1
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
2
|
Stemkens R, de Jager V, Dawson R, Diacon AH, Narunsky K, Padayachee SD, Boeree MJ, van Beek SW, Colbers A, Coenen MJH, Svensson EM, Fuhr U, Phillips PPJ, te Brake LHM, Aarnoutse RE. Drug interaction potential of high-dose rifampicin in patients with pulmonary tuberculosis. Antimicrob Agents Chemother 2023; 67:e0068323. [PMID: 37768317 PMCID: PMC10583668 DOI: 10.1128/aac.00683-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 09/29/2023] Open
Abstract
Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1-15), followed by RIF40 (days 16-30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%-115%); tolbutamide, 80% (74%-86%); omeprazole, 55% (47%-65%); dextromethorphan, 77% (68%-86%); midazolam, 62% (49%-78%), and 117% (105%-130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.
Collapse
Affiliation(s)
- Ralf Stemkens
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Rodney Dawson
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | | | - Kim Narunsky
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sherman D. Padayachee
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Martin J. Boeree
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stijn W. van Beek
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Angela Colbers
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elin M. Svensson
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Uwe Fuhr
- />Clinical Pharmacology, Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Lindsey H. M. te Brake
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E. Aarnoutse
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - on behalf of the PanACEA consortium
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- TASK, Cape Town, South Africa
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- />Clinical Pharmacology, Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- UCSF Center for Tuberculosis, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
4
|
Barth A, Perry CR, Shabbir S, Zamek-Gliszczynski MJ, Thomas S, Dumont EF, Brimhall DB, Nguyen D, Srinivasan M, Swift B. Clinical assessment of gepotidacin (GSK2140944) as a victim and perpetrator of drug-drug interactions via CYP3A metabolism and transporters. Clin Transl Sci 2023; 16:647-661. [PMID: 36642822 PMCID: PMC10087077 DOI: 10.1111/cts.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Gepotidacin is a novel triazaacenaphthylene antibiotic in phase III development. Based on nonclinical in vitro characterization of gepotidacin metabolism, two phase I studies were conducted in healthy participants to investigate clinical drug-drug interactions (DDIs). We assessed gepotidacin as a DDI victim with a potent cytochrome P450 (CYP) 3A4/P-glycoprotein (P-gp) inhibitor (itraconazole), potent CYP3A4 inducer (rifampicin), and nonspecific organic cation transporter (OCT)/multidrug and toxic extrusion transporter (MATE) renal transport inhibitor (cimetidine) via single doses of gepotidacin before and after co-administration with multiple doses of the modulator drugs. Gepotidacin DDI perpetrator potential for P-gp inhibition (digoxin) and CYP3A4 inhibition (midazolam) was evaluated via single doses of the two-drug cocktail without and with gepotidacin. The DDI magnitudes were interpreted based on area under the concentration-time curve (AUC). A weak DDI (AUC increase 48%-50%) was observed for gepotidacin co-administered with itraconazole. A clinically significant decrease in gepotidacin plasma AUC (52%) was observed with rifampicin coadministration, indicating a moderate DDI. There was no DDI for gepotidacin with cimetidine; a unique biomarker approach showed increased serum creatinine (24%), decreased renal clearance of creatinine (21%), and N1-methylnicotinamide (39%), which confirmed extensive MATE inhibition and partial OCT2 inhibition. Gepotidacin was not a P-gp DDI perpetrator, although the maximum plasma concentration of digoxin increased (53%) and is potentially clinically relevant given its narrow therapeutic index. Gepotidacin demonstrated weak CYP3A4 inhibition with midazolam (<2-fold AUC increase). There were no new safety-risk profile findings. These results will inform the safe and efficacious clinical use of gepotidacin when co-administered with other drugs.
Collapse
Affiliation(s)
- Aline Barth
- Global Blood Therapeutics, South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Breuil L, Ziani N, Leterrier S, Hugon G, Caillé F, Bouilleret V, Truillet C, Goislard M, El Biali M, Bauer M, Langer O, Goutal S, Tournier N. Impact of Cytochrome Induction or Inhibition on the Plasma and Brain Kinetics of [ 11C]metoclopramide, a PET Probe for P-Glycoprotein Function at the Blood-Brain Barrier. Pharmaceutics 2022; 14:2650. [PMID: 36559144 PMCID: PMC9785688 DOI: 10.3390/pharmaceutics14122650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
[11C]metoclopramide PET imaging provides a sensitive and translational tool to explore P-glycoprotein (P-gp) function at the blood-brain barrier (BBB). Patients with neurological diseases are often treated with cytochrome (CYP) modulators which may impact the plasma and brain kinetics of [11C]metoclopramide. The impact of the CYP inducer carbamazepine or the CYP inhibitor ritonavir on the brain and plasma kinetics of [11C]metoclopramide was investigated in rats. Data obtained in a control group were compared with groups that were either orally pretreated with carbamazepine (45 mg/kg twice a day for 7 days before PET) or ritonavir (20 mg/kg, 3 h before PET) (n = 4 per condition). Kinetic modelling was performed to estimate the brain penetration (VT) of [11C]metoclopramide. CYP induction or inhibition had negligible impact on the plasma kinetics and metabolism of [11C]metoclopramide. Moreover, carbamazepine neither impacted the brain kinetics nor VT of [11C]metoclopramide (p > 0.05). However, ritonavir significantly increased VT (p < 0.001), apparently behaving as an inhibitor of P-gp at the BBB. Our data suggest that treatment with potent CYP inducers such as carbamazepine does not bias the estimation of P-gp function at the BBB with [11C]metoclopramide PET. This supports further use of [11C]metoclopramide for studies in animals and patients treated with CYP inducers.
