1
|
Teijeira Crespo A, Burnell S, Capitani L, Bayliss R, Moses E, Mason GH, Davies JA, Godkin AJ, Gallimore AM, Parker AL. Pouring petrol on the flames: Using oncolytic virotherapies to enhance tumour immunogenicity. Immunology 2021; 163:389-398. [PMID: 33638871 PMCID: PMC8274202 DOI: 10.1111/imm.13323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses possess the ability to infect, replicate and lyse malignantly transformed tumour cells. This oncolytic activity amplifies the therapeutic advantage and induces a form of immunogenic cell death, characterized by increased CD8 + T-cell infiltration into the tumour microenvironment. This important feature of oncolytic viruses can result in the warming up of immunologically 'cold' tumour types, presenting the enticing possibility that oncolytic virus treatment combined with immunotherapies may enhance efficacy. In this review, we assess some of the most promising candidates that might be used for oncolytic virotherapy: immunotherapy combinations. We assess their potential as separate agents or as agents combined into a single therapy, where the immunotherapy is encoded within the genome of the oncolytic virus. The development of such advanced agents will require increasingly sophisticated model systems for their preclinical assessment and evaluation. In vivo rodent model systems are fraught with limitations in this regard. Oncolytic viruses replicate selectively within human cells and therefore require human xenografts in immune-deficient mice for their evaluation. However, the use of immune-deficient rodent models hinders the ability to study immune responses against any immunomodulatory transgenes engineered within the viral genome and expressed within the tumour microenvironment. There has therefore been a shift towards the use of more sophisticated ex vivo patient-derived model systems based on organoids and explant co-cultures with immune cells, which may be more predictive of efficacy than contrived and artificial animal models. We review the best of those model systems here.
Collapse
Affiliation(s)
- Alicia Teijeira Crespo
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Stephanie Burnell
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Lorenzo Capitani
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Rebecca Bayliss
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Elise Moses
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Georgina H. Mason
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - James A. Davies
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Andrew J. Godkin
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Awen M. Gallimore
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Alan L. Parker
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| |
Collapse
|
2
|
Modeling the Efficacy of Oncolytic Adenoviruses In Vitro and In Vivo: Current and Future Perspectives. Cancers (Basel) 2020; 12:cancers12030619. [PMID: 32155969 PMCID: PMC7139921 DOI: 10.3390/cancers12030619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic adenoviruses (OAd) selectively target and lyse tumor cells and enhance anti- tumor immune responses. OAds have been used as promising cancer gene therapies for many years and there are a multitude of encouraging pre-clinical studies. However, translating OAd therapies to the clinic has had limited success, in part due to the lack of realistic pre-clinical models to rigorously test the efficacy of OAds. Solid tumors have a heterogenous and hostile microenvironment that provides many barriers to OAd treatment, including structural and immunosuppressive components that cannot be modeled in two-dimensional tissue culture. To replicate these characteristics and bridge the gap between pre-clinical and clinical success, studies must test OAd therapy in three-dimensional culture and animal models. This review focuses on current methods to test OAd efficacy in vitro and in vivo and the development of new model systems to test both oncolysis and immune stimulatory components of oncolytic adenovirotherapy.
Collapse
|
3
|
Kloker LD, Yurttas C, Lauer UM. Three-dimensional tumor cell cultures employed in virotherapy research. Oncolytic Virother 2018; 7:79-93. [PMID: 30234074 PMCID: PMC6130269 DOI: 10.2147/ov.s165479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncolytic virotherapy constitutes an upcoming alternative treatment option for a broad spectrum of cancer entities. However, despite great research efforts, there is still only a single US Food and Drug Administration/European Medicines Agency-approved oncolytic virus available for clinical use. One reason for that is the gap between promising preclinical data and limited clinical success. Since oncolytic viruses are biological agents, they might require more realistic in vitro tumor models than common monolayer tumor cell cultures to provide meaningful predictive preclinical evaluation results. For more realistic invitro tumor models, three-dimensional tumor cell-culture systems can be employed in preclinical virotherapy research. This review provides an overview of spheroid and hydrogel tumor cell cultures, organotypic tumor-tissue slices, organotypic raft cultures, and tumor organoids utilized in the context of oncolytic virotherapy. Furthermore, we also discuss advantages, disadvantages, techniques, and difficulties of these three-dimensional tumor cell-culture systems when applied specifically in virotherapy research.
