1
|
Shanmuganad S, Ferguson A, Paranjpe A, Cianciolo EE, Katz JD, Herold MJ, Hildeman DA. Subset-specific and temporal control of effector and memory CD4+ T cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530323. [PMID: 36909576 PMCID: PMC10002744 DOI: 10.1101/2023.03.01.530323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Following their proliferative expansion and differentiation into effector cells like Th1, Tfh, and T central memory precursors (Tcmp), most effector CD4+ T cells die, while some survive and become memory cells. Here, we explored how Bcl-2 family members controlled the survival of CD4+ T cells during distinct phases of mouse acute LCMV infection. During expansion, we found that Th1 cells dominated the response, downregulated expression of Bcl-2, and did not require Bcl-2 for survival. Instead, they relied on the anti-apoptotic protein, A1 for survival. Similarly, Th17 cells in an EAE model also depended on A1 for survival. However, after the peak of the response, CD4+ effector T cells required Bcl-2 to counteract Bim to aid their transition into memory. This Bcl-2 dependence persisted in established memory CD4+ T cells. Combined, these data show a temporal switch in Bcl-2 family-mediated survival of CD4+ T cells over the course of an immune response. This knowledge can help improve T cell survival to boost immunity and conversely, target pathogenic T cells.
Collapse
|
2
|
Szeto ACH, Ferreira ACF, Mannion J, Clark PA, Sivasubramaniam M, Heycock MWD, Crisp A, Jolin HE, Kozik P, Knolle MD, McKenzie ANJ. An αvβ3 integrin checkpoint is critical for efficient T H2 cell cytokine polarization and potentiation of antigen-specific immunity. Nat Immunol 2023; 24:123-135. [PMID: 36550322 DOI: 10.1038/s41590-022-01378-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Naive CD4+ T lymphocytes initially undergo antigen-specific activation to promote a broad-spectrum response before adopting bespoke cytokine expression profiles shaped by intercellular microenvironmental cues, resulting in pathogen-focused modular cytokine responses. Interleukin (IL)-4-induced Gata3 upregulation is important for the helper type 2 T cell (TH2 cell) polarization associated with anti-helminth immunity and misdirected allergic inflammation. Whether additional microenvironmental factors participate is unclear. Using whole mouse-genome CRISPR-Cas9 screens, we discovered a previously unappreciated role for αvβ3 integrin in TH2 cell differentiation. Low-level αvβ3 expression by naive CD4+ T cells contributed to pan-T cell activation by promoting T-T cell clustering and IL-2/CD25/STAT5 signaling. Subsequently, IL-4/Gata3-induced selective upregulation of αvβ3 licensed intercellular αvβ3-Thy1 interactions among TH2 cells, enhanced mammalian target of rapamycin (mTOR) signaling, supported differentiation and promoted IL-5/IL-13 production. In mice, αvβ3 was required for efficient, allergen-driven, antigen-specific lung TH2 cell responses. Thus, αvβ3-expressing TH2 cells form multicellular factories to propagate and amplify TH2 cell responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin D Knolle
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| | | |
Collapse
|
3
|
Last but not least: BFL-1 as an emerging target for anti-cancer therapies. Biochem Soc Trans 2022; 50:1119-1128. [PMID: 35900226 PMCID: PMC9444066 DOI: 10.1042/bst20220153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
BFL-1 is an understudied pro-survival BCL-2 protein. The expression of BFL-1 is reported in many cancers, but it is yet to be clarified whether high transcript expression also always correlates with a pro-survival function. However, recent applications of BH3-mimetics for the treatment of blood cancers identified BFL-1 as a potential resistance factor in this type of cancer. Hence, understanding the role of BFL-1 in human cancers and how its up-regulation leads to therapy resistance has become an area of great clinical relevance. In addition, deletion of the murine homologue of BFL-1, called A1, in mice showed only minimal impacts on the well-being of these animals, suggesting drugs targeting BFL-1 would exhibit limited on-target toxicities. BFL-1 therefore represents a good clinical cancer target. Currently, no effective BFL-1 inhibitors exist, which is likely due to the underappreciation of BFL-1 as a potential target in the clinic and lack of understanding of the BFL-1 protein. In this review, the roles of BFL-1 in the development of different types of cancers and drug resistant mechanisms are discussed and some recent advances in the generation of BFL-1 inhibitors highlighted.
Collapse
|
4
|
Gangoda L, Schenk RL, Best SA, Nedeva C, Louis C, D’Silva DB, Fairfax K, Jarnicki AG, Puthalakath H, Sutherland KD, Strasser A, Herold MJ. Absence of pro-survival A1 has no impact on inflammatory cell survival in vivo during acute lung inflammation and peritonitis. Cell Death Differ 2022; 29:96-104. [PMID: 34304242 PMCID: PMC8738744 DOI: 10.1038/s41418-021-00839-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a natural defence mechanism of the body to protect against pathogens. It is induced by immune cells, such as macrophages and neutrophils, which are rapidly recruited to the site of infection, mediating host defence. The processes for eliminating inflammatory cells after pathogen clearance are critical in preventing sustained inflammation, which can instigate diverse pathologies. During chronic inflammation, the excessive and uncontrollable activity of the immune system can cause extensive tissue damage. New therapies aimed at preventing this over-activity of the immune system could have major clinical benefits. Here, we investigated the role of the pro-survival Bcl-2 family member A1 in the survival of inflammatory cells under normal and inflammatory conditions using murine models of lung and peritoneal inflammation. Despite the robust upregulation of A1 protein levels in wild-type cells upon induction of inflammation, the survival of inflammatory cells was not impacted in A1-deficient mice compared to wild-type controls. These findings indicate that A1 does not play a major role in immune cell homoeostasis during inflammation and therefore does not constitute an attractive therapeutic target for such morbidities.
Collapse
Affiliation(s)
- Lahiru Gangoda
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Robyn L. Schenk
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah A. Best
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Christina Nedeva
- grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Cynthia Louis
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Damian B. D’Silva
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Kirsten Fairfax
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Andrew G. Jarnicki
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC Australia
| | - Hamsa Puthalakath
- grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Kate D. Sutherland
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Andreas Strasser
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Marco J. Herold
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
5
|
Ludwig LM, Hawley KM, Banks DB, Thomas-Toth AT, Blazar BR, McNerney ME, Leverson JD, LaBelle JL. Venetoclax imparts distinct cell death sensitivity and adaptivity patterns in T cells. Cell Death Dis 2021; 12:1005. [PMID: 34707089 PMCID: PMC8551340 DOI: 10.1038/s41419-021-04285-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022]
Abstract
BH3 mimetics are increasingly used as anti-cancer therapeutics either alone or in conjunction with other chemotherapies. However, mounting evidence has also demonstrated that BH3 mimetics modulate varied amounts of apoptotic signaling in healthy immune populations. In order to maximize their clinical potential, it will be essential to understand how BH3 mimetics affect discrete immune populations and to determine how BH3 mimetic pressure causes immune system adaptation. Here we focus on the BCL-2 specific inhibitor venetoclax (ABT-199) and its effects following short-term and long-term BCL-2 blockade on T cell subsets. Seven day "short-term" ex vivo and in vivo BCL-2 inhibition led to divergent cell death sensitivity patterns in CD8+ T cells, CD4+ T cells, and Tregs resulting in shifting of global T cell populations towards a more memory T cell state with increased expression of BCL-2, BCL-XL, and MCL-1. However, twenty-eight day "long-term" BCL-2 blockade following T cell-depleted bone marrow transplantation did not lead to changes in the global T cell landscape. Despite the lack of changes in T cell proportions, animals treated with venetoclax developed CD8+ and CD4+ T cells with high levels of BCL-2 and were more resistant to apoptotic stimuli following expansion post-transplant. Further, we demonstrate through RNA profiling that T cells adapt while under BCL-2 blockade post-transplant and develop a more activated genotype. Taken together, these data emphasize the importance of evaluating how BH3 mimetics affect the immune system in different treatment modalities and disease contexts and suggest that venetoclax should be further explored as an immunomodulatory compound.