Collapse
Affiliation(s)
- Louise Breuil
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Nora Ziani
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Sarah Leterrier
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Gaëlle Hugon
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Fabien Caillé
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Viviane Bouilleret
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
- Neurophysiology and Epileptology Department, Bicêtre Hospital, AP-HP, University Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Charles Truillet
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Maud Goislard
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Myriam El Biali
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Sébastien Goutal
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| |
Collapse
|
6
|
Grzegorzewski J, Brandhorst J, König M. Physiologically based pharmacokinetic (PBPK) modeling of the role of CYP2D6 polymorphism for metabolic phenotyping with dextromethorphan. Front Pharmacol 2022; 13:1029073. [PMID: 36353484 PMCID: PMC9637881 DOI: 10.3389/fphar.2022.1029073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
The cytochrome P450 2D6 (CYP2D6) is a key xenobiotic-metabolizing enzyme involved in the clearance of many drugs. Genetic polymorphisms in CYP2D6 contribute to the large inter-individual variability in drug metabolism and could affect metabolic phenotyping of CYP2D6 probe substances such as dextromethorphan (DXM). To study this question, we (i) established an extensive pharmacokinetics dataset for DXM; and (ii) developed and validated a physiologically based pharmacokinetic (PBPK) model of DXM and its metabolites dextrorphan (DXO) and dextrorphan O-glucuronide (DXO-Glu) based on the data. Drug-gene interactions (DGI) were introduced by accounting for changes in CYP2D6 enzyme kinetics depending on activity score (AS), which in combination with AS for individual polymorphisms allowed us to model CYP2D6 gene variants. Variability in CYP3A4 and CYP2D6 activity was modeled based on in vitro data from human liver microsomes. Model predictions are in very good agreement with pharmacokinetics data for CYP2D6 polymorphisms, CYP2D6 activity as described by the AS system, and CYP2D6 metabolic phenotypes (UM, EM, IM, PM). The model was applied to investigate the genotype-phenotype association and the role of CYP2D6 polymorphisms for metabolic phenotyping using the urinary cumulative metabolic ratio (UCMR), DXM/(DXO + DXO-Glu). The effect of parameters on UCMR was studied via sensitivity analysis. Model predictions indicate very good robustness against the intervention protocol (i.e. application form, dosing amount, dissolution rate, and sampling time) and good robustness against physiological variation. The model is capable of estimating the UCMR dispersion within and across populations depending on activity scores. Moreover, the distribution of UCMR and the risk of genotype-phenotype mismatch could be estimated for populations with known CYP2D6 genotype frequencies. The model can be applied for individual prediction of UCMR and metabolic phenotype based on CYP2D6 genotype. Both, model and database are freely available for reuse.
Collapse
Affiliation(s)
- Jan Grzegorzewski
- Institute for Theoretical Biology, Institute of Biology, Humboldt University, Berlin, Germany
| | | | | |
Collapse
|
7
|
Clinically Relevant Interactions Between Ritonavir-Boosted Nirmatrelvir and Concomitant Antiseizure Medications: Implications for the Management of COVID-19 in Patients with Epilepsy. Clin Pharmacokinet 2022; 61:1219-1236. [PMID: 35895276 PMCID: PMC9325946 DOI: 10.1007/s40262-022-01152-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 01/06/2023]
Abstract
Ritonavir-boosted nirmatrelvir (RBN) has been authorized recently in several countries as an orally active anti-SARS-CoV-2 treatment for patients at high risk of progressing to severe COVID-19 disease. Nirmatrelvir is the active component against the SARS-CoV-2 virus, whereas ritonavir, a potent CYP3A inhibitor, is intended to boost the activity of nirmatrelvir by increasing its concentration in plasma to ensure persistence of antiviral concentrations during the 12-hour dosing interval. RBN is involved in many clinically important drug–drug interactions both as perpetrator and as victim, which can complicate its use in patients treated with antiseizure medications (ASMs). Interactions between RBN and ASMs are bidirectional. As perpetrator, RBN may increase the plasma concentration of a number of ASMs that are CYP3A4 substrates, possibly leading to toxicity. As victims, both nirmatrelvir and ritonavir are subject to metabolic induction by concomitant treatment with potent enzyme-inducing ASMs (carbamazepine, phenytoin, phenobarbital and primidone). According to US and European prescribing information, treatment with these ASMs is a contraindication to the use of RBN. Although remdesivir is a valuable alternative to RBN, it may not be readily accessible in some settings due to cost and/or need for intravenous administration. If remdesivir is not an appropriate option, either bebtelovimab or molnupiravir may be considered. However, evidence about the clinical efficacy of bebtelovimab is still limited, and molnupiravir, the only orally active alternative, is deemed to have appreciably lower efficacy than RBN and remdesivir.
Collapse
|
8
|
Hashimoto Y, Michiba K, Maeda K, Kusuhara H. Quantitative prediction of pharmacokinetic properties of drugs in humans: Recent advance in in vitro models to predict the impact of efflux transporters in the small intestine and blood-brain barrier. J Pharmacol Sci 2021; 148:142-151. [PMID: 34924119 DOI: 10.1016/j.jphs.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Efflux transport systems are essential to suppress the absorption of xenobiotics from the intestinal lumen and protect the critical tissues at the blood-tissue barriers, such as the blood-brain barrier. The function of drug efflux transport is dominated by various transporters. Accumulated clinical evidences have revealed that genetic variations of the transporters, together with coadministered drugs, affect the expression and/or function of transporters and subsequently the pharmacokinetics of substrate drugs. Thus, in the preclinical stage of drug development, quantitative prediction of the impact of efflux transporters as well as that of uptake transporters and metabolic enzymes on the pharmacokinetics of drugs in humans has been performed using various in vitro experimental tools. Various kinds of human-derived cell systems can be applied to the precise prediction of drug transport in humans. Mathematical modeling consisting of each intrinsic metabolic or transport process enables us to understand the disposition of drugs both at the organ level and at the level of the whole body by integrating a variety of experimental results into model parameters. This review focuses on the role of efflux transporters in the intestinal absorption and brain distribution of drugs, in addition to recent advances in predictive tools and methodologies.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Maeda
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Kow CS, Sunter W, Hasan SS. Management of Comedication in Hospitalized COVID-19 Patients With Atrial Fibrillation. Hosp Pharm 2021; 56:629-632. [PMID: 34732912 DOI: 10.1177/0018578720947354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chia Siang Kow
- International Medical University, Kuala Lumpur, Malaysia
| | - Wendy Sunter
- Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, UK
| | | |
Collapse
|
10
|
Calcagno A, Trunfio M, D'Avolio A, Di Perri G, Bonora S. The impact of age on antiretroviral drug pharmacokinetics in the treatment of adults living with HIV. Expert Opin Drug Metab Toxicol 2021; 17:665-676. [PMID: 33913394 DOI: 10.1080/17425255.2021.1915285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION People living with HIV (PLWH) are aging and will receive life-long treatment: despite substantial improvement in drug efficacy and tolerability, side effects still occur and they can blunt antiretroviral treatment effectiveness. Since age may affect drug exposure and may be associated with side-effects we aimed at reviewing available data on the effect of age on antiretrovirals' pharmacokinetics in adult patients. AREAS COVERED We searched public databases and major conference proceedings for data on age and pharmacokinetics/pharmacodynamics in PLWH. We limited our review to currently used drugs and focused on population pharmacokinetics and physiologically-based pharmacokinetic modeling studies. EXPERT OPINION Available evidence of a potential detrimental effect in elderly PLWH is limited by study design and small sample sizes. Careful consideration of undoubtful benefits and potential harms is advised when prescribing ARVs to geriatric patients and the knowledge of pharmacokinetics changes need to be included in the process. With the 'greying' of the pandemic we need studies with a specific focus on geriatric patients living with HIV that will consider specific phenotypes and associated changes (including sarcopenia).