Collapse
Affiliation(s)
- Linus D Kloker
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany,
| | - Can Yurttas
- Department of General, Visceral and Transplant Surgery, University Hospital, University of Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany, .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Tübingen, Germany,
| |
Collapse
|
4
|
Bhatia S, O'Bryan SM, Rivera AA, Curiel DT, Mathis JM. CXCL12 retargeting of an adenovirus vector to cancer cells using a bispecific adapter. Oncolytic Virother 2016; 5:99-113. [PMID: 27957479 PMCID: PMC5113939 DOI: 10.2147/ov.s112107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ad vectors are promising delivery vehicles for cancer therapeutic interventions. However, their application is limited by promiscuous tissue tropism and hepatotoxicity. This limitation can be avoided by altering the native tropism of Ads so that they can be redirected to the target cells through alternate cellular receptors. The CXCR4 chemokine receptor belongs to a large superfamily of G-protein-coupled receptors and is known to be upregulated in a wide variety of cancers, including breast cancer and melanoma. These receptors have been associated with cancer cell survival, progression, and metastasis. In the current study, an Ad to cancer cells overexpressing CXCR4 by using a bispecific adapter, sCAR-CXCL12, was retargeted. The sCAR-CXCL12 adapter contained the soluble ectodomain form of the native Ad5 receptor (sCAR), which was fused to a mature human chemokine ligand, CXCL12, through a short peptide linker. A dramatic increase in the infectivity of cancer cells using a targeted Ad vector compared with an untargeted vector was observed. Furthermore, sCAR-CXCL12 attenuated Ad infection of liver ex vivo and in vivo and enhanced Ad vector infection of xenograft tumors implanted in immunodeficient SCID-bg mice. Thus, the sCAR-CXCL12 adapter could be used to retarget Ad vectors to chemokine receptor-positive tumors.
Collapse
Affiliation(s)
- Shilpa Bhatia
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Samia M O'Bryan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Angel A Rivera
- Departments of Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - J Michael Mathis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
5
|
Carranza-Torres IE, Guzmán-Delgado NE, Coronado-Martínez C, Bañuelos-García JI, Viveros-Valdez E, Morán-Martínez J, Carranza-Rosales P. Organotypic culture of breast tumor explants as a multicellular system for the screening of natural compounds with antineoplastic potential. BIOMED RESEARCH INTERNATIONAL 2015; 2015:618021. [PMID: 26075250 PMCID: PMC4449881 DOI: 10.1155/2015/618021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 01/11/2023]
Abstract
Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control) decreased significantly (P < 0.05); however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor.
Collapse
Affiliation(s)
- Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720 Monterrey, NL, Mexico
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 64460 San Nicolás de los Garza, NL, Mexico
| | - Nancy Elena Guzmán-Delgado
- Unidad Médica de Alta Especialidad No. 34, Instituto Mexicano del Seguro Social, 64730 Monterrey, NL, Mexico
| | - Consuelo Coronado-Martínez
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720 Monterrey, NL, Mexico
| | | | - Ezequiel Viveros-Valdez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 64460 San Nicolás de los Garza, NL, Mexico
| | | | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720 Monterrey, NL, Mexico
| |
Collapse
|
6
|
Gobert GN, Nawaratna SK, Harvie M, Ramm GA, McManus DP. An ex vivo model for studying hepatic schistosomiasis and the effect of released protein from dying eggs. PLoS Negl Trop Dis 2015; 9:e0003760. [PMID: 25965781 PMCID: PMC4428699 DOI: 10.1371/journal.pntd.0003760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/14/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis. METHODS AND FINDINGS Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48 hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24 hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5. CONCLUSIONS This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs.
Collapse
Affiliation(s)
- Geoffrey N. Gobert
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- * E-mail:
| | | | - Marina Harvie
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Grant A. Ramm
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
7
|
A tumor-stroma targeted oncolytic adenovirus replicated in human ovary cancer samples and inhibited growth of disseminated solid tumors in mice. Mol Ther 2012; 20:2222-33. [PMID: 22948673 DOI: 10.1038/mt.2012.147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Targeting the tumor stroma in addition to the malignant cell compartment is of paramount importance to achieve complete tumor regression. In this work, we modified a previously designed tumor stroma-targeted conditionally replicative adenovirus (CRAd) based on the SPARC promoter by introducing a mutated E1A unable to bind pRB and pseudotyped with a chimeric Ad5/3 fiber (Ad F512v1), and assessed its replication/lytic capacity in ovary cancer in vitro and in vivo. AdF512v1 was able to replicate in fresh samples obtained from patients: (i) with primary human ovary cancer; (ii) that underwent neoadjuvant treatment; (iii) with metastatic disease. In addition, we show that four intraperitoneal (i.p.) injections of 5 × 10(10) v.p. eliminated 50% of xenografted human ovary tumors disseminated in nude mice. Moreover, AdF512v1 replication in tumor models was enhanced 15-40-fold when the tumor contained a mix of malignant and SPARC-expressing stromal cells (fibroblasts and endothelial cells). Contrary to the wild-type virus, AdF512v1 was unable to replicate in normal human ovary samples while the wild-type virus can replicate. This study provides evidence on the lytic capacity of this CRAd and highlights the importance of targeting the stromal tissue in addition to the malignant cell compartment to achieve tumor regression.