Collapse
Affiliation(s)
- Lindsey M. Ludwig
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Katrina M. Hawley
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - David B. Banks
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Medical Scientist Training Program, University of Chicago, Chicago, IL USA
| | - Anika T. Thomas-Toth
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Bruce R. Blazar
- grid.17635.360000000419368657Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN USA
| | - Megan E. McNerney
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Department of Pathology, University of Chicago, Chicago, IL USA
| | - Joel D. Leverson
- grid.431072.30000 0004 0572 4227AbbVie Inc., North Chicago, IL USA
| | - James L. LaBelle
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| |
Collapse
|
6
|
Tuzlak S, Haschka MD, Mokina A, Rülicke T, Cory S, Labi V, Villunger A. Differential effects of Vav-promoter-driven overexpression of BCLX and BFL1 on lymphocyte survival and B cell lymphomagenesis. FEBS J 2018; 285:1403-1418. [PMID: 29498802 PMCID: PMC5947286 DOI: 10.1111/febs.14426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
Overexpression of BCLX and BFL1/A1 has been reported in various human malignancies and is associated with poor prognosis and drug resistance, identifying these prosurvival BCL2 family members as putative drug targets. We have generated transgenic mice that express human BFL1 or human BCLX protein throughout the haematopoietic system under the control of the Vav gene promoter. Haematopoiesis is normal in both the Vav-BFL1 and Vav-BCLX transgenic (TG) mice and susceptibility to spontaneous haematopoietic malignancies is not increased. Lymphoid cells from Vav-BCLX TG mice exhibit increased resistance to apoptosis in vitro while most blood cell types form Vav-BFL1 TG mice were poorly protected. Both transgenes significantly accelerated lymphomagenesis in Eμ-MYC TG mice and, surprisingly, the Vav-BFL1 transgene was the more potent. Unexpectedly, expression of transgenic BFL1 RNA and protein is significantly elevated in B lymphoid cells of Vav-BFL1/Eμ-MYC double-transgenic compared to Vav-BFL1 mice, even during the preleukaemic phase, providing a rationale for the potent synergy. In contrast, Vav-BCLX expression was not notably different. These mouse models of BFL1 and BCLX overexpression in lymphomas should be useful tools for the testing the efficacy of novel human BFL1- and BCLX-specific inhibitors.
Collapse
Affiliation(s)
- Selma Tuzlak
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckAustria
| | - Manuel D. Haschka
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckAustria
| | - Anna‐Maria Mokina
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckAustria
| | - Thomas Rülicke
- Institute of Laboratory Animal ScienceUniversity of Veterinary Medicine ViennaAustria
| | - Suzanne Cory
- Molecular Genetics of Cancer DivisionThe Walter and Eliza Hall Institute of Medical ResearchMelbourneVic.Australia
- Department of Medical BiologyThe University of MelbourneVic.Australia
| | - Verena Labi
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckAustria
| | - Andreas Villunger
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckAustria
| |
Collapse
|
7
|
Zhan Y, Carrington EM, Zhang Y, Heinzel S, Lew AM. Life and Death of Activated T Cells: How Are They Different from Naïve T Cells? Front Immunol 2017; 8:1809. [PMID: 29326701 PMCID: PMC5733345 DOI: 10.3389/fimmu.2017.01809] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2017] [Indexed: 01/09/2023] Open
Abstract
T cells are pivotal in immunity and immunopathology. After activation, T cells undergo a clonal expansion and differentiation followed by a contraction phase, once the pathogen has been cleared. Cell survival and cell death are critical for controlling the numbers of naïve T cells, effector, and memory T cells. While naïve T cell survival has been studied for a long time, more effort has gone into understanding the survival and death of activated T cells. Despite this effort, there is still much to be learnt about T cell survival, as T cells transition from naïve to effector to memory. One key advance is the development of inhibitors that may allow the temporal study of survival mechanisms operating in these distinct cell states. Naïve T cells were highly reliant on BCL-2 and sensitive to BCL-2 inhibition. Activated T cells are remarkably different in their regulation of apoptosis by pro- and antiapoptotic members of the BCL-2 family, rendering them differentially sensitive to antagonists blocking the function of one or more members of this family. Recent progress in understanding other programmed cell death mechanisms, especially necroptosis, suggests a unique role for alternative pathways in regulating death of activated T cells. Furthermore, we highlight a mechanism of epigenetic regulation of cell survival unique to activated T cells. Together, we present an update of our current understanding of the survival requirement of activated T cells.
Collapse
Affiliation(s)
- Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Emma M Carrington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yuxia Zhang
- Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Susanne Heinzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev 2017; 32:8-28. [PMID: 28802908 DOI: 10.1016/j.blre.2017.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/05/2017] [Accepted: 08/06/2017] [Indexed: 12/14/2022]
Abstract
Apoptosis is an essential biological process involved in tissue homeostasis and immunity. Aberrations of the two main apoptotic pathways, extrinsic and intrinsic, have been identified in hematological malignancies; many of these aberrations are associated with pathogenesis, prognosis and resistance to standard chemotherapeutic agents. Targeting components of the apoptotic pathways, especially the chief regulatory BCL-2 family in the intrinsic pathway, has proved to be a promising therapeutic approach for patients with hematological malignances, with the expectation of enhanced efficacy and reduced adverse events. Continuous investigations regarding the biological importance of each of the BCL-2 family components and the clinical rationale to achieve optimal therapeutic outcomes, using either monotherapy or in combination with other targeted agents, have generated inspiring progress in the field. Genomic, epigenomic and biological analyses including BH3 profiling facilitate effective evaluation of treatment response, cancer recurrence and drug resistance. In this review, we summarize the biological features of each of the components in the BCL-2 apoptotic pathways, analyze the regulatory mechanisms and the pivotal roles of BCL-2 family members in the pathogenesis of major types of hematologic malignances, and evaluate the potential of apoptosis- and BCL-2-targeted strategies as effective approaches in anti-cancer therapies.
Collapse
|
9
|
Cippà PE, Fehr T. Pharmacological modulation of cell death in organ transplantation. Transpl Int 2017; 30:851-859. [PMID: 28480540 DOI: 10.1111/tri.12977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/20/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
New options to pharmacologically modulate fundamental mechanisms of regulated cell death are rapidly evolving and found first clinical applications in cancer therapy. Here, we present an overview on how the recent advances in the understanding of the biology and pharmacology of cell death might influence research and clinical practice in solid organ transplantation. Of particular interest are the novel opportunities related to organ preservation and immunomodulation, which might contribute to promote organ repair and to develop more selective ways to modulate allogeneic immune responses to prevent rejection and induce immunological tolerance.
Collapse
Affiliation(s)
- Pietro E Cippà
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Fehr
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Graubuenden, Chur, Switzerland
| |
Collapse
|
10
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
11
|
Tuzlak S, Schenk RL, Vasanthakumar A, Preston SP, Haschka MD, Zotos D, Kallies A, Strasser A, Villunger A, Herold MJ. The BCL-2 pro-survival protein A1 is dispensable for T cell homeostasis on viral infection. Cell Death Differ 2017; 24:523-533. [PMID: 28085151 DOI: 10.1038/cdd.2016.155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/08/2016] [Accepted: 12/01/2016] [Indexed: 12/31/2022] Open
Abstract
The physiological role of the pro-survival BCL-2 family member A1 has been debated for a long time. Strong mRNA induction in T cells on T cell receptor (TCR)-engagement suggested a major role of A1 in the survival of activated T cells. However, the investigation of the physiological roles of A1 was complicated by the quadruplication of the A1 gene locus in mice, making A1 gene targeting very difficult. Here, we used the recently generated A1-/- mouse model to examine the role of A1 in T cell immunity. We confirmed rapid and strong induction of A1 protein in response to TCR/CD3 stimulation in CD4+ as well as CD8+ T cells. Surprisingly, on infection with the acute influenza HKx31 or the lymphocytic choriomeningitis virus docile strains mice lacking A1 did not show any impairment in the expansion, survival, or effector function of cytotoxic T cells. Furthermore, the ability of A1-/- mice to generate antigen-specific memory T cells or to provide adequate CD4-dependent help to B cells was not impaired. These results suggest functional redundancy of A1 with other pro-survival BCL-2 family members in the control of T cell-dependent immune responses.
