrations of oxygen (hyperoxia) is routinely used to treat patients with respiratory distress. However, a significant number of patients on ventilators exhibit enhanced susceptibility to infections and develop ventilator-associated pneumonia (VAP). Pseudomonas aeruginosa (PA) is one of the most common species of bacteria found in these patients. Previously, we demonstrated that prolonged exposure to hyperoxia can compromise the ability of alveolar macrophages (AMs), an essential part of the innate immunity, to phagocytose PA. This study sought to investigate the potential molecular mechanisms underlying hyperoxia-compromised innate immunity against bacterial infection in a murine model of PA pneumonia. Here, we show that exposure to hyperoxia (≥ 99% O2) led to a significant elevation in concentrations of airway high mobility group box-1 (HMGB1) and increased mortality in C57BL/6 mice infected with PA. Treatment of these mice with a neutralizing anti-HMGB1 monoclonal antibody (mAb) resulted in a reduction in bacterial counts, injury, and numbers of neutrophils in the lungs, and an increase in leukocyte phagocytic activity compared with mice receiving control mAb. This improved phagocytic function was associated with reduced concentrations of airway HMGB1. The correlation between phagocytic activity and concentrations of extracellular HMGB1 was also observed in cultured macrophages. These results indicate a pathogenic role for HMGB1 in hyperoxia-induced impairment with regard to a host's ability to clear bacteria and inflammatory lung injury. Thus, HMGB1 may provide a novel molecular target for improving hyperoxia-compromised innate immunity in patients with VAP.
Collapse
Affiliation(s)
- Vivek S Patel
- Division of Cardiopulmonary Toxicology, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abu-El-Haija M, Ramachandran S, Meyerholz DK, Abu-El-Haija M, Griffin M, Giriyappa RL, Stoltz DA, Welsh MJ, McCray PB, Uc A. Pancreatic damage in fetal and newborn cystic fibrosis pigs involves the activation of inflammatory and remodeling pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:499-507. [PMID: 22683312 DOI: 10.1016/j.ajpath.2012.04.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/04/2012] [Accepted: 04/12/2012] [Indexed: 01/28/2023]
Abstract
Pancreatic disease has onset in utero in humans with cystic fibrosis (CF), and progresses over time to complete destruction of the organ. The exact mechanisms leading to pancreatic damage in CF are incompletely understood. Inflammatory cells are present in the pancreas of newborn pigs with CF (CF pigs) and humans, which suggests that inflammation may have a role in the destructive process. We wondered whether tissue inflammation and genes associated with inflammatory pathways were increased in the pancreas of fetal CF pigs [83 to 90 days gestation (normal pig gestation is ~114 days)] and newborn pigs. Compared with fetal pigs without CF (non-CF pigs), in fetal CF pigs, the pancreas exhibited patchy inflammation and acinar atrophy, with progression in distribution and severity in neonatal CF pigs. Large-scale transcript profiling revealed that the pancreas in fetal and newborn CF pigs exhibited significantly increased expression of proinflammatory, complement cascade, and profibrotic genes when compared with fetal and newborn non-CF pigs. Acinar cells exhibited increased apoptosis in the pancreas of fetal and newborn CF pigs. α-Smooth muscle actin and transforming growth factor β1 were increased in both fetal and newborn CF pig pancreas, suggesting activation of profibrotic pathways. Cell proliferation and mucous cell metaplasia were detected in newborn, but not fetal, CF pigs, indicating that they were not an initiator of pathogenesis but a response. Proinflammatory, complement cascade, proapoptotic, and profibrotic pathways are activated in CF pig pancreas, and likely contribute to the destructive process.
Collapse
Affiliation(s)
- Maisam Abu-El-Haija
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Entezari M, Weiss DJ, Sitapara R, Whittaker L, Wargo MJ, Li J, Wang H, Yang H, Sharma L, Phan BD, Javdan M, Chavan SS, Miller EJ, Tracey KJ, Mantell LL. Inhibition of high-mobility group box 1 protein (HMGB1) enhances bacterial clearance and protects against Pseudomonas Aeruginosa pneumonia in cystic fibrosis. Mol Med 2012; 18:477-85. [PMID: 22314397 DOI: 10.2119/molmed.2012.00024] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023] Open
Abstract
Pulmonary infection with Pseudomonas aeruginosa and neutrophilic lung inflammation significantly contribute to morbidity and mortality in cystic fibrosis (CF). High-mobility group box 1 protein (HMGB1), a ubiquitous DNA binding protein that promotes inflammatory tissue injury, is significantly elevated in CF sputum. However, its mechanistic and potential therapeutic implications in CF were previously unknown. We found that HMGB1 levels were significantly elevated in bronchoalveolar lavage fluids (BALs) of CF patients and cystic fibrosis transmembrane conductance regulator (CFTR )(-/-) mice. Neutralizing anti-HMGB1 monoclonal antibody (mAb) conferred significant protection against P. aeruginosa-induced neutrophil recruitment, lung injury and bacterial infection in both CFTR(-/-) and wild-type mice. Alveolar macrophages isolated from mice treated with anti-HMGB1 mAb had improved phagocytic activity, which was suppressed by direct exposure to HMGB1. In addition, BAL from CF patients significantly impaired macrophage phagocytotic function, and this impairment was attenuated by HMGB1-neutralizing antibodies. The HMGB1-mediated suppression of bacterial phagocytosis was attenuated in macrophages lacking toll-like receptor (TLR)-4, suggesting a critical role for TLR4 in signaling HMGB1-mediated macrophage dysfunction. These studies demonstrate that the elevated levels of HMGB1 in CF airways are critical for neutrophil recruitment and persistent presence of P. aeruginosa in the lung. Thus, HMGB1 may provide a therapeutic target for reducing bacterial infection and lung inflammation in CF.
Collapse
Affiliation(s)
- Maria Entezari
- Cardiopulmonary Toxicology, Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Allied Health Professions, Queens, New York 11439, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Furuichi K, Kokubo S, Hara A, Imamura R, Wang Q, Kitajima S, Toyama T, Okumura T, Matsushima K, Suda T, Mukaida N, Kaneko S, Wada T. Fas Ligand Has a Greater Impact than TNF-α on Apoptosis and Inflammation in Ischemic Acute Kidney Injury. NEPHRON EXTRA 2012; 2:27-38. [PMID: 22479266 PMCID: PMC3318938 DOI: 10.1159/000335533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background/Aim Fas ligand (FasL) and tumor necrosis factor (TNF)-α are major pro-apoptotic molecules and also induce inflammation through cytokine and chemokine production. Although precise intracellular mechanisms of action have been reported for each molecule, the differential impact of these molecules on kidney injury in vivo still requires clarification. Methods We explored the differential impact of FasL and TNF-α upon apoptosis and inflammation in ischemic acute kidney injury using neutralizing anti-FasL antibodies and TNF-α receptor 1 (TNFR1)-deficient mice. Results TNFR1 deficiency was associated with a lesser anti-inflammatory effect upon leukocyte infiltration and tubular necrosis than treatment with anti-FasL antibody. Furthermore, the number of TUNEL-positive cells was significantly reduced in anti-FasL antibody-treated mice, whereas it was only partially diminished in TNFR1-deficient mice. In vitro studies confirmed these findings. FasL administration induced both apoptosis and cytokine/chemokine production from cultured tubular epithelial cells. However, TNF-α had a limited effect upon tubular epithelial cells. Conclusion In ischemic acute kidney injury, FasL has a greater impact than TNF-α on the apoptosis and inflammatory reaction through cytokine/chemokine production from tubular epithelial cells.
Collapse
Affiliation(s)
- Kengo Furuichi
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cleaved caspase-3 in lung epithelium of children who died with acute respiratory distress syndrome. Pediatr Crit Care Med 2010; 11:556-60. [PMID: 20173675 DOI: 10.1097/pcc.0b013e3181d5063c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To investigate the extent of cleaved caspase-3 immunostaining in lung epithelial cells in children with acute respiratory distress syndrome. DESIGN Observational study in sixteen children who died with acute respiratory distress syndrome and diffuse alveolar damage. SETTING Pediatric intensive care unit. PATIENTS Sixteen children with fatal acute respiratory distress syndrome and diffuse alveolar damage. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS Double immunohistochemistry for cleaved caspase-3 and (pan)cytokeratin in lung tissues obtained at autopsy. Spectral imaging was used for the quantification of immunohistochemistry colocalization of these markers. We found a wide range in the percentage of alveolar epithelial cell surface area with positive cleaved caspase-3 staining in the lungs of children with acute respiratory distress syndrome (from 1% to almost 20%). The degree of caspase-3 immunostaining in epithelial cells positively correlated with age. CONCLUSION There is a high variability in the extent of classic apoptosis in lung epithelial cells in pediatric acute respiratory distress syndrome, potentially in part dependent on age.