Collapse
|
8
|
Kwon OJ, Kang E, Kim S, Yun CO. Viral genome DNA/lipoplexes elicit in situ oncolytic viral replication and potent antitumor efficacy via systemic delivery. J Control Release 2011; 155:317-25. [DOI: 10.1016/j.jconrel.2011.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/03/2011] [Indexed: 01/08/2023]
|
9
|
Zimmermann M, Lampe J, Lange S, Smirnow I, Königsrainer A, Hann-von-Weyhern C, Fend F, Gregor M, Bitzer M, Lauer UM. Improved reproducibility in preparing precision-cut liver tissue slices. Cytotechnology 2009; 61:145-52. [PMID: 20091220 DOI: 10.1007/s10616-009-9246-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/03/2009] [Indexed: 11/24/2022] Open
Abstract
Precision-cut liver tissue slices (PCLS) have been used for decades to study pharmacological metabolism as well as toxicology and efficacy of novel substances on primary material under standardized conditions. Slicing of primary liver tissue has been done using different slicing machines. Since there has been great variability in the results, we sought to compare the reproducibility of tissue slices generated using the newly developed Leica VT1200 S vibrating blade microtome with Vibrocheck (LV) and the Krumdieck tissue slicer (KD) which has been the standard apparatus for this application so far. Liver samples from five different species (human, pig, cattle, rat, mouse) were cut and the reproducibility of slice thickness was analyzed by cross sectioning the PCLS. The quality of the sliced tissue was determined via measurement of the ATP content. As a result, we found an improved accuracy and reproducibility of rat, mouse and human tissue slices using the new Leica vibrating blade microtome.
Collapse
Affiliation(s)
- Martina Zimmermann
- Department of Gastroenterology and Hepatology, University Hospital Tuebingen, Otfried-Mueller-Str. 10, 72076, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dembinski JL, Spaeth EL, Fueyo J, Gomez-Manzano C, Studeny M, Andreeff M, Marini FC. Reduction of nontarget infection and systemic toxicity by targeted delivery of conditionally replicating viruses transported in mesenchymal stem cells. Cancer Gene Ther 2009; 17:289-97. [PMID: 19876078 DOI: 10.1038/cgt.2009.67] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The fiber-modified adenoviral vector Delta-24-RGD (D24RGD) offers vast therapeutic potential. Direct injection of D24RGD has been used to successfully target ovarian tumors in mice. However, systemic toxicity, especially in the liver, profoundly limits the efficacy of direct viral vector delivery. Mesenchymal stem cells (MSC) have the ability to function as a vector for targeted gene therapy because of their preferential engraftment into solid tumors and participation in tumor stroma formation. We show that MSC-guided delivery of D24RGD is specific and efficient and reduces the overall systemic toxicity in mice to negligible levels compared with D24RGD alone. In our model, we found efficient targeted delivery of MSC-D24RGD to both breast and ovarian cell lines. Furthermore, immunohistochemical staining for adenoviral hexon protein confirmed negligible levels of systemic toxicity in mice that were administered MSC-D24RGD compared with those that were administered D24RGD. These data suggest that delivery of D24RGD through MSC not only increases the targeted delivery efficiency, but also reduces the systemic exposure of the virus, thereby reducing overall systemic toxicity to the host and ultimately enhancing its value as an anti-tumor therapeutic candidate.
