1
|
Verçosa BLA, Muniz-Junqueira MI, Mineiro ALBB, Melo MN, Vasconcelos AC. Enhanced apoptosis and inflammation allied with autophagic and apoptotic Leishmania amastigotes in the seemingly undamaged ear skin of clinically affected dogs with canine visceral Leishmaniasis. Cell Immunol 2025; 408:104909. [PMID: 39701006 DOI: 10.1016/j.cellimm.2024.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Programmed cell death plays a relevant role in the pathogenesis of visceral Leishmaniasis. Apoptosis selects suitable parasites, regulating parasite density, whereas autophagy eliminates pathogens. This study aimed to assess the inflammation and apoptosis in inflammatory cells and presents a unique description of the presence of autophagic and apoptotic Leishmania amastigotes in naturally Leishmania-infected dogs. Fragments from seemingly undamaged ear skin of sixteen Leishmania-infected dogs and seven uninfected dogs were evaluated through histomorphometry, ultrastructural, immunohistochemical and transmission electron microscopy (TEM) analyses. Leishmania amastigotes were present on seemingly undamaged ear skin only in clinically affected dogs. Parasite load, morphometrical parameters of inflammation and apoptotic index of inflammatory cells were higher in clinically affected animals and were related to clinical manifestations. Apoptotic index and morphometric parameters of the inflammatory infiltrate in undamaged ear skin were positively correlated with parasite load. Apoptotic and non-apoptotic Leishmania amastigotes were observed within neutrophils and macrophages. Leishmania amastigotes were positive for Bax, a marker for apoptosis, by immunohistochemistry. Morphological characteristics of apoptosis and autophagy in Leishmania amastigotes were observed only in phagocytes of clinically affected dogs. Positive correlations were found between histomorphometry and clinical manifestations. Our results showed that apoptosis and autophagy in Leishmania amastigotes may be related to both the increase in parasite load and apoptotic index in inflammatory cells, and with the intensity of the inflammatory response in clinically affected dogs. Thus, our study suggests that apoptotic and autophagy Leishmania within phagocytes may have facilitate the survival of the parasite and it appears to play an important role in the process of Leishmania infection.
Collapse
Affiliation(s)
- Barbara Laurice Araújo Verçosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil; Faculdade de Ciências da Saúde Pitágoras, Campus Codó, Codó, Maranhão, Brazil.
| | | | - Ana Lys Bezerra Barradas Mineiro
- Departamento de Clínica e Cirurgia Veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Maria Norma Melo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Mendes IC, Dos Reis Bertoldo W, Miranda-Junior AS, Assis AVD, Repolês BM, Ferreira WRR, Chame DF, Souza DDL, Pavani RS, Macedo AM, Franco GR, Serra E, Perdomo V, Menck CFM, da Silva Leandro G, Fragoso SP, Barbosa Elias MCQ, Machado CR. DNA lesions that block transcription induce the death of Trypanosoma cruzi via ATR activation, which is dependent on the presence of R-loops. DNA Repair (Amst) 2024; 141:103726. [PMID: 39096697 DOI: 10.1016/j.dnarep.2024.103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 08/05/2024]
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease and a peculiar eukaryote with unique biological characteristics. DNA damage can block RNA polymerase, activating transcription-coupled nucleotide excision repair (TC-NER), a DNA repair pathway specialized in lesions that compromise transcription. If transcriptional stress is unresolved, arrested RNA polymerase can activate programmed cell death. Nonetheless, how this parasite modulates these processes is unknown. Here, we demonstrate that T. cruzi cell death after UV irradiation, a genotoxic agent that generates lesions resolved by TC-NER, depends on active transcription and is signaled mainly by an apoptotic-like pathway. Pre-treated parasites with α-amanitin, a selective RNA polymerase II inhibitor, become resistant to such cell death. Similarly, the gamma pre-irradiated cells are more resistant to UV when the transcription processes are absent. The Cockayne Syndrome B protein (CSB) recognizes blocked RNA polymerase and can initiate TC-NER. Curiously, CSB overexpression increases parasites' cell death shortly after UV exposure. On the other hand, at the same time after irradiation, the single-knockout CSB cells show resistance to the same treatment. UV-induced fast death is signalized by the exposition of phosphatidylserine to the outer layer of the membrane, indicating a cell death mainly by an apoptotic-like pathway. Furthermore, such death is suppressed in WT parasites pre-treated with inhibitors of ataxia telangiectasia and Rad3-related (ATR), a key DDR kinase. Signaling for UV radiation death may be related to R-loops since the overexpression of genes associated with the resolution of these structures suppress it. Together, results suggest that transcription blockage triggered by UV radiation activates an ATR-dependent apoptosis-like mechanism in T. cruzi, with the participation of CSB protein in this process.
Collapse
Affiliation(s)
- Isabela Cecilia Mendes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Willian Dos Reis Bertoldo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Adalberto Sales Miranda-Junior
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Antônio Vinícius de Assis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Bruno Marçal Repolês
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Wesley Roger Rodrigues Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Daniela Ferreira Chame
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Daniela De Laet Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Raphael Souza Pavani
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, MG, São Paulo, SP 05503-900, Brazil
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil
| | - Esteban Serra
- Instituto de Biología Molecular y Celular de Rosario, CONICET, 2000 Rosario, Santa Fe, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina
| | - Virginia Perdomo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP 05508-900, Brazil
| | - Giovana da Silva Leandro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP 05508-900, Brazil
| | | | | | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil.
| |
Collapse
|
3
|
Lê HG, Hwang BS, Choi JS, Jeong YT, Kang JM, Võ TC, Oh YT, Na BK. Iris setosa Pall. ex Link Extract Reveals Amoebicidal Activity against Acanthamoeba castellanii and Acanthamoeba polyphaga with Low Toxicity to Human Corneal Cells. Microorganisms 2024; 12:1658. [PMID: 39203500 PMCID: PMC11356916 DOI: 10.3390/microorganisms12081658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Acanthamoeba keratitis (AK) is a sight-threatening and difficult-to-treat ocular infection. The significant side effects of current AK treatments highlight the urgent need to develop a safe and effective AK medication. In this study, the amoebicidal activity of Iris setosa Pall. ex Link extract (ISE) against Acanthamoeba was examined and its specific amoebicidal mechanism was explored. ISE induced significant morphological changes in Acanthamoeba trophozoites and exhibited amoebicidal activity against A. castellanii and A. polyphaga. ISE was further fractionated into five subfractions by sequential extraction with n-hexane, chloroform, ethyl acetate, n-butanol, and water, and their amoebicidal activities and underlying amoebicidal mechanisms were investigated. The n-butanol subfraction of ISE (ISE-BuOH) displayed selective amoebicidal activity against the Acanthamoeba species with minimal cytotoxicity in human corneal cells (HCE-2). ISE-BuOH triggered apoptosis-like programmed cell death (PCD) in amoebae, characterized by DNA fragmentation, increased ROS production, and caspase-3 activity elevation. ISE-BuOH also demonstrated a partial cysticidal effect against the amoeba species. ISE-BuOH could be a promising candidate in the development of therapeutic drugs for AK.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (B.S.H.); (J.-S.C.); (Y.T.J.)
| | - Ji-Su Choi
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (B.S.H.); (J.-S.C.); (Y.T.J.)
| | - Yong Tae Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (B.S.H.); (J.-S.C.); (Y.T.J.)
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Young Taek Oh
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (B.S.H.); (J.-S.C.); (Y.T.J.)
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (H.G.L.); (J.-M.K.); (T.C.V.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
4
|
Diel KAP, Santana Filho PC, Pitol Silveira P, Ribeiro RL, Teixeira PC, Rodrigues Júnior LC, Marinho LC, Romão PRT, von Poser GL. Antiprotozoal potential of Vismia species (Hypericaceae), medicinal plants used to fight cutaneous leishmaniasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118028. [PMID: 38492792 DOI: 10.1016/j.jep.2024.118028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of Vismia (Hypericaceae), known in Brazil as "lacre", are commonly used in traditional Amazonian medicine for the treatment of skin lesions, including those caused by Leishmania infection. AIM OF THE STUDY Hexane extracts from the leaves of Vismia cayennensis, V. gracilis, V. sandwithii and V. guianensis, as well as from the fruits of the latter, in addition to the anthraquinones vismiaquinone, physcion and chrysophanol isolated from these species were explored for their anti-promastigote and anti-amastigote activity on Leishmania amazonensis. MATERIALS AND METHODS Extracts were prepared by static maceration with n-hexane. The compounds, isolated by chromatographic techniques, were identified by spectroscopic methods (1H and 13C NMR). Promastigotes of L.amazonensis were incubated with hexane extracts (1-50 μg/mL) or anthraquinones (1-50 μM) and the parasite survival analyzed. The action of compounds on reactive oxygen species (ROS) production, mitochondrial membrane potential, and membrane integrity of promastigotes were evaluated by flow cytometer, and the cytotoxicity on mammalian cells using MTT assay. Furthermore, the activity of compounds against amastigotes and nitric oxide production were also investigated. RESULTS Vismiaquinone and physcion were obtained from the leaves of V. guianensis. Physcion, as well as chrysophanol, were isolated from V. sandwithii. Vismia cayennensis and V. gracilis also showed vismiaquinone, compound detected in lower quantity in the fruits of V. guianensis. All extracts were active against the parasite, corroborating the popular use. The greatest activity against promastigotes was achieved with V. guianensis extract (IC50 4.3 μg/mL), precisely the most used Vismia species for treating cutaneous leishmaniasis. Vismiaquinone and physcion exhibited relevant activity with IC50 12.6 and 2.6 μM, respectively. Moreover, all extracts and anthraquinones tested induced ROS production, mitochondrial dysfunction, membrane disruption and were able to kill intracellular amastigote forms, being worthy of further in vivo studies as potential antileishmanial drugs. CONCLUSIONS The overall data achieved in the current investigation scientifically validate the traditional use of Vismia species, mainly V. guianensis, as an anti-Leishmania agent. Furthermore, the promising results presented here indicate species of Vismia as potentially useful resources of Brazilian flora for the discovery of therapeutic solutions for neglected diseases.
Collapse
Affiliation(s)
- Kriptsan Abdon Poletto Diel
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Cesar Santana Filho
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pablo Pitol Silveira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafaela Laura Ribeiro
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Coelho Teixeira
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Carlos Rodrigues Júnior
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas C Marinho
- Universidade Federal do Maranhão, Departamento de Biologia, Avenida dos Portugueses 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Pedro Roosevelt Torres Romão
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde, Rua Sarmento Leite 245, Centro Histórico, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Gilsane Lino von Poser
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Madusanka RK, Karunaweera ND, Silva H, Selvapandiyan A. Antimony resistance and gene expression in Leishmania: spotlight on molecular and proteomic aspects. Parasitology 2024; 151:1-14. [PMID: 38012864 PMCID: PMC10941051 DOI: 10.1017/s0031182023001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania parasites with a spectrum of clinical manifestations, ranging from skin lesions to severe visceral complications. Treatment of this infection has been extremely challenging with the concurrent emergence of drug resistance. The differential gene expression and the discrepancies in protein functions contribute to the appearance of 2 distinct phenotypes: resistant and sensitive, but the current diagnostic tools fail to differentiate between them. The identification of gene expression patterns and molecular mechanisms coupled with antimony (Sb) resistance can be leveraged to prompt diagnosis and select the most effective treatment methods. The present study attempts to use comparative expression of Sb resistance-associated genes in resistant and sensitive Leishmania, to disclose their relative abundance in clinical or in vitro selected isolates to gain an understanding of the molecular mechanisms of Sb response/resistance. Data suggest that the analysis of resistance gene expression would verify the Sb resistance or susceptibility only to a certain extent; however, none of the individual expression patterns of the studied genes was diagnostic as a biomarker of Sb response of Leishmania. The findings highlighted will be useful in bridging the knowledge gap and discovering innovative diagnostic tools and novel therapeutic targets.