Collapse
|
16
|
Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL. Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol 2010; 7:239-54. [PMID: 20586583 DOI: 10.3109/1547691x.2010.492254] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oxygen therapy using mechanical ventilation with hyperoxia is necessary to treat patients with respiratory failure and distress. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), causing cellular damage and multiple organ dysfunctions. As the lungs are directly exposed, hyperoxia can cause both acute and chronic inflammatory lung injury and compromise innate immunity. ROS may contribute to pulmonary oxygen toxicity by overwhelming redox homeostasis, altering signaling cascades that affect cell fate, ultimately leading to hyperoxia-induced acute lung injury (HALI). HALI is characterized by pronounced inflammatory responses with leukocyte infiltration, injury, and death of pulmonary cells, including epithelia, endothelia, and macrophages. Under hyperoxic conditions, ROS mediate both direct and indirect modulation of signaling molecules such as protein kinases, transcription factors, receptors, and pro- and anti-apoptotic factors. The focus of this review is to elaborate on hyperoxia-activated key sensing molecules and current understanding of their signaling mechanisms in HALI. A better understanding of the signaling pathways leading to HALI may provide valuable insights on its pathogenesis and may help in designing more effective therapeutic approaches.
Collapse
Affiliation(s)
- Ashwini Gore
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Allied Health Professions, Queens, NY, USA
| | | | | | | | | |
Collapse
|
17
|
Bem RA, Bos AP, Wösten-van Asperen RM, Bruijn M, Lutter R, Sprick MR, van Woensel JBM. Potential role of soluble TRAIL in epithelial injury in children with severe RSV infection. Am J Respir Cell Mol Biol 2009; 42:697-705. [PMID: 19635930 DOI: 10.1165/rcmb.2009-0100oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lower respiratory tract infection by respiratory syncytial virus (RSV) is a frequent cause of acute lung injury in young children and infants. Studies in adults and animals suggest that tumor necrosis factor receptor (TNFR) ligands may mediate lung injury by causing apoptosis of epithelial cells. The main goal of the present study was to determine whether the TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) pathway may be implicated in epithelial injury during severe RSV infection in children. We report elevated levels of soluble (s)TRAIL released by leukocytes in bronchoalveolar lavage fluid (BALF) of patients with RSV-associated respiratory failure (n = 22) as compared with mechanically ventilated patients without pulmonary illness (n = 7). Primary bronchial epithelial cells of children without pulmonary disease obtained by nonbronchoscopic cytobrushing expressed both death receptors TRAIL-R1 and -R2, and were found to be susceptible for cell death by human recombinant sTRAIL in vitro. Furthermore, BALF from a patient with RSV induced cell death in these cells, which was partly attenuated by inhibiting TRAIL signaling. These data suggest that the TRAIL pro-apoptotic pathway may contribute to lung epithelial injury in severe RSV infection in children.
Collapse
Affiliation(s)
- Reinout A Bem
- Emma Children's Hospital, Academic Medical Center, Pediatric Intensive Care Unit, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
18
|
Dib M, Zsengeller Z, Mitsialis A, Lu B, Craig S, Gerard C, Gerard NP. A paradoxical protective role for the proinflammatory peptide substance P receptor (NK1R) in acute hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 2009; 297:L687-97. [PMID: 19633070 DOI: 10.1152/ajplung.90509.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The neuropeptide substance P manifests its biological functions through ligation of a G protein-coupled receptor, the NK1R. Mice with targeted deletion of this receptor reveal a preponderance of proinflammatory properties resulting from ligand activation, demonstrating a neurogenic component to multiple forms of inflammation and injury. We hypothesized that NK1R deficiency would afford a similar protection from inflammation associated with hyperoxia. Counter to our expectations, however, NK1R-/- animals suffered significantly worse lung injury compared with wild-type mice following exposure to 90% oxygen. Median survival was shortened to 84 h for NK1R-/- mice from 120 h for wild-type animals. Infiltration of inflammatory cells into the lungs was significantly increased; NK1R-/- animals also exhibited increased pulmonary edema, hemorrhage, and bronchoalveolar lavage fluid protein levels. TdT-mediated dUTP nick end labeling (TUNEL) staining was significantly elevated in NK1R-/- animals following hyperoxia. Furthermore, induction of metallothionein and Na(+)-K(+)-ATPase was accelerated in NK1R-/- compared with wild-type mice, consistent with increased oxidative injury and edema. In cultured mouse lung epithelial cells in 95% O(2), however, addition of substance P promoted cell death, suggesting the neurogenic component of hyperoxic lung injury is mediated by additional mechanisms in vivo. Release of bioactive constituents including substance P from sensory neurons results from activation of the vanilloid receptor, TRPV1. In mice with targeted deletion of the TRPV1 gene, acute hyperoxic injury is attenuated relative to NK1R-/- animals. Our findings thus reveal a major neurogenic mechanism in acute hyperoxic lung injury and demonstrate concerted actions of sensory neurotransmitters revealing significant protection for NK1R-mediated functions.
Collapse
Affiliation(s)
- Marwan Dib
- Ina Sue Perlmutter Laboratory, Children's Hospital, 320 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Lai JP, Bao S, Davis IC, Knoell DL. Inhibition of the phosphatase PTEN protects mice against oleic acid-induced acute lung injury. Br J Pharmacol 2009; 156:189-200. [PMID: 19134000 DOI: 10.1111/j.1476-5381.2008.00020.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Injury to the lung parenchyma is a constitutional feature shared by many lung diseases. The protein, phosphatase and tensin homologue deleted on chromosome Ten (PTEN) is a major suppressor of phosphoinositide-3 kinase/Akt signalling, a vital survival pathway in lung parenchymal cells. Based on this, we hypothesized that PTEN inhibition in vivo would enhance cell tolerance to stress thereby preventing acute lung injury. EXPERIMENTAL APPROACH We evaluated the ability of a PTEN inhibitor, potassium bisperoxo (1,10-phenanthroline) oxovanadate [bpV(phen)], to prevent acute lung injury induced by oleic acid (OA) in adult C57BL/6 mice. Lung assessments included bronchoalveolar lavage, tissue morphology, immunostaining for markers of cell death, cell identity, phospho-Akt and phospho-ERK levels and oximetry. KEY RESULTS OA induced acute lung injury in a dose- and time-dependent manner. No injury was observed in the vehicle control or bpV(phen) treatment groups. PTEN inhibition by bpV(phen) increased lung tissue levels of phospho-Akt and ERK and but not focal adhesion kinase. This occurred in conjunction with a statistically significant reduction in protein content, lactate dehydrogenase, as well as tumour necrosis factor-alpha and chemokines in bronchoalveolar lavage fluid when compared with OA treatment alone. The incidence of alveolar lesions, consistent with acute lung injury, and terminal uridine deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive cells was also significantly reduced. Importantly, PTEN suppression maintained pulmonary function. CONCLUSIONS AND IMPLICATIONS Treatment with bpV(phen) significantly reduced the severity of acute lung injury in mice indicating that additional investigation is warranted to understand the important role that this phosphatase may play in the lung.
Collapse
Affiliation(s)
- Ju-Ping Lai
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
20
|
Mao Q, Gundavarapu S, Patel C, Tsai A, Luks FI, De Paepe ME. The Fas system confers protection against alveolar disruption in hyperoxia-exposed newborn mice. Am J Respir Cell Mol Biol 2008; 39:717-29. [PMID: 18587053 DOI: 10.1165/rcmb.2008-0052oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The functional significance of the Fas/Fas-ligand (FasL) system in hyperoxia-induced lung injury and alveolar disruption in newborn lungs in vivo remains undetermined. To assess the role of the Fas/FasL system, we compared the effects of hyperoxia (95% O2 from birth to Postnatal Day [P]7) in Fas-deficient lpr mice and wild-type mice. Alveolar disruption was more severe in hyperoxic lpr mice than in wild-type mice. In addition, a transient alveolarization defect was noted in normoxic lpr mice. Hyperoxia induced marked up-regulation of pulmonary Fas expression in wild-type mice, as well as elevated mRNA levels of pro-apoptotic Bax, Bad, and Bak. Pulmonary apoptotic activity was similar in hyperoxic wild-type and lpr mice. In contrast, lung growth and proliferation, assessed by stereologic volumetry and Ki67 proliferation studies, were significantly higher in hyperoxic wild-type mice compared with lpr mice, suggesting the Fas/FasL system has a pro-proliferative role in hyperoxic conditions. Levels of the prosurvival MAPkinase, pERK1/2, were significantly higher in hyperoxic wild-type mice compared with lpr mice, while pAkt levels were similar. These data suggest that the primary role of the Fas/FasL system in hyperoxic newborn lungs is pro-proliferative, rather than pro-apoptotic, and likely mediated through a Fas-ERK1/2 pathway. Fas-induced proliferation and lung growth in hyperoxic newborn lungs may counteract, in part, the detrimental effects of apoptosis mediated by non-Fas pathways, such as pro-apoptotic Bax/Bcl-2 family members. The capacity of the Fas/FasL signaling pathway to mediate protective rather than destructive functions in hyperoxic newborn lungs highlights the versatility of this complex pathway.