Collapse
Affiliation(s)
- J L Dembinski
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Bazan-Peregrino M, Carlisle RC, Hernandez-Alcoceba R, Iggo R, Homicsko K, Fisher KD, Halldén G, Mautner V, Shen Y, Seymour LW. Comparison of molecular strategies for breast cancer virotherapy using oncolytic adenovirus. Hum Gene Ther 2008; 19:873-86. [PMID: 18710328 DOI: 10.1089/hum.2008.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oncolytic viruses are regulated by the tumor phenotype to replicate and lyse cancer cells selectively. To identify optimal strategies for breast cancer we compared five adenoviruses with distinct regulatory mechanisms: Ad-dl922-947 (targets G1-S checkpoint); Ad-Onyx-015 and Ad-Onyx-017 (target p53/mRNA export); Ad-vKH1 (targets Wnt pathway), and AdEHE2F (targets estrogen receptor/G1-S checkpoint/hypoxic signaling). The quantity of virus required to kill 50% of breast cancer cells after 6 days (EC(50), plaque-forming units per cell) was measured. The most potent virus was Ad-dl922-947 (EC(50), 0.01-5.4 in SkBr3, MDA-231, MDA-468, MCF7, and ZR75.1 cells), followed by wild-type (Ad-WT; EC(50), 0.3-5.5) and AdEHE2F (EC(50), 1.4-3.9). Ad-vKH1 (EC(50), 7.2-72.1), Ad-Onyx-017 (EC(50), 8.4-167), and Ad-Onyx-015 (EC(50), 17.7-377) showed less activity. Most viruses showed limited cytotoxicity in normal human cells, including breast epithelium MCF10A (EC(50), >722) and fibroblasts (EC(50), >192) and only moderate cytotoxicity in normal microvascular endothelial cells (HMVECs; EC(50), 42.8-149), except Ad-dl922-947, which was active in HMVECs (EC(50), 1.6). After injection into MDA-231 xenografts, Ad-WT, AdEHE2F, and Ad-dl922-947 showed replication, assessed by hexon staining and quantitative polymerase chain reaction measurement of viral DNA, and significantly inhibited tumor growth, leading to extended survival. After intravenous injection Ad-dl922-947 showed DNA replication (233% of the injected dose was measured in liver after 3 days) whereas AdEHE2F did not. Overall, AdEHE2F showed the best combination of low toxicity in normal cells and high activity in breast cancer in vitro and in vivo, suggesting that molecular targeting using estrogen response elements, hypoxia response elements, and a dysregulated G1-S checkpoint is a promising strategy for virotherapy of breast cancer.
Collapse
Affiliation(s)
- M Bazan-Peregrino
- Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Herpes simplex virus type 1 preferentially targets human colon carcinoma: role of extracellular matrix. J Virol 2007; 82:999-1010. [PMID: 17977977 DOI: 10.1128/jvi.01769-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Viral therapy of cancer (viral oncolysis) is dependent on selective destruction of the tumor tissue compared with healthy tissues. Several factors, including receptor expression, extracellular components, and intracellular mechanisms, may influence viral oncolysis. In the present work, we studied the potential oncolytic activity of herpes simplex virus type 1 (HSV-1), using an organ culture system derived from colon carcinoma and healthy colon tissues of mouse and human origin. HSV-1 infected normal colons ex vivo at a very low efficiency, in contrast to high-efficiency infection of colon carcinoma tissue. In contrast, adenoviral and lentiviral vectors infected both tissues equally well. To investigate the mechanisms underlying the preferential affinity of HSV-1 for the carcinoma tissue, intracellular and extracellular factors were investigated. Two extracellular components, collagen and mucin molecules, were found to restrict HSV-1 infectivity in the healthy colon. The mucin layer of the healthy colon binds to HSV-1 and thereby blocks viral interaction with the epithelial cells of the tissue. In contrast, colon carcinomas express small amounts of collagen and mucin molecules and are thus permissive to HSV-1 infection. In agreement with the ex vivo system, HSV-1 injected into a mouse colon carcinoma in vivo significantly reduced the volume of the tumor. In conclusion, we describe a novel mechanism of viral selectivity for malignant tissues that is based on variance of the extracellular matrix between tumor and healthy tissues. These insights may facilitate new approaches to the application of HSV-1 as an oncolytic virus.
