1
|
Stefanović M, Jovanović I, Živković M, Stanković A. Pathway analysis of peripheral blood CD8+ T cell transcriptome shows differential regulation of sphingolipid signaling in multiple sclerosis and glioblastoma. PLoS One 2024; 19:e0305042. [PMID: 38861512 PMCID: PMC11166308 DOI: 10.1371/journal.pone.0305042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple sclerosis (MS) and glioblastoma (GBM) are CNS diseases in whose development and progression immune privilege is intimately important, but in a relatively opposite manner. Maintenance and strengthening of immune privilege have been shown to be an important mechanism in glioblastoma immune evasion, while the breakdown of immune privilege leads to MS initiation and exacerbation. We hypothesize that molecular signaling pathways can be oppositely regulated in peripheral blood CD8+ T cells of MS and glioblastoma patients at a transcriptional level. We analyzed publicly available data of the peripheral blood CD8+ T cell MS vs. control (MSvsCTRL) and GBM vs. control (GBMvsCTRL) differentially expressed gene (DEG) contrasts with Qiagen's Ingenuity pathway analysis software (IPA). We have identified sphingolipid signaling pathway which was significantly downregulated in the GBMvsCTRL and upregulated in the MSvsCTRL. As the pathway is important for the CD8+ T lymphocytes CNS infiltration, this result is in line with our previously stated hypothesis. Comparing publicly available lists of differentially expressed serum exosomal miRNAs from MSvsCTRL and GBMvsCTRL contrasts, we have identified that hsa-miR-182-5p has the greatest potential effect on sphingolipid signaling regarding the number of regulated DEGs in the GBMvsCTRL contrast, while not being able to find any relevant potential sphingolipid signaling target transcripts in the MSvsCTRL contrast. We conclude that the sphingolipid signaling pathway is a top oppositely regulated pathway in peripheral blood CD8+ T cells from GBM and MS, and might be crucial for the differences in CNS immune privilege maintenance of investigated diseases, but further experimental research is necessary.
Collapse
Affiliation(s)
- Milan Stefanović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ivan Jovanović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Xie Q, Yao T, Sun X, Liu X, Wang X. Whole genome identification of olive flounder (Paralichthys olivaceus) cathepsin genes: Provides insights into its regulation on biotic and abiotic stresses response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106783. [PMID: 38064891 DOI: 10.1016/j.aquatox.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 01/02/2024]
Abstract
Cathepsins are major lysosomal enzymes involved in essential physiological processes, including protein degradation, tissue differentiation, and innate or adaptive responses. Several kinds of cathepsins have been reported in teleost fishes, but no characterization have been performed for the inflammatory response of cathepsin family in olive flounder until now. In our current study, a total of 17 cathepsins in olive flounder were systematically identified and characterized. Phylogenetic analysis clearly indicated that the cathepsin genes was highly conserved. Analysis of structure and motifs exhibited high sequence similarity of cathepsin genes in olive flounder. Expression profiles of cathepsin genes in different tissues and developmental stages showed that cathepsins were temporally and spatially specific. RNA-seq analysis of bacteria and temperature stresses revealed that members of cathepsin were involved in inflammatory responses. Collectively, our findings would provide a further reference for understanding the molecular mechanisms of cathepsins in olive flounder.
Collapse
Affiliation(s)
- Qingping Xie
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Xuanyang Sun
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Rachubik P, Rogacka D, Audzeyenka I, Typiak M, Wysocka M, Szrejder M, Lesner A, Piwkowska A. Role of lysosomes in insulin signaling and glucose uptake in cultured rat podocytes. Biochem Biophys Res Commun 2023; 679:145-159. [PMID: 37696068 DOI: 10.1016/j.bbrc.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St, Gdansk, 80-308, Poland.
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| |
Collapse
|
4
|
Pan X, Giustarini D, Lang F, Rossi R, Wieder T, Köberle M, Ghashghaeinia M. Desipramine induces eryptosis in human erythrocytes, an effect blunted by nitric oxide donor sodium nitroprusside and N-acetyl-L-cysteine but enhanced by Calcium depletion. Cell Cycle 2023; 22:1827-1853. [PMID: 37522842 PMCID: PMC10599211 DOI: 10.1080/15384101.2023.2234177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniela Giustarini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Florian Lang
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ranieri Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Thomas Wieder
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Pilátová MB, Solárová Z, Mezencev R, Solár P. Ceramides and their roles in programmed cell death. Adv Med Sci 2023; 68:417-425. [PMID: 37866204 DOI: 10.1016/j.advms.2023.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Programmed cell death plays a crucial role in maintaining the homeostasis and integrity of multicellular organisms, and its dysregulation contributes to the pathogenesis of many diseases. Programmed cell death is regulated by a range of macromolecules and low-molecular messengers, including ceramides. Endogenous ceramides have different functions, that are influenced by their localization and the presence of their target molecules. This article provides an overview of the current understanding of ceramides and their impact on various types of programmed cell death, including apoptosis, anoikis, macroautophagy and mitophagy, and necroptosis. Moreover, it highlights the emergence of dihydroceramides as a new class of bioactive sphingolipids and their downstream targets as well as their future roles in cancer cell growth, drug resistance and tumor metastasis.
Collapse
Affiliation(s)
- Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Roman Mezencev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic.
| |
Collapse
|
6
|
Lee M, Lee SY, Bae YS. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med 2023; 55:1110-1130. [PMID: 37258585 PMCID: PMC10318102 DOI: 10.1038/s12276-023-01018-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-based analyses and methodological approaches has revealed that human health and diseases are closely related to the homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the investigation of experimental and molecular medicines.
Collapse
Affiliation(s)
- Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Wang S, Chen S, Sun J, Han P, Xu B, Li X, Zhong Y, Xu Z, Zhang P, Mi P, Zhang C, Li L, Zhang H, Xia Y, Li S, Heikenwalder M, Yuan D. m 6A modification-tuned sphingolipid metabolism regulates postnatal liver development in male mice. Nat Metab 2023; 5:842-860. [PMID: 37188818 DOI: 10.1038/s42255-023-00808-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Different organs undergo distinct transcriptional, epigenetic and physiological alterations that guarantee their functional maturation after birth. However, the roles of epitranscriptomic machineries in these processes have remained elusive. Here we demonstrate that expression of RNA methyltransferase enzymes Mettl3 and Mettl14 gradually declines during postnatal liver development in male mice. Liver-specific Mettl3 deficiency causes hepatocyte hypertrophy, liver injury and growth retardation. Transcriptomic and N6-methyl-adenosine (m6A) profiling identify the neutral sphingomyelinase, Smpd3, as a target of Mettl3. Decreased decay of Smpd3 transcripts due to Mettl3 deficiency results in sphingolipid metabolism rewiring, characterized by toxic ceramide accumulation and leading to mitochondrial damage and elevated endoplasmic reticulum stress. Pharmacological Smpd3 inhibition, Smpd3 knockdown or Sgms1 overexpression that counteracts Smpd3 can ameliorate the abnormality of Mettl3-deficent liver. Our findings demonstrate that Mettl3-N6-methyl-adenosine fine-tunes sphingolipid metabolism, highlighting the pivotal role of an epitranscriptomic machinery in coordination of organ growth and the timing of functional maturation during postnatal liver development.
Collapse
Affiliation(s)
- Shiguan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jianfeng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Youquan Zhong
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Peng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, China
| | - Haiyan Zhang
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China.
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, China.
| |
Collapse
|
8
|
Markowski AR, Żbikowski A, Zabielski P, Chlabicz U, Sadowska P, Pogodzińska K, Błachnio-Zabielska AU. The Effect of Silencing the Genes Responsible for the Level of Sphingosine-1-phosphate on the Apoptosis of Colon Cancer Cells. Int J Mol Sci 2023; 24:ijms24087197. [PMID: 37108361 PMCID: PMC10138425 DOI: 10.3390/ijms24087197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) and ceramides (Cer) are engaged in key events of signal transduction, but their involvement in the pathogenesis of colorectal cancer is not conclusive. The aim of our study was to investigate how the modulation of sphingolipid metabolism through the silencing of the genes involved in the formation (SPHK1) and degradation (SGPL1) of sphingosine-1-phosphate would affect the sphingolipid profile and apoptosis of HCT-116 human colorectal cancer cells. Silencing of SPHK1 expression decreased S1P content in HCT-116 cells, which was accompanied by an elevation in sphingosine, C18:0-Cer, and C18:1-Cer, increase in the expression and activation of Caspase-3 and -9, and augmentation of apoptosis. Interestingly, silencing of SGLP1 expression increased cellular content of both the S1P and Cer (C16:0-; C18:0-; C18:1-; C20:0-; and C22:0-Cer), yet inhibited activation of Caspase-3 and upregulated protein expression of Cathepsin-D. The above findings suggest that modulation of the S1P level and S1P/Cer ratio regulates both cellular apoptosis and CRC metastasis through Cathepsin-D modulation. The cellular ratio of S1P/Cer seems to be a crucial component of the above mechanism.