Collapse
Affiliation(s)
- Quanfu Mao
- Department of Pathology, Women and Infants Hospital, Providence, Rhode Island 02905, USA
| | | | | | | | | | | |
Collapse
|
21
|
Tang PS, Mura M, Seth R, Liu M. Acute lung injury and cell death: how many ways can cells die? Am J Physiol Lung Cell Mol Physiol 2008; 294:L632-41. [DOI: 10.1152/ajplung.00262.2007] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Apoptosis has been considered as an underlying mechanism in acute lung injury/acute respiratory distress syndrome and multiorgan dysfunction syndrome. Recently, several alternative pathways for cell death (such as caspase-independent cell death, oncosis, and autophagy) have been discovered. Evidence of these pathways in the pathogenesis of acute lung injury has also come into light. In this article, we briefly introduce cell death pathways and then focus on studies related to lung injury. The different types of cell death that occur and the underlying mechanisms utilized depend on both experimental and clinical conditions. Lipopolysaccharide-induced acute lung injury is associated with apoptosis via Fas/Fas ligand mechanisms. Hyperoxia and ischemia-reperfusion injury generate reactive oxidative species, which induce complex cell death patterns composed of apoptosis, oncosis, and necrosis. Prolonged overexpression of inflammatory mediators results in increased production and activation of proteases, especially cathepsins. Activation and resistance to death of neutrophils also plays an important role in promoting parenchymal cell death. Knowledge of the coexisting multiple cell death pathways and awareness of the pharmacological inhibitors targeting different proteases critical to cell death may lead to the development of novel therapies for acute lung injury.
Collapse
|
22
|
Wang HM, Bodenstein M, Markstaller K. Overview of the pathology of three widely used animal models of acute lung injury. Eur Surg Res 2008; 40:305-16. [PMID: 18349543 DOI: 10.1159/000121471] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute diffuse damage to the pulmonary parenchyma by a variety of local or systemic insults. Increased alveolar capillary membrane permeability was recognized as the common end organ injury and a central feature in all forms of ALI/ARDS. Although great strides have been made in understanding the pathogenesis of ALI/ARDS and in intensive care medicine, the treatment approach to ARDS is still relying on ventilatory and cardiovascular support based on the recognition of the clinical picture. In the course of evaluating novel treatment approaches to ARDS, 3 models of ALI induced in different species, i.e. the surfactant washout lavage model, the oleic acid intravenous injection model and the endotoxin injection model, were widely used. This review gives an overview of the pathological characteristics of these models from studies in pigs, dogs or sheep. We believe that a good morphological description of these models, both spatially and temporally, will help us gain a better understanding of the real pathophysiological picture and apply these models more accurately and liberally in evaluating novel treatment approaches to ARDS.
Collapse
Affiliation(s)
- H M Wang
- Department of Anesthesiology, Johannes Gutenberg University, Mainz, Germany.
| | | | | |
Collapse
|
23
|
Arita Y, Kazzaz JA, Joseph A, Koo HC, Li Y, Davis JM. Antioxidants improve antibacterial function in hyperoxia-exposed macrophages. Free Radic Biol Med 2007; 42:1517-23. [PMID: 17448898 PMCID: PMC1963462 DOI: 10.1016/j.freeradbiomed.2007.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 01/02/2007] [Accepted: 02/09/2007] [Indexed: 01/24/2023]
Abstract
Hyperoxia and pulmonary infections are well known to increase the risk of acute and chronic lung injury in newborn infants, but it is not clear whether hyperoxia directly increases the risk of pneumonia. The purpose of this study was to examine: (1) the effects of hyperoxia and antioxidant enzymes on inflammation and bacterial clearance in mononuclear cells and (2) developmental differences between adult and neonatal mononuclear cells in response to hyperoxia. Mouse macrophages were exposed to either room air or 95% O2 for 24 h and then incubated with Pseudomonas aeruginosa. After 1 h, bacterial adherence, phagocytosis, and macrophage inflammatory protein (MIP)-1alpha production were analyzed. Bacterial adherence increased 5.8-fold (p < 0.0001), phagocytosis decreased 60% (p < 0.05), and MIP-1alpha production increased 49% (p < 0.05) in response to hyperoxia. Overexpression of MnSOD or catalase significantly decreased bacterial adherence by 30.5%, but only MnSOD significantly improved bacterial phagocytosis and attenuated MIP-1alpha production. When monocytes from newborns and adults were exposed to hyperoxia, phagocytosis was impaired in both groups. However, adult monocytes were significantly more impaired than neonatal monocytes. Data indicate that hyperoxia significantly increases bacterial adherence while impairing function of mononuclear cells, with adult cells being more impaired than neonatal cells. MnSOD reduces bacterial adherence and inflammation and improves bacterial phagocytosis in mononuclear cells in response to hyperoxia, which should minimize the development of oxidant-induced lung injury as well as reducing nosocomial infections.
Collapse
Affiliation(s)
- Yuko Arita
- CardioPulmonary Research Institute, and the Departments of Pediatrics, Medicine, and Thoracic-Cardiovascular Surgery, Winthrop University Hospital, SUNY Stony Brook School of Medicine, Mineola NY
| | - Jeffrey A. Kazzaz
- CardioPulmonary Research Institute, and the Departments of Pediatrics, Medicine, and Thoracic-Cardiovascular Surgery, Winthrop University Hospital, SUNY Stony Brook School of Medicine, Mineola NY
| | - Ansamma Joseph
- CardioPulmonary Research Institute, and the Departments of Pediatrics, Medicine, and Thoracic-Cardiovascular Surgery, Winthrop University Hospital, SUNY Stony Brook School of Medicine, Mineola NY
| | - Hshi-chi Koo
- Department of Pediatrics, Tufts University School of Medicine, Boston, MA
| | - Yuchi Li
- CardioPulmonary Research Institute, and the Departments of Pediatrics, Medicine, and Thoracic-Cardiovascular Surgery, Winthrop University Hospital, SUNY Stony Brook School of Medicine, Mineola NY
| | - Jonathan M. Davis
- Department of Pediatrics, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
24
|
Morrow DMP, Entezari-Zaher TE, Romashko J, Azghani AO, Javdan M, Ulloa L, Miller EJ, Mantell LL. Antioxidants preserve macrophage phagocytosis of Pseudomonas aeruginosa during hyperoxia. Free Radic Biol Med 2007; 42:1338-49. [PMID: 17395007 PMCID: PMC3104269 DOI: 10.1016/j.freeradbiomed.2007.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 01/13/2007] [Accepted: 01/17/2007] [Indexed: 11/29/2022]
Abstract
Pseudomonas. aeruginosa (PA) is a leading cause of nosocomial pneumonia in patients receiving mechanical ventilation with hyperoxia. Exposure to supraphysiological concentrations of reactive oxygen species during hyperoxia may result in macrophage damage that reduces their ability to phagocytose PA. We tested this hypothesis in cultured macrophage-like RAW 264.7 cells and alveolar macrophages from mice exposed to hyperoxia. Exposure to hyperoxia induced a similarly impaired phagocytosis of both the mucoid and the nonmucoid forms of PA in alveolar macrophages and RAW cells. Compromised PA phagocytosis was associated with cytoskeleton disorganization and actin oxidation in hyperoxic macrophages. To test whether moderate concentrations of O(2) limit the loss of phagocytic function induced by > or =95% O(2), mice and RAW cells were exposed to 65% O(2). Interestingly, although the resulting lung injury/cell proliferation was not significant, exposure to 65% O(2) resulted in a marked reduction in PA phagocytosis that was comparable to that of > or =95% O(2). Treatment with antioxidants, even post hyperoxic exposure, preserved actin cytoskeleton organization and phagocytosis of PA. These data suggest that hyperoxia reduces macrophage phagocytosis through effects on actin functions which can be preserved by antioxidant treatment. In addition, administration of moderate rather than higher concentrations of O2 does not improve macrophage phagocytosis of PA.