Collapse
Affiliation(s)
- Rajamanthrilage Kasun Madusanka
- Department of Parasitology, Faculty of Medicine, University of Colombo, No. 25, Kynsey Road, Colombo 8, Sri Lanka
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, No. 25, Kynsey Road, Colombo 8, Sri Lanka
| | - Hermali Silva
- Department of Parasitology, Faculty of Medicine, University of Colombo, No. 25, Kynsey Road, Colombo 8, Sri Lanka
| | - Angamuthu Selvapandiyan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
6
|
Elawad MA, Elkhalifa MEM, Hamdoon AAE, Salim LHM, Ahmad Z, Ayaz M. Natural products derived steroids as potential anti-leishmanial agents; disease prevalence, underlying mechanisms and future perspectives. Steroids 2023; 193:109196. [PMID: 36764565 DOI: 10.1016/j.steroids.2023.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Leishmaniasis is a vector-borne infection caused by protozoan parasites from the genus leishmania and is among the most neglected tropical diseases. It is highly prevalent disease, affecting about 350 million population worldwide. Only limited number of anti-leishmanial agents are approved for clinical use till now and they are associated with side effects and have limited efficacy. Subsequently, natural products based discovery of more safe and effective drugs against leishmania is under scientific consideration. Various studies reported the efficacy of natural products against intracellular and extracellular forms of leishmania species. This work is aimed to evaluate current literature focused on the anti-leihmanial efficacy of steroidal moieties from natural products and their mechanism of action. Compounds including steroidal saponins, steroidal alkaloids and phytosterols were found to exhibit considerable anti-leishmanial efficacy. For instance, steroidal saponin, (25R)-spirost-5-en-3b-ol,3-O-α-rhamnopyranosyl-(1 → 4)-α-rhamnopyranosyl-(1 → 4)-[a-rhamnopyranosyl-(1 → 2)]-glucopyranoside isolated from A. paradoxum has completely eradicated Leishmania major promastigotes at 50 µg mL-1 dose. Spirostanic saponins isolated from Solanum paniculatum L. were effective against Leishmania amazonensis promastigotes. Turgidosterones isolated from Panicum turgidum exhibited high leishmanicidal potentials against Leishmania donovani promastigotes with IC50 of 4.95-8.03 µg mL-1 and even better activity against amastigotes exhibiting an IC50 of 4.50-9.29 µg mL-1. Likewise, racemoside-A from Asparagus racemosus was found effective against an antimonial sensitive (AG83) and antimonial resistant (GE1F8R) strains of the L. donovani. Moreover, steroidal alkaloids including hookerianamide-1, hookerianamide-H, hookerianamide-J, hookerianamide-K, dehydrosarsalignone, vagenine-A, sarcovagine-C, holaphylline, saracodine, holamine, 15-α hydroxyholamine, holacurtin, N-desmethyl holacurtine and elasticine has exhibited time and dose-dependent efficacy against various strains of leishmania. β-sitosterol was found active against multiple strains of leishmania. These compounds mainly exhibit their therapeutic efficacy via liberation of ROS, mitochondrial depolarization, morphological and ultra-structural changes, accumulation of lipid droplets, depletion of non-protein thiols and triggering apoptotic pathways. In conclusion, leishmaniasis is a major health problem in many countries. Plants-derived steroids moieties have reveled efficacy against leishmaniasis and is a source of lead compounds. Further detailed molecular studies are warranted for the discovery of more effective and safe anti-leishmanial drugs.
Collapse
Affiliation(s)
- Mohammed Ahmed Elawad
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, Saudi Arabia; University of Khartoum, Faculty of Public and Environmental Health, Sudan.
| | - Modawy Elnour Modawy Elkhalifa
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, Saudi Arabia; University of Khartoum, Faculty of Public and Environmental Health, Sudan.
| | - Alashary Adam Eisa Hamdoon
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, Saudi Arabia; University of Khartoum, Faculty of Public and Environmental Health, Sudan.
| | - Liga Hasan Mohammed Salim
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, Saudi Arabia; University of Khartoum, Faculty of Public and Environmental Health, Sudan.
| | - Zeeshan Ahmad
- Department of Pharmacy, Facutly of Biological Sciences, University of Malakand, Chakdara 18000, Dir (L), KPK, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Facutly of Biological Sciences, University of Malakand, Chakdara 18000, Dir (L), KPK, Pakistan.
| |
Collapse
|
7
|
Lamba S, Roy A. Demystifying the potential of inhibitors targeting DNA topoisomerases in unicellular protozoan parasites. Drug Discov Today 2023; 28:103574. [PMID: 37003515 DOI: 10.1016/j.drudis.2023.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
DNA topoisomerases are a group of enzymes omnipresent in all organisms. They maintain the DNA topology during replication, repair, recombination, and transcription. However, the structure of topoisomerase in protozoan parasites differs significantly from that of human topoisomerases; thus, this enzyme acts as a crucial target in drug development against parasitic diseases. Although the therapeutic potential of drugs targeting the parasitic topoisomerase is well known, to manage the shortcomings of currently available therapeutics and the emergence of drug resistance, the discovery of novel antiparasitic molecules is an urgent need. In this review, we describe various investigational and repurposed topoisomerase inhibitors developed against protozoan parasites over the past few years. Teaser: Fatal parasitic diseases are an increasing cause for concern; here, we provide a compilation of different inhibitors targeting DNA topoisomerases, enzymes that are essential for, and unique to, protozoan parasites; therefore, inhibitors are efficient and have few adverse effects.
Collapse
Affiliation(s)
- Swati Lamba
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
8
|
Kamran M, Bhattacharjee R, Das S, Mukherjee S, Ali N. The paradigm of intracellular parasite survival and drug resistance in leishmanial parasite through genome plasticity and epigenetics: Perception and future perspective. Front Cell Infect Microbiol 2023; 13:1001973. [PMID: 36814446 PMCID: PMC9939536 DOI: 10.3389/fcimb.2023.1001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Leishmania is an intracellular, zoonotic, kinetoplastid eukaryote with more than 1.2 million cases all over the world. The leishmanial chromosomes are divided into polymorphic chromosomal ends, conserved central domains, and antigen-encoding genes found in telomere-proximal regions. The genome flexibility of chromosomal ends of the leishmanial parasite is known to cause drug resistance and intracellular survival through the evasion of host defense mechanisms. Therefore, in this review, we discuss the plasticity of Leishmania genome organization which is the primary cause of drug resistance and parasite survival. Moreover, we have not only elucidated the causes of such genome plasticity which includes aneuploidy, epigenetic factors, copy number variation (CNV), and post-translation modification (PTM) but also highlighted their impact on drug resistance and parasite survival.
Collapse
Affiliation(s)
| | | | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sohitri Mukherjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | |
Collapse
|
9
|
Goel N, Gupta VK, Garg A, Bhoumik A, Biswas R, Natarajan R, Majumder HK, Jaisankar P. Holanamine, a Steroidal Alkaloid from the Bark of Holarrhena pubescens Wall. ex G. Don Inhibits the Growth of Leishmania donovani by Targeting DNA Topoisomerase 1B. ACS Infect Dis 2023; 9:162-177. [PMID: 36417798 DOI: 10.1021/acsinfecdis.2c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Leishmaniasis is a group of neglected tropical diseases (NTDs) caused by about 20 species of obligate intracellular protozoan parasites of the genus Leishmania, which occurs in cutaneous, mucocutaneous, and visceral forms. Many researchers have sought to utilize natural products for novel and effective treatments to combat many infectious diseases, including leishmaniasis. Holarrhena pubescens Wall. ex G. Don (Apocynaceae) bark is a rich source of bioactive steroidal alkaloids. The total alkaloidal extract (IC50 6.12 ± 0.117 μg/mL), and the isolated alkaloid, holanamine, showed significant antileishmanial activity (IC50 2.66 ± 0.112 μM against AG83 and 3.80 ± 0.126 μM against BHU-575) against the Leishmania donovani parasite, better than miltefosine (IC50 19.61 ± 0.093 μM against AG83 and 23.20 ± 0.094 μM against BHU-575). Holanamine inhibited the L. donovani topoisomerase 1B (LdToP1B) in a non-competitive manner (IC50 2.81 ± 0.105 μM), indicating that it interacts with the free enzyme and enzyme-DNA complex without inhibiting human topoisomerase. Hydrogen bonding and hydrophobic interactions of holanamine with the N-terminal and hinge region of the large subunit of LTop1B is responsible for its potent antileishmanial activity, as shown by docking studies. Treatment with holanamine causes apoptotic-like cell death by generating cellular and mitochondrial reactive oxygen species, disrupting the mitochondrial membrane potential and inducing ultrastructural alterations in the promastigotes. Holanamine effectively clears intracellular amastigotes but minimally affects host macrophages with no significant cytotoxicity in HEK 293 and L929 cell lines. Thus, our studies show that holanamine can further be used to develop effective antileishmanial agents against evolving drug-resistant parasites.
Collapse
Affiliation(s)
- Narender Goel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata700054, India.,Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| | - Vivek Kumar Gupta
- Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| | - Aakriti Garg
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata700054, India
| | - Arpita Bhoumik
- Laboratory of Molecular Parasitology, Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| | - Raju Biswas
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| | - Ramalingam Natarajan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| | - Hemanta K Majumder
- Laboratory of Molecular Parasitology, Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| | - Parasuraman Jaisankar
- Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| |
Collapse
|
10
|
The Anti- Leishmania amazonensis and Anti- Leishmania chagasi Action of Copper(II) and Silver(I) 1,10-Phenanthroline-5,6-dione Coordination Compounds. Pathogens 2023; 12:pathogens12010070. [PMID: 36678418 PMCID: PMC9865435 DOI: 10.3390/pathogens12010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by protozoa belonging to the Leishmania genus. Notably, the search for new, promising and potent anti-Leishmania compounds remains a major goal due to the inefficacy of the available drugs used nowadays. In the present work, we evaluated the effects of 1,10-phenanthroline-5,6-dione (phendione) coordinated to silver(I), [Ag(phendione)2]ClO4 (Ag-phendione), and copper(II), [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione), as potential drugs to be used in the chemotherapy against Leishmania amazonensis and Leishmania chagasi. The results showed that promastigotes treated with Ag-phendione and Cu-phendione presented a significant reduction in the proliferation rate. The IC50 values calculated to Ag-phendione and Cu-phendione, respectively, were 7.8 nM and 7.5 nM for L. amazonensis and 24.5 nM and 20.0 nM for L. chagasi. Microscopical analyses revealed several relevant morphological changes in promastigotes, such as a rounding of the cell body and a shortening/loss of the single flagellum. Moreover, the treatment promoted alterations in the unique mitochondrion of these parasites, inducing significant reductions on both metabolic activity and membrane potential parameters. All these cellular perturbations induced the triggering of apoptosis-like death in these parasites, as judged by the (i) increased percentage of annexin-positive/propidium iodide negative cells, (ii) augmentation in the proportion of parasites in the sub-G0/G1 phase and (iii) DNA fragmentation. Finally, the test compounds showed potent effects against intracellular amastigotes; contrarily, these molecules were well tolerated by THP-1 macrophages, which resulted in excellent selective index values. Overall, the results highlight new selective and effective drugs against Leishmania species, which are important etiological agents of both cutaneous (L. amazonensis) and visceral (L. chagasi) leishmaniasis in a global perspective.