Collapse
Affiliation(s)
- Selma Tuzlak
- Division of Developmental Immunology, BIOCENTER, Medical University Innsbruck, Innsbruck, Austria.,The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia
| | - Robyn L Schenk
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Ajithkumar Vasanthakumar
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Simon P Preston
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Manuel D Haschka
- Division of Developmental Immunology, BIOCENTER, Medical University Innsbruck, Innsbruck, Austria
| | - Dimitra Zotos
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Axel Kallies
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Andreas Strasser
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| | - Andreas Villunger
- Division of Developmental Immunology, BIOCENTER, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Marco J Herold
- The Walter & Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3050, Australia
| |
Collapse
|
12
|
Characterisation of mice lacking all functional isoforms of the pro-survival BCL-2 family member A1 reveals minor defects in the haematopoietic compartment. Cell Death Differ 2017; 24:534-545. [PMID: 28085150 DOI: 10.1038/cdd.2016.156] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/08/2016] [Accepted: 12/01/2016] [Indexed: 12/31/2022] Open
Abstract
The pro-survival proteins of the BCL-2 family regulate the survival of all cells, and genetic deletion models for these proteins have revealed which specific BCL-2 family member(s) is/are critical for the survival of particular cell types. A1 is a pro-survival BCL-2-like protein that is expressed predominantly in haematopoietic cells, and here we describe the characterisation of a novel mouse strain that lacks all three functional isoforms of A1 (A1-a, A1-b and A1-d). Surprisingly, complete loss of A1 caused only minor defects, with significant, although relatively small, decreases in γδTCR T cells, antigen-experienced conventional as well as regulatory CD4 T cells and conventional dendritic cells (cDCs). When examining these cell types in tissue culture, only cDC survival was significantly impaired by the loss of A1. Therefore, A1 appears to be a surprisingly redundant pro-survival protein in the haematopoietic system and other tissues, suggesting that its targeting in cancer may be readily tolerated.
Collapse
|
13
|
Silva SL, Sousa AE. Establishment and Maintenance of the Human Naïve CD4 + T-Cell Compartment. Front Pediatr 2016; 4:119. [PMID: 27843891 PMCID: PMC5086629 DOI: 10.3389/fped.2016.00119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
The naïve CD4+ T-cell compartment is considered essential to guarantee immune competence throughout life. Its replenishment with naïve cells with broad diverse receptor repertoire, albeit with reduced self-reactivity, is ensured by the thymus. Nevertheless, cumulative data support a major requirement of post-thymic proliferation both for the establishment of the human peripheral naïve compartment during the accelerated somatic growth of childhood, as well as for its lifelong maintenance. Additionally, a dynamic equilibrium is operating at the cell level to fine-tune the T-cell receptor threshold to activation and survival cues, in order to counteract the continuous naïve cell loss by death or conversion into memory/effector cells. The main players in these processes are low-affinity self-peptide/MHC and cytokines, particularly IL-7. Moreover, although naïve CD4+ T-cells are usually seen as a homogeneous population regarding stage of maturation and cell differentiation, increasing evidence points to a variety of phenotypic and functional subsets with distinct homeostatic requirements. The paradigm of cells committed to a distinct lineage in the thymus are the naïve regulatory T-cells, but other functional subpopulations have been identified based on their time span after thymic egress, phenotypic markers, such as CD31, or cytokine production, namely IL-8. Understanding the regulation of these processes is of utmost importance to promote immune reconstitution in several clinical settings, namely transplantation, persistent infections, and aging. In this mini review, we provide an overview of the mechanisms underlying human naïve CD4+ T-cell homeostasis, combining clinical data, experimental studies, and modeling approaches.
Collapse
Affiliation(s)
- Susana L Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Centro de Imunodeficiências Primárias, Lisboa, Portugal; Clinica Universitária de Imunoalergologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Centro de Imunodeficiências Primárias, Lisboa, Portugal
| |
Collapse
|
14
|
Kamimura D, Arima Y, Tsuruoka M, Jiang JJ, Bando H, Meng J, Sabharwal L, Stofkova A, Nishikawa N, Higuchi K, Ogura H, Atsumi T, Murakami M. Strong TCR-mediated signals suppress integrated stress responses induced by KDELR1 deficiency in naive T cells. Int Immunol 2015; 28:117-26. [PMID: 26489882 DOI: 10.1093/intimm/dxv059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022] Open
Abstract
KDEL receptor 1 (KDELR1) regulates integrated stress responses (ISR) to promote naive T-cell survival in vivo. In a mouse line having nonfunctional KDELR1, T-Red (naive T-cell reduced) mice, polyclonal naive T cells show excessive ISR and eventually undergo apoptosis. However, breeding T-Red mice with TCR-transgenic mice bearing relatively high TCR affinity rescued the T-Red phenotype, implying a link between ISR-induced apoptosis and TCR-mediated signaling. Here, we showed that strong TCR stimulation reduces ISR in naive T cells. In mice lacking functional KDELR1, surviving naive T cells expressed significantly higher levels of CD5, a surrogate marker of TCR self-reactivity. In addition, higher TCR affinity/avidity was confirmed using a tetramer dissociation assay on the surviving naive T cells, suggesting that among the naive T-cell repertoire, those that receive relatively stronger TCR-mediated signals via self-antigens survive enhanced ISR. Consistent with this observation, weak TCR stimulation with altered peptide ligands decreased the survival and proliferation of naive T cells, whereas stimulation with ligands having higher affinity had no such effect. These results suggest a novel role of TCR-mediated signals in the attenuation of ISR in vivo.
Collapse
Affiliation(s)
- Daisuke Kamimura
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasunobu Arima
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mineko Tsuruoka
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jing-Jing Jiang
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidenori Bando
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jie Meng
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Lavannya Sabharwal
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Andrea Stofkova
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan
| | - Naoki Nishikawa
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan
| | - Kotaro Higuchi
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan
| | - Hideki Ogura
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toru Atsumi
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaaki Murakami
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Sochalska M, Ottina E, Tuzlak S, Herzog S, Herold M, Villunger A. Conditional knockdown of BCL2A1 reveals rate-limiting roles in BCR-dependent B-cell survival. Cell Death Differ 2015; 23:628-39. [PMID: 26450454 PMCID: PMC4986635 DOI: 10.1038/cdd.2015.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 11/09/2022] Open
Abstract
Bcl2 family proteins control mitochondrial apoptosis and its members exert critical cell type and differentiation stage-specific functions, acting as barriers against autoimmunity or transformation. Anti-apoptotic Bcl2a1/Bfl1/A1 is frequently deregulated in different types of blood cancers in humans but its physiological role is poorly understood as quadruplication of the Bcl2a1 gene locus in mice hampers conventional gene targeting strategies. Transgenic overexpression of A1, deletion of the A1-a paralogue or constitutive knockdown in the hematopoietic compartment of mice by RNAi suggested rate-limiting roles in lymphocyte development, granulopoiesis and mast cell activation. Here we report on the consequences of conditional knockdown of A1 protein expression using a reverse transactivator (rtTA)-driven approach that highlights a critical role for this Bcl2 family member in the maintenance of mature B-cell homeostasis. Furthermore, we define the A1/Bim (Bcl-2 interacting mediator of cell death) axis as a target of key kinases mediating B-cell receptor (BCR)-dependent survival signals, such as, spleen tyrosine kinase (Syk) and Brutons tyrosine kinase (Btk). As such, A1 represents a putative target for the treatment of B-cell-related pathologies depending on hyperactivation of BCR-emanating survival signals and loss of A1 expression accounts, in part, for the pro-apoptotic effects of Syk- or Btk inhibitors that rely on the ‘BH3-only' protein Bim for cell killing.