Collapse
Affiliation(s)
- Dympna M. P. Morrow
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Tahereh E. Entezari-Zaher
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - John Romashko
- Cardiopulmonary Research, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Ali O. Azghani
- Department of Speciality Care Services, The University of Texas Health Center, Tyler, TX
| | - Mohammad Javdan
- Cardiopulmonary Research, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Luis Ulloa
- Laboratory of Biomedical Science, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Edmund J. Miller
- Surgercal Immunology, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, North Shore University Hospital/The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- Correspondence author: Lin L. Mantell, Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, 108/SB28 St. Albert Hall, 8000 Utopia Parkway, Queens, New York 11439, Tel: 718-990-5933, Fax: 718-990-1877,
| |
Collapse
|
25
|
Zaher TE, Miller EJ, Morrow DMP, Javdan M, Mantell LL. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med 2007; 42:897-908. [PMID: 17349918 PMCID: PMC1876680 DOI: 10.1016/j.freeradbiomed.2007.01.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Mechanical ventilation with hyperoxia is necessary to treat critically ill patients. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), which can cause acute inflammatory lung injury. One of the major effects of hyperoxia is the injury and death of pulmonary epithelium, which is accompanied by increased levels of pulmonary proinflammatory cytokines and excessive leukocyte infiltration. A thorough understanding of the signaling pathways leading to pulmonary epithelial cell injury/death may provide some insights into the pathogenesis of hyperoxia-induced acute inflammatory lung injury. This review focuses on epithelial responses to hyperoxia and some of the major factors regulating pathways to epithelial cell injury/death, and proinflammatory responses on exposure to hyperoxia. We discuss in detail some of the most interesting players, such as NF-kappaB, that can modulate both proinflammatory responses and cell injury/death of lung epithelial cells. A better appreciation for the functions of these factors will no doubt help us to delineate the pathways to hyperoxic cell death and proinflammatory responses.
Collapse
Affiliation(s)
- Tahereh E. Zaher
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Edmund J. Miller
- Surgercal Immunology, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Dympna M. P. Morrow
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Mohammad Javdan
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- *Correspondence author: Lin L. Mantell, Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, 108/SB28 St. Albert Hall, 8000 Utopia Parkway, Queens, New York 11439, Tel: 718-990-5933, Fax: 718-990-1877,
| |
Collapse
|
26
|
Bem RA, Bos AP, Matute-Bello G, van Tuyl M, van Woensel JBM. Lung epithelial cell apoptosis during acute lung injury in infancy. Pediatr Crit Care Med 2007; 8:132-7. [PMID: 17273113 DOI: 10.1097/01.pcc.0000257207.02408.67] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Apoptosis of lung epithelial cells is implicated in the pathogenesis of acute lung injury. Most research on this subject has focused on adults. Very little is known about a potential interaction of this process with lung development in children. OBJECTIVE To summarize the current literature on lung epithelial cell apoptosis and common causes of acute lung injury in infants and young children and to identify new areas of research. DESIGN A Medline-based literature search. RESULTS AND CONCLUSIONS Few studies have focused on lung epithelial cell apoptosis during common causes of acute lung injury in children. Nevertheless, the limited literature suggests that this may be an important mechanism during respiratory distress syndrome of infants and viral respiratory tract infection. Apoptosis is an essential process during lung development and maturation. Insufficient attention has been paid to potential consequences of this for the short- and long-term outcomes of acute lung injury.
Collapse
Affiliation(s)
- Reinout A Bem
- Pediatric Intensive Care Unit, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Russo TA, Davidson BA, Genagon SA, Warholic NM, Macdonald U, Pawlicki PD, Beanan JM, Olson R, Holm BA, Knight PR. E. colivirulence factor hemolysin induces neutrophil apoptosis and necrosis/lysis in vitro and necrosis/lysis and lung injury in a rat pneumonia model. Am J Physiol Lung Cell Mol Physiol 2005; 289:L207-16. [PMID: 15805136 DOI: 10.1152/ajplung.00482.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enteric gram-negative bacilli, such as Escherichia coli are the most common cause of nosocomial pneumonia. In this study a wild-type extraintestinal pathogenic strain of E. coli (ExPEC)(CP9) and isogenic derivatives deficient in hemolysin (Hly) and cytotoxic necrotizing factor (CNF) were assessed in vitro and in a rat model of gram-negative pneumonia to test the hypothesis that these virulence factors induce neutrophil apoptosis and/or necrosis/lysis. As ascertained by in vitro caspase-3/7 and LDH activities and neutrophil morphology, Hly mediated neutrophil apoptosis at lower E. coli titers (1 × 105–6cfu) and necrosis/lysis at higher titers (≥1 × 107cfu). Data suggest that CNF promotes apoptosis but not necrosis or lysis. We also demonstrate that annexin V/7-amino-actinomycin D staining was an unreliable assessment of apoptosis using live E. coli. The use of caspase-3/7 and LDH activities and neutrophil morphology supported the notion that necrosis, not apoptosis, was the primary mechanism by which neutrophils were affected in our in vivo gram-negative pneumonia model using live E. coli. In addition, in vivo studies demonstrated that Hly mediates lung injury. Neutrophil necrosis was not observed when animals were challenged with purified lipopolysaccharide, demonstrating the importance of using live bacteria. These findings establish that Hly contributes to ExPEC virulence by mediating neutrophil toxicity, with necrosis/lysis being the dominant effect of Hly on neutrophils in vivo and by lung injury. Whether Hly-mediated lung injury is due to neutrophil necrosis, a direct effect of Hly, or both is unclear.
Collapse
Affiliation(s)
- Thomas A Russo
- Dept. of Medicine, Div. of Infectious Diseases, 3435 Main St., Biomedical Research Bldg., Rm. 141, University at Buffalo, Buffalo, New York 14214, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ghosh S, Wilson MR, Choudhury S, Yamamoto H, Goddard ME, Falusi B, Marczin N, Takata M. Effects of inhaled carbon monoxide on acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1003-9. [PMID: 15681391 DOI: 10.1152/ajplung.00451.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of morbidity and mortality in the intensive care unit, but despite continuing research few effective therapies have been identified. In recent years, inhaled carbon monoxide (CO) has been reported to have cytoprotective effects in several animal models of tissue injury. We therefore evaluated the effects of inhaled CO in three different in vivo mouse models of ALI. Anesthetized C57BL/6 mice were ventilated with oxygen in the presence or absence of CO (500 parts per million) for 1 h before lung injury was induced by lipopolysaccharide (LPS) or oleic acid (OA) administration. Ventilation was then continued with the same gases for a further 2–3 h, with hemodynamic and respiratory parameters monitored throughout. Intratracheal LPS administration induced lung injury with alveolar inflammation (increased lavage fluid neutrophils, total protein, and cytokines). In contrast, intravenous LPS induced a predominantly vascular lung injury, with increased plasma TNF and increased neutrophil activation (surface Mac-1 upregulation and L-selectin shedding) and sequestration within the pulmonary vasculature. Intravenous OA produced deteriorations in lung function, reflected by changes in respiratory mechanics and blood gases and lavage fluid neutrophil accumulation. However, addition of CO to the inspired gas did not produce significant changes in the measured physiological or immunological parameters in the mouse models used in this study. Thus the results do not support the hypothesis that use of inhaled CO is beneficial in the treatment of ALI and ARDS.
Collapse
Affiliation(s)
- Subhamay Ghosh
- Dept. of Anaesthetics and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Rd., London SW10 9NH, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Arita Y, Joseph A, Koo HC, Li Y, Palaia TA, Davis JM, Kazzaz JA. Superoxide dismutase moderates basal and induced bacterial adherence and interleukin-8 expression in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1199-206. [PMID: 15286004 DOI: 10.1152/ajplung.00457.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial infection of the tracheobronchial tree is a frequent, serious complication in patients receiving treatment with oxygen and mechanical ventilation, resulting in increased morbidity and mortality. Using human airway epithelial cell culture models, we examined the effect of hyperoxia on bacterial adherence and the expression of interleukin-8 (IL-8), an important mediator involved in the inflammatory process. A 24-h exposure to 95% O2increased Pseudomonas aeruginosa (PA) adherence 57% in A549 cells ( P < 0.01) and 115% in 16HBE cells ( P < 0.01) but had little effect on Staphylococcus aureus (SA) adherence. Exposure to hyperoxia, followed by a 1-h incubation with SA, further enhanced PA adherence ( P < 0.01), suggesting that hyperoxia and SA colonization may enhance the susceptibility of lung epithelial cells to gram-negative infections. IL-8 expression was also increased in cells exposed to both hyperoxia and PA. Stable or transient overexpression of manganese superoxide dismutase reduced both basal and stimulated levels of PA adherence and IL-8 levels in response to exposure to either hyperoxia or PA. These data indicate that hyperoxia increases susceptibility to infection and that the pathways are mediated by reactive oxygen species. Therapeutic intervention strategies designed to prevent accumulation of intracellular reactive oxygen species may reduce opportunistic pulmonary infections.