Collapse
Affiliation(s)
- Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Antonio D'Avolio
- Laboratory and Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
11
|
Jarmusch AK, Vrbanac A, Momper JD, Ma JD, Alhaja M, Liyanage M, Knight R, Dorrestein PC, Tsunoda SM. Enhanced Characterization of Drug Metabolism and the Influence of the Intestinal Microbiome: A Pharmacokinetic, Microbiome, and Untargeted Metabolomics Study. Clin Transl Sci 2020; 13:972-984. [PMID: 32216086 PMCID: PMC7485946 DOI: 10.1111/cts.12785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/22/2020] [Indexed: 12/22/2022] Open
Abstract
Determining factors that contribute to interindividual and intra-individual variability in pharmacokinetics (PKs) and drug metabolism is essential for the optimal use of drugs in humans. Intestinal microbes are important contributors to variability; however, such gut microbe-drug interactions and the clinical significance of these interactions are still being elucidated. Traditional PKs can be complemented by untargeted mass spectrometry coupled with molecular networking to study the intricacies of drug metabolism. To show the utility of molecular networking on metabolism we investigated the impact of a 7-day course of cefprozil on cytochrome P450 (CYP) activity using a modified Cooperstown cocktail and assessed plasma, urine, and fecal data by targeted and untargeted metabolomics and molecular networking in healthy volunteers. This prospective study revealed that cefprozil decreased the activities of CYP1A2, CYP2C19, and CYP3A, decreased alpha diversity and increased interindividual microbiome variability. We further demonstrate a relationship between the loss of microbiome alpha diversity caused by cefprozil and increased drug and metabolite formation in fecal samples. Untargeted metabolomics/molecular networking revealed several omeprazole metabolites that we hypothesize may be metabolized by both CYP2C19 and bacteria from the gut microbiome. Our observations are consistent with the hypothesis that factors that perturb the gut microbiome, such as antibiotics, alter drug metabolism and ultimately drug efficacy and toxicity but that these effects are most strongly revealed on a per individual basis.
Collapse
Affiliation(s)
- Alan K. Jarmusch
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Collaborative Mass Spectrometry Innovation CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alison Vrbanac
- Department of PediatricsUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Joseph D. Ma
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Maher Alhaja
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Marlon Liyanage
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Rob Knight
- Department of PediatricsUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Microbiome InnovationUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Computer Science and EngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Collaborative Mass Spectrometry Innovation CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of PediatricsUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Microbiome InnovationUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Shirley M. Tsunoda
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
12
|
Silva AR, Dinis-Oliveira RJ. Pharmacokinetics and pharmacodynamics of dextromethorphan: clinical and forensic aspects. Drug Metab Rev 2020; 52:258-282. [DOI: 10.1080/03602532.2020.1758712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ana Rita Silva
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Sciences, IINFACTS – Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
- Department of Biological Sciences, Faculty of Pharmacy, Laboratory of Toxicology, UCIBIO, REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Jetter A, Kullak-Ublick GA. Drugs and hepatic transporters: A review. Pharmacol Res 2020; 154:104234. [DOI: 10.1016/j.phrs.2019.04.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
|
14
|
Mohebbi N, Talebi A, Moghadamnia M, Nazari Taloki Z, Shakiba A. Drug Interactions of Psychiatric and COVID-19 Medications. Basic Clin Neurosci 2020; 11:185-200. [PMID: 32855778 PMCID: PMC7368108 DOI: 10.32598/bcn.11.covid19.2500.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) has become a pandemic with 1771514 cases identified in the world and 70029 cases in Iran until April 12, 2020. The co-prescription of psychotropics with COVID-19 medication is not uncommon. Healthcare providers should be familiar with many Potential Drug-Drug Interactions (DDIs) between COVID-19 therapeutic agents and psychotropic drugs based on cytochrome P450 metabolism. This review comprehensively summarizes the current literature on DDIs between antiretroviral drugs and chloroquine/hydroxychloroquine, and psychotropics, including antidepressants, antipsychotics, mood stabilizers, and anxiolytics. METHODS Medical databases, including Google Scholar, PubMed, Web of Science, and Scopus were searched to identify studies in English with keywords related to psychiatric disorders, medications used in the treatment of psychiatric disorders and COVID-19 medications. RESULTS There is a great potential for DDIs between psychiatric and COVID-19 medications ranging from interactions that are not clinically apparent (minor) to those that produce life-threatening adverse drug reactions, or loss of treatment efficacy. The majority of interactions are pharmacokinetic interactions via the cytochrome P450 enzyme system. CONCLUSION DDIs are a major concern in the comorbidity of psychiatric disorders and COVID-19 infection resulting in the alteration of expected therapeutic outcomes. The risk of toxicity or lack of efficacy may occur due to a higher or lower plasma concentration of medications. However, psychiatric medication can be safely used in combination with COVID-19 pharmacotherapy with either a wise selection of medication with the least possibility of interaction or careful patient monitoring and management.