Collapse
Affiliation(s)
- M Sochalska
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - E Ottina
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - S Tuzlak
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - S Herzog
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - M Herold
- The Walter and Eliza Hall Institute for Medical Research, University of Melbourne, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - A Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Sochalska M, Tuzlak S, Egle A, Villunger A. Lessons from gain- and loss-of-function models of pro-survival Bcl2 family proteins: implications for targeted therapy. FEBS J 2015; 282:834-849. [PMID: 25559680 PMCID: PMC4562365 DOI: 10.1111/febs.13188] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 01/02/2015] [Indexed: 01/23/2023]
Abstract
Cell survival depends on the maintenance of mitochondrial integrity controlled by a well-balanced interplay between anti- and pro-apoptotic B cell lymphoma 2 (Bcl2) family members. Given their frequent deregulation in human pathologies, including autoimmunity and cancer, significant research efforts have increased our molecular understanding of how Bcl2 proteins control cell death. This has fostered the development of small non-peptidic compounds, so-called BH3-mimetics, that show excellent prospects of passing clinical trials and entering daily use for targeted therapy. Possible limitations in clinical application may, to a certain degree, be predicted from loss-of-function phenotypes gathered from studies using gene-modified mice that we attempt to summarize and discuss in this context.
Collapse
Affiliation(s)
- Maja Sochalska
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Austria
| | - Selma Tuzlak
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Austria
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Austria
| |
Collapse
|
17
|
Lang MJ, Brennan MS, O'Reilly LA, Ottina E, Czabotar PE, Whitlock E, Fairlie WD, Tai L, Strasser A, Herold MJ. Characterisation of a novel A1-specific monoclonal antibody. Cell Death Dis 2014; 5:e1553. [PMID: 25476901 PMCID: PMC4649835 DOI: 10.1038/cddis.2014.519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M J Lang
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - M S Brennan
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - L A O'Reilly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - E Ottina
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - P E Czabotar
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - E Whitlock
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - W D Fairlie
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - L Tai
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - A Strasser
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - M J Herold
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Medina-Echeverz J, Haile LA, Zhao F, Gamrekelashvili J, Ma C, Métais JY, Dunbar CE, Kapoor V, Manns MP, Korangy F, Greten TF. IFN-γ regulates survival and function of tumor-induced CD11b+ Gr-1high myeloid derived suppressor cells by modulating the anti-apoptotic molecule Bcl2a1. Eur J Immunol 2014; 44:2457-67. [PMID: 24810636 DOI: 10.1002/eji.201444497] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/13/2014] [Accepted: 05/06/2014] [Indexed: 11/07/2022]
Abstract
Myeloid derived suppressor cells (MDSCs) play a critical role in suppression of immune responses in cancer and inflammation. Here, we describe how regulation of Bcl2a1 by cytokines controls the suppressor function of CD11b(+) Gr-1(high) granulocytic MDSCs. Coculture of CD11b(+) Gr-1(high) granulocytic MDSCs with antigen-stimulated T cells and simultaneous blockade of IFN-γ by the use of anti-IFN-γ blocking antibody, IFN-γ(-/-) effector T cells, IFN-γR(-/-) MDSCs or STAT1(-/-) MDSCs led to upregulation of Bcl2a1 in CD11b(+) Gr-1(high) cells, improved survival, and enhanced their suppressor function. Molecular studies revealed that GM-CSF released by antigen-stimulated CD8(+) T cells induced Bcl2a1 upregulation, which was repressed in the presence of IFN-γ by a direct interaction of phosphorylated STAT-1 with the Bcl2a1 promotor. Bcl2a1 overexpressing granulocytic MDSCs demonstrated prolonged survival and enhanced suppressor function in vitro. Our data suggest that IFN-γ/ STAT1-dependent regulation of Bcl2a1 regulates survival and thereby suppressor function of granulocytic MDSCs.
Collapse
Affiliation(s)
- José Medina-Echeverz
- GI-Malignancy Section, Thoracic and GI-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Survival of lymphocytes and melanocyte stem cells critically depends on B cell lymphoma 2 (Bcl-2). In T lymphocytes, a basal calcineurin activity maintains Bcl-2 expression in naïve cells, and the activation of the calcineurin pathway orchestrates the regulation of the intrinsic apoptosis pathway after antigen recognition. Therefore, calcineurin inhibitors might potentiate the pro-apoptotic effect of pharmacological Bcl-2 inhibitors on lymphatic cells. In vitro, a reduced Bcl-2 expression in lymphocytes exposed to calcineurin inhibitors increased their sensitivity to the small molecule Bcl-2 inhibitor ABT-737. This correlated with an augmented pro-apoptotic activity of ABT-737 on lymphocytes in combination with cyclosporine A in naïve mice in vivo. Interestingly, similar processes were observed in melanocytes. ABT-737 induced a fur depigmentation at the site of injection, and this effect was expanded to a generalized depigmentation in combination with cyclosporine A. Thus, inhibiting calcineurin increases the pro-apoptotic potency of ABT-737 in cells depending on Bcl-2 for survival. The increased efficacy of Bcl-2 inhibitors in combination with cyclosporine A might be relevant to exploit their anti-neoplastic and immuno-modulatory properties.
Collapse
|
20
|
Mutually exclusive regulation of T cell survival by IL-7R and antigen receptor-induced signals. Nat Commun 2013; 4:1735. [PMID: 23591902 PMCID: PMC3644093 DOI: 10.1038/ncomms2719] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 03/08/2013] [Indexed: 11/08/2022] Open
Abstract
Two major processes govern T cell proliferation and survival: interleukin-7-mediated homeostasis and antigen-induced selection. How cells transit between the two states is unknown. Here we show that T cell receptor ligation actively inhibits homeostatic survival signals while initiating a new, dominant survival programme. This switch is mediated by a change in the expression of pro- and anti-apoptosis proteins through the downregulation of Bcl-2 and the induction of Bim, A1 and Bcl-xL. Calcineurin inhibitors prevent the initiation of the new survival programme, while permitting the dominant repression of Bcl-2. Thus, in the presence of these drugs the response to antigen receptor ligation is cell death. Our results identify a molecular switch that can serve as an attractive target for inducing antigen-specific tolerance in treating autoimmune disease patients and transplant recipients. Before antigen exposure, T cell survival is dependent on signalling stimulated by IL-7. Koenen et al. show that upon encountering specific antigen, T cell receptor signalling initiates a different set of survival pathways, which actively suppress those that sustain naive T cells.