Collapse
|
11
|
In silico insight of cell-death-related proteins in photosynthetic cyanobacteria. Arch Microbiol 2022; 204:511. [PMID: 35864385 DOI: 10.1007/s00203-022-03130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
Cyanobacteria are a large group of ubiquitously found photosynthetic prokaryotes that are constantly exposed to different kinds of stressors of varying intensities and seem to overcome these in a precise and regulated manner. However, a high dose and duration of given stress induce cell death in a few select cyanobacteria, mainly to protect other cells (altruism). Despite the recent findings for the presence of biochemical and molecular hallmarks of cell death in cyanobacteria, it is yet a sketchily understood phenomenon. Regulation of metacaspase-like genes during Programmed Cell Death suggests it to be a genetically controlled mechanism like other eukaryotes. In addition to providing a comprehensive understanding of the current status of cell death in cyanobacteria, this review has used in silico analyses to directly compare the existence of some important molecular players operating in the intrinsic and extrinsic apoptotic pathways. Phylogenetic trees for all sequences indicate a cluster with a common ancestry and also a divergence from sequences of eukaryotic origin. To the best of our knowledge, such a comparison (except for orthocaspases) has not been attempted earlier and hopes to encourage workers in the field to investigate this altruistic phenomenon in detail.
Collapse
|
12
|
Blastocystis hominis undergoing programmed cell death via cytotoxic gamma irradiation. Exp Parasitol 2022; 240:108341. [DOI: 10.1016/j.exppara.2022.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
|
13
|
Pedra-Rezende Y, Macedo IS, Midlej V, Mariante RM, Menna-Barreto RFS. Different Drugs, Same End: Ultrastructural Hallmarks of Autophagy in Pathogenic Protozoa. Front Microbiol 2022; 13:856686. [PMID: 35422792 PMCID: PMC9002357 DOI: 10.3389/fmicb.2022.856686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023] Open
Abstract
Protozoan parasites interact with a wide variety of organisms ranging from bacteria to humans, representing one of the most common causes of parasitic diseases and an important public health problem affecting hundreds of millions of people worldwide. The current treatment for these parasitic diseases remains unsatisfactory and, in some cases, very limited. Treatment limitations together with the increased resistance of the pathogens represent a challenge for the improvement of the patient’s quality of life. The continuous search for alternative preclinical drugs is mandatory, but the mechanisms of action of several of these compounds have not been described. Electron microscopy is a powerful tool for the identification of drug targets in almost all cellular models. Interestingly, ultrastructural analysis showed that several classes of antiparasitic compounds induced similar autophagic phenotypes in trypanosomatids, trichomonadids, and apicomplexan parasites as well as in Giardia intestinalis and Entamoeba spp. with the presence of an increased number of autophagosomes as well as remarkable endoplasmic reticulum profiles surrounding different organelles. Autophagy is a physiological process of eukaryotes that maintains homeostasis by the self-digestion of nonfunctional organelles and/or macromolecules, limiting redundant and damaged cellular components. Here, we focus on protozoan autophagy to subvert drug effects, discussing its importance for successful chemotherapy.
Collapse
Affiliation(s)
- Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Isabela S Macedo
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
14
|
Gouveia ALA, Santos FAB, Alves LC, Cruz-Filho IJ, Silva PR, Jacob ITT, Soares JCS, Santos DKDN, Souza TRCL, Oliveira JF, Lima MDCA. Thiazolidine derivatives: In vitro toxicity assessment against promastigote and amastigote forms of Leishmania infantum and ultrastructural study. Exp Parasitol 2022; 236-237:108253. [PMID: 35381223 DOI: 10.1016/j.exppara.2022.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
Neglected diseases, such as Leishmaniasis, constitute a group of communicable diseases that occur mainly in tropical countries. Considered a public health problem with limited treatment. Therefore, there is a need for new therapies. In this sense, our proposal was to evaluate in vitro two series of thiazolidine compounds (7a-7e and 8a-8e) against Leishmania infantum. We performed in vitro evaluations through macrophage cytotoxicity assays (J774) and nitric oxide production, activity against promastigotes and amastigotes, as well as ultrastructural analyzes in promastigotes. In the evaluation of cytotoxicity, the thiazolidine compounds presented CC50 values between 8.52 and 126.83 μM. Regarding the evaluation against the promastigote forms, the IC50 values ranged between 0.42 and 142.43 μM. Compound 7a was the most promising, as it had the lowest IC50. The parasites treated with compound 7a showed several changes, such as cell body shrinkage, shortening and loss of the flagellum, intense mitochondrial edema and cytoplasmic vacuolization, leading the parasite to cell inviability. In assays against the amastigote forms, the compound showed a low IC50 (0.65 μM). These results indicate that compound 7a was efficient for both evolutionary forms of the parasite. In silico studies suggest that the compound has good oral bioavailability. These results show that compound 7a is a potential drug candidate for the treatment of Leishmaniasis.
Collapse
Affiliation(s)
- Allana L A Gouveia
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Fábio A B Santos
- Aggeu Magalhães Institut. Oswaldo Cruz Foundation (IAM-FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Luiz C Alves
- Aggeu Magalhães Institut. Oswaldo Cruz Foundation (IAM-FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Iranildo José Cruz-Filho
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Paula R Silva
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Iris T T Jacob
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - José Cleberson S Soares
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Dayane K D N Santos
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Tulio Ricardo C L Souza
- Rural University of Pernambuco, Academic Unit of Belo Jardim, 55156-580, Belo Jardim, PE, Brazil
| | - Jamerson F Oliveira
- University for the International Integration of Afro-Brazilian Lusophony (UNILAB), 62790-970, Redenção, CE, Brazil
| | - Maria do Carmo A Lima
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil.
| |
Collapse
|
15
|
Islamuddin M, Ali A, Afzal O, Ali A, Ali I, Altamimi AS, Alamri MA, Kato K, Parveen S. Thymoquinone Induced Leishmanicidal Effect via Programmed Cell Death in Leishmania donovani. ACS OMEGA 2022; 7:10718-10728. [PMID: 35382308 PMCID: PMC8973115 DOI: 10.1021/acsomega.2c00467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Visceral leishmaniasis (VL) or kala-azar is a vector-borne dreaded protozoal infection that is caused by the parasite Leishmania donovani. With increases in the dramatic infection rates, present drug toxicity, resistance, and the absence of an approved vaccine, the development of new antileishmanial compounds from plant sources remains the keystone for the control of visceral leishmaniasis. In this study, we evaluated the leishmanicidal effect of thymoquinone against L. donovani with an in vitro and ex vivo model. Thymoquinone exhibited potent antipromastigote activity with IC50 and IC90 concentrations achieved at 6.33 ± 1.21 and 20.71 ± 2.15 μM, respectively, whereas the IC50 and IC90 concentrations were found to be 7.83 ± 1.65 and 27.25 ± 2.20 μM against the intramacrophagic form of amastigotes, respectively. Morphological changes in promastigotes and growth reversibility study following treatment confirmed the leishmanicidal effect of thymoquinone. Further, thymoquinone exhibited leishmanicidal activities against L. donovani promastigote through cytoplasmic shrinkage, membrane blebbing, chromatin condensation, cellular and nuclear shrinkage, and DNA fragmentation, as observed under scanning and transmission electron microscopy analyses. The antileishmanial activity was exerted via programmed cell death as proved by exposure of phosphatidylserine, DNA nicking by TUNEL assay, and loss of mitochondrial membrane potential. Thymoquinone at a concentration of 200 μM was devoid of any cytotoxic effects against mammalian macrophage cells. Thymoquinone showed strong leishmanicidal activity against L. donovani, which is mediated via an apoptosis mode of parasitic cell death, and accordingly, thymoquinone may be the source of a new lead molecule for the cure of VL.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Molecular
Virology Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Laboratory
of Sustainable Animal Environment, Graduate School of Agricultural
Science, Tohoku University, Miyagi 989-6711, Japan
| | - Abuzer Ali
- Department
of Pharmacognosy, College of Pharmacy, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Amena Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Intzar Ali
- Department
of Microbiology, Hamdard Institute of Medical
Sciences & Research, New Delhi 110062, India
| | | | - Mubarak A. Alamri
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Kentaro Kato
- Laboratory
of Sustainable Animal Environment, Graduate School of Agricultural
Science, Tohoku University, Miyagi 989-6711, Japan
| | - Shama Parveen
- Molecular
Virology Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
16
|
Synthesis, Bio-physical and anti-Leishmanial studies of some novel indolo[3,2-a]phenanthridine derivatives. Bioorg Chem 2022; 123:105766. [DOI: 10.1016/j.bioorg.2022.105766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/25/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023]
|
17
|
Šoln K, Klemenčič M. Determination of Caspase-Like Activities in Roots by the Use of Fluorogenic Substrates. Methods Mol Biol 2022; 2447:119-126. [PMID: 35583777 DOI: 10.1007/978-1-0716-2079-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Activity of proteases in tissues can be influenced by various intrinsic and extrinsic factors. One of the activities that is regularly monitored in organisms ranging from prokaryotes to metazoans is the -aspase-like activity: activity of proteases, which cleave their substrates after the negatively charged amino acid residues, especially the aspartic acid. This activity is also known as the caspase-like activity, since the caspases, metazoan cysteine proteases, are one of the best characterized proteases with Asp-directed activities. Plants do not contain caspases; however, various plant proteases have been shown to exhibit caspase-like activity including saspases, phytaspases, and legumains (VPEs). The activity of these proteases can change in plants in response to stress. Here we present a simple method for monitoring of the caspase-like protease activity in roots, which have been treated with allelopathic extracts, using a set of commercially available caspase substrates. We show that activity towards some, but not all, caspase substrates is upregulated in treated but not control samples. The protocol can be used also for other plant tissues as well as for other stressors.
Collapse
Affiliation(s)
- Katarina Šoln
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Das A, Kamran M, Ali N. HO-3867 Induces ROS-Dependent Stress Response and Apoptotic Cell Death in Leishmania donovani. Front Cell Infect Microbiol 2021; 11:774899. [PMID: 34926321 PMCID: PMC8677699 DOI: 10.3389/fcimb.2021.774899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Lack of vaccine and increasing chemotherapeutic toxicities currently necessitate the development of effective and safe drugs against various forms of leishmaniases. We characterized the cellular stress induced by a novel curcumin analogue, HO-3867, encapsulated within the phosphatidylcholine-stearylamine (PC-SA) liposome for the first time against Leishmania. The liposomal formulation of HO-3867 (i.e., PC-SA/HO-3867) initiated oxidative stress-induced apoptosis in L. donovani, revealed by altered cell morphology, phosphatidylserine externalization, mitochondrial depolarization, intracellular lipid accumulation, and cell cycle arrest in promastigotes. Liposomal HO-3867 was observed to be a strong apoptosis inducer in L. donovani and L. major in a dose-dependent manner, yet completely safe for normal murine macrophages. Moreover, PC-SA/HO-3867 treatment induced L. donovani metacaspase and PARP1 activation along with downregulation of the Sir2 gene. PC-SA/HO-3867 arrested intracellular L. donovani amastigote burden in vitro, with reactive oxygen species (ROS) and nitric oxide (NO)-mediated parasite killing. These data suggest that liposomal HO-3867 represents a highly promising and non-toxic nanoparticle-based therapeutic platform against leishmaniasis inspiring further preclinical developments.