Collapse
Affiliation(s)
- Niayesh Mohebbi
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Rational Use of Drugs; Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Moghadamnia
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Nazari Taloki
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alia Shakiba
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Song IH, Ilic K, Murphy J, Lasseter K, Martin P. Effects of Maribavir on P-Glycoprotein and CYP2D6 in Healthy Volunteers. J Clin Pharmacol 2020; 60:96-106. [PMID: 31385617 PMCID: PMC6972521 DOI: 10.1002/jcph.1504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022]
Abstract
Maribavir is an investigational drug being evaluated in transplant recipients with cytomegalovirus infection. To understand potential drug-drug interactions, we examined the effects of multiple doses of maribavir on cytochrome P450 (CYP) 2D6 and P-glycoprotein (P-gp) activity using probe substrates in healthy volunteers. During this phase 1 open-label study (NCT02775240), participants received the probe substrates digoxin (0.5 mg) and dextromethorphan (30 mg) before and after maribavir (400 mg twice daily for 8 days). Serial plasma samples were analyzed for digoxin, dextromethorpha, dextrorphan, and maribavir concentrations. Pharmacokinetic parameters were calculated (noncompartmental analysis) and analyzed with a linear mixed-effects model for treatment comparison to estimate geometric mean ratios (GMRs) and 90% confidence intervals (CIs). CYP2D6 polymorphisms were genotyped using polymerase chain reaction. Overall, 17 of 18 participants (94.4%) completed the study. All participants were genotyped as CYP2D6 intermediate/extensive metabolizers. GMR (90%CI) of digoxin Cmax , AUClast , and AUC0-∞ with and without maribavir was 1.257 (1.139-1.387), 1.187 (1.088-1.296), and 1.217 (1.110-1.335), respectively, outside the "no-effect" window (0.8-1.25). GMR (90%CI) of dextromethorphan AUClast and AUClast ratio of dextromethorphan/dextrorphan were 0.877 (0.692-1.112) and 0.901 (0.717-1.133), respectively, marginally outside the no-effect window, although large variability was observed in these pharmacokinetic parameters. Pharmacokinetic parameters of dextrorphan were unaffected. Maribavir inhibited P-gp activity but did not affect CYP2D6 activity. Maribavir's effect on the pharmacokinetics of P-gp substrates should be evaluated individually, and caution should be exercised with P-gp substrates with narrow therapeutic windows.
Collapse
Affiliation(s)
- Ivy H. Song
- Shire, a Takeda companyLexingtonMassachusettsUSA
| | | | | | | | | |
Collapse
|
16
|
Anti-HIV and Anti-Hepatitis C Virus Drugs Inhibit P-Glycoprotein Efflux Activity in Caco-2 Cells and Precision-Cut Rat and Human Intestinal Slices. Antimicrob Agents Chemother 2019; 63:AAC.00910-19. [PMID: 31481446 DOI: 10.1128/aac.00910-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
P-glycoprotein (ABCB1), an ATP-binding-cassette efflux transporter, limits intestinal absorption of its substrates and is a common site of drug-drug interactions (DDIs). ABCB1 has been suggested to interact with many antivirals used to treat HIV and/or chronic hepatitis C virus (HCV) infections. Using bidirectional transport experiments in Caco-2 cells and a recently established ex vivo model of accumulation in precision-cut intestinal slices (PCIS) prepared from rat ileum or human jejunum, we evaluated the potential of anti-HIV and anti-HCV antivirals to inhibit intestinal ABCB1. Lopinavir, ritonavir, saquinavir, atazanavir, maraviroc, ledipasvir, and daclatasvir inhibited the efflux of a model ABCB1 substrate, rhodamine 123 (RHD123), in Caco-2 cells and rat-derived PCIS. Lopinavir, ritonavir, saquinavir, and atazanavir also significantly inhibited RHD123 efflux in human-derived PCIS, while possible interindividual variability was observed in the inhibition of intestinal ABCB1 by maraviroc, ledipasvir, and daclatasvir. Abacavir, zidovudine, tenofovir disoproxil fumarate, etravirine, and rilpivirine did not inhibit intestinal ABCB1. In conclusion, using recently established ex vivo methods for measuring drug accumulation in rat- and human-derived PCIS, we have demonstrated that some antivirals have a high potential for DDIs on intestinal ABCB1. Our data help clarify the molecular mechanisms responsible for reported increases in the bioavailability of ABCB1 substrates, including antivirals and drugs prescribed to treat comorbidity. These results could help guide the selection of combination pharmacotherapies and/or suitable dosing schemes for patients infected with HIV and/or HCV.
Collapse
|
17
|
Pharmacokinetics of Tenofovir Alafenamide When Coadministered With Other HIV Antiretrovirals. J Acquir Immune Defic Syndr 2019; 78:465-472. [PMID: 29649076 DOI: 10.1097/qai.0000000000001699] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Tenofovir alafenamide (TAF), a prodrug of the nucleotide analogue tenofovir (TFV), is an antiretroviral (ARV) agent approved either as a complete regimen [elvitegravir/cobicistat/emtricitabine (F)/TAF, rilpivirine/F/TAF, bictegravir/F/TAF], or for use with other ARVs (F/TAF), for treatment of HIV. TAF is a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) transporters. Disposition of TAF may be altered by comedications that can inhibit or induce P-gp or BCRP transporters. The effects of ARVs on the pharmacokinetics of TAF were evaluated in 3 studies. METHODS Healthy participants received TAF administered alone or with rilpivirine in study 1, with dolutegravir, ritonavir-boosted atazanavir (ATV + RTV), lopinavir (LPV/RTV), or darunavir (DRV + RTV) in study 2, and with the pharmacokinetic enhancer cobicistat or efavirenz in study 3. RESULTS Across the 3 studies, 98 participants received treatment with TAF and a coadministered agent (n = 10-34/cohort). All study treatments were well tolerated. TAF and TFV exposures were unaffected after co-administration with rilpivirine and dolutegravir. Coadministration with P-gp/BCRP inhibitors such as cobicistat or PI-based regimens (ATV + RTV, LPV/r, or DRV + RTV) resulted in a range of 6%-183% increases in TAF and 105%-316% increases in TFV exposure, whereas coadministration with a P-gp inducer, efavirenz, resulted in a 15%-24% decrease in TAF and TFV exposure. CONCLUSIONS Evaluation of the drug interaction between TAF and other commonly prescribed boosted and unboosted ARVs provides characterization of the susceptibility of TAF and/or TFV pharmacokinetics to inhibitors or inducers of P-gp/BCRP transporters.