Collapse
Affiliation(s)
- Adam R Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, 79 Henryk Sienkiewicz Street, 15-003 Bialystok, Poland
| | - Arkadiusz Żbikowski
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Urszula Chlabicz
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Patrycja Sadowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Agnieszka U Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| |
Collapse
|
9
|
Ikari N, Arakawa H. Identification of a mitochondrial targeting sequence in cathepsin D and its localization in mitochondria. Biochem Biophys Res Commun 2023; 655:25-34. [PMID: 36921448 DOI: 10.1016/j.bbrc.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023]
Abstract
Cathepsin D (CTSD) is a major lysosomal protease harboring an N-terminal signal peptide (amino acids 1-20) to enable vesicular transport from endoplasmic reticulum to lysosomes. Here, we report the possibility of a mitochondrial targeting sequence and mitochondrial localization of CTSD in cells. Live-cell imaging analysis with C-terminal enhanced green fluorescent protein-tagged CTSD (EGFP-CTSD) indicated that CTSD localizes to mitochondria. CTSD amino acids 21-35 are responsible for its mitochondrial localization, which exhibit typical features of mitochondrial targeting sequences, and are evolutionarily conserved. A proteinase K protection assay and sucrose gradient analysis showed that a small population of endogenous CTSD molecules exists in mitochondria. These results suggest that CTSD is a dual-targeted protein that may localize in both lysosomes and mitochondria.
Collapse
Affiliation(s)
- Naoki Ikari
- Division of Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hirofumi Arakawa
- Division of Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Patra S, Patil S, Klionsky DJ, Bhutia SK. Lysosome signaling in cell survival and programmed cell death for cellular homeostasis. J Cell Physiol 2023; 238:287-305. [PMID: 36502521 DOI: 10.1002/jcp.30928] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Recent developments in lysosome biology have transformed our view of lysosomes from static garbage disposals that can also act as suicide bags to decidedly dynamic multirole adaptive operators of cellular homeostasis. Lysosome-governed signaling pathways, proteins, and transcription factors equilibrate the rate of catabolism and anabolism (autophagy to lysosomal biogenesis and metabolite pool maintenance) by sensing cellular metabolic status. Lysosomes also interact with other organelles by establishing contact sites through which they exchange cellular contents. Lysosomal function is critically assessed by lysosomal positioning and motility for cellular adaptation. In this setting, mechanistic target of rapamycin kinase (MTOR) is the chief architect of lysosomal signaling to control cellular homeostasis. Notably, lysosomes can orchestrate explicit cell death mechanisms, such as autophagic cell death and lysosomal membrane permeabilization-associated regulated necrotic cell death, to maintain cellular homeostasis. These lines of evidence emphasize that the lysosomes serve as a central signaling hub for cellular homeostasis.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
11
|
Kitamura H, Sukegawa S, Matsuda K, Tanimoto K, Kobayakawa T, Takahashi K, Tamamura H, Tsuchiya K, Gatanaga H, Maeda K, Takeuchi H. 4-phenylquinoline-8-amine induces HIV-1 reactivation and apoptosis in latently HIV-1 infected cells. Biochem Biophys Res Commun 2023; 641:139-147. [PMID: 36527748 DOI: 10.1016/j.bbrc.2022.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Combinational antiretroviral therapy (cART) dramatically suppresses the viral load to undetectable levels in human immunodeficiency virus (HIV)-infected patients. However, HIV-1 reservoirs in CD4+T cells and myeloid cells, which can evade cART and host antiviral immune systems, are still significant obstacles to HIV-1 eradication. The "Shock and Kill" approach using latently-reversing agents (LRAs) is therefore currently developing strategies for effective HIV-1 reactivation from latency and inducing cell death. Here, we performed small-molecular chemical library screening with monocytic HIV-1 latently-infected model cells, THP-1 Nluc #225, and identified 4-phenylquinoline-8-amine (PQA) as a novel LRA candidate. PQA induced efficient HIV-1 reactivation in combination with PKC agonists including Prostratin and showed a similar tendency for HIV-1 activation in primary HIV-1 reservoirs. Furthermore, PQA induced killing of HIV-1 latently-infected cells. RNA-sequencing analysis revealed PQA had different functional mechanisms from PKC agonists, and oxidative stress-inducible genes including DDIT3 or CTSD were only involved in PQA-mediated cell death. In summary, PQA is a potential LRA lead compound that exerts novel functions related to HIV-1 activation and apoptosis-mediated cell death to eliminate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Haruki Kitamura
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Sukegawa
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan; Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouki Matsuda
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan; Japan Foundation for AIDS Prevention, Tokyo, Japan
| | - Kousuke Tanimoto
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuho Takahashi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan.
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan; Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
12
|
Cathepsins Trigger Cell Death and Regulate Radioresistance in Glioblastoma. Cells 2022; 11:cells11244108. [PMID: 36552871 PMCID: PMC9777369 DOI: 10.3390/cells11244108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Treatment of glioblastoma (GBM) remains very challenging, and it is particularly important to find sensitive and specific molecular targets. In this work, we reveal the relationship between the expression of cathepsins and radioresistance in GBM. We analyzed cathepsins (cathepsin B, cathepsin D, cathepsin L, and cathepsin Z/X), which are highly associated with the radioresistance of GBM by regulating different types of cell death. Cathepsins could be potential targets for GBM treatment.
Collapse
|
13
|
Tanaka T, Warner BM, Michael DG, Nakamura H, Odani T, Yin H, Atsumi T, Noguchi M, Chiorini JA. LAMP3 inhibits autophagy and contributes to cell death by lysosomal membrane permeabilization. Autophagy 2022; 18:1629-1647. [PMID: 34802379 PMCID: PMC9298453 DOI: 10.1080/15548627.2021.1995150] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 01/18/2023] Open
Abstract
ABBREVIATIONS A253-control: A253 control for LAMP3 stable overexpression; A253- LAMP3: A253 LAPM3 stable overexpression; CASP1: caspase 1; CASP3: caspase 3; CHX: cycloheximide; CTSB: cathepsin B; CTSD: cathepsin D; CQ: chloroquine; DCs: dendritic cells; ER: endoplasmic reticulum; LGALS3: galectin 3; HCV: hepatitis C virus; HSG-control: HSG control for LAMP3 stable overexpression; HSG-LAMP3: HSG LAMP3 stable overexpression; HSP: heat shock protein; HTLV-1: human T-lymphocyte leukemia virus-1; IXA: ixazomib; LAMP: lysosomal associated membrane protein; MHC: major histocompatibility complex; mAb: monoclonal antibody; OE: overexpression; pepA: pepstatin A; pAb: polyclonal antibody; pSS: primary Sjögren syndrome; qRT-PCR: quantitative real- time reverse transcriptase polymerase chain reaction; SLE: systemic lupus erythematosus; SS: Sjögren syndrome; UPR: unfolded protein response; V-ATPase: vacuolar-type proton- translocating ATPase; Y-VAD: Ac-YVAD-cmk; Z-DEVD; Z-DEVD-fmk; Z-VAD: Z-VAD- fmk.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Blake M. Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Drew G. Michael
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Hiroyuki Nakamura
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Toshio Odani
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Hongen Yin
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine Hokkaido University, Sapporo, Japan
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - John A. Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
He W, McCarroll CS, Nather K, Ford K, Mangion K, Riddell A, O’Toole D, Zaeri A, Corcoran D, Carrick D, Lee MMY, McEntegart M, Davie A, Good R, Lindsay MM, Eteiba H, Rocchiccioli P, Watkins S, Hood S, Shaukat A, McArthur L, Elliott EB, McClure J, Hawksby C, Martin T, Petrie MC, Oldroyd KG, Smith GL, Channon KM, Berry C, Nicklin SA, Loughrey CM. Inhibition of myocardial cathepsin-L release during reperfusion following myocardial infarction improves cardiac function and reduces infarct size. Cardiovasc Res 2022; 118:1535-1547. [PMID: 34132807 PMCID: PMC9074968 DOI: 10.1093/cvr/cvab204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
AIMS Identifying novel mediators of lethal myocardial reperfusion injury that can be targeted during primary percutaneous coronary intervention (PPCI) is key to limiting the progression of patients with ST-elevation myocardial infarction (STEMI) to heart failure. Here, we show through parallel clinical and integrative preclinical studies the significance of the protease cathepsin-L on cardiac function during reperfusion injury. METHODS AND RESULTS We found that direct cardiac release of cathepsin-L in STEMI patients (n = 76) immediately post-PPCI leads to elevated serum cathepsin-L levels and that serum levels of cathepsin-L in the first 24 h post-reperfusion are associated with reduced cardiac contractile function and increased infarct size. Preclinical studies demonstrate that inhibition of cathepsin-L release following reperfusion injury with CAA0225 reduces infarct size and improves cardiac contractile function by limiting abnormal cardiomyocyte calcium handling and apoptosis. CONCLUSION Our findings suggest that cathepsin-L is a novel therapeutic target that could be exploited clinically to counteract the deleterious effects of acute reperfusion injury after an acute STEMI.