Collapse
Affiliation(s)
| | | | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
19
|
Araújo Verçosa BL, Muniz-Junqueira MI, Menezes-Souza D, Mourão Dias Magalhães L, Fujiwara RT, Melo MN, Vasconcelos AC. Enhanced apoptotic index, chemokines and inflammatory recruitment in renal tissues shows relationship with the clinical signs in Leishmania-infected dogs. Vet Parasitol 2021; 300:109611. [PMID: 34763155 DOI: 10.1016/j.vetpar.2021.109611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
Apoptosis is associated with resolution of inflammation. However, apoptosis may also occur in active inflammation, balancing inflammatory recruitment instead of a resolution event. To test that hypothesis, we measured apoptosis and chemokines expression, involved in recruitment of inflammatory cells. Clinical affected and subclinically infected dogs with canine leishmaniosis (CanL) and uninfected controls were assessed. Apoptosis in renal tissue (glomeruli, tubules, and inflammatory infiltrate) and cellularity in inflammatory foci were quantified. Messenger RNA of CCL5, CCL4, MCP-1, MCP-2, Caspase (Casp) 3, Casp 8, Casp 9, Bax, Bcl2 and Fas were quantified by qRT PCR. Clinical affected dogs showed more intense inflammation and higher cellularity in the inflammatory infiltrates than subclinically infected ones, which were higher than controls. Glomerular and tubular cells showed higher apoptotic index in clinical affected dogs when compared to controls. Apoptosis within the inflammatory infiltrates was higher in clinical affected dogs. Bax/Bcl2 ratio and CCL4 showed higher expression in kidney from clinical affected when compared to subclinically infected dogs. Casp 3/CCL4 ratio expression were higher in subclinically infected dogs than in the clinical affected group. Additionally, results suggest that Casp 3/CCL4 ratio is balancing towards an inflammatory recruitment and CCL4 and Bax/Bcl2 ratio expression is associated with active inflammation in clinical affected CanL. Data demonstrate that apoptosis was not always correlated with resolution of inflammation, when a morphometric and a molecular evaluation were performed concomitantly. In kidneys of Leishmania infected dogs, apoptosis and chemokines may be balancing inflammatory recruitment. In conclusion, Bax/Bcl2 ratio, chemokines, Casp 8, Casp 3 and Fas were associated with renal apoptosis, active inflammation and increased inflammatory recruitment observed in clinical affected animals, influencing the clinical presentation of leishmaniosis.
Collapse
Affiliation(s)
- Barbara Laurice Araújo Verçosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.
| | | | - Daniel Menezes-Souza
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luísa Mourão Dias Magalhães
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Norma Melo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
20
|
van Midden KP, Peric T, Klemenčič M. Plant type I metacaspases are proteolytically active proteases despite their hydrophobic nature. FEBS Lett 2021; 595:2237-2247. [PMID: 34318487 DOI: 10.1002/1873-3468.14165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022]
Abstract
Plant metacaspases type I (MCA-Is), the closest structural homologs of caspases, are key proteases in stress-induced regulated cell death processes in plants. However, no plant MCA-Is have been characterized in vitro to date. Here, we show that only plant MCA-Is contain a highly hydrophobic loop within the C terminus of their p10 domain. When removed, soluble and proteolytically active plant MCA-Is can be designed and recombinantly produced. We show that the activity of MCA-I depends on calcium ions and that removal of the hydrophobic loop does not affect cleavage and covalent binding to its inhibitor SERPIN. This novel approach will finally allow the development of tools to detect and manipulate the activity of these cysteine proteases in vivo and in planta.
Collapse
Affiliation(s)
- Katarina Petra van Midden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Tanja Peric
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| |
Collapse
|
21
|
Memariani H, Memariani M. Melittin as a promising anti-protozoan peptide: current knowledge and future prospects. AMB Express 2021; 11:69. [PMID: 33983454 PMCID: PMC8119515 DOI: 10.1186/s13568-021-01229-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Protozoan diseases such as malaria, leishmaniasis, Chagas disease, and sleeping sickness still levy a heavy toll on human lives. Deplorably, only few classes of anti-protozoan drugs have thus far been developed. The problem is further compounded by their intrinsic toxicity, emergence of drug resistance, and the lack of licensed vaccines. Thus, there is a genuine exigency to develop novel anti-protozoan medications. Over the past years, melittin, the major constituent in the venom of European honeybee Apis mellifera, has gathered the attention of researchers due to its potential therapeutic applications. Insofar as we are aware, there has been no review pertinent to anti-protozoan properties of melittin. The present review outlines the current knowledge about anti-protozoan effects of melittin and its underlying mechanisms. The peptide has proven to be efficacious in killing different protozoan parasites such as Leishmania, Plasmodium, Toxoplasma, and Trypanosoma in vitro. Apart from direct membrane-disruptive activity, melittin is capable of destabilizing calcium homeostasis, reducing mitochondrial membrane potential, disorganizing kinetoplast DNA, instigating apoptotic cell death, and induction of autophagy in protozoan pathogens. Emerging evidence suggests that melittin is a promising candidate for future vaccine adjuvants. Transmission-blocking activity of melittin against vector-borne pathogens underscores its potential utility for both transgenic and paratransgenic manipulations. Nevertheless, future research should focus upon investigating anti-microbial activities of melittin, alone or in combination with the current anti-protozoan medications, against a far broader spectrum of protozoan parasites as well as pre-clinical testing of the peptide in animal models.
Collapse
|
22
|
Macedo CM, Saraiva FMDS, Paula JIO, Nascimento SDB, Costa DDSDS, Costa PRR, Dias AG, Paes MC, Nogueira NP. The Potent Trypanocidal Effect of LQB303, a Novel Redox-Active Phenyl-Tert-Butyl-Nitrone Derivate That Causes Mitochondrial Collapse in Trypanosoma cruzi. Front Microbiol 2021; 12:617504. [PMID: 33935988 PMCID: PMC8081855 DOI: 10.3389/fmicb.2021.617504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Chagas disease, which is caused by Trypanosoma cruzi, establishes lifelong infections in humans and other mammals that lead to severe cardiac and gastrointestinal complications despite the competent immune response of the hosts. Furthermore, it is a neglected disease that affects 8 million people worldwide. The scenario is even more frustrating since the main chemotherapy is based on benznidazole, a drug that presents severe side effects and low efficacy in the chronic phase of the disease. Thus, the search for new therapeutic alternatives is urgent. In the present study, we investigated the activity of a novel phenyl-tert-butyl-nitrone (PBN) derivate, LQB303, against T. cruzi. LQB303 presented trypanocidal effect against intracellular [IC50/48 h = 2.6 μM] and extracellular amastigotes [IC50/24 h = 3.3 μM] in vitro, leading to parasite lysis; however, it does not present any toxicity to host cells. Despite emerging evidence that mitochondrial metabolism is essential for amastigotes to grow inside mammalian cells, the mechanism of redox-active molecules that target T. cruzi mitochondrion is still poorly explored. Therefore, we investigated if LQB303 trypanocidal activity was related to the impairment of the mitochondrial function of amastigotes. The investigation showed there was a significant decrease compared to the baseline oxygen consumption rate (OCR) of LQB303-treated extracellular amastigotes of T. cruzi, as well as reduction of “proton leak” (the depletion of proton motive force by the inhibition of F1Fo ATP synthase) and “ETS” (maximal oxygen consumption after uncoupling) oxygen consumption rates. Interestingly, the residual respiration (“ROX”) enhanced about three times in LQB303-treated amastigotes. The spare respiratory capacity ratio (SRC: cell ability to meet new energy demands) and the ATP-linked OCR were also impaired by LQB303 treatment, correlating the trypanocidal activity of LQB303 with the impairment of mitochondrial redox metabolism of amastigotes. Flow cytometric analysis demonstrated a significant reduction of the ΔΨm of treated amastigotes. LQB303 had no significant influence on the OCR of treated mammalian cells, evidencing its specificity against T. cruzi mitochondrial metabolism. Our results suggest a promising trypanocidal activity of LQB303, associated with parasite bioenergetic inefficiency, with no influence on the host energy metabolism, a fact that may point to an attractive alternative therapy for Chagas disease.
Collapse
Affiliation(s)
- Carolina Machado Macedo
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francis Monique de Souza Saraiva
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica Isis Oliveira Paula
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen de Brito Nascimento
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Hematologia, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | | | | | - Ayres Guimarães Dias
- Departamento de Química Orgânica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Cristina Paes
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Natália Pereira Nogueira
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
23
|
The HIV - 1 protease inhibitor Amprenavir targets Leishmania donovani topoisomerase I and induces oxidative stress-mediated programmed cell death. Parasitol Int 2021; 82:102287. [PMID: 33515743 DOI: 10.1016/j.parint.2021.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/19/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022]
Abstract
The global prevalence of HIV is a major challenge for the control of visceral leishmaniasis. Although the effectiveness and usefulness of amprenavir (APV) are well studied in anti-retroviral regimens, very little is known on HIV/VL-co-infected patients. In the present study, we report for the first time the protective efficacy of APV against visceral leishmaniasis by inhibition of DNA Topoisomerase I (LdTOP1LS) and APV-induced downstream pathway in programmed cell death (PCD). During the early phase of activation, reactive oxygen species (ROS) is increased inside the cells, which causes subsequent elevation of lipid peroxidation. Endogenous ROS formation and lipid peroxidation cause eventual depolarization of mitochondrial membrane potential (ΔΨm). Furthermore, the release of cytochrome c and activation of CED3/CPP32 group of proteases lead to the formation of oxidative DNA lesions followed by DNA fragmentation. The promising in vitro and ex vivo results promoted to substantiate further by in vivo animal experiment, which showed a significant reduction of splenic and hepatic parasites burden compared to infected controls. Interestingly, APV selectively targets LdTOPILS and does not inhibit the catalytic activity of human topoisomerase I (hTopI). Moreover, based on the cytotoxicity test APV is not toxic for host macrophage cells, which is correlated with non-responsiveness of inhibition of catalytic activity of hTopI. Taken together, this study provides the opportunity for discovering and evaluating newer potential molecular therapeutic targets for drug designing. The present study might be exploited in future as important therapeutics, which will be useful for treatment of VL as well as HIV-VL co-infection.
Collapse
|
24
|
Sharma S, Ahmad F, Singh A, Rathaur S. Role of anti-filarial drugs in inducing ER stress mediated signaling in bovine filarial parasitosis Setaria cervi. Vet Parasitol 2021; 290:109357. [PMID: 33516120 DOI: 10.1016/j.vetpar.2021.109357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 01/04/2023]
Abstract
In this ex vivo study, S. cervi parasitoses were treated with Ivermectin (50 μM), Albendazole (200 μM) alone and Ivermectin + Albendazole (50 + 200 μM) at 37°C for 8 h and the motility and viability of the parasitoses were evaluated. Individually both drugs Ivermectin (Iver) and Albendazole (Alb) are reported to affect the function and integrity of ER, however till date, no reports are available on the functional changes in ER due to a combined Iver and Alb treatment of bovine helminth parasitosis. Here, we report the lethal effect of a combination treatment of Iver and Alb against adult bovine filarial parasitosis Setaria cervi. The underlying mechanism of drug action was elucidated by performing a systematic biochemical, molecular and proteomics based study. Altered calcium homeostasis in drug treated parasitoses lead to reduction in levels of total Endoplasmic Reticulum (ER) calcium by 50 % and 61 % and elevation by 50 % and 63 % in cytosol in Iver alone and Iver + Alb treated parasitoses respectively. Further, it was found that upregulated expression of ER localized GRP94, galactosyltransferase and glycosyltransferase activity in addition to reduction in activity of PDI indicated ER stress mechanisms being operative under combined drug treatment. Marked rise of 79 % reactive oxygen species and reduced antioxidant levels induced oxidative stress in drug treated parasitosis. The collective effect of both ER and oxidative stress might have triggered apoptosis, as evidenced by the elevated calpain activity, reduction of 67 % in cytochrome c oxidase and 83 % rise in caspase-3 activity in the Iver + Alb treated parasitoses respectively. The ER proteome analysis by 2D gel electrophoresis revealed 76 spots in the control and 56 spots in the treated proteome. A MALDI-MS/MS analysis of some of the differentially expressed spots of the combination drug treated parasitoses identified glucuronosyltransferase as a major upregulated protein with a fold change of 1.81. Trafficking protein, acyl transferase, MATH involved in protein folding were also found to be downregulated. Thus, this study based on biochemical and proteomic approaches indicates that a combination of anti-filarial drugs Iver and Alb can alter calcium homeostasis in bovine filarial parasitosis leading to induction of ER stress culminating into apoptosis.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faiyaz Ahmad
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sushma Rathaur
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
25
|
Karampetsou K, Koutsoni OS, Gogou G, Angelis A, Skaltsounis LA, Dotsika E. Total Phenolic Fraction (TPF) from Extra Virgin Olive Oil: Induction of apoptotic-like cell death in Leishmania spp. promastigotes and in vivo potential of therapeutic immunomodulation. PLoS Negl Trop Dis 2021; 15:e0008968. [PMID: 33428610 PMCID: PMC7799795 DOI: 10.1371/journal.pntd.0008968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Leishmaniasis is a serious multifactorial parasitic disease with limited treatment options. Current chemotherapy is mainly consisted of drugs with serious drawbacks such as toxicity, variable efficacy and resistance. Alternative bioactive phytocompounds may provide a promising source for discovering new anti-leishmanial drugs. Extra Virgin Olive Oil (EVOO), a key-product in the Mediterranean diet, is rich in phenols which are associated with anti-inflammatory, anti-cancer and anti-microbial effects. In this study, we investigate the anti-leishmanial effect of Total Phenolic Fraction (TPF) derived from EVOO in both in vitro and in vivo systems by investigating the contributing mechanism of action. METHODOLOGY/PRINCIPAL FINDINGS We tested the ability of TPF to cause apoptotic-like programmed cell death in L. infantum and L. major exponential-phase promastigotes by evaluating several apoptotic indices, such as reduction of proliferation rate, sub-G0/G1 phase cell cycle arrest, phosphatidylserine externalization, mitochondrial transmembrane potential disruption and increased ROS production, by using flow cytometry and microscopy techniques. Moreover, we assessed the therapeutic effect of TPF in L. major-infected BALB/c mice by determining skin lesions, parasite burden in popliteal lymph nodes, Leishmania-specific antibodies and biomarkers of tissue site cellular immune response, five weeks post-treatment termination. Our results show that TPF triggers cell-cycle arrest and apoptotic-like changes in Leishmania spp. promastigotes. Moreover, TPF treatment induces significant reduction of parasite burden in draining lymph nodes together with an antibody profile indicative of the polarization of Th1/Th2 immune balance towards the protective Th1-type response, characterized by the presence of IFN-γ-producing CD4+ T-cells and increased Tbx21/GATA-3 gene expression ratio in splenocytes. CONCLUSIONS/SIGNIFICANCE TPF exhibits chemotherapeutic anti-leishmanial activity by inducing programmed cell death on cell-free promastigotes and immunomodulatory properties that induce in vivo T cell-mediated responses towards the protective Th1 response in experimental cutaneous leishmaniasis. These findings enable deeper understanding of TPF's dual mode of action that encourages further studies.