Collapse
|
21
|
Wensveen FM, Klarenbeek PL, van Gisbergen KPJM, Pascutti MF, Derks IAM, van Schaik BDC, Ten Brinke A, de Vries N, Cekinovic D, Jonjic S, van Lier RAW, Eldering E. Pro-apoptotic protein Noxa regulates memory T cell population size and protects against lethal immunopathology. THE JOURNAL OF IMMUNOLOGY 2012; 190:1180-91. [PMID: 23277490 DOI: 10.4049/jimmunol.1202304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Memory T cells form a highly specific defense layer against reinfection with previously encountered pathogens. In addition, memory T cells provide protection against pathogens that are similar, but not identical to the original infectious agent. This is because each T cell response harbors multiple clones with slightly different affinities, thereby creating T cell memory with a certain degree of diversity. Currently, the mechanisms that control size, diversity, and cross-reactivity of the memory T cell pool are incompletely defined. Previously, we established a role for apoptosis, mediated by the BH3-only protein Noxa, in controlling diversity of the effector T cell population. This function might positively or negatively impact T cell memory in terms of function, pool size, and cross-reactivity during recall responses. Therefore, we investigated the role of Noxa in T cell memory during acute and chronic infections. Upon influenza infection, Noxa(-/-) mice generate a memory compartment of increased size and clonal diversity. Reinfection resulted in an increased recall response, whereas cross-reactive responses were impaired. Chronic infection of Noxa(-/-) mice with mouse CMV resulted in enhanced memory cell inflation, but no obvious pathology. In contrast, in a model of continuous, high-level T cell activation, reduced apoptosis of activated T cells rapidly led to severe organ pathology and premature death in Noxa-deficient mice. These results establish Noxa as an important regulator of the number of memory cells formed during infection. Chronic immune activation in the absence of Noxa leads to excessive accumulation of primed cells, which may result in severe pathology.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ottina E, Tischner D, Herold MJ, Villunger A. A1/Bfl-1 in leukocyte development and cell death. Exp Cell Res 2012; 318:1291-303. [PMID: 22342458 PMCID: PMC3405526 DOI: 10.1016/j.yexcr.2012.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/17/2022]
Abstract
The function of the anti-apoptotic Bcl-2 family member Bcl2a1/Bfl-1/A1 is poorly understood due to the lack of appropriate loss-of-function mouse models and redundant effects with other Bcl-2 pro-survival proteins upon overexpression. Expression analysis of A1 suggests predominant roles in leukocyte development, their survival upon viral or bacterial infection, as well as during allergic reactions. In addition, A1 has been implicated in autoimmunity and the pathology and therapy resistance of hematological as well as solid tumors that may aberrantly express this protein. In this review, we aim to summarize current knowledge on A1 biology, focusing on its role in the immune system and compare it to that of other pro-survival Bcl-2 proteins.
Collapse
Affiliation(s)
- Eleonora Ottina
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Denise Tischner
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
- Corresponding author at: Division of Developmental Immunology, BIOCENTER, Innsbruck Medical University, A-6020 Innsbruck, Austria. Fax: + 43 512 9003 73960.
| |
Collapse
|
23
|
Targeting antiapoptotic A1/Bfl-1 by in vivo RNAi reveals multiple roles in leukocyte development in mice. Blood 2012; 119:6032-42. [PMID: 22581448 DOI: 10.1182/blood-2011-12-399089] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene-targeting studies in mice have identified the essential roles of most prosurvival Bcl-2 family members in normal physiology and under conditions of stress. The function of one member, Bcl2a1/Bfl-1/A1, is only poorly understood because of quadruplication of its gene locus in mice, hindering conventional knockout studies. To overcome this problem, we generated mouse models allowing traceable constitutive or reversible ablation of A1 in the hematopoietic system by RNA interference. Knockdown of A1 impaired early stages of T-cell differentiation, B-cell homeostasis, and sensitized transitional as well as follicular B cells to apoptosis induced by ligation of the B-cell receptor. As a consequence, B-cell proliferation in response to mitogens was severely impaired, whereas that of T cells appeared unaffected. Furthermore, depending on the extent of A1 knockdown, granulocytes showed increased spontaneous death in culture or failed to accumulate in significant numbers in vivo. These models highlight the critical role of A1 in leukocyte development and homeostasis, constituting valuable tools for investigating presumed roles of this Bcl-2 family member in immunity, tumorigenesis, and drug resistance.
Collapse
|
24
|
Cippà PE, Kraus AK, Lindenmeyer MT, Chen J, Guimezanes A, Bardwell PD, Wekerle T, Wüthrich RP, Fehr T. Resistance to ABT-737 in activated T lymphocytes: molecular mechanisms and reversibility by inhibition of the calcineurin-NFAT pathway. Cell Death Dis 2012; 3:e299. [PMID: 22513873 PMCID: PMC3358016 DOI: 10.1038/cddis.2012.38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic regulation of the intrinsic apoptosis pathway controls central and peripheral lymphocyte deletion, and may interfere with the pro-apoptotic potency of B-cell lymphoma 2 inhibitors such as ABT-737. By following a T-cell receptor (TCR) transgenic population of alloantigen-specific T cells, we found that sensitivity to ABT-737 radically changed during the course of allo-specific immune responses. Particularly, activated T cells were fully resistant to ABT-737 during the first days after antigen recognition. This phenomenon was caused by a TCR–calcineurin–nuclear factor of activated T cells-dependent upregulation of A1, and was therefore prevented by cyclosporine A (CsA). As a result, exposure to ABT-737 after alloantigen recognition induced selection of alloreactive T cells in vivo, whereas in combination with low-dose CsA, ABT-737 efficiently depleted alloreactive T cells in murine host-versus-graft and graft-versus-host models. Thus, ABT-737 resistance is not a prerogative of neoplastic cells, but it physiologically occurs in T cells after antigen recognition. Reversibility of this process by calcineurin inhibitors opens new pharmacological opportunities to modulate this process in the context of cancer, autoimmunity and transplantation.
Collapse
Affiliation(s)
- P E Cippà
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
B-cell lymphoma 2 (BCL2) proteins are important cell death regulators, whose main function is to control the release of cytochrome c from mitochondria in the intrinsic apoptotic pathway. They comprise both pro- and anti-apoptotic proteins, which interact in various ways to induce or prevent pore formation in the outer mitochondrial membrane. Due to their central function in the apoptotic machinery, BCL2 proteins are often deregulated in cancer. To this end, many anti-apoptotic BCL2 proteins have been identified as important cellular oncogenes and attractive targets for anti-cancer therapy. In this review, the existing knowledge on B-cell lymphoma 2-related protein A1 (BCL2A1)/Bcl-2-related gene expressed in fetal liver (Bfl-1), one of the less extensively studied anti-apoptotic BCL2 proteins, is summarized. BCL2A1 is a highly regulated nuclear factor κB (NF-κB) target gene that exerts important pro-survival functions. In a physiological context, BCL2A1 is mainly expressed in the hematopoietic system, where it facilitates survival of selected leukocytes subsets and inflammation. However, BCL2A1 is overexpressed in a variety of cancer cells, including hematological malignancies and solid tumors, and may contribute to tumor progression. Therefore, the development of small molecule inhibitors of BCL2A1 may be a promising approach mainly to sensitize tumor cells for apoptosis and thus improve the efficiency of anti-cancer therapy.
Collapse
Affiliation(s)
- M Vogler
- MRC Toxicology Unit, University of Leicester, Leicester, UK.
| |
Collapse
|
26
|
Zhai D, Godoi P, Sergienko E, Dahl R, Chan X, Brown B, Rascon J, Hurder A, Su Y, Chung TDY, Jin C, Diaz P, Reed JC. High-throughput fluorescence polarization assay for chemical library screening against anti-apoptotic Bcl-2 family member Bfl-1. ACTA ACUST UNITED AC 2011; 17:350-60. [PMID: 22156224 DOI: 10.1177/1087057111429372] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1. To this end, we devised a fluorescence polarization assay (FPA) using Bfl-1 protein and fluorescein-conjugated Bid BH3 peptide, which was employed for high-throughput screening of chemical libraries. Approximately 66 000 compounds were screened for the ability to inhibit BH3 peptide binding to Bfl-1, yielding 14 reproducible hits with ≥50% displacement. After dose-response analysis and confirmation using a secondary assay based on time-resolved fluorescence resonance energy transfer (TR-FRET), two groups of Bfl-1-specific inhibitors were identified, including chloromaleimide and sulfonylpyrimidine series compounds. FPAs generated for each of the six anti-apoptotic Bcl-2 proteins demonstrated selective binding of both classes of compounds to Bfl-1. Analogs of the sulfonylpyrimidine series were synthesized and compared with the original hit for Bfl-1 binding by both FPAs and TR-FRET assays. The resulting structure-activity relation analysis led to the chemical probe compound CID-2980973 (ML042). Collectively, these findings demonstrate the feasibility of using the HTS assay for discovery of selective chemical inhibitors of Bfl-1.