Collapse
Affiliation(s)
- Weihong He
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Charlotte S McCarroll
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Katrin Nather
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Kristopher Ford
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Kenneth Mangion
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Alexandra Riddell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Dylan O’Toole
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Ali Zaeri
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - David Corcoran
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - David Carrick
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Mathew M Y Lee
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Margaret McEntegart
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Andrew Davie
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Richard Good
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Mitchell M Lindsay
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Hany Eteiba
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Paul Rocchiccioli
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Stuart Watkins
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Stuart Hood
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Aadil Shaukat
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Elspeth B Elliott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - John McClure
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Catherine Hawksby
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Tamara Martin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Mark C Petrie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Keith G Oldroyd
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | | | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Colin Berry
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank G81 4DY, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| | - Christopher M Loughrey
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow G12 8TA, UK
| |
Collapse
|
15
|
Amaral AU, Wajner M. Pathophysiology of maple syrup urine disease: Focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids. Neurochem Int 2022; 157:105360. [DOI: 10.1016/j.neuint.2022.105360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
|
16
|
Heib M, Weiß J, Saggau C, Hoyer J, Fuchslocher Chico J, Voigt S, Adam D. Ars moriendi: Proteases as sculptors of cellular suicide. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119191. [PMID: 34973300 DOI: 10.1016/j.bbamcr.2021.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| |
Collapse
|
17
|
Ruiz-Blázquez P, Pistorio V, Fernández-Fernández M, Moles A. The multifaceted role of cathepsins in liver disease. J Hepatol 2021; 75:1192-1202. [PMID: 34242696 DOI: 10.1016/j.jhep.2021.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Proteases are the most abundant enzyme gene family in vertebrates and they execute essential functions in all living organisms. Their main role is to hydrolase the peptide bond within proteins, a process also called proteolysis. Contrary to the conventional paradigm, proteases are not only random catalytic devices, but can perform highly selective and targeted cleavage of specific substrates, finely modulating multiple essential cellular processes. Lysosomal protease cathepsins comprise 3 families of proteases that preferentially act within acidic cellular compartments, but they can also be found in other cellular locations. They can operate alone or as part of signalling cascades and regulatory circuits, playing important roles in apoptosis, extracellular matrix remodelling, hepatic stellate cell activation, autophagy and metastasis, contributing to the initiation, development and progression of liver disease. In this review, we comprehensively summarise current knowledge on the role of lysosomal cathepsins in liver disease, with a particular emphasis on liver fibrosis, non-alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Paloma Ruiz-Blázquez
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Valeria Pistorio
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain; University of Naples Federico II, Naples, Italy
| | - María Fernández-Fernández
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain; IDIBAPS, Barcelona, Spain; CiberEHD, Spain.
| |
Collapse
|
18
|
The unfolding role of ceramide in coordinating retinoid-based cancer therapy. Biochem J 2021; 478:3621-3642. [PMID: 34648006 DOI: 10.1042/bcj20210368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022]
Abstract
Sphingolipid-mediated regulation in cancer development and treatment is largely ceramide-centered with the complex sphingolipid metabolic pathways unfolding as attractive targets for anticancer drug discovery. The dynamic interconversion of sphingolipids is tightly controlled at the level of enzymes and cellular compartments in response to endogenous or exogenous stimuli, such as anticancer drugs, including retinoids. Over the past two decades, evidence emerged that retinoids owe part of their potency in cancer therapy to modulation of sphingolipid metabolism and ceramide generation. Ceramide has been proposed as a 'tumor-suppressor lipid' that orchestrates cell growth, cell cycle arrest, cell death, senescence, autophagy, and metastasis. There is accumulating evidence that cancer development is promoted by the dysregulation of tumor-promoting sphingolipids whereas cancer treatments can kill tumor cells by inducing the accumulation of endogenous ceramide levels. Resistance to cancer therapy may develop due to a disrupted equilibrium between the opposing roles of tumor-suppressor and tumor-promoter sphingolipids. Despite the undulating effect and complexity of sphingolipid pathways, there are emerging opportunities for a plethora of enzyme-targeted therapeutic interventions that overcome resistance resulting from perturbed sphingolipid pathways. Here, we have revisited the interconnectivity of sphingolipid metabolism and the instrumental role of ceramide-biosynthetic and degradative enzymes, including bioactive sphingolipid products, how they closely relate to cancer treatment and pathogenesis, and the interplay with retinoid signaling in cancer. We focused on retinoid targeting, alone or in combination, of sphingolipid metabolism nodes in cancer to enhance ceramide-based therapeutics. Retinoid and ceramide-based cancer therapy using novel strategies such as combination treatments, synthetic retinoids, ceramide modulators, and delivery formulations hold promise in the battle against cancer.
Collapse
|
19
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Guerreiro G, Faverzani J, Moura AP, Volfart V, Gome Dos Reis B, Sitta A, Gonzalez EA, de Lima Rosa G, Coitinho AS, Baldo G, Wajner M, Vargas CR. Protective effects of L-carnitine on behavioral alterations and neuroinflammation in striatum of glutaryl-COA dehydrogenase deficient mice. Arch Biochem Biophys 2021; 709:108970. [PMID: 34181873 DOI: 10.1016/j.abb.2021.108970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1β, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1β and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1β levels in striatum of Gcdh-/- mice. Finally, IL-1β was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil.
| | - Jéssica Faverzani
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Alana Pimentel Moura
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil
| | - Vitoria Volfart
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Bianca Gome Dos Reis
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil
| | - Esteban Alberto Gonzalez
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
22
|
Ye X, Tang X, Zhao S, Ruan J, Wu M, Wang X, Li H, Zhong B. Mechanism of the growth and development of the posterior silk gland and silk secretion revealed by mutation of the fibroin light chain in silkworm. Int J Biol Macromol 2021; 188:375-384. [PMID: 34371049 DOI: 10.1016/j.ijbiomac.2021.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Silkworm, as a model organism, has very high economic value due to its silk secretion ability. Although a large number of studies have attempted to elucidate the mechanism of silk secretion, it remains unclear. In this study, the fibroin light chain (Fib-L) gene of silkworm was subjected to CRISPR/Cas9 editing, which yielded premature termination of translation at 135 aa. Compared with those of the wild type, the posterior silk glands (PSGs) of the homozygous mutants on the third day of the fifth instar showed obvious premature degeneration. Comparative transcriptome and proteomic analyses of the PSGs of wild-type individuals, heterozygous mutants and homozygous mutants were performed on the fourth day of the fifth instar. A GO enrichment analysis showed that the differentially expressed genes (DEGs) between homozygous mutants and wild-type individuals were enriched in cytoskeleton-related terms, and a KEGG enrichment analysis showed that the upregulated DEGs between homozygous mutants and wild-type individuals were enriched in the phagosome and apoptosis pathways. These results indicated that apoptosis was activated prematurely in the PSGs of homozygous mutants. Furthermore, autophagy and heat shock response were activated in the PSGs of homozygous mutants, as demonstrated by an analysis of the DEGs related to autophagy and heat shock. A comparative proteomic analysis further confirmed that autophagy, apoptosis and the heat shock response were activated in the PSGs of homozygous mutants, which led to premature degradation of the PSGs. These results provide insights for obtaining a more in-depth understanding of the mechanism of silk secretion in silkworms.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaoli Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaoxiao Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Huiping Li
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
23
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
24
|
Fritsch J, Särchen V, Schneider-Brachert W. Regulation of Death Receptor Signaling by S-Palmitoylation and Detergent-Resistant Membrane Micro Domains-Greasing the Gears of Extrinsic Cell Death Induction, Survival, and Inflammation. Cancers (Basel) 2021; 13:2513. [PMID: 34063813 PMCID: PMC8196677 DOI: 10.3390/cancers13112513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
25
|
Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother 2021; 139:111610. [PMID: 33957567 DOI: 10.1016/j.biopha.2021.111610] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Sphingomyelin (SM) can be converted into ceramide (Cer) by neutral sphingomyelinase (NSM) and acid sphingomyelinase (ASM). Cer is a second messenger of lipids and can regulate cell growth and apoptosis. Increasing evidence shows that NSM and ASM play key roles in many processes, such as apoptosis, immune function and inflammation. Therefore, NSM and ASM have broad prospects in clinical treatments, especially in cancer, cardiovascular diseases (such as atherosclerosis), nervous system diseases (such as Alzheimer's disease), respiratory diseases (such as chronic obstructive pulmonary disease) and the phenotype of dwarfisms in adolescents, playing a complex regulatory role. This review focuses on the physiological functions of NSM and ASM and summarizes their roles in certain diseases and their potential applications in therapy.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenglang Tan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
26
|
Di YQ, Han XL, Kang XL, Wang D, Chen CH, Wang JX, Zhao XF. Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy 2021; 17:1170-1192. [PMID: 32324083 PMCID: PMC8143247 DOI: 10.1080/15548627.2020.1752497] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
CTSD/CathD/CATD (cathepsin D) is a lysosomal aspartic protease. A distinguishing characteristic of CTSD is its dual functions of promoting cell proliferation via secreting a pro-enzyme outside the cells as a ligand, and promoting apoptosis via the mature form of this enzyme inside cells; however, the regulation of its secretion, expression, and maturation is undetermined. Using the lepidopteran insect Helicoverpa armigera, a serious agricultural pest, as a model, we revealed the dual functions and regulatory mechanisms of CTSD secretion, expression, and maturation. Glycosylation of asparagine 233 (N233) determined pro-CTSD secretion. The steroid hormone 20-hydroxyecdysone (20E) promoted CTSD expression. Macroautophagy/autophagy triggered CTSD maturation and localization inside midgut cells to activate CASP3 (caspase 3) and promote apoptosis. Pro-CTSD was expressed in the pupal epidermis and was secreted into the hemolymph to promote adult fat body endoreplication/endoreduplication, cell proliferation, and association. Our study revealed that the differential expression and autophagy-mediated maturation of CTSD in tissues determine its roles in apoptosis and cell proliferation, thereby determining the cell fates of tissues during lepidopteran metamorphosis.Abbreviations: 20E: 20-hydroxyecdysone; 3-MA: 3-methyladenine; ACTB/β-actin: actin beta; AKT: protein kinase B; ATG1: autophagy-related 1; ATG4: autophagy-related 4; ATG5: autophagy-related 5; ATG7: autophagy-related 7; ATG14: autophagy-related 14; BSA: bovine serum albumin; CASP3: caspase 3; CQ: choroquine; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; DMSO: dimethyl sulfoxide; DPBS: dulbecco's phosphate-buffered saline; DsRNA: double-stranded RNA; EcR: ecdysone receptor; EcRE: ecdysone response element; EdU: 5-ethynyl-2´-deoxyuridine; G-m-CTSD: glycosylated-mautre-CTSD; G-pro-CTSD: glycosylated-pro-CTSD; HaEpi: Helicoverpa armigera epidermal cell line; HE staining: hematoxylin and eosin staining; IgG: immunoglobin G; IM: imaginal midgut; JH: juvenile hormone; Kr-h1: krueppel homologous protein 1; LM: larval midgut; M6P: mannose-6-phosphate; PBS: phosphate-buffered saline; PCD: programmed cell death; PNGase: peptide-N-glycosidase F; RFP: red fluorescent protein; RNAi: RNA interference; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SYX17: syntaxin 17; USP1: ultraspiracle isoform 1.
Collapse
Affiliation(s)
- Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Lin Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Di Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cai-Hua Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
27
|
Pitman M, Oehler MK, Pitson SM. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal 2021; 81:109949. [PMID: 33571664 DOI: 10.1016/j.cellsig.2021.109949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the most lethal gynaecological malignancy. It is commonly diagnosed at advanced stage when it has metastasised to the abdominal cavity and treatment becomes very challenging. While current standard therapy involving debulking surgery and platinum + taxane-based chemotherapy is associated with high response rates initially, the large majority of patients relapse and ultimately succumb to chemotherapy-resistant disease. In order to improve survival novel strategies for early detection and therapeutics against treatment-refractory disease are urgently needed. A promising new target against ovarian cancer is the sphingolipid pathway which is commonly hijacked in cancer to support cell proliferation and survival and has been shown to promote chemoresistance and metastasis in a wide range of malignant neoplasms. In particular, the sphingosine kinase 1-sphingosine 1-phosphate receptor 1 axis has been shown to be altered in ovarian cancer in multiple ways and therefore represents an attractive therapeutic target. Here we review the roles of sphingolipids in ovarian cancer progression, metastasis and chemoresistance, highlighting novel strategies to target this pathway that represent potential avenues to improve patient survival.
Collapse
Affiliation(s)
- MelissaR Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5000, Australia.
| | - Martin K Oehler
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
28
|
Heck AL, Mishra S, Prenzel T, Feulner L, Achhammer E, Särchen V, Blagg BSJ, Schneider-Brachert W, Schütze S, Fritsch J. Selective HSP90β inhibition results in TNF and TRAIL mediated HIF1α degradation. Immunobiology 2021; 226:152070. [PMID: 33639524 DOI: 10.1016/j.imbio.2021.152070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/23/2020] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
Signaling via TNF-R1 mediates pleiotropic biological outcomes ranging from inflammation and proliferation to cell death. Previous reports demonstrated that pro-survival signaling emanates from membrane resident TNF-R1 complexes (complex I) while only internalized TNF-R1 complexes are capable for DISC formation (complex II) and thus, apoptosis induction. Internalized TNF-R1 containing endosomes undergo intracellular maturation towards lysosomes, resulting in activation and release of Cathepsin D (CtsD) into the cytoplasm. We recently revealed HSP90 as target for proteolytic cleavage by CtsD, resulting in cell death amplification. In this study, we show that extrinsic cell death activation via TNF or TRAIL results in HSP90β degradation. Co-incubation of cells with either TNF or TRAIL in combination with the HSP90β inhibitor KUNB105 but not HSP90α selective inhibition promotes apoptosis induction. In an attempt to reveal further downstream targets of combined TNF-R1 or TRAIL-R1/-R2 activation with HSP90β inhibition, we identify HIF1α and validate its ligand:inhibitor triggered degradation. Together, these findings suggest that selective inhibition of HSP90 isoforms together with death ligand stimulation may provide novel strategies for therapy of inflammatory diseases or cancer, in future.
Collapse
Affiliation(s)
- A L Heck
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - S Mishra
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - T Prenzel
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - L Feulner
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - E Achhammer
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - V Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - B S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - W Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany
| | - S Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - J Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; Department of Infection Prevention and Infectious Diseases, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
29
|
O'Toole D, Zaeri AAI, Nicklin SA, French AT, Loughrey CM, Martin TP. Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling. Cell Signal 2020; 76:109770. [PMID: 32891693 DOI: 10.1016/j.cellsig.2020.109770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Adverse cardiac remodelling clinically manifests as deleterious changes to heart architecture (size, mass and geometry) and function. These changes, which include alterations to ventricular wall thickness, chamber dilation and poor contractility, are important because they progressively drive patients with cardiac disease towards heart failure and are associated with poor prognosis. Cysteine cathepsins contribute to key signalling pathways involved in adverse cardiac remodelling including synthesis and degradation of the cardiac extracellular matrix (ECM), cardiomyocyte hypertrophy, impaired cardiomyocyte contractility and apoptosis. In this review, we highlight the role of cathepsins in these signalling pathways as well as their translational potential as therapeutic targets in cardiac disease.
Collapse
Affiliation(s)
- Dylan O'Toole
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Ali Abdullah I Zaeri
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Anne T French
- Clinical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies, Saint Kitts and Nevis
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| |
Collapse
|
30
|
Sphingolipid Profiling Reveals Different Extent of Ceramide Accumulation in Bovine Retroperitoneal and Subcutaneous Adipose Tissues. Metabolites 2020; 10:metabo10110473. [PMID: 33228142 PMCID: PMC7699355 DOI: 10.3390/metabo10110473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are bioactive lipids that can modulate insulin sensitivity, cellular differentiation, and apoptosis in a tissue-specific manner. However, their comparative profiles in bovine retroperitoneal (RPAT) and subcutaneous adipose tissue (SCAT) are currently unknown. We aimed to characterize the sphingolipid profiles using a targeted lipidomics approach and to assess whether potentially related sphingolipid pathways are different between SCAT and RPAT. Holstein bulls (n = 6) were slaughtered, and SCAT and RPAT samples were collected for sphingolipid profiling. A total of 70 sphingolipid species were detected and quantified by UPLC-MS/MS in multiple reaction monitoring (MRM) mode, including ceramide (Cer), dihydroceramide (DHCer), sphingomyelin (SM), dihydrosphingomyelin (DHSM), ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), galactosylceramide (GalCer), glucosylceramide (GluCer), lactosylceramide (LacCer), sphinganine (DHSph), and sphingosine (Sph). Our results showed that sphingolipids of the de novo synthesis pathway, such as DHSph, DHCer, and Cer, were more concentrated in RPAT than in SCAT. Sphingolipids of the salvage pathway and the sphingomyelinase pathway, such as Sph, S1P, C1P, glycosphingolipid, and SM, were more concentrated in SCAT. Our results indicate that RPAT had a greater extent of ceramide accumulation, thereby increasing the concentration of further sphingolipid intermediates in the de novo synthesis pathway. This distinctive sphingolipid distribution pattern in RPAT and SCAT can potentially explain the tissue-specific activity in insulin sensitivity, proinflammation, and oxidative stress in RPAT and SCAT.