Collapse
Affiliation(s)
- Yuko Arita
- CardioPulmonary Research Institute, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Winthrop-University Hospital, SUNY Stony Brook School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Franek WR, Morrow DMP, Zhu H, Vancurova I, Miskolci V, Darley-Usmar K, Simms HH, Mantell LL. NF-kappaB protects lung epithelium against hyperoxia-induced nonapoptotic cell death-oncosis. Free Radic Biol Med 2004; 37:1670-9. [PMID: 15477018 DOI: 10.1016/j.freeradbiomed.2004.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 08/12/2004] [Indexed: 01/26/2023]
Abstract
Prolonged exposure to hyperoxia induces pulmonary epithelial cell death and acute lung injury. Although both apoptotic and nonapoptotic morphologies are observed in hyperoxic animal lungs, nonapoptotic cell death had only been recorded in transformed lung epithelium cultured in hyperoxia. To test whether the nonapoptotic characteristics in hyperoxic animal lungs are direct effects of hyperoxia, the mode of cell death was determined both morphologically and biochemically in human primary lung epithelium exposed to 95% O(2). In contrast to characteristics observed in apoptotic cells, hyperoxia induced swelling of nuclei and an increase in cell size, with no evidence for any augmentation in the levels of either caspase-3 activity or annexin V incorporation. These data suggest that hyperoxia can directly induce nonapoptotic cell death in primary lung epithelium. Although hyperoxia-induced nonapoptotic cell death was associated with NF-kappaB activation, it is unknown whether NF-kappaB activation plays any causal role in nonapoptotic cell death. This study shows that inhibition of NF-kappaB activation can accelerate hyperoxia-induced epithelial cell death in both primary and transformed lung epithelium. Corresponding to the reduced cell survival in hyperoxia, the levels of MnSOD were also low in NF-kappaB-deficient cells. These results demonstrate that NF-kappaB protects lung epithelial cells from hyperoxia-induced nonapoptotic cell death.
Collapse
Affiliation(s)
- William R Franek
- Department of Surgery, North Shore University Hospital, New York University School of Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Le Berre R, Faure K, Fauvel H, Viget NB, Ader F, Prangère T, Thomas AM, Leroy X, Pittet JF, Marchetti P, Guery BP. Apoptosis inhibition in P. aeruginosa-induced lung injury influences lung fluid balance. Intensive Care Med 2004; 30:1204-11. [PMID: 14991100 DOI: 10.1007/s00134-004-2165-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 12/30/2003] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Pseudomonas aeruginosa-induced lung injury is characterized not only by the alteration in lung fluid movement but also by apoptosis of lung epithelial and endothelial cells. We studied whether inhibition of apoptosis using a broad spectrum caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (Z-VAD.fmk), would affect lung fluid balance in rat P. aeruginosa pneumonia. METHODS Z-VAD.fmk (3 mg/kg) was administered intravenously simultaneously with P. aeruginosa intratracheal instillation (0.5 ml/kg, 2 x 10(9) CFU/ml). Apoptosis was evaluated with the TUNEL technique, cytoplasmic oligonucleosome assay, and caspase 3 activation. To evaluate lung permeability, extravascular plasma equivalent (EPE) and lung wet to dry weight ratio (W/D) were measured 4 h after intratracheal instillation of P. aeruginosa. RESULTS We found an increase of lung apoptosis 4 h after P. aeruginosa instillation: cytoplasmic oligonucleosome assay increased from 3.17+/-0.78 to 26.82+/-4.67 ODx1000/mg of proteins/ml, Z-VAD.fmk administration decreased this parameter to 10.3+/-2.98 ODx1000/mg of proteins/ml. Caspase 3 levels followed the same pattern. Apoptosis involved both epithelial cells and endothelial cells. Endothelial permeability was increased after Pseudomonas instillation: W/D increased from 3.75+/-0.28 in the Co group to 4.42+/-0.23 in the Pn group; EPE was also higher in the Pn group compared with the Co group (0.125+/-0.04 and 0.002+/-0.01 ml, respectively). Both of these parameters were improved after Z-VAD.fmk administration; W/D decreased to 3.36+/-0.25 and EPE to 0.02+/-0.02 ml. CONCLUSION Apoptosis occurs in the early phase of P. aeruginosa pneumonia. Administration of Z-VAD.fmk significantly decreases DNA fragmentation and caspase 3 levels. This is associated with an improvement of endothelial permeability and lung fluid balance.
Collapse
Affiliation(s)
- Rozenn Le Berre
- Laboratoire de Recherche en Pathologie Infectieuse, 2689 Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Romashko J, Horowitz S, Franek WR, Palaia T, Miller EJ, Lin A, Birrer MJ, Scott W, Mantell LL. MAPK pathways mediate hyperoxia-induced oncotic cell death in lung epithelial cells. Free Radic Biol Med 2003; 35:978-93. [PMID: 14556862 DOI: 10.1016/s0891-5849(03)00494-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cell injury and cell death of pulmonary epithelium plays an important role in the pathogenesis of acute lung injury in animals exposed to prolonged hyperoxia. The aim of this study was to decipher the molecular mechanisms modulating cell death induced by hyperoxia in lung epithelium. Cell death is thought to be either apoptotic, with shrinking phenotypes and activated caspases, or oncotic, with swelling organelles. Exposure to 95% O2 (hyperoxia) induced cell death of MLE-12 cells with cellular as well as nuclear swelling, cytosolic vacuolation, and loss of mitochondrial structure and enzyme function. Neither elevated caspase-3 activity nor phosphatidylserine translocation were detected, suggesting that in hyperoxia, MLE-12 cells die via oncosis rather than apoptosis. In addition, hyperoxia triggered a sustained activation of the transcription factor AP-1, as well as mitogen-activated protein kinase (MAPK) family members p38 and JNK. Importantly, survival of MLE-12 cells in hyperoxia was significantly enhanced when either AP-1, p38, or JNK activation was inhibited by either specific inhibitors or dominant negative DNA constructs, indicating that in lung epithelial cells hyperoxia induces a program-driven oncosis, involving AP-1, JNK, and p38 MAPK. Interestingly, hydrogen peroxide-induced oxidative apoptosis of MLE-12 cells, with a shrinking nuclear morphology and activated caspase-3 activity, is also mediated by AP-1, JNK, and p38. Therefore, our data indicate that although they have divergent downstream events, oxidative oncosis and apoptosis share upstream JNK/p38 and AP-1 pathways, which could be used as potential targets for reducing hyperoxic inflammatory lung injury.
Collapse
Affiliation(s)
- John Romashko
- Department of Surgery, North Shore University Hospital, New York University School of Medicine, Manhasset, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Morse D, Otterbein LE, Watkins S, Alber S, Zhou Z, Flavell RA, Davis RJ, Choi AMK. Deficiency in the c-Jun NH2-terminal kinase signaling pathway confers susceptibility to hyperoxic lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2003; 285:L250-7. [PMID: 12651633 DOI: 10.1152/ajplung.00387.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperoxia generates an oxidative stress in the mouse lung, which activates the major stress-inducible kinase pathways, including c-Jun NH2-terminal kinase (JNK). We examined the effect of Jnk1 gene deletion on in vivo responses to hyperoxia in mice. The survival of Jnk1-/- mice was reduced relative to wild-type mice after exposure to continuous hyperoxia. Jnk1-/- mice displayed higher protein concentration in bronchoalveolar lavage (BAL) fluid and increased expression of heme oxygenase-1, a stress-inducible gene, after 65 h of hyperoxia. Contrary to other markers of injury, the leukocyte count in BAL fluid of Jnk1-/- mice was markedly diminished relative to that of wild-type mice. The decrease in BAL leukocyte count was not associated with any decrease in lung myeloperoxidase activity at baseline or after hyperoxia treatment. Pretreatment with inhaled lipopolysaccharide increased BAL neutrophil content and extended hyperoxia survival time to a similar extent in Jnk1-/- and wild-type mice. Associated with increased mortality, Jnk1-/- mice had increased pulmonary epithelial cell apoptosis after exposure to hyperoxia compared with wild-type mice. These results indicate that JNK pathways participate in adaptive responses to hyperoxia in mice.