Collapse
Affiliation(s)
- Dayong Zhai
- Sanford-Burnham Medical Research Institute, Program on Apoptosis and Cell Death Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lawlor KE, Smith SD, van Nieuwenhuijze A, Huang DCS, Wicks IP. Evaluation of the Bcl-2 family antagonist ABT-737 in collagen-induced arthritis. J Leukoc Biol 2011; 90:819-29. [PMID: 21719460 DOI: 10.1189/jlb.0311174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Therapeutic manipulation of cellular apoptosis holds great promise for malignant and potentially nonmalignant diseases. A relative resistance to apoptosis in RA synovium is associated with increased expression of prosurvival Bcl-2 family members. In this study, we demonstrate that treatment of DBA/1 mice, prior to the onset of CIA with ABT-737, a BH3 mimetic targeting Bcl-2, Bcl-w, and Bcl-x(L), ameliorated disease development. In contrast, treatment of mice with ABT-737 in established CIA did not alter the course of disease. ABT-737 induced lymphopenia, however pathogenic lymphoid populations in CIA mice were less affected, as shown by relatively normal T and B cell responses to CII. Naïve lymphocytes were highly sensitive to apoptosis after culture with ABT-737, but synovial macrophages and neutrophils were not. Mcl-1 was detected in synovial monocyte/macrophages and neutrophils and strikingly, its expression, rather than Bcl-2 and Bcl-x(L), increased in the affected paws and lymphoid organs of mice with CIA. These observations implicate Mcl-1, which is not targeted by ABT-737, in the survival of inflammatory cells in established CIA and suggest that antagonism of Mcl-1 may be more effective in diseases such as RA.
Collapse
Affiliation(s)
- Kate E Lawlor
- Reid Rheumatology Laboratory, Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
28
|
Haque R, Lei F, Xiong X, Wu Y, Song J. FoxP3 and Bcl-xL cooperatively promote regulatory T cell persistence and prevention of arthritis development. Arthritis Res Ther 2010; 12:R66. [PMID: 20384988 PMCID: PMC2888221 DOI: 10.1186/ar2983] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 02/16/2010] [Accepted: 04/12/2010] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Forkhead box p3 (FoxP3)-expressing regulatory T cells (Tregs) have been clearly implicated in the control of autoimmune disease in murine models. In addition, ectopic expression of FoxP3 conveys a Treg phenotype to CD4(+) T cells, lending itself to therapeutic use in the prevention of rheumatoid arthritis (RA). In this study, we generated therapeutically active Tregs with an increased life span and hence greater therapeutic potential. METHODS We used retrovirus-mediated transduction to introduce FoxP3 or FoxP3 with anti-apoptotic Bcl-2 family molecule Bcl-xL linked by a 2A picornavirus self-cleaving peptide into CD4(+) T cells to generate Tregs. In addition, by using in vitro functional analyses and adoptive immunotherapy in a murine model of RA, we demonstrated that these Tregs were highly reactive. RESULTS We found that CD4(+) T cells expressing both FoxP3 and Bcl-xL were able to differentiate into functional Tregs, which have a long-term survival advantage over cells transduced with FoxP3 alone. In an in vivo murine model, adoptive transfer of Tregs expressing both FoxP3 and Bcl-xL demonstrated more effective suppression of RA than CD4(+) T cells expressing FoxP3 alone. CONCLUSIONS FoxP3 and Bcl-xL can cooperatively promote the differentiation and persistence of Tregs, with the capacity to prevent arthritis. Our results provide a novel approach for generating highly reactive Tregs for augmenting cellular immunotherapy for autoimmune disease.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/prevention & control
- Forkhead Transcription Factors/genetics
- Immunotherapy, Adoptive
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transduction, Genetic
- bcl-X Protein/genetics
Collapse
Affiliation(s)
- Rizwanul Haque
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Fengyang Lei
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Xiaofang Xiong
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Yuzhang Wu
- Institute of Immunology, The Third Military Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| | - Jianxun Song
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Institute of Immunology, The Third Military Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| |
Collapse
|
29
|
IL-7 sustains CD31 expression in human naive CD4+ T cells and preferentially expands the CD31+ subset in a PI3K-dependent manner. Blood 2008; 113:2999-3007. [PMID: 19008454 DOI: 10.1182/blood-2008-07-166223] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CD31(+) subset of human naive CD4(+) T cells is thought to contain the population of cells that have recently emigrated from the thymus, while their CD31(-) counterparts have been proposed to originate from CD31(+) cells after homeostatic cell division. Naive T-cell maintenance is known to involve homeostatic cytokines such as interleukin-7 (IL-7). It remains to be investigated what role this cytokine has in the homeostasis of naive CD4(+) T-cell subsets defined by CD31 expression. We provide evidence that IL-7 exerts a preferential proliferative effect on CD31(+) naive CD4(+) T cells from adult peripheral blood compared with the CD31(-) subset. IL-7-driven proliferation did not result in loss of CD31 expression, suggesting that CD31(+) naive CD4(+) T cells can undergo cytokine-driven homeostatic proliferation while preserving CD31. Furthermore, IL-7 sustained or increased CD31 expression even in nonproliferating cells. Both proliferation and CD31 maintenance were dependent on the activation of phosphoinositide 3-kinase (PI3K) signaling. Taken together, our data suggest that during adulthood CD31(+) naive CD4(+) T cells are maintained by IL-7 and that IL-7-based therapies may exert a preferential effect on this population.
Collapse
|
30
|
Fan Y, Dutta J, Gupta N, Fan G, Gélinas C. Regulation of programmed cell death by NF-kappaB and its role in tumorigenesis and therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:223-50. [PMID: 18437897 DOI: 10.1007/978-1-4020-6554-5_11] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Rel/NF-kappaB transcription factors are key regulators of programmed cell death (PCD). Their activity has significant physiological relevance for normal development and homeostasis in various tissues and important pathological consequences are associated with aberrant NF-kappaB activity, including hepatocyte apoptosis, neurodegeneration, and cancer. While NF-kappaB is best characterized for its protective activity in response to proapoptotic stimuli, its role in suppressing programmed necrosis has come to light more recently. NF-kappaB most commonly antagonizes PCD by activating the expression of antiapoptotic proteins and antioxidant molecules, but it can also promote PCD under certain conditions and in certain cell types. It is therefore important to understand the pathways that control NF-kappaB activation in different settings and the mechanisms that regulate its anti- vs pro-death activities. Here, we review the role of NF-kappaB in apoptotic and necrotic PCD, the mechanisms involved, and how its activity in the cell death response impacts cancer development, progression, and therapy. Given the role that NF-kappaB plays both in tumor cells and in the tumor microenvironment, recent findings underscore the NF-kappaB signaling pathway as a promising target for cancer prevention and treatment.
Collapse
Affiliation(s)
- Yongjun Fan
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854-5638, USA
| | | | | | | | | |
Collapse
|
31
|
Marçais A, Coupet CA, Walzer T, Tomkowiak M, Ghittoni R, Marvel J. Cell-autonomous CCL5 transcription by memory CD8 T cells is regulated by IL-4. THE JOURNAL OF IMMUNOLOGY 2006; 177:4451-7. [PMID: 16982880 DOI: 10.4049/jimmunol.177.7.4451] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunological memory is associated with the display of improved effector functions. The maintenance by CD8 memory cells of high levels of untranslated CCL5 mRNA allows these cells to immediately secrete this chemokine upon Ag stimulation. Untranslated mRNA storage is a newly described process supporting the immediate display of an effector function by memory lymphocytes. We have tested the capacity of different cytokines to regulate the memorization of CCL5 by memory CD8 T cells. We found that IL-4 treatment of murine CD8 T cells impairs immediate CCL5 secretion capacity by inhibiting CCL5 mRNA transcription through a STAT6-dependent pathway. The inhibition by IL-4 is reversible, as memory CD8 T cells reconstitute their CCL5 mRNA stores and reacquire their immediate CCL5 secretion capacity when IL-4 is withdrawn. This recovery is cell autonomous because it proceeds in culture medium in the absence of exogenous growth factors, suggesting that CCL5 expression by memory CD8 T cells is a default process. Overall, these results indicate that the expression of CCL5 is an intrinsic property acquired by memory CD8 T cells that is regulated by environmental factors.