Collapse
|
18
|
Gong Y, Haque S, Chowdhury P, Cory TJ, Kodidela S, Yallapu MM, Norwood JM, Kumar S. Pharmacokinetics and pharmacodynamics of cytochrome P450 inhibitors for HIV treatment. Expert Opin Drug Metab Toxicol 2019; 15:417-427. [PMID: 30951643 DOI: 10.1080/17425255.2019.1604685] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Drugs used in HIV treatment; all protease inhibitors, some non-nucleoside reverse transcriptase inhibitors, and pharmacoenhancers ritonavir and cobicistat can inhibit cytochrome P450 (CYP) enzymes. CYP inhibition can cause clinically significant drug-drug interactions (DDI), leading to increased drug exposure and potential toxicity. Areas covered: A complete understanding of pharmacodynamics and CYP-mediated DDI is crucial to prevent adverse side effects and to achieve optimal efficacy. We summarized the pharmacodynamics of all the CYP inhibitors used for HIV treatment, followed by a discussion of drug interactions between these CYP inhibitors and other drugs, and a discussion on the effect of CYP polymorphisms. We also discussed the potential advancements in improving the pharmacodynamics of these CYP inhibitors by using nanotechnology strategy. Expert opinion: The drug-interactions in HIV patients receiving ARV drugs are complicated, especially when patients are on CYP inhibitors-based ART regimens. Therefore, evaluation of CYP-mediated drug interactions is necessary prior to prescribing ARV drugs to HIV subjects. To improve the treatment efficacy and minimize DDI, novel approaches such as nanotechnology may be the potential alternative approach. However, further studies with large cohort need to be conducted to provide strong evidence for the use of nano-formulated ARVs to effectively treat HIV patients.
Collapse
Affiliation(s)
- Yuqing Gong
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Sanjana Haque
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Pallabita Chowdhury
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Theodore J Cory
- b Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Sunitha Kodidela
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Murali M Yallapu
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - John M Norwood
- c Department of Infectious Disease , College of Medicine, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Santosh Kumar
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
19
|
Younis IR, Lakota EA, Volpe DA, Patel V, Xu Y, Sahajwalla CG. Drug-Drug Interaction Studies of Methadone and Antiviral Drugs: Lessons Learned. J Clin Pharmacol 2019; 59:1035-1043. [PMID: 30973652 DOI: 10.1002/jcph.1405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 02/22/2019] [Indexed: 12/29/2022]
Abstract
Different views appear in the literature on the extent of specific cytochrome P450 (CYP) involvement in methadone metabolism. The aim of this work is to leverage knowledge from drug-drug interaction (DDI) studies in new drug applications between methadone and antiviral medications to better understand methadone disposition and to inform design of future DDI studies with methadone. A database of DDI studies between all FDA-approved human immunodeficiency virus and hepatitis C virus medications and methadone was constructed. The database contains data from 29 DDI studies. Sixteen of the 29 studies had statistically significant changes in methadone area under the concentration-time curve. Methadone exposure was either decreased or unchanged when it was coadministered with weak to strong CYP3A inhibitors or a moderate CYP3A4 inducer. Methadone exposure was reduced when it was coadministered with CYP2B6 inducers. The role of other enzymes (CYP2C9, CYP2C19, and CYP2D6) cannot be fully elucidated from these studies. In conclusion, CYP2B6 plays a prominent role in methadone metabolism, although methadone exposure is not sensitive to CYP3A perturbation. In designing methadone DDI studies, (1) measuring R- and S-methadone is more informative than measuring total methadone, and (2) CYP2B6 genotyping of subjects enrolled in methadone DDI studies should be considered. Finally, there is a need for the development of predictive models to determine the influence of medications on methadone disposition.
Collapse
Affiliation(s)
- Islam R Younis
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.,Current affiliation: Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| | - Elizabeth A Lakota
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.,Intitute for Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Donna A Volpe
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Vikram Patel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Yun Xu
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chandra G Sahajwalla
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
20
|
Sampson MR, Cao KY, Gish PL, Hyon K, Mishra P, Tauber W, Zhao P, Zhou EH, Younis IR. Dosing Recommendations for Quetiapine When Coadministered With HIV Protease Inhibitors. J Clin Pharmacol 2018; 59:500-509. [DOI: 10.1002/jcph.1345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/31/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Mario R. Sampson
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Review, Food and Drug Administration; Silver Spring MD USA
| | - Kelly Y. Cao
- Office of Pharmacovigilance and Epidemiology, Office of Surveillance and Epidemiology; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD USA
| | - Paula L. Gish
- Office of Pharmacovigilance and Epidemiology, Office of Surveillance and Epidemiology; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD USA
| | - Kyong Hyon
- Division of Antiviral Products, Office of Antimicrobial Products, Office of New Drugs; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD USA
| | - Poonam Mishra
- Division of Antiviral Products, Office of Antimicrobial Products, Office of New Drugs; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD USA
| | - William Tauber
- Division of Antiviral Products, Office of Antimicrobial Products, Office of New Drugs; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD USA
| | - Ping Zhao