Collapse
|
31
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
32
|
Wang Y, Wu Q, Anand BG, Karthivashan G, Phukan G, Yang J, Thinakaran G, Westaway D, Kar S. Significance of cytosolic cathepsin D in Alzheimer's disease pathology: Protective cellular effects of PLGA nanoparticles against β-amyloid-toxicity. Neuropathol Appl Neurobiol 2020; 46:686-706. [PMID: 32716575 DOI: 10.1111/nan.12647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Evidence suggests that amyloid β (Aβ) peptides play an important role in the degeneration of neurons during the development of Alzheimer's disease (AD), the prevalent cause of dementia affecting the elderly. The endosomal-lysosomal system, which acts as a major site for Aβ metabolism, has been shown to exhibit abnormalities in vulnerable neurons of the AD brain, reflected by enhanced levels/expression of lysosomal enzymes including cathepsin D (CatD). At present, the implication of CatD in selective neuronal vulnerability in AD pathology remains unclear. METHODS We evaluated the role of CatD in the degeneration of neurons in Aβ-treated cultures, transgenic AD mouse model (that is 5xFAD) and post mortem AD brain samples. RESULTS Our results showed that Aβ1-42 -induced toxicity in cortical cultured neurons is associated with impaired lysosomal integrity, enhanced levels of carbonylated proteins and tau phosphorylation. The cellular and cytosolic levels/activity of CatD are also elevated in cultured neurons following exposure to Aβ peptide. Additionally, we observed that CatD cellular and subcellular levels/activity are increased in the affected cortex, but not in the unaffected cerebellum, of 5xFAD mice and post mortem AD brains. Interestingly, treatment of cultured neurons with nanoparticles PLGA, which targets lysosomal system, attenuated Aβ toxicity by reducing the levels of carbonylated proteins, tau phosphorylation and the level/distribution/activity of CatD. CONCLUSION Our study reveals that increased cytosolic level/activity of CatD play an important role in determining neuronal vulnerability in AD. Additionally, native PLGA can protect neurons against Aβ toxicity by restoring lysosomal membrane integrity, thus signifying its implication in attenuating AD.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Q Wu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - B G Anand
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - G Karthivashan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - G Phukan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - J Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - G Thinakaran
- Department of Molecular Medicine, and Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - D Westaway
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Huang S, Che J, Chu Q, Zhang P. The Role of NLRP3 Inflammasome in Radiation-Induced Cardiovascular Injury. Front Cell Dev Biol 2020; 8:140. [PMID: 32226786 PMCID: PMC7080656 DOI: 10.3389/fcell.2020.00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing risk of long-term adverse effects from radiotherapy on the cardiovascular structure is receiving increasing attention. However, the mechanisms underlying this increased risk remain poorly understood. Recently, the nucleotide-binding domain and leucine-rich-repeat-containing family pyrin 3 (NLRP3) inflammasome was suggested to play a critical role in radiation-induced cardiovascular injury. However, the relationship between ionizing radiation and the NLRP3 inflammasome in acute and chronic inflammation is complex. We reviewed literature detailing pathological changes and molecular mechanisms associated with radiation-induced damage to the cardiovascular structure, with a specific focus on NLRP3 inflammasome-related cardiovascular diseases. We also summarized possible therapeutic strategies for the prevention of radiation-induced heart disease (RIHD).
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Che
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Mahajan UM, Goni E, Langhoff E, Li Q, Costello E, Greenhalf W, Kruger S, Ormanns S, Halloran C, Ganeh P, Marron M, Lämmerhirt F, Zhao Y, Beyer G, Weiss FU, Sendler M, Bruns CJ, Kohlmann T, Kirchner T, Werner J, D’Haese JG, von Bergwelt-Baildon M, Heinemann V, Neoptolemos JP, Büchler MW, Belka C, Boeck S, Lerch MM, Mayerle J. Cathepsin D Expression and Gemcitabine Resistance in Pancreatic Cancer. JNCI Cancer Spectr 2020; 4:pkz060. [PMID: 32296755 PMCID: PMC7050148 DOI: 10.1093/jncics/pkz060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/01/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cathepsin-D (CatD), owing to its dual role as a proteolytic enzyme and as a ligand, has been implicated in cancer progression. The role of CatD in pancreatic ductal adenocarcinoma is unknown. METHODS CatD expression quantified by immunohistochemistry of tumor-tissue microarrays of 403 resected pancreatic cancer patients from the ESPAC-Tplus trial, a translational study within the ESPAC (European Study Group for Pancreatic Cancer) trials, was dichotomously distributed to low and high H scores (cut off 22.35) for survival and multivariable analysis. The validation cohort (n = 69) was recruited based on the hazard ratio of CatD from ESPAC-Tplus. 5-fluorouracil-, and gemcitabine-resistant pancreatic cancer cell lines were employed for mechanistic experiments. All statistical tests were two-sided. RESULTS Median overall survival was 23.75 months and median overall survival for patients with high CatD expression was 21.09 (95% confidence interval [CI] = 17.31 to 24.80) months vs 27.20 (95% CI = 23.75 to 31.90) months for low CatD expression (χ2 LR, 1DF = 4.00; P = .04). Multivariable analysis revealed CatD expression as a predictive marker in gemcitabine-treated (z stat = 2.33; P = .02) but not in 5-fluorouracil-treated (z stat = 0.21; P = .82) patients. An independent validation cohort confirmed CatD as a negative predictive marker for survival (χ2 LR, 1DF = 6.80; P = .009) and as an independent predictive marker in gemcitabine-treated patients with a hazard ratio of 3.38 (95% CI = 1.36 to 8.38, P = .008). Overexpression of CatD was associated with a concomitant suppression of the acid sphingomyelinase, and silencing of CatD resulted in upregulation of acid sphingomyelinase with rescue of gemcitabine resistance. CONCLUSIONS Adjuvant gemcitabine is less effective in pancreatic ductal adenocarcinoma with high CatD expression, and thus CatD could serve as a marker for biomarker-driven therapy.