Collapse
Affiliation(s)
- Kalliopi Karampetsou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga S. Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Gogou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros-Alexios Skaltsounis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
26
|
Yadav S, Ali V, Singh Y, Kanojia S, Goyal N. Leishmania donovani chaperonin TCP1γ subunit protects miltefosine induced oxidative damage. Int J Biol Macromol 2020; 165:2607-2620. [PMID: 33736277 DOI: 10.1016/j.ijbiomac.2020.10.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
T-complex protein-1 (TCP1) is a chaperonin protein known to fold various proteins like actin and tubulin. In Leishmania donovani only one subunit of TCP1 that is gamma subunit (LdTCP1γ) has been functionally characterized. It not only performs ATP dependent protein folding but is also essential for survival and virulence. The present work demonstrates that LdTCP1γ also has a role in miltefosine resistance. Overexpression of LdTCP1γ in L. donovani promastigotes results in decreased sensitivity of parasites towards miltefosine, while single-allele replacement mutants exhibited increased sensitivity as compared to wild-type promastigotes. This response was specific to miltefosine with no cross-resistance to other drugs. The LdTCP1γ-mediated drug resistance was directly related to miltefosine-induced apoptotic death of the parasite, as was evidenced by 2 to 3-fold decrease in cell death parameters in overexpressing cells and >2-fold increase in single-allele replacement mutants. Further, deciphering the mechanism revealed that resistance of overexpressing cells was associated with efficient ROS neutralization due to increased levels of thiols and upregulation of cytosolic tryparedoxin peroxidase (cTxnPx). Further, modulation of LdTCP1γ expression in parasite also modulates the levels of proinflammatory cytokine (TNF-α) and anti-inflammatory cytokine (IL-10) of the host macrophages. The study provides evidence for the involvement of a chaperonin protein LdTCP1γ in the protection against miltefosine induced oxidative damage and reveals the fundamental role of LdTCP1γ in parasite biology.
Collapse
Affiliation(s)
- Shailendra Yadav
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, India-800007
| | - Yatendra Singh
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sanjeev Kanojia
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Neena Goyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Pramanik PK, Chakraborti S, Bagchi A, Chakraborti T. Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Sci Rep 2020; 10:20440. [PMID: 33235245 PMCID: PMC7686382 DOI: 10.1038/s41598-020-77066-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis, a major neglected tropical disease, affects millions of individuals worldwide. Among the various clinical forms, visceral leishmaniasis (VL) is the deadliest. Current antileishmanial drugs exhibit toxicity- and resistance-related issues. Therefore, advanced chemotherapeutic alternatives are in demand, and currently, plant sources are considered preferable choices. Our previous report has shown that the chloroform extract of Corchorus capsularis L. leaves exhibits a significant effect against Leishmania donovani promastigotes. In the current study, bioassay-guided fractionation results for Corchorus capsularis L. leaf-derived β-sitosterol (β-sitosterolCCL) were observed by spectroscopic analysis (FTIR, 1H NMR, 13C NMR and GC–MS). The inhibitory efficacy of this β-sitosterolCCL against L. donovani promastigotes was measured (IC50 = 17.7 ± 0.43 µg/ml). β-SitosterolCCL significantly disrupts the redox balance via intracellular ROS production, which triggers various apoptotic events, such as structural alteration, increased storage of lipid bodies, mitochondrial membrane depolarization, externalization of phosphatidylserine and non-protein thiol depletion, in promastigotes. Additionally, the antileishmanial activity of β-sitosterolCCL was validated by enzyme inhibition and an in silico study in which β-sitosterolCCL was found to inhibit Leishmania donovani trypanothione reductase (LdTryR). Overall, β-sitosterolCCL appears to be a novel inhibitor of LdTryR and might represent a successful approach for treatment of VL in the future.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
28
|
Pinart M, Rueda JR, Romero GA, Pinzón-Flórez CE, Osorio-Arango K, Silveira Maia-Elkhoury AN, Reveiz L, Elias VM, Tweed JA. Interventions for American cutaneous and mucocutaneous leishmaniasis. Cochrane Database Syst Rev 2020; 8:CD004834. [PMID: 32853410 PMCID: PMC8094931 DOI: 10.1002/14651858.cd004834.pub3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND On the American continent, cutaneous and mucocutaneous leishmaniasis (CL and MCL) are diseases associated with infection by several species of Leishmania parasites. Pentavalent antimonials remain the first-choice treatment. There are alternative interventions, but reviewing their effectiveness and safety is important as availability is limited. This is an update of a Cochrane Review first published in 2009. OBJECTIVES To assess the effects of interventions for all immuno-competent people who have American cutaneous and mucocutaneous leishmaniasis (ACML). SEARCH METHODS We updated our database searches of the Cochrane Skin Group Specialised Register, CENTRAL, MEDLINE, Embase, LILACS and CINAHL to August 2019. We searched five trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) assessing either single or combination treatments for ACML in immuno-competent people, diagnosed by clinical presentation and Leishmania infection confirmed by smear, culture, histology, or polymerase chain reaction on a biopsy specimen. The comparators were either no treatment, placebo only, or another active compound. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Our key outcomes were the percentage of participants 'cured' at least three months after the end of treatment, adverse effects, and recurrence. We used GRADE to assess evidence certainty for each outcome. MAIN RESULTS We included 75 studies (37 were new), totalling 6533 randomised participants with ATL. The studies were mainly conducted in Central and South America at regional hospitals, local healthcare clinics, and research centres. More male participants were included (mean age: roughly 28.9 years (SD: 7.0)). The most common confirmed species were L. braziliensis, L. panamensis, and L. mexicana. The most assessed interventions and comparators were non-antimonial systemics (particularly oral miltefosine) and antimonials (particularly meglumine antimoniate (MA), which was also a common intervention), respectively. Three studies included moderate-to-severe cases of mucosal leishmaniasis but none included cases with diffuse cutaneous or disseminated CL, considered the severe cutaneous form. Lesions were mainly ulcerative and located in the extremities and limbs. The follow-up (FU) period ranged from 28 days to 7 years. All studies had high or unclear risk of bias in at least one domain (especially performance bias). None of the studies reported the degree of functional or aesthetic impairment, scarring, or quality of life. Compared to placebo, at one-year FU, intramuscular (IM) MA given for 20 days to treat L. braziliensis and L. panamensis infections in ACML may increase the likelihood of complete cure (risk ratio (RR) 4.23, 95% confidence interval (CI) 0.84 to 21.38; 2 RCTs, 157 participants; moderate-certainty evidence), but may also make little to no difference, since the 95% CI includes the possibility of both increased and reduced healing (cure rates), and IMMA probably increases severe adverse effects such as myalgias and arthralgias (RR 1.51, 95% CI 1.17 to 1.96; 1 RCT, 134 participants; moderate-certainty evidence). IMMA may make little to no difference to the recurrence risk, but the 95% CI includes the possibility of both increased and reduced risk (RR 1.79, 95% CI 0.17 to 19.26; 1 RCT, 127 participants; low-certainty evidence). Compared to placebo, at six-month FU, oral miltefosine given for 28 days to treat L. mexicana, L. panamensis and L. braziliensis infections in American cutaneous leishmaniasis (ACL) probably improves the likelihood of complete cure (RR 2.25, 95% CI 1.42 to 3.38), and probably increases nausea rates (RR 3.96, 95% CI 1.49 to 10.48) and vomiting (RR 6.92, 95% CI 2.68 to 17.86) (moderate-certainty evidence). Oral miltefosine may make little to no difference to the recurrence risk (RR 2.97, 95% CI 0.37 to 23.89; low-certainty evidence), but the 95% CI includes the possibility of both increased and reduced risk (all based on 1 RCT, 133 participants). Compared to IMMA, at 6 to 12 months FU, oral miltefosine given for 28 days to treat L. braziliensis, L. panamensis, L. guyanensis and L. amazonensis infections in ACML may make little to no difference to the likelihood of complete cure (RR 1.05, 95% CI 0.90 to 1.23; 7 RCTs, 676 participants; low-certainty evidence). Based on moderate-certainty evidence (3 RCTs, 464 participants), miltefosine probably increases nausea rates (RR 2.45, 95% CI 1.72 to 3.49) and vomiting (RR 4.76, 95% CI 1.82 to 12.46) compared to IMMA. Recurrence risk was not reported. For the rest of the key comparisons, recurrence risk was not reported, and risk of adverse events could not be estimated. Compared to IMMA, at 6 to 12 months FU, oral azithromycin given for 20 to 28 days to treat L. braziliensis infections in ACML probably reduces the likelihood of complete cure (RR 0.51, 95% CI 0.34 to 0.76; 2 RCTs, 93 participants; moderate-certainty evidence). Compared to intravenous MA (IVMA) and placebo, at 12 month FU, adding topical imiquimod to IVMA, given for 20 days to treat L. braziliensis, L. guyanensis and L. peruviana infections in ACL probably makes little to no difference to the likelihood of complete cure (RR 1.30, 95% CI 0.95 to 1.80; 1 RCT, 80 participants; moderate-certainty evidence). Compared to MA, at 6 months FU, one session of local thermotherapy to treat L. panamensis and L. braziliensis infections in ACL reduces the likelihood of complete cure (RR 0.80, 95% CI 0.68 to 0.95; 1 RCT, 292 participants; high-certainty evidence). Compared to IMMA and placebo, at 26 weeks FU, adding oral pentoxifylline to IMMA to treat CL (species not stated) probably makes little to no difference to the likelihood of complete cure (RR 0.86, 95% CI 0.63 to 1.18; 1 RCT, 70 participants; moderate-certainty evidence). AUTHORS' CONCLUSIONS Evidence certainty was mostly moderate or low, due to methodological shortcomings, which precluded conclusive results. Overall, both IMMA and oral miltefosine probably result in an increase in cure rates, and nausea and vomiting are probably more common with miltefosine than with IMMA. Future trials should investigate interventions for mucosal leishmaniasis and evaluate recurrence rates of cutaneous leishmaniasis and its progression to mucosal disease.