Collapse
Affiliation(s)
- Antoine Marçais
- Institut National de la Santé de la Recherche Médicale, Unité 503, 21 avenue Tony Garnier, Lyon, France
| | | | | | | | | | | |
Collapse
|
32
|
Cottalorda A, Verschelde C, Marçais A, Tomkowiak M, Musette P, Uematsu S, Akira S, Marvel J, Bonnefoy-Berard N. TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur J Immunol 2006; 36:1684-93. [PMID: 16761317 DOI: 10.1002/eji.200636181] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TLR have a crucial role in the detection of microbial infection in mammals. Until recently, most investigations on TLR have focused on cells of the innate immune system and on the role of TLR in the initiation of antigen-specific responses following recognition of microbial products by APC. Here, we report that murine T cells express TLR1, TLR2, TLR6, TLR7 and TLR9 mRNA. Using CD8 T cells from F5 TCR-transgenic mice, we demonstrate that the lipopeptide Pam(3)CysSK(4) (Pam), a synthetic analog of bacterial and mycoplasmal lipoproteins that recognizes TLR1/2 complex, costimulates antigen-activated T cells. Costimulation with Pam permits an increased cell proliferation and survival associated with a sustained CD25 expression and an enhanced expression of Bcl-xL anti-apoptotic protein. In addition, we show that costimulation with Pam up-regulates IFN-gamma production but also granzyme B secretion and cytotoxic activity of antigen-activated T cells, indicating that TLR2 engagement enhances the major effector functions of CD8 T cells. Finally, we demonstrate that TLR2 engagement on T cells lowers the activation threshold for costimulatory signals delivered by APC.
Collapse
Affiliation(s)
- Anne Cottalorda
- Laboratory of Homéostasie Lymphocytaire, INSERM, U503, IFR Biosciences Lyon-Gerland, Université Claude Bernard Lyon I, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xiang Z, Möller C, Nilsson G. IgE-receptor activation induces survival and Bfl-1 expression in human mast cells but not basophils. Allergy 2006; 61:1040-6. [PMID: 16918505 DOI: 10.1111/j.1398-9995.2006.01024.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The contribution of mast cells to the pathology of allergic diseases are facilitated by their long life span in tissue and ability to regranulate. Bcl-2 genes are one of the main regulators of cell death and survival. The aim of this study was to elucidate the mechanisms responsible for mast cell survival in allergy. METHODS Bcl-2 family gene expression in human mast cells and basophils was analyzed by ribonuclease protection assay and by reverse-transcriptase polymerase chain reaction. Cell survival was measured by mixing cells with the vital dye, trypan blue, and the number of living cells was enumerated. Apoptotic cells were measured by a Cell Death Detection ELISA. RESULTS We found that cross-linking of FcepsilonRI on human cord blood cultured mast cells (CBCMCs) promoted cell survival and induced expression of the pro-survival gene Bfl-1. CBCMCs were found to express both Bfl-1 and Bfl-1S, two splicing variants of Bfl-1. Bfl-1 induction was mediated through Syk, PI3-kinase and intracellular calcium mobilization, since piceatannol, wortmannin and EDTA, respectively, significantly reduced Bfl-1 expression levels. In contrast to CBCMCs, no evidence was found for Bfl-1 expression and survival promotion in human basophils. CONCLUSIONS Immunoglobulin E (IgE)-dependent activation-induced mast cell survival was correlated with Bfl-1 gene upregulation, providing a possible explanation for mast cell longevity in allergic reactions.
Collapse
Affiliation(s)
- Z Xiang
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
34
|
Alves NL, Derks IAM, Berk E, Spijker R, van Lier RAW, Eldering E. The Noxa/Mcl-1 Axis Regulates Susceptibility to Apoptosis under Glucose Limitation in Dividing T Cells. Immunity 2006; 24:703-716. [PMID: 16782027 DOI: 10.1016/j.immuni.2006.03.018] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 02/22/2006] [Accepted: 03/14/2006] [Indexed: 01/13/2023]
Abstract
Throughout lymphocyte development, cellular persistence and expansion are tightly regulated by survival and apoptosis. Within the Bcl-2 family, distinct apoptogenic BH3-only members like Bid, Bim, and Puma appear to function in specific cell death pathways. We found that naive human T cells after mitogenic activation, apart from expected protective Bcl-2 members, also rapidly upregulate the BH3-only protein Noxa in a p53-independent fashion. The specific role of Noxa became apparent during glucose limitation and involves interaction with the labile Bcl-2 homolog Mcl-1. Knockdown of Noxa or Mcl-1 results in protection or susceptibility, respectively, to apoptosis induced by glucose deprivation. Declining Mcl-1 levels and apoptosis induction are inversely correlated to Noxa levels and prevented by readdition of glucose. We propose that the Noxa/Mcl-1 axis is an apoptosis rheostat in dividing cells, in a selective pathway that functions to restrain lymphocyte expansion and can be triggered by glucose deprivation.
Collapse
Affiliation(s)
- Nuno L Alves
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands
| | - Ingrid A M Derks
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands
| | - Erik Berk
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands
| | - René Spijker
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands; Department of Hematology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands
| | - René A W van Lier
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Rasooly R, Schuster GU, Gregg JP, Xiao JH, Chandraratna RAS, Stephensen CB. Retinoid x receptor agonists increase bcl2a1 expression and decrease apoptosis of naive T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2006; 175:7916-29. [PMID: 16339527 DOI: 10.4049/jimmunol.175.12.7916] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vitamin A affects many aspects of T lymphocyte development and function. The vitamin A metabolites all-trans- and 9-cis-retinoic acid regulate gene expression by binding to the retinoic acid receptor (RAR), while 9-cis-retinoic acid also binds to the retinoid X receptor (RXR). Naive DO11.10 T lymphocytes expressed mRNA and protein for RAR-alpha, RXR-alpha, and RXR-beta. DNA microarray analysis was used to identify RXR-responsive genes in naive DO11.10 T lymphocytes treated with the RXR agonist AGN194204. A total of 128 genes was differentially expressed, including 16 (15%) involved in cell growth or apoptosis. Among these was Bcl2a1, an antiapoptotic Bcl2 family member. Quantitative real-time PCR analysis confirmed this finding and demonstrated that Bcl2a1 mRNA expression was significantly greater in nonapoptotic than in apoptotic T lymphocytes. The RXR agonist 9-cis-retinoic acid also increased Bcl2a1 expression, although all-trans-retinoic acid and ligands for other RXR partner receptors did not. Treatment with AGN194204 and 9-cis-retinoic acid significantly decreased apoptosis measured by annexin V staining but did not affect expression of Bcl2 and Bcl-xL. Bcl2a1 promoter activity was examined using a luciferase promoter construct. Both AGN194204 and 9-cis-retinoic acid significantly increased luciferase activity. In summary, these data demonstrate that RXR agonists increase Bcl2a1 promoter activity and increase expression of Bcl2a1 in naive T lymphocytes but do not affect Bcl2 and Bcl-xL expression in naive T lymphocytes. Thus, this effect on Bcl2a1 expression may account for the decreased apoptosis seen in naive T lymphocytes treated with RXR agonists.