Collapse
|
13
|
Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M, Hakkarainen T, Kanerva A, Desmond RA, Pesonen S, Hemminki A. Oncolytic adenoviruses kill breast cancer initiating CD44+CD24-/low cells. Mol Ther 2007; 15:2088-93. [PMID: 17848962 DOI: 10.1038/sj.mt.6300300] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cancer stem cells have been indicated in the initiation of tumors and are even found to be responsible for relapses after apparently curative therapies have been undertaken. In breast cancer, they may reside in the CD44(+)CD24(-/low) population. The use of oncolytic adenoviruses presents an attractive anti-tumor approach for eradication of these cells because their entry occurs through infection and they are, therefore, not susceptible to those mechanisms that commonly render stem cells resistant to many drugs. We isolated CD44(+)CD24(-/low) cells from patient pleural effusions and confirmed stem cell-like features including oct4 and sox2 expression and Hoechst 33342 exclusion. CD44(+)CD24(-/low) cells, including the Hoechst excluding subpopulation, could be effectively killed by oncolytic adenoviruses Ad5/3-Delta24 and Ad5.pk7-Delta24. In mice, CD44(+)CD24(-/low) cells formed orthotopic breast tumors but virus infection prevented tumor formation. Ad5/3-Delta24 and Ad5.pk7-Delta24 were effective against advanced orthotopic CD44(+)CD24(-/low)-derived tumors. In summary, Ad5/3-Delta24 and Ad5.pk7-Delta24 can kill CD44(+)CD24(-/low), and also committed breast cancer cells, making them promising agents for treatment of breast cancer.
Collapse
Affiliation(s)
- Minna Eriksson
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stoff-Khalili MA, Rivera AA, Nedeljkovic-Kurepa A, DeBenedetti A, Li XL, Odaka Y, Podduturi J, Sibley DA, Siegal GP, Stoff A, Young S, Zhu ZB, Curiel DT, Mathis JM. Cancer-specific targeting of a conditionally replicative adenovirus using mRNA translational control. Breast Cancer Res Treat 2007; 108:43-55. [PMID: 17508279 PMCID: PMC2268614 DOI: 10.1007/s10549-007-9587-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 03/26/2007] [Indexed: 12/14/2022]
Abstract
BACKGROUND In view of the limited success of available treatment modalities for a wide array of cancer, alternative and complementary therapeutic strategies need to be developed. Virotherapy employing conditionally replicative adenoviruses (CRAds) represents a promising targeted intervention relevant to a wide array of neoplastic diseases. Critical to the realization of an acceptable therapeutic index using virotherapy in clinical trials is the achievement of oncolytic replication in tumor cells, while avoiding non-specific replication in normal tissues. In this report, we exploited cancer-specific control of mRNA translation initiation in order to achieve enhanced replicative specificity of CRAd virotherapy agents. Heretofore, the achievement of replicative specificity of CRAd agents has been accomplished either by viral genome deletions or incorporation of tumor selective promoters. In contrast, control of mRNA translation has not been exploited for the design of tumor specific replicating viruses to date. We show herein, the utility of a novel approach that combines both transcriptional and translational regulation strategies for the key goal of replicative specificity. METHODS We describe the construction of a CRAd with cancer specific gene transcriptional control using the CXCR4 gene promoter (TSP) and cancer specific mRNA translational control using a 5'-untranslated region (5'-UTR) element from the FGF-2 (Fibroblast Growth Factor-2) mRNA. RESULTS Both in vitro and in vivo studies demonstrated that our CRAd agent retains anti-tumor potency. Importantly, assessment of replicative specificity using stringent tumor and non-tumor tissue slice systems demonstrated significant improvement in tumor selectivity. CONCLUSIONS Our study addresses a conceptually new paradigm: dual targeting of transgene expression to cancer cells using both transcriptional and mRNA translational control. Our novel approach addresses the key issue of replicative specificity and can potentially be generalized to a wide array of tumor types, whereby tumor selective patterns of gene expression and mRNA translational control can be exploited.