Collapse
Affiliation(s)
- Mariona Pinart
- Free time independent Cochrane reviewer, Berlin, Germany
| | - José-Ramón Rueda
- Department of Preventive Medicine and Public Health, University of the Basque Country, Leioa, Spain
| | - Gustavo As Romero
- Center for Tropical Medicine, University of Brasilia, Brasilia, Brazil
| | | | - Karime Osorio-Arango
- Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Ana Nilce Silveira Maia-Elkhoury
- Communicable Diseases and Environmental Determinants of Health (CDE), Neglected, Tropical and Vector Borne Diseases (VT), Pan American Health Organization/ World Health Organization (PAHO/WHO), Rio de Janeiro, Brazil
| | - Ludovic Reveiz
- Evidence and Intelligence for Action in Health Department, Pan American Health Organization (PAHO), Washington DC, USA
| | - Vanessa M Elias
- Evidence and Intelligence for Action in Health Department, Pan American Health Organization (PAHO), Washington DC, USA
| | - John A Tweed
- c/o Cochrane Skin Group, The University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
Bhattacharjee S, Mishra AK. The tale of caspase homologues and their evolutionary outlook: deciphering programmed cell death in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4639-4657. [PMID: 32369588 PMCID: PMC7475262 DOI: 10.1093/jxb/eraa213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD), a genetically orchestrated mechanism of cellular demise, is paradoxically required to support life. As in lower eukaryotes and bacteria, PCD in cyanobacteria is poorly appreciated, despite recent biochemical and molecular evidence that supports its existence. Cyanobacterial PCD is an altruistic reaction to stressful conditions that significantly enhances genetic diversity and inclusive fitness of the population. Recent bioinformatic analysis has revealed an abundance of death-related proteases, i.e. orthocaspases (OCAs) and their mutated variants, in cyanobacteria, with the larger genomes of morphologically complex strains harbouring most of them. Sequence analysis has depicted crucial accessory domains along with the proteolytic p20-like sub-domain in OCAs, predicting their functional versatility. However, the cascades involved in sensing death signals, their transduction, and the downstream expression and activation of OCAs remain to be elucidated. Here, we provide a comprehensive description of the attempts to identify mechanisms of PCD and the existence and importance of OCAs based on in silico approaches. We also review the evolutionary and ecological significance of PCD in cyanobacteria. In the future, the analysis of cyanobacterial PCD will identify novel proteins that have varied functional roles in signalling cascades and also help in understanding the incipient mechanism of PCD morphotype(s) from where eukaryotic PCD might have originated.
Collapse
Affiliation(s)
- Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
30
|
Insights about the structure of farnesyl diphosphate synthase (FPPS) and the activity of bisphosphonates on the proliferation and ultrastructure of Leishmania and Giardia. Parasit Vectors 2020; 13:168. [PMID: 32248823 PMCID: PMC7132869 DOI: 10.1186/s13071-020-04019-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/16/2020] [Indexed: 11/22/2022] Open
Abstract
Background The enzyme farnesyl diphosphate synthase (FPPS) is positioned in the intersection of different sterol biosynthesis pathways such as those producing isoprenoids, dolichols and ergosterol. FPPS is ubiquitous in eukaryotes and is inhibited by nitrogen-containing bisphosphonates (N-BP). N-BP activity and the mechanisms of cell death as well as damage to the ultrastructure due to N-BP has not yet been investigated in Leishmania infantum and Giardia. Thus, we evaluated the effect of N-BP on cell viability and ultrastructure and then performed structural modelling and phylogenetic analysis on the FPPS enzymes of Leishmania and Giardia. Methods We performed multiple sequence alignment with MAFFT, phylogenetic analysis with MEGA7, and 3D structural modelling for FPPS with Modeller 9.18 and on I-Tasser server. We performed concentration curves with N-BP in Leishmania promastigotes and Giardia trophozoites to estimate the IC50via the MTS/PMS viability method. The ultrastructure was evaluated by transmission electron microscopy, and the mechanism of cell death by flow cytometry. Results The nitrogen-containing bisphosphonate risedronate had stronger anti-proliferative activity in Leishmania compared to other N-BPs with an IC50 of 13.8 µM, followed by ibandronate and alendronate with IC50 values of 85.1 µM and 112.2 µM, respectively. The effect of N-BPs was much lower on trophozoites of Giardia than Leishmania (IC50 of 311 µM for risedronate). Giardia treated with N-BP displayed concentric membranes around the nucleus and nuclear pyknosis. Leishmania had mitochondrial swelling, myelin figures, double membranes, and plasma membrane blebbing. The same population labelled with annexin-V and 7-AAD had a loss of membrane potential (TMRE), indicative of apoptosis. Multiple sequence alignments and structural alignments of FPPS proteins showed that Giardia and Leishmania FPPS display low amino acid identity but possess the conserved aspartate-rich motifs. Conclusions Giardia and Leishmania FPPS enzymes are phylogenetically distant but display conserved protein signatures. The N-BPs effect on FPPS was more pronounced in Leishmania than Giardia. This might be due to general differences in metabolism and differences in the FPPS catalytic site.![]()
Collapse
|
31
|
Abstract
Leishmaniases still represent a global scourge and new therapeutic tools are necessary to replace the current expensive, difficult to administer treatments that induce numerous adverse effects and for which resistance is increasingly worrying. In this context, the particularly original organization of the Leishmania parasite in comparison to higher eukaryotes is a great advantage. It allows for the development of new, very specific, and thus non-cytotoxic treatments. Among these originalities, Leishmania cell death can be cited. Despite a classic pattern of apoptosis, key mammalian apoptotic proteins are not present in Leishmania, such as caspases, cell death receptors, and anti-apoptotic molecules. Recent studies have helped to develop a better understanding of parasite cell death, identifying new proteins or even new apoptotic pathways. This review provides an overview of the current knowledge on Leishmania cell death, describing its physiological roles and its phenotype, and discusses the involvement of various proteins: endonuclease G, metacaspase, aquaporin Li-BH3AQP, calpains, cysteine proteinase C, LmjHYD36 and Lmj.22.0600. From these data, potential apoptotic pathways are suggested. This review also offers tools to identify new Leishmania cell death effectors. Lastly, different approaches to use this knowledge for the development of new therapeutic tools are suggested: either inhibition of Leishmania cell death or activation of cell death for instance by treating cells with proteins or peptides involved in parasite death fused to a cell permeant peptide or encapsulated into a lipidic vector to target intra-macrophagic Leishmania cells.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis Team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Magali Casanova
- Aix-Marseille University, CNRS, LISM, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 09, France
| |
Collapse
|
32
|
Lanza JS, Pomel S, Loiseau PM, Frézard F. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opin Drug Deliv 2019; 16:1063-1079. [DOI: 10.1080/17425247.2019.1659243] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Juliane S. Lanza
- Faculty of Pharmacy, Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, University Paris-Saclay, Chatenay-Malabry, France
| | - Sébastien Pomel
- Faculty of Pharmacy, Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, University Paris-Saclay, Chatenay-Malabry, France
| | - Philippe M. Loiseau
- Faculty of Pharmacy, Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, University Paris-Saclay, Chatenay-Malabry, France
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
33
|
Majid Shah S, Ullah F, Ayaz M, Sadiq A, Hussain S, Ali Shah AUH, Adnan Ali Shah S, Wadood A, Nadhman A. β-Sitosterol from Ifloga spicata (Forssk.) Sch. Bip. as potential anti-leishmanial agent against leishmania tropica: Docking and molecular insights. Steroids 2019; 148:56-62. [PMID: 31085212 DOI: 10.1016/j.steroids.2019.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 01/20/2023]
Abstract
The current study was aimed to evaluate the anti-leishmanial potentials of β-sitosterol isolated from Ifloga spicata. The anti-leishmanial potential of β-sitosterol is well documented against Leishmania donovani and Leishmania amazonensis but unexplored against Leishmania tropica. Structure of the compound was elucidated by FT-IR, mass spectrometry and multinuclear (1H and 13C) magnetic resonance spectroscopy. The compound was evaluated for its anti-leishmanial potentials against L. tropica KWH23 using in vitro anti-promastigote, DNA interaction, apoptosis, docking studies against leishmanolysin (GP63) and trypanothione reductase (TR) receptors using MOE 2016 software. β-sitosterol exhibited significant activity against leishmania promastigotes with IC50 values of 9.2 ± 0.06 μg/mL. The standard drug glucantaime showed IC50 of 5.33 ± 0.07 µg/mL. Further mechanistic studies including DNA targeting and apoptosis induction via acridine orange assay exhibited promising anti-leishmanial potentials for β-sitosterol. Molecular docking with leishmanolysin (GP63) and trypanothione reductase (TR) receptors displayed the binding scores of β-sitosterol with targets TR and GP63 were -7.659 and -6.966 respectively. The low binding energies -61.54 (for TR) and -33.24 (for GP63) indicate that it strongly bind to the active sites of target receptors. The results confirmed that β-sitosterol have considerable anti-leishmanial potentials and need further studies as potential natural anti-leishmanial agent against L. tropica.
Collapse
Affiliation(s)
- Syed Majid Shah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan; Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan
| | - Sajid Hussain
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan; Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Azhar-Ul-Haq Ali Shah
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia; Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Abdul Wadood
- Department of Biochemistry, UCS, Shankar Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Akhtar Nadhman
- Institute of Integrative Biosciences IIB, CECOS University, Peshawar Pakistan
| |
Collapse
|
34
|
Mostafavi M, Sharifi I, Farajzadeh S, Khazaeli P, Sharifi H, Pourseyedi E, Kakooei S, Bamorovat M, Keyhani A, Parizi MH, Khosravi A, Khamesipour A. Niosomal formulation of amphotericin B alone and in combination with glucantime: In vitro and in vivo leishmanicidal effects. Biomed Pharmacother 2019; 116:108942. [PMID: 31152929 DOI: 10.1016/j.biopha.2019.108942] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
This study aimed to evaluate the efficacy of glucantime and amphotericin B (AmB) encapsulated in niosome against cutaneous leishmaniasis (CL) using in vitro and in vivo models. The niosomal formulations of the drugs alone and in combination were prepared and characterized. Subsequent to the examination of their cytotoxicity, their efficacy was evaluated using an in vitro MTT assay, macrophage model, flow cytometry, and gene expression profiling. For evaluation of therapeutic effect of niosomal combination on the lesion induced by Leishmania major in inbred BALB/c mice, the size of lesions and number of parasites in spleen was assessed. The niosomal formulations demonstrated significantly greater inhibitory effects compared with the non-niosomal forms when the IC50 was considered. The niosomal combination showed an increase in the apoptotic values and gene expression levels of IL-12 and metacaspase and a decrease in the levels of IL-10 with a dose-response effect. The niosomal combination was also effective in reducing the lesion size and splenic parasite burden in mice. Our findings indicated that there is a synergistic effect between AmB and glucantime in niosomal form in the inhibition of intracellular and extracellular forms of L. tropica. Additionally, the in vivo results on L. major suggest that topical niosomal formulation could be useful in the treatment of CL.