Collapse
Affiliation(s)
- Reuven Rasooly
- U.S. Department of Agriculture (USDA) Western Human Nutrition Research Center and Nutrition Department, University of California, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
36
|
Mittal A, Papa S, Franzoso G, Sen R. NF-kappaB-dependent regulation of the timing of activation-induced cell death of T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2006; 176:2183-9. [PMID: 16455974 DOI: 10.4049/jimmunol.176.4.2183] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
One of the mechanisms by which activated T cells die is activation-induced cell death (AICD). This pathway requires persistent stimulation via the TCR and engagement of death receptors. We found that TCR stimulation led to transient nuclear accumulation of the NF-kappaB component p65/RelA. In contrast, nuclear c-Rel levels remained high even after extended periods of activation. Loss of nuclear p65/RelA correlated with the onset of AICD, suggesting that p65/RelA target genes may maintain cell viability. Quantitative RNA analyses showed that three of several putative NF-kappaB-dependent antiapoptotic genes were expressed with kinetics that paralleled nuclear expression of p65/RelA. Of these three, ectopic expression only of Gadd45beta protected significantly against AICD, whereas IEX-1 and Bcl-x(L) were much less effective. We propose that the timing of AICD, and thus the length of the effector phase, are regulated by transient expression of a subset of p65/RelA-dependent antiapoptotic genes.
Collapse
Affiliation(s)
- Akanksha Mittal
- Rosensteil Research Center and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
37
|
Verschelde C, Michonneau D, Trescol-Biemont MC, Berberich I, Schimpl A, Bonnefoy-Berard N. Overexpression of the antiapoptotic protein A1 promotes the survival of double positive thymocytes awaiting positive selection. Cell Death Differ 2005; 13:1213-21. [PMID: 16294210 DOI: 10.1038/sj.cdd.4401814] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As it has been shown for Mcl-1, Bcl-xl and Bcl-2, proteins of the Bcl-2 family play a crucial role during T-cell development in the thymus. We here show that the expression of the antiapoptotic gene A1 is specifically enhanced at the DN3/DN4 transition and in DP thymocytes that have been positively selected suggesting that A1 expression might be considered as a transcriptional signature of thymocytes that have received pre-TCR or TCR survival signal. Furthermore, we observed that A1-a overexpression in recombination activation gene 1-deficient mice transgenic for the major histocompatibillity complex class I-restricted F5 TCR enhances cell survival of DP thymocytes and permits accumulation of DP cells awaiting positive selection. However, A1-a overexpression has no effect on negative selection. Therefore, our results suggest that A1 plays a specialized role in allowing survival of DP thymocytes and that its role can be distinguished from that of Mcl-1, Bcl-xl and Bcl-2.
Collapse
Affiliation(s)
- C Verschelde
- Laboratory of homéostasie lymphocytaire, INSERM U503, IFR Biosciences Lyon-Gerland, 21 avenue Tony Garnier, 69007 Lyon, France
| | | | | | | | | | | |
Collapse
|
38
|
Kohler S, Wagner U, Pierer M, Kimmig S, Oppmann B, Möwes B, Jülke K, Romagnani C, Thiel A. Post-thymic in vivo proliferation of naive CD4+ T cells constrains the TCR repertoire in healthy human adults. Eur J Immunol 2005; 35:1987-94. [PMID: 15909312 DOI: 10.1002/eji.200526181] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In spite of thymic involution early in life, the numbers of naive CD4(+) T cells only slowly decline in ageing humans implying peripheral post-thymic naive CD4(+) T cell expansion. This proliferation may compensate for continuous activation and death of naive CD4(+) T cells but may also have negative consequences for protective immunity. Here we show that naive CD4(+) T cells that have proliferated in the periphery are characterized by a highly restricted oligoclonal TCR repertoire. Additionally these cells, which constitute the majority of naive CD4(+) T cells in the elderly, display signatures of recent TCR engagement. Our results demonstrate for the first time that peripheral post-thymic proliferation of naive CD4(+) T cells in healthy human individuals causes a significant contraction of the peripheral TCR repertoire. This age-dependent deterioration of CD4(+) T cell immunity could entail ageing-associated autoimmunity, increased susceptibility to infection or cancer and decreased efficiency of vaccination.
Collapse
Affiliation(s)
- Siegfried Kohler
- German Rheumatism Research Centre, Clinical Immunology, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Oberdoerffer P, Kanellopoulou C, Heissmeyer V, Paeper C, Borowski C, Aifantis I, Rao A, Rajewsky K. Efficiency of RNA interference in the mouse hematopoietic system varies between cell types and developmental stages. Mol Cell Biol 2005; 25:3896-905. [PMID: 15870264 PMCID: PMC1087705 DOI: 10.1128/mcb.25.10.3896-3905.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) is a naturally occurring posttranscriptional gene-silencing mechanism that has been adapted as a genetic tool for loss-of-function studies of a variety of organisms. It is more widely applicable than classical gene targeting and allows for the simultaneous inactivation of several homologous genes with a single transgene. Recently, RNAi has been used for conditional and conventional gene inactivation in mice. Unlike gene targeting, RNAi is a dynamic process, and its efficiency may vary both between cell types and throughout development. Here we demonstrate that RNAi can be used to target three separately encoded isoforms of the bcl-2 family gene bfl-1/A1 in a conditional manner in mice. The extent of gene inactivation varies between different cell types and is least efficient in mature lymphocytes. Our data suggest that RNAi is affected by factors beyond small interfering RNA-mRNA stoichiometry.
Collapse
Affiliation(s)
- Philipp Oberdoerffer
- The CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Trescol-Biémont MC, Verschelde C, Cottalorda A, Bonnefoy-Bérard N. Regulation of A1/Bfl-1 expression in peripheral splenic B cells. Biochimie 2005; 86:287-94. [PMID: 15194232 DOI: 10.1016/j.biochi.2004.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 04/05/2004] [Indexed: 01/25/2023]
Abstract
We analyzed here the expression of the prosurvival Bcl-2 homologue A1 in peripheral B cell compartment. We observed that A1 mRNA are highly expressed in peripheral B cells as compared with other anti-apoptotic genes of the Bcl-2 family such as bcl-xl and bcl-2 itself. The expression of A1 is up-regulated in immature B cells at the transition between transitional type 1 (T1) and type 2 (T2) cells, and remained highly expressed in mature (M) B cells. We, therefore, analyzed the effect of B cell antigen receptor (BCR) and BAFF receptor (BAFF-R) engagement on the regulation of A1 in total B220(+) cells but also FACS-sorted immature T1, T2 and M B cells. We demonstrated that only BCR engagement up-regulated the expression of A1 mRNA and protein. These results suggest that A1 may play a key role in antigen-dependent signals that are required for survival and/or proliferation of peripheral B cells.
Collapse
Affiliation(s)
- Marie-Claude Trescol-Biémont
- Inserm U503, IFR128 Bioscience Lyon-Gerland, Centre d'Etude et de Recherche en Virologie et Immunologie, 21, avenue Tony Garnier, 69365 Lyon cedex 7, France
| | | | | | | |
Collapse
|
41
|
Kucharczak J, Simmons MJ, Fan Y, Gélinas C. To be, or not to be: NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 2004; 22:8961-82. [PMID: 14663476 DOI: 10.1038/sj.onc.1207230] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During their lifetime, cells encounter many life or death situations that challenge their very own existence. Their survival depends on the interplay within a complex yet precisely orchestrated network of proteins. The Rel/NF-kappaB signaling pathway and the transcription factors that it activates have emerged as critical regulators of the apoptotic response. These proteins are best known for the key roles that they play in normal immune and inflammatory responses, but they are also implicated in the control of cell proliferation, differentiation, apoptosis and oncogenesis. In recent years, there has been remarkable progress in understanding the pathways that activate the Rel/NF-kappaB factors and their role in the cell's decision to either fight or surrender to apoptotic challenge. Whereas NF-kappaB is most commonly involved in suppressing apoptosis by transactivating the expression of antiapoptotic genes, it can promote programmed cell death in response to certain death-inducing signals and in certain cell types. This review surveys our current understanding of the role of NF-kappaB in the apoptotic response and focuses on many developments since this topic was last reviewed in Oncogene 4 years ago. These recent findings shed new light on the activity of NF-kappaB as a critical regulator of apoptosis in the immune, hepatic, epidermal and nervous systems, on the mechanisms through which it operates and on its role in tissue development, homoeostasis and cancer.
Collapse
Affiliation(s)
- Jérôme Kucharczak
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ, USA
| | | | | | | |
Collapse
|