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Review, Food and Drug Administration; Silver Spring MD USA
| | - Esther H. Zhou
- Office of Pharmacovigilance and Epidemiology, Office of Surveillance and Epidemiology; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD USA
| | - Islam R. Younis
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Review, Food and Drug Administration; Silver Spring MD USA
| |
Collapse
|
21
|
Yamada H, Yonemura T, Nemoto T, Ninomiya N, Irie S. Pharmacokinetics of Tenofovir Alafenamide, Tenofovir, and Emtricitabine Following Administration of Coformulated Emtricitabine/Tenofovir Alafenamide in Healthy Japanese Subjects. Clin Pharmacol Drug Dev 2018; 8:511-520. [PMID: 30325567 DOI: 10.1002/cpdd.623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
Abstract
A fixed-dose combination of tenofovir alafenamide (TAF) and emtricitabine (FTC) is available in 2 tablet strengths in Japan (FTC/TAF 200/10 mg and FTC/TAF 200/25 mg). These are used once daily in combination with other antiretroviral agents for the treatment of human immunodeficiency virus type 1 infection. The primary objective of this study was to investigate if there is any clinically relevant pharmacokinetic difference for TAF, tenofovir (TFV), and FTC between Japanese and non-Japanese with historical data. Three treatment groups were set in the study; FTC/TAF 200/10 mg in combination with darunavir (DRV) 800 mg + ritonavir (RTV) 100 mg (treatment A) or DRV/cobicistat (COBI) 800/150 mg (treatment B) and FTC/TAF 200/25 mg alone (treatment C). Especially for treatment C, it was designated for another purpose to evaluate the pharmacokinetic boosting effects of RTV and COBI on TAF bioavailability. As a result, the mean exposure of TAF among treatment groups was 125 to 154 ng/mL for Cmax and 119 to 179 ng·h/mL for AUCinf , which were comparable with the historical data in non-Japanese. The exposures of TFV and FTC were also consistent with the historical data. Therefore, no clinically relevant pharmacokinetic differences for TAF, TFV, and FTC were observed between Japanese and non-Japanese. Boosting effects of RTV and COBI on TAF bioavailability were slightly lower than we expected, less than a 2.5-fold increase, but it was within the range of exposures associated with efficacy and safety in phase 3 studies. Therefore, it was not considered clinically relevant.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Clinical Development Department, Pharmaceutical Division, Japan Tobacco Inc., Tokyo, Japan
| | | | - Takanori Nemoto
- Clinical Development Department, Pharmaceutical Division, Japan Tobacco Inc., Tokyo, Japan
| | - Noriko Ninomiya
- Clinical Development Department, Pharmaceutical Division, Japan Tobacco Inc., Tokyo, Japan
| | - Shin Irie
- SOUSEIKAI Sumida Hospital, Tokyo, Japan
| |
Collapse
|
22
|
Tod M, Goutelle S, Bleyzac N, Bourguignon L. A Generic Model for Quantitative Prediction of Interactions Mediated by Efflux Transporters and Cytochromes: Application to P-Glycoprotein and Cytochrome 3A4. Clin Pharmacokinet 2018; 58:503-523. [DOI: 10.1007/s40262-018-0711-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Decloedt EH, van der Walt JS, McIlleron H, Wiesner L, Maartens G. The pharmacokinetics of lopinavir/ritonavir when given with isoniazid in South African HIV-infected individuals. Int J Tuberc Lung Dis 2016; 19:1194-6. [PMID: 26459532 DOI: 10.5588/ijtld.15.0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Isoniazid preventive therapy is recommended in patients on antiretroviral treatment (ART) with latent tuberculous infection to prevent progression to active tuberculosis disease. Isoniazid (INH) inhibits cytochrome (CY) P3A4, which metabolises lopinavir (LPV). The administration of INH may cause higher LPV concentrations, which may increase LPV toxicity. LPV bioavailability is increased by co-formulated ritonavir (r), which may enhance the interaction of INH on LPV. We studied the effect of INH on LPV concentrations by administering INH for 7 days and performing intensive pharmacokinetic sampling in 16 human immunodeficiency virus infected patients established on LPV/r-based ART. INH did not significantly increase steady-state LPV area under the plasma concentration-time curve calculated for the 12 h-dosing interval.
Collapse
Affiliation(s)
- E H Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - J S van der Walt
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - H McIlleron
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - L Wiesner
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - G Maartens
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Tye CK, Wang Z, Dockens RC, Vakkalagadda B, Wang C, Zhang Y, Su CC, Hageman MJ. Pre-absorption physicochemical compatibility assessment of 8-drug metabolic cocktail. Int J Pharm 2016; 514:364-373. [PMID: 27291974 DOI: 10.1016/j.ijpharm.2016.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 01/21/2023]
Abstract
A comprehensive 8-drug metabolic cocktail was designed to simultaneously target 6 Cytochrome P450 enzymes and 2 membrane transporters. This study aimed to assess the pre-absorption risk of this new metabolic cocktail which contained metoprolol, caffeine, midazolam, pravastatin, flurbiprofen, omeprazole, digoxin and montelukast. This paper describes a systematic approach to understand whether the co-administration of the 8 selected drug products, i.e., the physical mixing of these products in the human gastro-intestinal environment, will create any issue that may interfere with the individual drug dissolution which in turns modify the total amount or timing of their availability for absorption. The evaluation consisted of two steps. An initial evaluation was based on theoretical understanding of the physicochemical properties of the drugs and the gastro intestinal environment, followed by in vitro dissolution tests. The results indicated that the designer 8-drug cocktail has acceptable pre-absorption compatibility when dosed simultaneously, and recommended the progression of the cocktail into clinical validation study.
Collapse
Affiliation(s)
- Ching Kim Tye
- Discovery Pharmaceutics, Bristol-Myers Squibb, Princeton, NJ, USA.