Collapse
Affiliation(s)
- Ujjwal M Mahajan
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Elisabetta Goni
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
| | - Enno Langhoff
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Qi Li
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
| | - Eithne Costello
- National Institute for Health Research Liverpool Pancreas Biomedical Research Centre, University of Liverpool, UK
| | - William Greenhalf
- National Institute for Health Research Liverpool Pancreas Biomedical Research Centre, University of Liverpool, UK
| | - Stephan Kruger
- Department of Medicine III, University Hospital, LMU-Munich, Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christopher Halloran
- National Institute for Health Research Liverpool Pancreas Biomedical Research Centre, University of Liverpool, UK
| | - Paula Ganeh
- National Institute for Health Research Liverpool Pancreas Biomedical Research Centre, University of Liverpool, UK
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Felix Lämmerhirt
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
| | - Yue Zhao
- Department of General, Visceral, and Tumor Surgery, University Hospital Cologne, Cologne, Germany
| | - Georg Beyer
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Frank-Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Christiane J Bruns
- Department of General, Visceral, and Tumor Surgery, University Hospital Cologne, Cologne, Germany
| | - Thomas Kohlmann
- Department of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan G D’Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Volker Heinemann
- Department of Medicine III, University Hospital, LMU-Munich, Munich, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - John P Neoptolemos
- National Institute for Health Research Liverpool Pancreas Biomedical Research Centre, University of Liverpool, UK
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU-Munich, Munich, Germany
| | - Stefan Boeck
- Department of Medicine III, University Hospital, LMU-Munich, Munich, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
35
|
Yang K, Yu J, Nong K, Wang Y, Niu A, Chen W, Dong J, Wang J. Discovery of Potent, Selective, and Direct Acid Sphingomyelinase Inhibitors with Antidepressant Activity. J Med Chem 2020; 63:961-974. [PMID: 31944697 DOI: 10.1021/acs.jmedchem.9b00739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent studies on sphingolipids suggest that acid sphingomyelinase (ASM), which plays a central role in the pathogenesis of major depression, is emerging to be a novel target for developing antidepressants. Herein we first described the design, synthesis, and biological evaluation of hydroxamic acid-based direct inhibitors of ASM with the effort of validating their antidepressant effects in vivo. As a result, a series of novel ASM inhibitors were developed using a structure-based approach. Our studies demonstrated that the administration of 21b improved depression-like behaviors of rats. Importantly, this positive result was relevant to the inhibition of ASM and the increasing neurogenesis in hippocampus. To the best of our knowledge, this is the first time that direct inhibitors of ASM were developed to support the possibility of ASM as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Kan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences , Hebei University , Baoding 071002 , China
| | - Jinying Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Keyi Nong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Youzhi Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Ao Niu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Wenlu Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Jibin Dong
- Department of Biochemistry, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
36
|
Zhang X, Luo S, Wang M, Shi GP. Cysteinyl cathepsins in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140360. [PMID: 31926332 DOI: 10.1016/j.bbapap.2020.140360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
Cysteinyl cathepsins are lysosomal/endosomal proteases that mediate bulk protein degradation in these intracellular acidic compartments. Yet, studies indicate that these proteases also appear in the nucleus, nuclear membrane, cytosol, plasma membrane, and extracellular space. Patients with cardiovascular diseases (CVD) show increased levels of cathepsins in the heart, aorta, and plasma. Plasma cathepsins often serve as biomarkers or risk factors of CVD. In aortic diseases, such as atherosclerosis and abdominal aneurysms, cathepsins play pathogenic roles, but many of the same cathepsins are cardioprotective in hypertensive, hypertrophic, and infarcted hearts. During the development of CVD, cathepsins are regulated by inflammatory cytokines, growth factors, hypertensive stimuli, oxidative stress, and many others. Cathepsin activities in inflammatory molecule activation, immunity, cell migration, cholesterol metabolism, neovascularization, cell death, cell signaling, and tissue fibrosis all contribute to CVD and are reviewed in this article in memory of Dr. Nobuhiko Katunuma for his contribution to the field.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Minjie Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
37
|
Cathepsin D in the Tumor Microenvironment of Breast and Ovarian Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:1-16. [PMID: 32578168 DOI: 10.1007/978-3-030-43093-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer remains a major and leading health problem worldwide. Lack of early diagnosis, chemoresistance, and recurrence of cancer means vast research and development are required in this area. The complexity of the tumor microenvironment in the biological milieu poses greater challenges in having safer, selective, and targeted therapies. Existing strategies such as chemotherapy, radiotherapy, and antiangiogenic therapies moderately improve progression-free survival; however, they come with side effects that reduce quality of life. Thus, targeting potential candidates in the microenvironment, such as extracellular cathepsin D (CathD) which has been known to play major pro-tumorigenic roles in breast and ovarian cancers, could be a breakthrough in cancer treatment, specially using novel treatment modalities such as immunotherapy and nanotechnology-based therapy. This chapter discusses CathD as a pro-cancerous, more specifically a proangiogenic factor, that acts bi-functionally in the tumor microenvironment, and possible ways of targeting the protein therapeutically.
Collapse
|
38
|
Zhao T, Lai D, Zhou Y, Xu H, Zhang Z, Kuang S, Shao X. Azadirachtin A inhibits the growth and development of Bactrocera dorsalis larvae by releasing cathepsin in the midgut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109512. [PMID: 31398584 DOI: 10.1016/j.ecoenv.2019.109512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Azadirachtin, a botanical insecticide with high potential, has been widely used in pest control. Azadirachtin has shown strong biological activity against Bactrocera dorsalis in toxicological reports, but its mechanism remains unclear. This study finds that azadirachtin A inhibits the growth and development of Bactrocera dorsalis larvae. The larval weights and body sizes of the azadirachtin-treated group were significantly less than those of the control group in a concentration-dependent manner. Further, pathological sections revealed that azadirachtin destroyed the midgut cell structure and intestinal walls, while TUNEL staining showed that azadirachtin could induce apoptosis of midgut cells, and Western blot analysis indicated that Bcl-XL expression was inhibited and cytochrome c (CytC) released into the cytoplasm. The results also imply azadirachtin-induced structural alterations in the Bactrocera dorsalis larvae midgut by activation of apoptosis. RNA-seq analysis of midgut cells found that 482 and 708 unique genes were upregulated and downregulated, respectively. These differentially expressed genes (DEGs) were enriched in apoptotic and lysosomal signaling pathways and included 26 genes of the cathepsin family. qRT-PCR verified the expression patterns of some DEGs, indicating that Cathepsin F was upregulated by 278.47-fold and that Cathepsin L and Cathepsin D were upregulated by 28.06- and 8.97-fold, respectively. Finally, association analysis between DEGs and DEMs (differentially expressed metabolites) revealed that azadirachtin significantly reduced the digestion and absorption of carbohydrates, proteins, fats, vitamins and minerals in the midgut. In conclusion, azadirachtin induces the release of cathepsin from lysosomes, causing apoptosis in the midgut. Ultimately, this leads to reduced digestion and absorption of nutrient metabolites in the midgut and inhibition of the growth and development of Bactrocera dorsalis larvae.
Collapse
Affiliation(s)
- Tianyi Zhao
- College of Animal Science and Technology, Shihezi University, Xinjiang, 832003, China
| | - Duo Lai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - You Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Shizi Kuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xuehua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
39
|
Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L. TNF Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit. Cell 2019; 178:1344-1361.e11. [PMID: 31474371 PMCID: PMC6736209 DOI: 10.1016/j.cell.2019.08.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/15/2019] [Accepted: 08/02/2019] [Indexed: 01/07/2023]
Abstract
Necrosis of infected macrophages constitutes a critical pathogenetic event in tuberculosis by releasing mycobacteria into the growth-permissive extracellular environment. In zebrafish infected with Mycobacterium marinum or Mycobacterium tuberculosis, excess tumor necrosis factor triggers programmed necrosis of infected macrophages through the production of mitochondrial reactive oxygen species (ROS) and the participation of cyclophilin D, a component of the mitochondrial permeability transition pore. Here, we show that this necrosis pathway is not mitochondrion-intrinsic but results from an inter-organellar circuit initiating and culminating in the mitochondrion. Mitochondrial ROS induce production of lysosomal ceramide that ultimately activates the cytosolic protein BAX. BAX promotes calcium flow from the endoplasmic reticulum into the mitochondrion through ryanodine receptors, and the resultant mitochondrial calcium overload triggers cyclophilin-D-mediated necrosis. We identify ryanodine receptors and plasma membrane L-type calcium channels as druggable targets to intercept mitochondrial calcium overload and necrosis of mycobacterium-infected zebrafish and human macrophages. TNF induces mitochondrial ROS to cause necrosis of mycobacterium-infected macrophages Mitochondrial ROS activate lysosomal enzymes that lead to BAX activation BAX activates ER ryanodine receptors to cause Ca2+ flow into the mitochondrion Drugs preventing mitochondrial Ca2+ overload prevent pathogenic macrophage necrosis in TB
Collapse
Affiliation(s)
- Francisco J Roca
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK.
| | - Laura J Whitworth
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK
| | - Sarah Redmond
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Ana A Jones
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK; Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Zingler P, Särchen V, Glatter T, Caning L, Saggau C, Kathayat RS, Dickinson BC, Adam D, Schneider-Brachert W, Schütze S, Fritsch J. Palmitoylation is required for TNF-R1 signaling. Cell Commun Signal 2019; 17:90. [PMID: 31382980 PMCID: PMC6683503 DOI: 10.1186/s12964-019-0405-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Binding of tumor necrosis factor (TNF) to TNF-receptor 1 (TNF-R1) can induce either cell survival or cell death. The selection between these diametrically opposed effects depends on the subcellular location of TNF-R1: plasma membrane retention leads to survival, while endocytosis leads to cell death. How the respective TNF-R1 associated signaling complexes are recruited to the distinct subcellular location is not known. Here, we identify palmitoylation of TNF-R1 as a molecular mechanism to achieve signal diversification. METHODS Human monocytic U937 cells were analyzed. Palmitoylated proteins were enriched by acyl resin assisted capture (AcylRAC) and analyzed by western blot and mass spectrometry. Palmitoylation of TNF-R1 was validated by metabolic labeling. TNF induced depalmitoylation and involvement of APT2 was analyzed by enzyme activity assays, pharmacological inhibition and shRNA mediated knock-down. TNF-R1 palmitoylation site analysis was done by mutated TNF-R1 expression in TNF-R1 knock-out cells. Apoptosis (nuclear DNA fragmentation, caspase 3 assays), NF-κB activation and TNF-R1 internalization were used as biological readouts. RESULTS We identify dynamic S-palmitoylation as a new mechanism that controls selective TNF signaling. TNF-R1 itself is constitutively palmitoylated and depalmitoylated upon ligand binding. We identified the palmitoyl thioesterase APT2 to be involved in TNF-R1 depalmitoylation and TNF induced NF-κB activation. Mutation of the putative palmitoylation site C248 interferes with TNF-R1 localization to the plasma membrane and thus, proper signal transduction. CONCLUSIONS Our results introduce palmitoylation as a new layer of dynamic regulation of TNF-R1 induced signal transduction at a very early step of the TNF induced signaling cascade. Understanding the underlying mechanism may allow novel therapeutic options for disease treatment in future.