Collapse
Affiliation(s)
- Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeedeh Farajzadeh
- Department of Pediatric dermatology, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Sharifi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Elnaz Pourseyedi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Kakooei
- Oral and Dental Diseases Research Center, Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hakimi Parizi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Basmaciyan L, Robinson DR, Azas N, Casanova M. (De)glutamylation and cell death in Leishmania parasites. PLoS Negl Trop Dis 2019; 13:e0007264. [PMID: 31017892 PMCID: PMC6502457 DOI: 10.1371/journal.pntd.0007264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/06/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
Trypanosomatids are flagellated protozoan parasites that are very unusual in terms of cytoskeleton organization but also in terms of cell death. Most of the Trypanosomatid cytoskeleton consists of microtubules, forming different substructures including a subpellicular corset. Oddly, the actin network appears structurally and functionally different from other eukaryotic actins. And Trypanosomatids have an apoptotic phenotype under cell death conditions, but the pathways involved are devoid of key mammal proteins such as caspases or death receptors, and the triggers involved in apoptotic induction remain unknown. In this article, we have studied the role of the post-translational modifications, deglutamylation and polyglutamylation, in Leishmania. We have shown that Leishmania apoptosis was linked to polyglutamylation and hypothesized that the cell survival process autophagy was linked to deglutamylation. A balance seems to be established between polyglutamylation and deglutamylation, with imbalance inducing microtubule or other protein modifications characterizing either cell death if polyglutamylation was prioritized, or the cell survival process of autophagy if deglutamylation was prioritized. This emphasizes the role of post-translational modifications in cell biology, inducing cell death or cell survival of infectious agents. Leishmania are unique unicellular organisms in terms of cytoskeleton organization and mechanisms of cell death. For example, the major cytoskeletal components of these parasites are microtubules, which form a subpellicular corset. In terms of cell death, an apoptotic phenotype has been characterized in Leishmania but the pathways remain unknown, being devoid of key mammal cell death proteins. In a previous article, we demonstrated that the cytoskeleton of this parasite is extensively glutamylated but, paradoxically, overexpression or inhibition of polyglutamylase expression have limited visible cellular consequences. In this manuscript, we have highlighted the link between polyglutamylation and Leishmania cell death, suggesting the importance of the polyglutamylation/deglutamylation balance in this parasite. Further, we have identified, for the first time in Leishmania, deglutamylases, among which one that, in an original manner, deglutamylates glutamates at branching points but also long glutamate side chains. This work emphasizes the role of post-translational modifications as essential regulators of protein function, not only of mammal cells such as neurons or ciliated/flagellated cells, but also of infectious agents. This work suggests an important and discernible “live or die”—“cell death or autophagy” balance pathway and the conceptual mechanism that is involved in cellular decision making.
Collapse
Affiliation(s)
- Louise Basmaciyan
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | | | - Nadine Azas
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
36
|
Shah S, Ullah F, Ayaz M, Sadiq A, Hussain S, Ali Shah AUH, Shah S, Ullah N, Ullah F, Ullah I, Nadhman A. Benzoic Acid Derivatives of Ifloga spicata (Forssk.) Sch.Bip. as Potential Anti-Leishmanial against Leishmania tropica. Processes (Basel) 2019; 7:208. [DOI: 10.3390/pr7040208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study aimed to appraise the anti-leishmanial potentials of benzoic acid derivatives, including methyl 3,4-dihydroxybenzoate (compound 1) and octadecyl benzoate (compound 2), isolated from the ethnomedicinally important plant Ifloga spicata (I. spicata). Chemical structures were elucidated via FT-IR, mass spectrometry, and multinuclear (1H and 13C) NMR spectroscopy. Anti-leishmanial potentials of the compounds were assessed using Leishmania tropica promastigotes. Moreover, acridine orange fluorescent staining was performed to visualize the apoptosis-associated changes in promastigotes under a fluorescent microscope. A SYTOX assay was used to check rupturing of Leishmania promastigote cell membranes using 0.1% Triton X-100 as positive control. A DNA interaction assay was carried out to assess DNA attachment potential. AutoDock software was used to check the binding affinity of compounds with surface enzyme leishmanolysin gp63 (1LML). Both compounds exhibited considerable anti-leishmanial potential, with LD50 values of 10.40 ± 0.09 and 14.11 ± 0.11 μg/mL for compound 1 and compound 2, respectively. Both compounds showed higher binding affinity with the leishmanolysin (gp63) receptor/protease of Leishmania, as assessed using computational analysis. The binding scores of compounds 1 and 2 with target gp63 were −5.3 and −5.6, respectively. The attachment of compounds with this receptor resulted in their entry into the cell where they bound with Leishmania DNA, causing apoptosis. The results confirmed that the investigated compounds have anti-leishmanial potential and are potential substitutes as natural anti-leishmanial agents against L. tropica.
Collapse
Affiliation(s)
- Syed Shah
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800, Pakistan
- Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800, Pakistan
| | - Sajid Hussain
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800, Pakistan
- Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Azhar-ul-Haq Ali Shah
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Syed Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor 42300, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Nazif Ullah
- Department of Biotechnology Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Farman Ullah
- Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Ikram Ullah
- Suleiman Bin Abdullah Aba-Alkhail center for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad 46000, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences IIB, CECOS University, Peshawar 25000, Pakistan
| |
Collapse
|
37
|
Soyer TG, Mendonça DVC, Tavares GSV, Lage DP, Dias DS, Ribeiro PAF, Perin L, Ludolf F, Coelho VTS, Ferreira ACG, Neves PHAS, Matos GF, Chávez-Fumagalli MA, Coimbra ES, Pereira GR, Coelho EAF, Antinarelli LMR. Evaluation of the in vitro and in vivo antileishmanial activity of a chloroquinolin derivative against Leishmania species capable of causing tegumentary and visceral leishmaniasis. Exp Parasitol 2019; 199:30-37. [PMID: 30817917 DOI: 10.1016/j.exppara.2019.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/09/2019] [Accepted: 02/23/2019] [Indexed: 12/23/2022]
Abstract
The treatment against leishmaniasis presents problems, since the currently used drugs are toxic and/or have high costs. In addition, parasite resistance has increased. As a consequence, in this study, a chloroquinolin derivative, namely 7-chloro-N,N-dimethylquinolin-4-amine or GF1059, was in vitro and in vivo tested against Leishmania parasites. Experiments were performed to evaluate in vitro antileishmanial activity and cytotoxicity, as well as the treatment of infected macrophages and the inhibition of infection using pre-treated parasites. This study also investigated the GF1059 mechanism of action in L. amazonensis. Results showed that the compound was highly effective against L. infantum and L. amazonensis, presenting a selectivity index of 154.6 and 86.4, respectively, against promastigotes and of 137.6 and 74.3, respectively, against amastigotes. GF1059 was also effective in the treatment of infected macrophages and inhibited the infection of these cells when parasites were pre-incubated with it. The molecule also induced changes in the parasites' mitochondrial membrane potential and cell integrity, and caused an increase in the reactive oxygen species production in L. amazonensis. Experiments performed in BALB/c mice, which had been previously infected with L. amazonensis promastigotes, and thus treated with GF1059, showed that these animals presented significant reductions in the parasite load when the infected tissue, spleen, liver, and draining lymph node were evaluated. GF1059-treated mice presented both lower parasitism and low levels of enzymatic markers, as compared to those receiving amphotericin B, which was used as control. In conclusion, data suggested that GF1059 can be considered a possible therapeutic target to be tested against leishmaniasis.
Collapse
Affiliation(s)
- Tauane G Soyer
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora V C Mendonça
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel S Dias
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia A F Ribeiro
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luisa Perin
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vinicio T S Coelho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andreza C G Ferreira
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro H A S Neves
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme F Matos
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Guilherme R Pereira
- Pontifícia Universidade Católica de Minas Gerais, Departamento de Física e Química, Instituto de Ciências Exatas e Informática, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Luciana M R Antinarelli
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
38
|
Kristanc L, Božič B, Jokhadar ŠZ, Dolenc MS, Gomišček G. The pore-forming action of polyenes: From model membranes to living organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:418-430. [DOI: 10.1016/j.bbamem.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023]
|
39
|
Mostafavi M, Khazaeli P, Sharifi I, Farajzadeh S, Sharifi H, Keyhani A, Parizi MH, Kakooei S. A Novel Niosomal Combination of Selenium Coupled with Glucantime against Leishmania tropica. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:1-8. [PMID: 30840792 PMCID: PMC6409218 DOI: 10.3347/kjp.2019.57.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 11/23/2022]
Abstract
There is no effective treatment modality available against different forms of leishmaniasis. Therefore, the aim of this study was to improve the penetration and efficacy of selenium and glucantime coupled with niosomes and compared them with their simple forms alone on in vitro susceptibility assays. In this study, the niosomal formulations of selenium and in combination with glucantime were prepared. The size and morphology of the niosomal formulations were characterized and the effectivity of the new formulation was also evaluated using in vitro MTT assay, intra-macrophage model, and gene expression profile. From the results obtained, no cytotoxicity effect was observed for niosomal and simple forms of drugs, as alone or in combination. Niosomal formulations of the drugs significantly showed more inhibitory effects (P ≤ 0.001) than the simple drugs when the selectivity index was considered. The gene expression levels of Interleukin (IL-10) significantly decreased, while the level of IL-12 and metacaspase significantly increased (P ≤ 0.001). The results of the present study showed that selenium plus glucantime niosome possess a potent anti-leishmanial effect and enhanced their lethal activity as evidenced by the in vitro experiments.
Collapse
Affiliation(s)
- Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Farajzadeh
- Department of Pediatric Dermatology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Sharifi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hakimi Parizi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Kakooei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
40
|
Menna-Barreto RFS. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill. Cell Death Dis 2019; 10:93. [PMID: 30700697 PMCID: PMC6353990 DOI: 10.1038/s41419-019-1370-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Especially in tropical and developing countries, the clinically relevant protozoa Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness) and Leishmania species (leishmaniasis) stand out and infect millions of people worldwide leading to critical social-economic implications. Low-income populations are mainly affected by these three illnesses that are neglected by the pharmaceutical industry. Current anti-trypanosomatid drugs present variable efficacy with remarkable side effects that almost lead to treatment discontinuation, justifying a continuous search for alternative compounds that interfere with essential and specific parasite pathways. In this scenario, the triggering of trypanosomatid cell death machinery emerges as a promising approach, although the exact mechanisms involved in unicellular eukaryotes are still unclear as well as the controversial biological importance of programmed cell death (PCD). In this review, the mechanisms of autophagy, apoptosis-like cell death and necrosis found in pathogenic trypanosomatids are discussed, as well as their roles in successful infection. Based on the published genomic and proteomic maps, the panel of trypanosomatid cell death molecules was constructed under different experimental conditions. The lack of PCD molecular regulators and executioners in these parasites up to now has led to cell death being classified as an unregulated process or incidental necrosis, despite all morphological evidence published. In this context, the participation of metacaspases in PCD was also not described, and these proteases play a crucial role in proliferation and differentiation processes. On the other hand, autophagic phenotype has been described in trypanosomatids under a great variety of stress conditions (drugs, starvation, among others) suggesting that this process is involved in the turnover of damaged structures in the protozoa and is not a cell death pathway. Death mechanisms of pathogenic trypanosomatids may be involved in pathogenesis, and the identification of parasite-specific regulators could represent a rational and attractive alternative target for drug development for these neglected diseases.
Collapse
|
41
|
Koutsogiannis Z, MacLeod ET, Maciver SK. G418 induces programmed cell death in Acanthamoeba through the elevation of intracellular calcium and cytochrome c translocation. Parasitol Res 2019; 118:641-651. [PMID: 30617503 PMCID: PMC6349814 DOI: 10.1007/s00436-018-6192-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/19/2018] [Indexed: 11/27/2022]
Abstract
Acanthamoeba is a widely distributed opportunistic parasite which causes a vision-threatening keratitis and a life-threatening encephalitis. The cyst stage of this amoeba is especially resistant to currently used therapeutics and so alternative agents are urgently required. Growing evidence supports the existence of a programmed cell death system (PCD) in Acanthamoeba and while some features are shared by higher eukaryote cells, others differ. It is hoped that by understanding these differences we can exploit them as targets for novel drug intervention to activate PCD pathways in the amoebae but not the invaded human tissue. Here, we use the aminoglycoside G418 to activate PCD in Acanthamoeba. This drug caused a shape change in the treated amoebae. Cells rounded up and contracted, and after 6 h fragments of cells resembling the ‘apoptotic bodies’ of vertebrate cells were observed. G418 causes an increase in intracellular calcium from a resting level of 24 nM to 60 nM after 6 h of treatment. Mitochondrial function as assayed by the ΔΨm reporting dye JC-1 and CTC a redox dye becomes inhibited during treatment and we have found that cytochrome c is released from the mitochondria. Cells stained with Hoechst showed first an alteration in chromatin structure and then a vesiculation of the nucleus with G418 treatment, although we found no obvious breakdown in genomic DNA in the early stages of PCD.