| | - Zhanbin Wang
- Discovery Pharmaceutics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Randy C Dockens
- Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Blisse Vakkalagadda
- Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Chunlei Wang
- Bioanalytical and Discovery Analytical Sciences, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yingru Zhang
- Bioanalytical and Discovery Analytical Sciences, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Ching Chiang Su
- Discovery Pharmaceutics, Bristol-Myers Squibb, Princeton, NJ, USA
| | | |
Collapse
|
25
|
Pandie M, Wiesner L, McIlleron H, Hughes J, Siwendu S, Conradie F, Variava E, Maartens G. Drug–drug interactions between bedaquiline and the antiretrovirals lopinavir/ritonavir and nevirapine in HIV-infected patients with drug-resistant TB. J Antimicrob Chemother 2016; 71:1037-40. [DOI: 10.1093/jac/dkv447] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/23/2015] [Indexed: 11/12/2022] Open
|
26
|
Nguyen TT, Bénech H, Delaforge M, Lenuzza N. Design optimisation for pharmacokinetic modeling of a cocktail of phenotyping drugs. Pharm Stat 2015; 15:165-77. [DOI: 10.1002/pst.1731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Thu Thuy Nguyen
- CEA, LIST; Data Analysis and Systems Intelligence Laboratory; Gif-sur-Yvette France
| | | | | | - Natacha Lenuzza
- CEA, LIST; Data Analysis and Systems Intelligence Laboratory; Gif-sur-Yvette France
| |
Collapse
|
27
|
Pharmacokinetic interactions between artesunate-mefloquine and ritonavir-boosted lopinavir in healthy Thai adults. Malar J 2015; 14:400. [PMID: 26452725 PMCID: PMC4600319 DOI: 10.1186/s12936-015-0916-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/25/2015] [Indexed: 11/30/2022] Open
Abstract
Background Concomitant use of anti-malarial and antiretroviral drugs is increasingly frequent in malaria and HIV endemic regions. The aim of the study was to investigate the pharmacokinetic interaction between the anti-malarial drugs, artesunate-mefloquine and the antiretroviral drug, lopinavir boosted with ritonavir (LPV/r). Methods The study was an open-label, three-way, sequential, cross-over, pharmacokinetic study in healthy Thai adults. Subjects received the following treatments: Period 1: standard 3-day artesunate-mefloquine combination; Period 2 (2 months wash-out): oral LPV/r 400 mg/100 mg twice a day for 14 days; and, Period 3: artesunate-mefloquine and LPV/r twice a day for 3 days. Sixteen subjects (eight females) were enrolled and pharmacokinetic parameters were determined by non-compartmental analysis. Results In the presence of LPV/r, artesunate Cmax and systemic exposure were significantly increased by 45–80 %, while the metabolic ratio of dihydroartemisinin to artesunate was significantly reduced by 72 %. In addition, mefloquine Cmax and systemic exposure were significantly reduced by 19–37 %. In the presence of artesunate-mefloquine, lopinavir Cmax was significantly reduced by 22 % but without significant change in systemic drug exposure. The 90 % CI of the geometric mean ratio (GMR) of AUC0−∞ and Cmax were outside the acceptable bioequivalent range for each drug. Drug treatments were generally well tolerated with no serious adverse events. Vertigo, nausea and vomiting were the most common adverse events reported. Conclusion The reduction in systemic exposure of all investigated drugs raises concerns of an increased risk of treatment failure rate in co-infected patients and should be further investigated.
Collapse
|
28
|
Rattanapunya S, Cressey TR, Rueangweerayut R, Tawon Y, Kongjam P, Na-Bangchang K. Pharmacokinetic Interactions Between Quinine and Lopinavir/Ritonavir in Healthy Thai Adults. Am J Trop Med Hyg 2015; 93:1383-90. [PMID: 26416104 DOI: 10.4269/ajtmh.15-0453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 01/12/2023] Open
Abstract
This study aimed to investigate the pharmacokinetic interactions between quinine and lopinavir boosted with ritonavir (LPV/r) in healthy Thai adults (8 males and 12 females). Period 1 (day 1): subjects received a single oral dose of 600 mg quinine sulfate. Period 2: subjects received LPV/r (400/100 mg) twice daily. Period 3: subjects received a single quinine sulfate dose plus LPV/r twice a day. Intensive blood sampling was performed during each phase. Quinine AUC0-48h (area under the plasma concentration-time curve from time 0 to 48 hours), AUC0-∞ (area under the plasma concentration-time curve from time 0 to infinity), and Cmax (maximum concentration over the time-span specified), were 56%, 57%, and 47% lower, respectively, in the presence of LPV/r. 3-Hydroxyquinine AUC0-48h, AUC0-∞, and Cmax were significantly lower and the metabolite-to-parent ratio was significantly reduced. Lopinavir and ritonavir exposures were not significantly reduced with quinine coadministration, but Cmax of both drugs were significantly lower. The geometric mean ratio (GMR) and 90% CI of AUC0-48h, AUC0-∞, and Cmax for quinine, 3-hydroxyquinine, lopinavir, and ritonavir lay outside the bioequivalent range of 0.8-1.25. Drug treatments during all periods were generally well tolerated. The reduction in systemic exposure of quinine and 3-hydroxyquinine with concomitant LPV/r use raises concerns of suboptimal exposure. Studies in HIV/malaria coinfection patients are needed to determine the clinical impact to decide if any change to the quinine dose is warranted.
Collapse
Affiliation(s)
- Siwalee Rattanapunya
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Tim R Cressey
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Ronnatrai Rueangweerayut
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Yardpiroon Tawon
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Panida Kongjam
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
29
|
Foo WYB, Tay HY, Chan ECY, Lau AJ. Meclizine, a pregnane X receptor agonist, is a direct inhibitor and mechanism-based inactivator of human cytochrome P450 3A. Biochem Pharmacol 2015; 97:320-30. [PMID: 26239802 DOI: 10.1016/j.bcp.2015.07.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022]
Abstract
Meclizine is an agonist of human pregnane X receptor (PXR). It increases CYP3A4 mRNA expression, but decreases CYP3A-catalyzed testosterone 6β-hydroxylation in primary cultures of human hepatocytes, as assessed at 24h after the last dose of meclizine. Therefore, the hypothesis to be tested is that meclizine inactivates human CYP3A enzymes. Our findings indicated that meclizine directly inhibited testosterone 6β-hydroxylation catalyzed by human liver microsomes, recombinant CYP3A4, and recombinant CYP3A5. The inhibition of human liver microsomal testosterone 6β-hydroxylation by meclizine occurred by a mixed mode and with an apparent Ki of 31±6μM. Preincubation of meclizine with human liver microsomes and NADPH resulted in a time- and concentration-dependent decrease in testosterone 6β-hydroxylation. The extent of inactivation required the presence of NADPH, was unaffected by nucleophilic trapping agents or reactive oxygen species scavengers, attenuated by a CYP3A substrate, and not reversed by dialysis. Meclizine selectively inactivated CYP3A4, but not CYP3A5. In contrast to meclizine, which has a di-substituted piperazine ring, norchlorcyclizine, which is a N-debenzylated meclizine metabolite with a mono-substituted piperazine ring, did not inactivate but directly inhibited hepatic microsomal CYP3A activity. In conclusion, meclizine inhibited human CYP3A enzymes by both direct inhibition and mechanism-based inactivation. In contrast, norchlorcyclizine is a direct inhibitor but not a mechanism-based inactivator. Furthermore, a PXR agonist may also be an inhibitor of a PXR-regulated enzyme, thereby giving rise to opposing effects on the functional activity of the enzyme and indicating the importance of measuring the catalytic activity of nuclear receptor-regulated enzymes.