Collapse
Affiliation(s)
- Philipp Zingler
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vinzenz Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Timo Glatter
- Facility for Mass Spectrometry and Proteomics, MPI for Terrestrial Microbiology, Marburg, Germany
| | - Lotta Caning
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
41
|
Mass spectrometry imaging reveals ganglioside and ceramide localization patterns during cerebellar degeneration in the Npc1−/− mouse model. Anal Bioanal Chem 2019; 411:5659-5668. [DOI: 10.1007/s00216-019-01989-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/01/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
|
42
|
Abstract
Cathepsins (CTS) are mainly lysosomal acid hydrolases extensively involved in the prognosis of different diseases, and having a distinct role in tumor progression by regulating cell proliferation, autophagy, angiogenesis, invasion, and metastasis. As all these processes conjunctively lead to cancer progression, their site-specific regulation might be beneficial for cancer treatment. CTS regulate activation of the proteolytic cascade and protein turnover, while extracellular CTS is involved in promoting extracellular matrix degradation and angiogenesis, thereby stimulating invasion and metastasis. Despite cancer regulation, the involvement of CTS in cellular adaptation toward chemotherapy and radiotherapy augments their therapeutic potential. However, lysosomal permeabilization mediated cytosolic translocation of CTS induces programmed cell death. This complex behavior of CTS generates the need to discuss the different aspects of CTS associated with cancer regulation. In this review, we mainly focused on the significance of each cathepsin in cancer signaling and their targeting which would provide noteworthy information in the context of cancer biology and therapeutics.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
43
|
Jung MK, Lee JS, Kwak JE, Shin EC. Tumor Necrosis Factor and Regulatory T Cells. Yonsei Med J 2019; 60:126-131. [PMID: 30666833 PMCID: PMC6342721 DOI: 10.3349/ymj.2019.60.2.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022] Open
Abstract
CD4⁺CD25⁺FoxP3⁺ regulatory T (Treg) cells play major roles in the maintenance of immune homeostasis. In this review, we comprehensively describe the relationship between tumor necrosis factor (TNF) and Treg cells, focusing on the effects of TNF on Treg cells and on TNF-producing Treg cells. Contradictory results have been reported for the effect of TNF on the suppressive activity of Treg cells. In patients with rheumatoid arthritis, TNF has been shown to reduce the suppressive activity of Treg cells. Meanwhile, however, TNF has also been reported to maintain the suppressive activity of Treg cells via a TNFR2-mediated mechanism. In addition, Treg cells have been found to acquire the ability to produce TNF under inflammatory conditions, such as acute viral hepatitis. These TNF-producing Treg cells exhibit T helper 17-like features and hold significance in various human diseases.
Collapse
Affiliation(s)
- Min Kyung Jung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jeong Seok Lee
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jeong Eun Kwak
- BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Eui Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
44
|
Gao J, Zhao M, Duan X, Wang Y, Cao H, Li X, Zheng SJ. Requirement of Cellular Protein CCT7 for the Replication of Fowl Adenovirus Serotype 4 (FAdV-4) in Leghorn Male Hepatocellular Cells Via Interaction with the Viral Hexon Protein. Viruses 2019; 11:v11020107. [PMID: 30691230 PMCID: PMC6410038 DOI: 10.3390/v11020107] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 11/16/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) causes hepatitis-hydropericardium syndrome (HHS), leading to severe economic losses in the poultry industry. Although the pathogenesis of FAdV-4 infection has caused much attention, the underlying molecular mechanisms remain poorly understood. Here, we identified chaperonin containing TCP-1 subunit eta (CCT7) as an interacting partner of the FAdV-4 capsid protein hexon. We found that ectopic expression of CCT7 in leghorn male hepatocellular (LMH) cells enhanced hexon expression in pRK5-flag-hexon transfected cells. On the contrary, knockdown of cellular CCT7 by RNAi markedly reduced hexon expression in FAdV-4-infected cells and suppressed viral replication. These data suggest that CCT7 is required for FAdV-4 replication and may serve as a potential target for controlling FAdV-4 infection.
Collapse
Affiliation(s)
- Junfeng Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Mingliang Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xueyan Duan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiaoqi Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
45
|
Fritsch J, Tchikov V, Hennig L, Lucius R, Schütze S. A toolbox for the immunomagnetic purification of signaling organelles. Traffic 2019; 20:246-258. [PMID: 30569578 DOI: 10.1111/tra.12631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Homeostasis and the complex functions of organisms and cells rely on the sophisticated spatial and temporal regulation of signaling in different intra- and extracellular compartments and via different mediators. We here present a set of fast and easy to use protocols for the target-specific immunomagnetic enrichment of receptor containing endosomes (receptosomes), plasma membranes, lysosomes and exosomes. Isolation of subcellular organelles and exosomes is prerequisite for and will advance their detailed subsequent biochemical and functional analysis. Sequential application of the different subprotocols allows isolation of morphological and functional intact organelles from one pool of cells. The enrichment is based on a selective labelling using receptor ligands or antibodies together with superparamagnetic microbeads followed by separation in a patented matrix-free high-gradient magnetic purification device. This unique magnetic chamber is based on a focusing system outside of the empty separation column, generating an up to 3 T high-gradient magnetic field focused at the wall of the column.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany.,Institute for Clinical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Vladimir Tchikov
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Lena Hennig
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
46
|
Cathepsin K-deficiency impairs mouse cardiac function after myocardial infarction. J Mol Cell Cardiol 2018; 127:44-56. [PMID: 30465799 DOI: 10.1016/j.yjmcc.2018.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extracellular matrix metabolism and cardiac cell death participate centrally in myocardial infarction (MI). This study tested the roles of collagenolytic cathepsin K (CatK) in post-MI left ventricular remodeling. METHODS AND RESULTS Patients with acute MI had higher plasma CatK levels (20.49 ± 7.07 pmol/L, n = 26) than those in subjects with stable angina pectoris (8.34 ± 1.66 pmol/L, n = 28, P = .01) or those without coronary heart disease (6.63 ± 0.84 pmol/L, n = 93, P = .01). CatK protein expression increases in mouse hearts at 7 and 28 days post-MI. Immunofluorescent staining localized CatK expression in cardiomyocytes, endothelial cells, fibroblasts, macrophages, and CD4+ T cells in infarcted mouse hearts at 7 days post-MI. To probe the direct participation of CatK in MI, we produced experimental MI in CatK-deficient mice (Ctsk-/-) and their wild-type (Ctsk+/+) littermates. CatK-deficiency yielded worsened cardiac function at 7 and 28 days post-MI, compared to Ctsk+/+ littermates (fractional shortening percentage: 5.01 ± 0.68 vs. 8.62 ± 1.04, P < .01, 7 days post-MI; 4.32 ± 0.52 vs. 7.60 ± 0.82, P < .01, 28 days post-MI). At 7 days post-MI, hearts from Ctsk-/- mice contained less CatK-specific type-I collagen fragments (10.37 ± 1.91 vs. 4.60 ± 0.49 ng/mg tissue extract, P = .003) and more fibrosis (1.67 ± 0.93 vs. 0.69 ± 0.20 type-III collagen positive area percentage, P = .01; 14.25 ± 4.12 vs. 6.59 ± 0.79 α-smooth muscle actin-positive area percentage, P = .016; and 0.82 ± 0.06 vs. 0.31 ± 0.08 CD90-positive area percentage, P = .008) than those of Ctsk+/+ mice. Immunostaining demonstrated that CatK-deficiency yielded elevated cardiac cell death but reduced cardiac cell proliferation. In vitro studies supported a role of CatK in cardiomyocyte survival. CONCLUSION Plasma CatK levels are increased in MI patients. Heart CatK expression is also elevated post-MI, but CatK-deficiency impairs post-MI cardiac function in mice by increasing myocardial fibrosis and cardiomyocyte death.