Collapse
Affiliation(s)
| | - Ewan T MacLeod
- Division of Infection and Pathway Medicine, Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK
| | | |
Collapse
|
42
|
Mostafavi M, Farajzadeh S, Sharifi I, Khazaeli P, Sharifi H. Leishmanicidal effects of amphotericin B in combination with selenium loaded on niosome against Leishmania tropica. J Parasit Dis 2019; 43:176-185. [PMID: 31263321 DOI: 10.1007/s12639-018-1071-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/10/2018] [Indexed: 01/26/2023] Open
Abstract
The strategy for improving the treatment of leishmaniasis by the World Health Organization, is the development of new drugs and combination therapy. The aim of this survey was to investigate the effect of amphotericin B (AmB) in combination with selenium, in a simple or niosomal form, on Leishmania tropica (L. tropica) by in vitro advanced assays. In this study, a niosomal formulation of AmB with selenium was prepared and characterized based on size and morphology. Using MTT assay, macrophage model, flow cytometry, and qPCR, the cytotoxicity and efficiency of the niosomal formulation and simple form of combination were evaluated. No toxicity was reported for both the niosomal and simple form of the combination. The niosomal formulation significantly showed higher inhibitory effect on the promastigote and amastigote forms of L. tropica than simple combination form. Interleukin (IL)-10 significantly decreased while the level of IL-12 and metacasoase as Th-1 activator significantly increased (P < 0.001). The findings of this study indicated that niosomes are the stable carriers for this combination, easy to produce and provide promising results as an effective formulation in the inhibition of extracellular and intracellular forms of L. tropica in compared with simple combination form.
Collapse
Affiliation(s)
- Mahshid Mostafavi
- 1Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Farajzadeh
- 2Department of Pediatric Dermatology, Kerman University of Medical Sciences, Kerman, 76169-14115 Iran
| | - Iraj Sharifi
- 1Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- 3Pharmaceutical Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Sharifi
- 4HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
43
|
De Sarkar S, Sarkar D, Sarkar A, Dighal A, Staniek K, Gille L, Chatterjee M. Berberine chloride mediates its antileishmanial activity by inhibiting Leishmania mitochondria. Parasitol Res 2019; 118:335-345. [PMID: 30470927 DOI: 10.1007/s00436-018-6157-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022]
Abstract
Berberine chloride, a plant-derived isoquinoline alkaloid, has been demonstrated to have leishmanicidal activity, which is mediated by generation of a redox imbalance and depolarization of the mitochondrial membrane, resulting in a caspase-independent apoptotic-like cell death. However, its impact on mitochondrial function remains to be delineated and is the focus of this study. In UR6 promastigotes, berberine chloride demonstrated a dose-dependent increase in generation of reactive oxygen species and mitochondrial superoxide, depolarization of the mitochondrial membrane potential, a dose-dependent inhibition of mitochondrial complexes I-III and II-III, along with a substantial depletion of ATP, collectively suggesting inhibition of parasite mitochondria. Accordingly, the oxidative stress induced by berberine chloride resulting in an apoptotic-like cell death in Leishmania can be exploited as a potent chemotherapeutic strategy, mitochondria being a prime contributor.
Collapse
Affiliation(s)
- Sritama De Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Avijit Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Aishwarya Dighal
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India.
| |
Collapse
|
44
|
The leishmanicidal activity of artemisinin is mediated by cleavage of the endoperoxide bridge and mitochondrial dysfunction. Parasitology 2018; 146:511-520. [PMID: 30392476 DOI: 10.1017/s003118201800183x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Endoperoxides kill malaria parasites via cleavage of their endoperoxide bridge by haem or iron, leading to generation of cytotoxic oxygen-centred radicals. In view of the Leishmania parasites having a relatively compromised anti-oxidant defense and high iron content, this study aims to establish the underlying mechanism(s) accounting for the apoptotic-like death of Leishmania promastigotes by artemisinin, an endoperoxide. The formation of reactive oxygen species was confirmed by flow cytometry and was accompanied by inhibition of mitochondrial complexes I-III and II-III. However, this did not translate into a generation of mitochondrial superoxide or decrease in oxygen consumption, indicating minimal impairment of the electron transport chain. Artemisinin caused depolarization of the mitochondrial membrane along with a substantial depletion of adenosine triphosphatase (ATP), but it was not accompanied by enhancement of ATP hydrolysis. Collectively, the endoperoxide-mediated radical formation by artemisinin in Leishmania promastigotes was the key step for triggering its antileishmanial activity, leading secondarily to mitochondrial dysfunction indicating that endoperoxides represent a promising therapeutic strategy against Leishmania worthy of pharmacological consideration.
Collapse
|
45
|
Pandey SS, Singh S, Pathak C, Tiwari BS. "Programmed Cell Death: A Process of Death for Survival" - How Far Terminology Pertinent for Cell Death in Unicellular Organisms. J Cell Death 2018; 11:1179066018790259. [PMID: 30116103 PMCID: PMC6088462 DOI: 10.1177/1179066018790259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/22/2018] [Indexed: 02/01/2023] Open
Abstract
Programmed cell death (PCD) is genetically regulated phenomenon of selective elimination of target cells that are either under pathological conditions or unwanted for organism’s normal growth and development due to other reasons. The process although being genetically controlled is physiological in nature that renders some hallmarks like blebs in the cell membrane, lobe formation in nuclear membrane, DNA nicks resulting to DNA ladder of 200 bp, and downstream activation of caspases. Moreover, as the process refers to the death of “targeted cell”, the term is exclusively suitable for multicellular organisms. Number of reports advocate similar type of cell death process in unicellular organisms. As cell death in unicellular organisms is also reflected by the signature of PCD obtained in metazoans, such cell death has been grouped under the broad category of PCD. It is pertinent to mention that by definition a unicellular organism is made of a single cell wherein it carries out all of its life processes. Using the term “Programmed Cell Death” with a preset “survival strategy of the organism” for unicellular organisms looks misnomer. Therefore, this correspondence argues and requests recommendation committee on cell death to revisit for the nomenclature of the cell death process in the unicellular organisms.
Collapse
Affiliation(s)
- Shiv Shanker Pandey
- Crop Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Samer Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Chandramani Pathak
- Plant Cell Biology & Biotechnology, Institute of Advanced Research (IAR), Gandhinagar, India
| | - Budhi Sagar Tiwari
- Plant Cell Biology & Biotechnology, Institute of Advanced Research (IAR), Gandhinagar, India
| |
Collapse
|
46
|
Basmaciyan L, Berry L, Gros J, Azas N, Casanova M. Temporal analysis of the autophagic and apoptotic phenotypes in Leishmania parasites. MICROBIAL CELL 2018; 5:404-417. [PMID: 30280103 PMCID: PMC6167523 DOI: 10.15698/mic2018.09.646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The leishmaniases are worldwide neglected tropical diseases caused by parasitic protozoa of the Leishmania genus. Different stimuli induce Leishmania cell death, but the proteins involved remain poorly understood. Furthermore, confusion often appears between cell death and the cell survival process autophagy, whose phenotype is not clearly defined. In this article, we present a comprehensive and temporal analysis of the cellular events occurring during miltefosine-induced cell death and autophagy in L. major. We also provide a list of features in order to clearly identify apoptotic cells, autophagic cells and to distinguish both processes. Furthermore, we demonstrate that autophagy is followed by apoptosis in the absence of nutrients. Finally, we show that cells treated with the generic kinase inhibitor staurosporine express apoptotic as well as autophagic markers and therefore cannot be used as an apoptosis inducer in Leishmania. These descriptions lead to a better recognition and understanding of apoptosis and autophagy, enabling their targeting in the development of new anti-leishmanial drugs. These researches also make it possible to better understand these processes in general, through the study of an ancestral eukaryote.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR 5235, University of Montpellier, France
| | - Julie Gros
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Nadine Azas
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
47
|
Ōmura S, Asami Y, Crump A. Staurosporine: new lease of life for parent compound of today's novel and highly successful anti-cancer drugs. J Antibiot (Tokyo) 2018; 71:688-701. [PMID: 29934602 DOI: 10.1038/s41429-018-0029-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Staurosporine, together with such examples as penicillin, aspirin, ivermectin and sildenafil, exemplifies the role that serendipity has in drug discovery and why 'finding things without actually searching for them' retains a prominent role in drug discovery. Hitherto not clinically useful, due to its potency and promiscuity, new delivery technology is opening up new horizons for what was previously just the parent compound of innovative, highly-successful anti-cancer agents.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.
| | - Yukihiro Asami
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Andy Crump
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
48
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
49
|
Libby E, Driscoll WW, Ratcliff WC. Programmed cell death can increase the efficacy of microbial bet -hedging. Sci Rep 2018; 8:1120. [PMID: 29348455 PMCID: PMC5773525 DOI: 10.1038/s41598-017-18687-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/13/2017] [Indexed: 11/09/2022] Open
Abstract
Programmed cell death (PCD) occurs in both unicellular and multicellular organisms. While PCD plays a key role in the development and maintenance of multicellular organisms, explaining why single-celled organisms would evolve to actively commit suicide has been far more challenging. Here, we explore the potential for PCD to act as an accessory to microbial bet-hedging strategies that utilize stochastic phenotype switching. We consider organisms that face unpredictable and recurring disasters, in which fitness depends on effective phenotypic diversification. We show that when reproductive opportunities are limited by carrying capacity, PCD drives population turnover, providing increased opportunities for phenotypic diversification through stochastic phenotype switching. The main cost of PCD, providing resources for growth to a PCD(−) competitor, is ameliorated by genetic assortment in spatially structured populations. Using agent -based simulations, we explore how basic demographic factors, namely bottlenecks and local dispersal, can generate sufficient spatial structure to favor the evolution of high PCD rates.
Collapse
Affiliation(s)
- Eric Libby
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - William W Driscoll
- Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, MN, 55108, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
50
|
Entomopathogenic bacteria Photorhabdus luminescens as drug source against Leishmania amazonensis. Parasitology 2017; 145:1065-1074. [PMID: 29157317 DOI: 10.1017/s0031182017002001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Leishmaniasis is a widely spread and zoonotic disease with serious problems as low effectiveness of drugs, emergence of parasite resistance and severe adverse reactions. In recent years, considerable attention has been given to secondary metabolites produced by Photorhabdus luminescens, an entomopathogenic bacterium. Here, we assessed the leishmanicidal activity of P. luminescens culture fluids. Initially, promastigotes of Leishmania amazonensis were incubated with cell free conditioned medium of P. luminescens and parasite survival was monitored. Different pre-treatments of the conditioned medium revealed that the leishmanicidal activity is due to a secreted peptide smaller than 3 kDa. The Photorhabdus-derived leishmanicidal toxin (PLT) was enriched from conditioned medium and its effect on mitochondrial membrane potential of promastigotes, was determined. Moreover, the biological activity of PLT against amastigotes was evaluated. PLT inhibited the parasite growth and showed significant leishmanicidal activity against promastigote and amastigotes of L. amazonensis. PLT also caused mitochondrial dysfunction in parasites, but low toxicity to mammalian cell and human erythrocytes. Moreover, the anti-amastigote activity was independent of nitric oxide production. In summary, our results highlight that P. luminescens secretes Leishmania-toxic peptide(s) that are promising novel drugs for therapy against leishmaniasis.
Collapse
|