Collapse
Affiliation(s)
- Danielle Morse
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mantell LL, Shaffer TH, Horowitz S, Foust R, Wolfson MR, Cox C, Khullar P, Zakeri Z, Lin L, Kazzaz JA, Palaia T, Scott W, Davis JM. Distinct patterns of apoptosis in the lung during liquid ventilation compared with gas ventilation. Am J Physiol Lung Cell Mol Physiol 2002; 283:L31-41. [PMID: 12060558 DOI: 10.1152/ajplung.00037.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine whether liquid ventilation (LV) causes less cell injury and improves lung function compared with conventional gas ventilation (GV), we analyzed pulmonary physiological profiles, lung histology, and cell death in 110- and 120-day preterm lambs, which were randomized to receive either ventilation modality on FI(O(2)) = 1. LV lungs were well expanded with adequate pulmonary function, whereas GV animals exhibited marked atelectasis, poor pulmonary function, and increased mortality. Both ventilatory strategies induced marked lung cell apoptosis, but with distinct patterns of distribution. Although GV induced apoptosis of epithelium primarily in the lining and within the lumina of bronchioles, LV induced significant apoptosis much more homogeneously throughout lung parenchyma including alveoli and interstitial spaces. These studies suggest that although both forms of ventilation cause regional apoptosis, LV more effectively delivers oxygen and recruits the lung more homogeneously than GV.
Collapse
Affiliation(s)
- Lin L Mantell
- CardioPulmonary Research Institute, Winthrop University Hospital, State University of New York at Stony Brook School of Medicine, Mineola, New York 11501, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Albertine KH, Plopper CG. DNA oxidation or apoptosis: will the real culprit of dna damage in hyperoxic lung injury please stand up? Am J Respir Cell Mol Biol 2002; 26:381-3. [PMID: 11919071 DOI: 10.1165/ajrcmb.26.4.f236] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kurt H Albertine
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84143-2202, USA.
| | | |
Collapse
|
36
|
Abstract
Observations of the effects of carbon monoxide (CO) on mammalian systems have been known for thousands of years. To be sure, CO is deadly under certain conditions and concentrations, but perhaps as the data presented here will make clear, it also possesses other diverse functional and immunomodulatory properties. This review, together with the other reviews in this issue, will detail that over the past three decades, fundamental functional role(s) for this gas molecule are beginning to emerge. This review outlines that at low concentrations, exogenously administered CO is a molecule involved in the regulation of the inflammatory response in a variety of disease models. CO has been shown to modulate such cellular functions as cytokine production, cell proliferation and apoptosis, protecting the lungs and hearts of rodents from such stressors as endotoxin, ischemia/reperfusion injury, cardiac xenograft rejection, and asthma. Although the mechanism by which this simple diatomic gas provides this protection remains obscure, the conclusions are the same: CO at low concentrations, concentrations that are well below those that would otherwise create toxic effects, is proving beneficial in models of acute injury. CO, akin to nitric oxide, is proving to be an extraordinary signaling molecule generated by the cell that is vital in the regulation of cellular homeostasis.
Collapse
Affiliation(s)
- Leo E Otterbein
- Division of Pulmonary and Critical Care Medicine, University of Pittsburgh School of Medicine, Montefiore University Hospital, Pittsburgh, PA 15213, USA.
| |
Collapse
|
37
|
Apoptosis in Pneumonia. Intensive Care Med 2002. [DOI: 10.1007/978-1-4757-5551-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Franek WR, Horowitz S, Stansberry L, Kazzaz JA, Koo HC, Li Y, Arita Y, Davis JM, Mantell AS, Scott W, Mantell LL. Hyperoxia inhibits oxidant-induced apoptosis in lung epithelial cells. J Biol Chem 2001; 276:569-75. [PMID: 11034997 DOI: 10.1074/jbc.m004716200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has previously been shown that hyperoxia induces nonapoptotic cell death in cultured lung epithelial cells, whereas hydrogen peroxide (H(2)O(2)) and paraquat cause apoptosis. To test whether pathways leading to oxidative apoptosis in epithelial cells are sensitive to molecular O(2), A549 cells were exposed to 95% O(2) prior to exposure to lethal concentrations of H(2)O(2). The extent of H(2)O(2)-induced apoptosis was significantly reduced in cells preexposed to hyperoxia compared with room-air controls. Preexposure of the hyperoxia-resistant HeLa-80 cell line to 80% O(2) also inhibited oxidant-induced apoptosis, suggesting that this inhibition is not due to O(2) toxicity. Because hyperoxia generates reactive oxygen species and activates the redox-sensitive transcription factor nuclear factor kappa B (NF-kappa B), the role of antioxidant enzymes and NF-kappa B were examined in this inhibitory process. The onset of inhibition appeared to be directly related to the degradation of I kappa B and subsequent activation of NF-kappa B (either by hyperoxia or TNF-alpha), whereas no significant up-regulation of endogenous antioxidant enzyme activities was found. In addition, suppression of NF-kappa B activities by transfecting A549 cells with a dominant-negative mutant construct of I kappa B significantly augmented the extent of H(2)O(2)-induced apoptosis. These data suggest that hyperoxia inhibits oxidant-induced apoptosis and that this inhibition is mediated by NF-kappa B.
Collapse
Affiliation(s)
- W R Franek
- CardioPulmonary Research Institute, Winthrop University Hospital, SUNY-Stony Brook School of Medicine, Mineola, New York 11501, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Acute lung injury is an unfortunate consequence of oxygen therapy. Increasing evidence suggests that pulmonary dysfunction resulting from acute oxygen toxicity is at least in part due to the injury and death of lung cells. Studies using morphological and biochemical analyses revealed that hyperoxia-induced pulmonary cell death is multimodal, involving not only necrosis, but also apoptosis. A correlative relationship between the severity of hyperoxic acute lung injury and increased apoptosis has been supported by numerous studies in a variety of animal models, although future experiments are necessary to determine whether it is an actual causal relationship. Altered expression of several apoptotic regulatory proteins, such as p53 and Bcl-2, and DNA damage-induced proteins is associated with hyperoxic cell death and lung injury. Stress-responsive proteins, such as heme oxygenase (HO)-1, have been shown to protect animals against hyperoxic cell injury and death. Redox-sensitive transcription factors and mitogen-activated protein kinase signal transduction pathways may play important roles in regulating the expression of stress-responsive and apoptotic regulatory genes. A better understanding of signal transduction pathways leading to hyperoxic cell death may provide new approaches to the treatment of hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- L L Mantell
- Departments of Thoracic Cardiovascular Surgery, Winthrop-University Hospital, Mineola, New York 11501, USA.
| | | |
Collapse
|
40
|
Kazzaz JA, Horowitz S, Xu J, Khullar P, Niederman MS, Fein AM, Zakeri Z, Lin L, Rhodes GC. Differential patterns of apoptosis in resolving and nonresolving bacterial pneumonia. Am J Respir Crit Care Med 2000; 161:2043-50. [PMID: 10852786 DOI: 10.1164/ajrccm.161.6.9806158] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Infection with either Streptococcus sanguis or Streptococcus pneumoniae type 25 causes acute pneumonitis in rats. Pneumonia caused by S. sanguis resolves over the course of 8 d, whereas pneumonia caused by S. pneumoniae type 25 progresses to fibrosis. To examine the role of apoptosis in these models, we performed assays with the terminal deoxynucleotidyltransferase-uridine nucleotide end-labeling technique on tissue sections from rat lungs at various times, and quantified the results with image analysis. Apoptosis was a feature of both the acute and resolving stages of pneumonia. The pattern and extent of apoptosis were similar in both models during the acute stage, and the number of apoptotic nuclei increased in both models through 4 d after infection. Although there were differences in the cellular pattern of apoptosis after 2 d and 4 d of infection, the extent of apoptosis was the same in both models. After 8 d, major differences were observed. In the resolving model, apoptosis was limited primarily to an abscess in the base of the lung. In the nonresolving model, apoptosis was persistent. We also found that cyclin-dependent kinase-5 expression is upregulated during apoptosis induced by bacterial infection. These data indicate that the location and timing of apoptosis may determine whether pneumonia resolves or progresses to fibrosis.