Collapse
|
47
|
Xu J, Zhao W, Sun J, Huang Y, Wang P, Venkataramanan R, Yang D, Ma X, Rana A, Li S. Novel glucosylceramide synthase inhibitor based prodrug copolymer micelles for delivery of anticancer agents. J Control Release 2018; 288:212-226. [PMID: 30223045 PMCID: PMC6177216 DOI: 10.1016/j.jconrel.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023]
Abstract
In order to improve the efficacy of chemotherapy for cancers, we have developed a novel prodrug micellar formulation to co-deliver ceramide-generating anticancer agents and ceramide degradation inhibitor (PPMP). The prodrug nanocarrier is based on a well-defined POEG-b-PPPMP diblock copolymer. The hydrophilic block of POEG-b-PPPMP is POEG, and the hydrophobic block is composed of a number of PPMP units, which could work synergistically with loaded anticancer drugs. POEG-b-PPPMP was readily synthesized via a one-step reversible addition-fragment transfer (RAFT) polymerization from a PPMP monomer. The newly synthesized polymers were self-assembled into micelles and served as a carrier for several hydrophobic anticancer drugs including DOX, PTX and C6-ceramide. POEG-b-PPPMP prodrug polymer exhibited intrinsic antitumor activity in vitro and in vivo. In addition, POEG-b-PPPMP prodrug polymer was comparable to free PPMP in selectively enhancing the production of pro-apoptotic ceramide species as well as down-regulating the mRNA expression of GCS. DOX-loaded POEG-b-PPPMP micelles exhibited an excellent stability of 42 days at 4 °C. Moreover, DOX loaded in POEG-b-PPPMP micelles showed higher levels of cytotoxicity than DOX loaded in a pharmacologically inert polymer (POEG-b-POM) and Doxil formulation in several tumor cell lines. Consistently, in a 4T1.2 murine breast cancer model, the tumor inhibition followed the order of DOX/POEG-b-PPPMP > DOX/POEG-b-POM ≥ Doxil > POEG-b-PPPMP > POEG-b-POM. Our data suggest that POEG-b-PPPMP micelles are a promising dual-functional carrier that warrants more studies in the future.
Collapse
Affiliation(s)
- Jieni Xu
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Whenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yixian Huang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pengcheng Wang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ajay Rana
- Department of Surgery/Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Song Li
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
48
|
Chiarante N, García Vior MC, Rey O, Marino J, Roguin LP. Lysosomal permeabilization and endoplasmic reticulum stress mediate the apoptotic response induced after photoactivation of a lipophilic zinc(II) phthalocyanine. Int J Biochem Cell Biol 2018; 103:89-98. [PMID: 30130653 DOI: 10.1016/j.biocel.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
Abstract
We have previously reported that the phototoxic action of the lipophilic phthalocyanine Pc9 (2,9(10),16(17),23(24) tetrakis[(2-dimethylamino)ethylsulfanyl]phthalocyaninatozinc(II)) encapsulated into poloxamine micelles is related to the induction of an apoptotic response in murine colon CT26 carcinoma cells. In the present study, we explored the intracellular signals contributing to the resulting apoptotic death. We found that Pc9-T1107 arrests cell cycle progression immediately after irradiation promoting then an apoptotic response. Thus, 3 h after irradiation the percentage of hypodiploid cells increased from 5.9 ± 0.6% to 23.1 ± 0.1%; activation of caspases 8 and 9 was evident; the population of cells with loss of mitochondrial membrane potential increased from 1.1 ± 0.4% to 44.0 ± 9.3%; the full-length forms of Bid and PARP-1 were cleaved; and a 50% decrease of the expression levels of the anti-apoptotic proteins Bcl-2 and Bcl-XL was detected. We also found that the photosensitizer, mainly retained in lysosomes and endoplasmic reticulum (ER), promotes the permeabilization of lysosomal membranes and induces ER stress. Lysosomal membrane permeabilization was demonstrated by the reduction of acridine orange lysosome fluorescence, the release of Cathepsin D into the cytosol and ∼50% decrease of Hsp70, a chaperone recognized as a lysosomal stabilizer. Cathepsin D also contributed to Bid cleavage and caspase 8 activation. The oxidative damage to the ER induced an unfolded protein response characterized, 3 h after irradiation, by a 3-fold increase in cytosolic Ca2+ levels and 3-4 times higher expression of ER chaperones GRP78/BIP, calnexin, Hsp90 and Hsp110. The cell death signaling promoted by cytosolic Ca2+, calpains and lysosomal proteases was partially abolished by the Ca2+ chelator BAPTA-AM, the calpain inhibitor PD 150606 and proteases inhibitors. Furthermore, Bax down-regulation observed in Pc9-treated cells was undetectable in the presence of PD 150606, indicating that calpains contribute to Bax proteolytic damage. In summary, our results indicate that photoactivation of Pc9-T1107 led to lysosomal membrane permeabilization, induction of ER stress and activation of a caspase-dependent apoptotic cell death.
Collapse
Affiliation(s)
- Nicolás Chiarante
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - María C García Vior
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Osvaldo Rey
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Córdoba 2351, C1120AAD Buenos Aires, Argentina
| | - Julieta Marino
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Leonor P Roguin
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
49
|
Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 2018; 55:5767-5786. [PMID: 29052145 PMCID: PMC5994217 DOI: 10.1007/s12035-017-0793-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023]
Abstract
In the first part, the following mechanisms involved in different forms of cell death are considered, with a view to identifying potential therapeutic targets: tumour necrosis factor receptors (TNFRs) and their engagement by tumour necrosis factor-alpha (TNF-α); poly [ADP-ribose] polymerase (PARP)-1 cleavage; the apoptosis signalling kinase (ASK)-c-Jun N-terminal kinase (JNK) axis; lysosomal permeability; activation of programmed necrotic cell death; oxidative stress, caspase-3 inhibition and parthanatos; activation of inflammasomes by reactive oxygen species and the development of pyroptosis; oxidative stress, calcium dyshomeostasis and iron in the development of lysosomal-mediated necrosis and lysosomal membrane permeability; and oxidative stress, lipid peroxidation, iron dyshomeostasis and ferroptosis. In the second part, there is a consideration of the role of lethal and sub-lethal activation of these pathways in the pathogenesis and pathophysiology of neurodegenerative and neuroprogressive disorders, with particular reference to the TNF-α-TNFR signalling axis; dysregulation of ASK-1-JNK signalling; prolonged or chronic PARP-1 activation; the role of pyroptosis and chronic inflammasome activation; and the roles of lysosomal permeabilisation, necroptosis and ferroptosis. Finally, it is suggested that, in addition to targeting oxidative stress and inflammatory processes generally, neuropsychiatric disorders may respond to therapeutic targeting of TNF-α, PARP-1, the Nod-like receptor NLRP3 inflammasome and the necrosomal molecular switch receptor-interacting protein kinase-3, since their widespread activation can drive and/or exacerbate peripheral inflammation and neuroinflammation even in the absence of cell death. To this end, the use is proposed of a combination of the tetracycline derivative minocycline and N-acetylcysteine as adjunctive treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Morris
- , Bryn Road Seaside 87, Llanelli, Wales, , SA15 2LW, UK
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - A J Walker
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - M Berk
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - M Maes
- School of Medicine, Deakin University, Geelong, 3220, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - B K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
50
|
Soufan O, Ba-Alawi W, Magana-Mora A, Essack M, Bajic VB. DPubChem: a web tool for QSAR modeling and high-throughput virtual screening. Sci Rep 2018; 8:9110. [PMID: 29904147 PMCID: PMC6002400 DOI: 10.1038/s41598-018-27495-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
High-throughput screening (HTS) performs the experimental testing of a large number of chemical compounds aiming to identify those active in the considered assay. Alternatively, faster and cheaper methods of large-scale virtual screening are performed computationally through quantitative structure-activity relationship (QSAR) models. However, the vast amount of available HTS heterogeneous data and the imbalanced ratio of active to inactive compounds in an assay make this a challenging problem. Although different QSAR models have been proposed, they have certain limitations, e.g., high false positive rates, complicated user interface, and limited utilization options. Therefore, we developed DPubChem, a novel web tool for deriving QSAR models that implement the state-of-the-art machine-learning techniques to enhance the precision of the models and enable efficient analyses of experiments from PubChem BioAssay database. DPubChem also has a simple interface that provides various options to users. DPubChem predicted active compounds for 300 datasets with an average geometric mean and F1 score of 76.68% and 76.53%, respectively. Furthermore, DPubChem builds interaction networks that highlight novel predicted links between chemical compounds and biological assays. Using such a network, DPubChem successfully suggested a novel drug for the Niemann-Pick type C disease. DPubChem is freely available at www.cbrc.kaust.edu.sa/dpubchem .
Collapse
Affiliation(s)
- Othman Soufan
- Institute of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Wail Ba-Alawi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Arturo Magana-Mora
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
| | - Magbubah Essack
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|