Collapse
Affiliation(s)
- Mariam A. Stoff-Khalili
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
- Department of Obstetrics and Gynecology, University of Duesseldorf, Medical Center, 40225 Duesseldorf, Germany
| | - Angel A. Rivera
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
| | - Ana Nedeljkovic-Kurepa
- Gene Therapy Program, Departments of Cellular Biology and Anatomy and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130 USA
| | - Arrigo DeBenedetti
- Gene Therapy Program, Departments of Cellular Biology and Anatomy and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130 USA
| | - Xiao-Lin Li
- Gene Therapy Program, Departments of Cellular Biology and Anatomy and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130 USA
| | - Yoshinobu Odaka
- Gene Therapy Program, Departments of Cellular Biology and Anatomy and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130 USA
| | - Jagat Podduturi
- Gene Therapy Program, Departments of Cellular Biology and Anatomy and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130 USA
| | - Don A. Sibley
- Gene Therapy Program, Departments of Cellular Biology and Anatomy and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130 USA
| | - Gene P. Siegal
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
| | - Alexander Stoff
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
- Department of Plastic and Reconstructive Surgery, Dreifaltigkeits-Hospital, 50389 Wesseling, Germany
| | - Scott Young
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
| | - Zheng B. Zhu
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
| | - David T. Curiel
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
| | - J. Michael Mathis
- Gene Therapy Program, Departments of Cellular Biology and Anatomy and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130 USA
- * To whom correspondence should be addressed: J. Michael Mathis, Ph.D., Department of Cellular Biology and Anatomy, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130,
| |
Collapse
|
15
|
Au WW, Abdou-Salama S, Al-Hendy A. Inhibition of growth of cervical cancer cells using a dominant negative estrogen receptor gene. Gynecol Oncol 2006; 104:276-80. [PMID: 17137618 PMCID: PMC1831876 DOI: 10.1016/j.ygyno.2006.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Estrogen stimulates human papilloma virus oncogene expression, promotes cervical cancer (CC) cell proliferation and prevents apoptosis. Therefore, blockage of estrogen function may have therapeutic application to CC. METHODS CasKi CC cells were transfected with an adenovirus expressing a dominant negative estrogen receptor gene (Ad-ER-DN) and their responses were investigated by RT-PCR, Flow Cytometry and Western blot assays. RESULT Transfected cells showed disturbance of cell colony morphology, reduced HPV E6 and E7 mRNA, interruption of cell proliferation, reduced cyclin D1 protein and expression of apoptosis. CONCLUSION We report, for the first time, the use of Ad-ER-DN to block estrogen receptors which led to dramatic changes in CC cells that are consistent with the possible reactivation of cellular p53 and Rb function. Their reactivation most likely allowed the recognition of existing chromosome abnormalities as a serious stress signal and the initiation of a cascade of cellular events in response to the stress, including the activation of the core apoptotic machinery which led to self-destruction of the CC cells.
Collapse
Affiliation(s)
- William W Au
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555-1110, USA.
| | | | | |
Collapse
|
16
|
Kolodkin-Gal D, Zamir G, Pikarski E, Pikarski A, Shimony N, Wu H, Haviv YS, Panet A. A novel system to study adenovirus tropism to normal and malignant colon tissues. Virology 2006; 357:91-101. [PMID: 16962151 DOI: 10.1016/j.virol.2006.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 07/07/2006] [Accepted: 07/27/2006] [Indexed: 12/20/2022]
Abstract
We describe here a new organ culture system for the evaluation of viral tropism to colon carcinomas and normal colon tissues. Organ cultures of mouse and human colon retained viability for several days and thus facilitated studies of viral tropism. Two adenoviral vectors (AD) were compared in the study: AD5, that utilizes the CAR receptor, demonstrated poor infectivity to both normal and carcinoma tissues, while a capsid-modified-AD, recognizing haparan-sulfate receptor, demonstrated efficient infectivity of both tissues. Immunohistochemistry analysis demonstrated different viral tropism; while AD5 infected only the colon epithelia, the capsid-modified-adeno infected both the epithelia and mesothelial layers. To investigate other determinants in the tissue that influence viral tropism, human cancer tissues were pretreated with collagenase and infected with the AD viruses. Increased infectivity and altered tropism were noted in the treated tumor tissue. Taken together, this ex vivo system indicated that receptor utilization and extracellular-matrix components influence AD viral tropism in solid tissues.
Collapse
Affiliation(s)
- D Kolodkin-Gal
- Department of Virology, The Hebrew University- Hadassah Medical School, The Hebrew University, Jerusalem, 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mathis JM, Stewart PL, Zhu ZB, Curiel DT. Advanced generation adenoviral virotherapy agents embody enhanced potency based upon CAR-independent tropism. Clin Cancer Res 2006; 12:2651-6. [PMID: 16675555 PMCID: PMC2203211 DOI: 10.1158/1078-0432.ccr-06-0497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- J. Michael Mathis
- Gene Therapy Program, Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Phoebe L. Stewart
- Department of Molecular Physiology and Biophysics,Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zheng B. Zhu
- Division of Human GeneTherapy, Departments of Medicine, Surgery, Pathology, Obstetrics, and Gynecology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Louisiana
| | - David T. Curiel
- Division of Human GeneTherapy, Departments of Medicine, Surgery, Pathology, Obstetrics, and Gynecology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Louisiana
| |
Collapse
|