Collapse
Affiliation(s)
- J A Kazzaz
- CardioPulmonary Research Institute, Mineola, NY 11501, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ward NS, Waxman AB, Homer RJ, Mantell LL, Einarsson O, Du Y, Elias JA. Interleukin-6-induced protection in hyperoxic acute lung injury. Am J Respir Cell Mol Biol 2000; 22:535-42. [PMID: 10783124 DOI: 10.1165/ajrcmb.22.5.3808] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hyperoxic lung injury is commonly encountered in patients who require treatment with high concentrations of inspired oxygen. To determine whether interleukin (IL)-6 is protective in oxygen toxicity, we compared the effects of 100% O(2) in transgenic mice that overexpress IL-6 in the lung and transgene (-) controls. IL-6 markedly enhanced survival, with 100% of transgene (-) animals dying within 72 to 96 h, 100% of transgene (+) animals living for more than 8 d and more than 90% of transgene (+) animals living longer than 12 d. This protection was associated with markedly diminished alveolar-capillary protein leak, endothelial and epithelial membrane injury, and lung lipid peroxidation. Hyperoxia also caused cell death with DNA fragmentation in the lungs of transgene (-) animals and IL-6 markedly diminished this cytopathic response. The protective effects of IL-6 were not associated with significant alterations in the activities of copper/ zinc superoxide dismutase (SOD) or manganese SOD. They were, however, associated with the enhanced accumulation of the cell-death inhibitor Bcl-2, but not the cell-death stimulator BAX, and with the heightened accumulation of the cell-death regulator tissue inhibitor of metalloproteinase-1 (TIMP-1). These studies demonstrate that IL-6 markedly diminishes hyperoxic lung injury and that this protection is associated with a marked diminution in hyperoxia-induced cell death and DNA fragmentation. They also demonstrate that this protection is not associated with significant alterations in SOD activity, but is associated with the induction of Bcl-2 and TIMP-1.
Collapse
Affiliation(s)
- N S Ward
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and Yale University School of Medicine, Department of Pathology, New Haven, Connecticut 06520-8057, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Mantell LL, Horowitz S, Davis JM, Kazzaz JA. Hyperoxia-induced cell death in the lung--the correlation of apoptosis, necrosis, and inflammation. Ann N Y Acad Sci 2000; 887:171-80. [PMID: 10668473 DOI: 10.1111/j.1749-6632.1999.tb07931.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prolonged exposure to hyperoxia causes tissue damage in many organs and tissues. Since the entire surface area of lung epithelium is directly exposed to O2 and other inhaled agents, hyperoxia leads to the development of both acute and chronic lung injuries. These pathologic changes in the lung can also be seen in acute lung injury (ALI) in response to other agents. Simple strategies to mitigate hyperoxia-induced ALI might not be effective by virtue of merely reducing or augmenting the extent of apoptosis of pulmonary cells. Identification of the specific cell types undergoing apoptosis and further understanding of the precise timing of the onset of apoptosis may be necessary in order to gain a greater understanding of the connection between apoptosis and tolerance to hyperoxia and ALI. Attention should also be focused on other forms of non-apoptotic programmed cell death.
Collapse
Affiliation(s)
- L L Mantell
- CardioPulmonary Research Institute, Winthrop-University Hospital, SUNY/Stony Brook School of Medicine, Mineola 11501, USA.
| | | | | | | |
Collapse
|
43
|
Kazzaz JA, Horowitz S, Li Y, Mantell LL. Hyperoxia in cell culture. A non-apoptotic programmed cell death. Ann N Y Acad Sci 2000; 887:164-70. [PMID: 10668472 DOI: 10.1111/j.1749-6632.1999.tb07930.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we discuss the morphological features and our current understanding of the pathways involved in non-apoptotic cell death from O2 toxicity. Preliminary data on hyperoxic signaling indicate that NF-kappa B translocation (and presumptive activation) is not a result of the p42/p44 MAPK pathway, but a likely downstream consequence of activation of the JNK pathway. Our observations suggest the existence of multiple signal transduction pathways in hyperoxia-induced cell death: one involved in the stress response which appears to be NF-kappa B-dependent and another in cell death.
Collapse
Affiliation(s)
- J A Kazzaz
- CardioPulmonary Research Institute, Winthrop-University Hospital, SUNY Stony Brook School of Medicine, Mineola 11501, USA.
| | | | | | | |
Collapse
|
44
|
Powell SR, Gurzenda EM, Teichberg S, Mantell LL, Maulik D. Association of increased ubiquitinated proteins with cardiac apoptosis. Antioxid Redox Signal 2000; 2:103-12. [PMID: 11232591 DOI: 10.1089/ars.2000.2.1-103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intracellular proteases play an important role in the regulation of apoptosis. A study was performed to determine whether inhibition of the cardiac ATP-dependent ubiquitin 26S protease complex affects cardiomyocyte apoptosis. Isolated rat hearts were perfused for up to 80 min with Krebs-Henseleit buffer +/- the 26S-proteasome inhibitor, MG132 (Z-leu-leu-leucinal). TUNEL-staining of hearts perfused with 25 microM MG132 for 50 min revealed a significant increase (p < 0.05) in the apoptotic index from 1.1% to 15.5% when compared with control hearts perfused with buffer only. Histology of adjacent myocardial sections revealed no signs of necrotic or late apoptotic (nuclear condensation) changes, indicating that the TUNEL-positive nuclei were in the early stages of apoptosis. This early stage of apoptosis was associated with a significant (p < 0.05) reduction in cardiac function. There was a 63% decrease in the rate pressure product in hearts perfused with 25 microM MG132 as compared with a 35% decrease in control hearts over the 80-min perfusion period. Soluble ubiquitin-conjugated proteins, as detected by probing with a specific antibody to ubiquitin, were increased in MG132-treated hearts. In hearts perfused with 50 microM MG132, a greater accumulation of ubiquinated proteins was observed accompanied by a more rapid and greater reduction in hemodynamic function. These observations indicate that prolonged inhibition of the ubiquitin-26S-proteasome results in cardiomyocyte apoptosis accompanied by increased ubiquinated proteins, thus suggesting that accumulation of these abnormal proteins may act as a signal to activate the cell death program.
Collapse
Affiliation(s)
- S R Powell
- Department of Obstetrics and Gynecology, Winthrop University Hospital, Mineola, New York 11501, USA.
| | | | | | | | | |
Collapse
|
45
|
Petrache I, Choi ME, Otterbein LE, Chin BY, Mantell LL, Horowitz S, Choi AM. Mitogen-activated protein kinase pathway mediates hyperoxia-induced apoptosis in cultured macrophage cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L589-95. [PMID: 10484467 DOI: 10.1152/ajplung.1999.277.3.l589] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that the lungs of mice can exhibit increased programmed cell death or apoptosis after hyperoxic exposure in vivo. In this report, we show that hyperoxic exposure in vitro can also induce apoptosis in cultured murine macrophage cells (RAW 264.7) as assessed by DNA-laddering, terminal deoxynucleotidyltransferase dUTP nick end-labeling, and nucleosomal assays. To further delineate the signaling pathway of hyperoxia-induced apoptosis in RAW 264.7 macrophages, we first show that hyperoxia can activate the mitogen-activated protein kinase (MAPK) pathway, the extracellular signal-regulated kinases (ERKs) p42/p44, in a time-dependent manner as assessed by increased phosphorylation of ERK1/ERK2 by Western blot analyses. Neither the c-Jun NH(2)-terminal kinase/stress-activated protein kinase nor the p38 MAPK was activated by hyperoxia in these cells. Chemical or genetic inhibition of the ERK p42/p44 MAPK pathway by PD-98059, a selective inhibitor of MAPK kinase, and dominant negative mutants of ERK, respectively, attenuated hyperoxia-induced apoptosis as assessed by DNA laddering and nucleosomal ELISAs. Taken together, our data suggest that hyperoxia can induce apoptosis in cultured murine macrophages and that the MAPK pathway mediates hyperoxia-induced apoptosis.
Collapse
Affiliation(s)
- I Petrache
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Barazzone C, Donati YR, Rochat AF, Vesin C, Kan CD, Pache JC, Piguet PF. Keratinocyte growth factor protects alveolar epithelium and endothelium from oxygen-induced injury in mice. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1479-87. [PMID: 10329601 PMCID: PMC1866589 DOI: 10.1016/s0002-9440(10)65402-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Keratinocyte growth factor (KGF) has been used successfully to prevent alveolar damage induced by oxygen exposure in rodents. However, this treatment was used intratracheally and before oxygen exposure, which limited its clinical application. In the present study, mice were treated with the recombinant human KGF intravenously before (days -2 and -1) or during (days 0 and +1) oxygen exposure. In both cases, lung damage was attenuated. KGF increased the number of cells incorporating bromodeoxyuridine (BrdU) in the septa and in bronchial epithelium of air-breathing mice but not of oxygen-exposed mice, indicating that the protective effect of KGF is not necessarily associated with proliferation. Oxygen-induced damage of alveolar epithelium and, unexpectedly, of endothelium was prevented by KGF treatment as seen by electron microscopy. We investigated the effect of KGF on different mechanisms known to be involved in oxygen toxicity. The induction of p53, Bax, and Bcl-x mRNAs during hyperoxia was to a large extent prevented by KGF. Surfactant proteins A and B mRNAs were not markedly modified by KGF. The anti-fibrinolytic activity observed in the alveoli during hyperoxia was to a large extent prevented by KGF, most probably by suppressing the expression of plasminogen activator inhibitor-1 (PAI-1) mRNA and protein. As PAI-1 -/- mice are more resistant to hyperoxia, KGF might act, at least in part, by decreasing the expression of this protease inhibitor and by restoring the fibrinolytic activity into the lungs.
Collapse
Affiliation(s)
- C Barazzone
- Departments of Pathology and Pediatrics, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Otterbein LE, Kolls JK, Mantell LL, Cook JL, Alam J, Choi AM. Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J Clin Invest 1999; 103:1047-54. [PMID: 10194478 PMCID: PMC408257 DOI: 10.1172/jci5342] [Citation(s) in RCA: 396] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heme oxygenase-1 (HO-1) confers protection against a variety of oxidant-induced cell and tissue injury. In this study, we examined whether exogenous administration of HO-1 by gene transfer could also confer protection. We first demonstrated the feasibility of overexpressing HO-1 in the lung by gene transfer. A fragment of the rat HO-1 cDNA clone containing the entire coding region was cloned into plasmid pAC-CMVpLpA, and recombinant adenoviruses containing the rat HO-1 cDNA fragment Ad5-HO-1 were generated by homologous recombination. Intratracheal administration of Ad5-HO-1 resulted in a time-dependent increase in expression of HO-1 mRNA and protein in the rat lungs. Increased HO-1 protein expression was detected diffusely in the bronchiolar epithelium of rats receiving Ad5-HO-1, as assessed by immunohistochemical studies. We then examined whether ectopic expression of HO-1 could confer protection against hyperoxia-induced lung injury. Rats receiving Ad5-HO-1, but not AdV-betaGal, a recombinant adenovirus expressing Escherichia coli beta-galactosidase, before exposure to hyperoxia (>99% O2) exhibited marked reduction in lung injury, as assessed by volume of pleural effusion and histological analyses (significant reduction of edema, hemorrhage, and inflammation). In addition, rats receiving Ad5-HO-1 also exhibited increased survivability against hyperoxic stress when compared with rats receiving AdV-betaGal. Expression of the antioxidant enzymes manganese superoxide dismutase (Mn-SOD) and copper-zinc superoxide dismutase (CuZn-SOD) and of L-ferritin and H-ferritin was not affected by Ad5-HO-1 administration. Furthermore, rats treated with Ad5-HO-1 exhibited attenuation of hyperoxia-induced neutrophil inflammation and apoptosis. Taken together, these data suggest the feasibility of high-level HO-1 expression in the rat lung by gene delivery. To our knowledge, we have demonstrated for the first time that HO-1 can provide protection against hyperoxia-induced lung injury in vivo by modulation of neutrophil inflammation and lung apoptosis.
Collapse
Affiliation(s)
- L E Otterbein
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut 06250, USA
| | | | | | | | | | | |
Collapse
|
48
|
Fortenberry JD, Owens ML, Brown LA. S-nitrosoglutathione enhances neutrophil DNA fragmentation and cell death. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L435-42. [PMID: 10070107 DOI: 10.1152/ajplung.1999.276.3.l435] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enhancing the clearance of neutrophils by enhancing apoptotic cell death and macrophage recognition may be beneficial in acute lung injury. Exogenous nitric oxide gas depresses neutrophil oxidative functions and accelerates cell death (A. H. Daher, J. D. Fortenberry, M. L. Owens, and L. A. Brown. Am. J. Respir. Cell Mol. Biol. 16: 407-412, 1997). We hypothesized that S-nitrosoglutathione (GSNO), a physiologically relevant nitric oxide donor, could also enhance neutrophil DNA fragmentation. Neutrophils were incubated for 2-24 h in the absence and presence of GSNO (dose range 0.1-5 mM) and evaluated for cell death by a fluorescent viability/cytotoxicity assay. Neutrophil DNA fragmentation was assessed by cell death detection ELISA and by terminal deoxynucleotidyltransferase-mediated fluorescence-labeled dUTP nick end labeling assay. Neutrophil oxidative function was also determined. Incubation with GSNO increased cell death at 2, 4, and 24 h. GSNO incubation for 24 h significantly increased DNA fragmentation in a dose-dependent fashion at 0.5 (median 126% of control value; P = 0.002) and 5 mM (185% of control value; P = 0.002) by terminal deoxynucleotidyltransferase-mediated fluorescence-labeled dUTP nick end labeling and at 0.5 mM by ELISA (164% of control value; P = 0.03). The apoptosis-to-total cell death ratio increased with increasing GSNO concentration (P < 0.05). Effects were mitigated by coincubation with superoxide dismutase. Five millimolar GSNO decreased overall superoxide generation and O2 consumption but not when adjusted for dead neutrophils. GSNO significantly enhances cell death and neutrophil DNA fragmentation in a dose-dependent fashion.
Collapse
Affiliation(s)
- J D Fortenberry
- Egleston Pediatric Subspecialists, Egleston Children's Health System, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
49
|
Barazzone C, Horowitz S, Donati YR, Rodriguez I, Piguet PF. Oxygen toxicity in mouse lung: pathways to cell death. Am J Respir Cell Mol Biol 1998; 19:573-81. [PMID: 9761753 DOI: 10.1165/ajrcmb.19.4.3173] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mice exposed to 100% O2 die after 3 or 4 d with diffuse alveolar damage and alveolar edema. Extensive cell death is evident by electron microscopy in the alveolar septa, affecting both endothelial and epithelial cells. The damaged cells show features of both apoptosis (condensation and margination of chromatin) and necrosis (disruption of the plasma membrane). The electrophoretic pattern of lung DNA indicates both internucleosomal fragmentation, characteristic of apoptosis, and overall degradation, characteristic of necrosis. Hyperoxia induces a marked increase in RNA or protein levels of p53, bax, bcl-x, and Fas, which are known to be expressed in certain types of apoptosis. However, we did not detect an increased activity of proteases belonging to the apoptosis "executioner" machinery, such as CPP32 (caspase 3), ICE (caspase 1), or cathepsin D. Furthermore, administration of an ICE-like protease inhibitor did not significantly enhance the resistance to oxygen. Additionally, neither p53-deficient mice nor lpr mice (Fas null) manifested an increased resistance to hyperoxia-induced lung damage. These results show that both necrosis and apoptosis contribute to cell death during hyperoxia. Multiple apoptotic pathways seem to be involved in this, and an antiapoptotic strategy does not attenuate alveolar damage.
Collapse
Affiliation(s)
- C Barazzone
- Departments of Pediatrics and Pathology, University of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
50
|
Otterbein LE, Chin BY, Mantell LL, Stansberry L, Horowitz S, Choi AM. Pulmonary apoptosis in aged and oxygen-tolerant rats exposed to hyperoxia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L14-20. [PMID: 9688930 DOI: 10.1152/ajplung.1998.275.1.l14] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accumulating evidence demonstrates that genotoxic and oxidant stress can induce programmed cell death or apoptosis in cultured cells. However, little is known about whether oxidative stress resulting from the deleterious effects of hyperoxia can induce apoptosis in vivo and even less is known regarding the functional significance of apoptosis in vivo in response to hyperoxia. Using hyperoxia as a model of oxidant-induced lung injury in the rat, we show that hyperoxic stress results in marked apoptotic signals in the lung. Lung tissue sections obtained from rats exposed to hyperoxia exhibit increased apoptosis in a time-dependent manner by terminal transferase dUTP nick end labeling assays. To examine whether hyperoxia-induced apoptosis in the lung correlated with the extent of lung injury or tolerance (adaptation) to hyperoxia, we investigated the pattern of apoptosis with a rat model of age-dependent tolerance to hyperoxia. We show that apoptosis is associated with increased survival of aged rats to hyperoxia and with decreased levels of lung injury as measured by the volume of pleural effusion, wet-to-dry lung weight, and myeloperoxidase content in aged rats compared with young rats after hyperoxia. We also examined this relationship in an alternate model of tolerance to hyperoxia. Lipopolysaccharide (LPS)-treated young rats not only demonstrated tolerance to hyperoxia but also exhibited a significantly lower apoptotic index compared with saline-treated rats after hyperoxia. To further separate the effects of aging and tolerance, we show that aged rats pretreated with LPS did not exhibit a significant level of tolerance against hyperoxia. Furthermore, similar to the hyperoxia-tolerant LPS-pretreated young rats, the nontolerant LPS-pretreated aged rats also exhibited a significantly reduced apoptotic index compared with aged rats exposed to hyperoxia alone. Taken together, our data suggest that hyperoxia-induced apoptosis in vivo can be modulated by both aging and tolerance effects. We conclude that there is no overall relationship between apoptosis and tolerance.
Collapse
Affiliation(s)
- L E Otterbein
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|