Collapse
Affiliation(s)
- Winnie Yin Bing Foo
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Hwee Ying Tay
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Aik Jiang Lau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
30
|
Kaufmann P, Niglis S, Bruderer S, Segrestaa J, Äänismaa P, Halabi A, Dingemanse J. Effect of lopinavir/ritonavir on the pharmacokinetics of selexipag an oral prostacyclin receptor agonist and its active metabolite in healthy subjects. Br J Clin Pharmacol 2015; 80:670-7. [PMID: 25851691 DOI: 10.1111/bcp.12650] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/20/2015] [Accepted: 03/29/2015] [Indexed: 12/31/2022] Open
Abstract
AIMS This study investigated the effect of a fixed dose combination of lopinavir/ritonavir on the pharmacokinetics (PK) of selexipag and its active metabolite ACT-333679. METHODS This was an open label, randomized, single centre, two way, crossover study. Twenty healthy male subjects were treated with a single dose of 400 µg selexipag alone and in combination with multiple doses of lopinavir/ritonavir (400/100 mg) twice daily. RESULTS The results showed that lopinavir/ritonavir approximately doubled the exposure to selexipag. The area under the plasma concentration-time curve from time zero to infinity (AUC(0,∞) and the maximum plasma concentration (Cmax) of selexipag were 2.2- and 2.1-fold higher, respectively, than under selexipag alone, with a 90% confidence interval (CI) of the geometric mean ratio (GMR) of 1.9, 2.7 and 1.7, 2.6, respectively. For ACT-333679, the clinically more relevant component of selexipag, systemic exposure was increased by 8% (GMR of AUC(0,∞) 1.1, 90% CI 0.9, 1.3), when lopinavir/ritonavir was co-administered with selexipag. The most frequently reported adverse event (AE) was headache. A single dose of selexipag, administered either alone or together with multiple doses of lopinavir/ritonavir, was safe and well tolerated. CONCLUSIONS Lopinavir/ritonavir does not affect the PK parameters of selexipag and ACT-333679 to a clinically relevant extent. Therefore, adaptation of the selexipag dose is not required when co-administered with inhibitors of the organic anion-transporting polypeptide (OATP) 1B1/ 1B3, P-glycoprotein (P-gp) and/or CYP3A4.
Collapse
Affiliation(s)
- Priska Kaufmann
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil
| | - Séverine Niglis
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil
| | - Shirin Bruderer
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil
| | - Jérôme Segrestaa
- Department of Preclinical Pharmacokinetics and Metabolism, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Päivi Äänismaa
- Department of Preclinical Pharmacokinetics and Metabolism, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Atef Halabi
- Clinical Research Services Kiel GmbH, Kiel, Germany
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil
| |
Collapse
|
31
|
Greenblatt DJ, Harmatz JS. Ritonavir is the best alternative to ketoconazole as an index inhibitor of cytochrome P450-3A in drug-drug interaction studies. Br J Clin Pharmacol 2015; 80:342-50. [PMID: 25923589 DOI: 10.1111/bcp.12668] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/16/2022] Open
Abstract
AIMS The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug-drug interaction (DDI) studies has compelled consideration of alternative inhibitors. METHODS The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC ) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor. RESULTS Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre-exposure prior to administration of MDZ. CONCLUSIONS Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well.
Collapse
Affiliation(s)
- David J Greenblatt
- From the Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Jerold S Harmatz
- From the Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
32
|
Petrovic V, Piquette-Miller M. Polyinosinic/Polycytidylic Acid-mediated changes in maternal and fetal disposition of lopinavir in rats. Drug Metab Dispos 2015; 43:951-7. [PMID: 25887454 DOI: 10.1124/dmd.114.062315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/17/2015] [Indexed: 01/17/2023] Open
Abstract
Maintenance of optimal lopinavir (LPV) concentration is essential for effective antiretroviral therapy and prevention of mother-to-child transmission of human immunodeficiency virus. However, little is known about the effects of inflammation on the pharmacokinetics of this protease inhibitor and drug transporter substrate, particularly during gestation. Our objective was to study the effect of polyinosinic/polycytidylic acid [poly(I:C)], a viral mimetic, on key maternal drug transporters, and to examine the effect on maternal and fetal disposition of LPV in rats. Poly(I:C) (5.0 mg/kg i.p.) or saline vehicle was administered to pregnant Sprague-Dawley rats on gestational days 17-18. At 24 hours postinjection, all rats were administered LPV (10 mg/kg i.v.), and plasma and tissues were collected at 5-120 minutes postadministration. Plasma interferon-γ (IFN-γ) levels were measured by enzyme-linked immunosorbent assay, and transporter expression was measured via real-time polymerase chain reaction. Maternal plasma, hepatic, placental, and fetal LPV concentrations were determined by liquid chromatography-tandem mass spectrometry. Administration of poly(I:C) induced IFN-γ plasma levels and downregulated the expression of several important ATP-binding cassette (ABC) drug efflux transporters in the placenta and liver of pregnant rats, compared with controls (P < 0.05). Maternal LPV plasma concentration and area under the concentration-versus-time curve were significantly increased in the poly(I:C) group. Plasma protein binding was also significantly higher in poly(I:C)-treated rats. Pronounced increases in hepatic, placental, and fetal LPV tissue:unbound plasma concentrations were seen in the poly(I:C) group; however, absolute tissue concentrations were not changed. Since the majority of commonly used and clinically important antiretroviral drugs are known to be ABC transporter substrates, inflammation-mediated changes in transporter expression could affect their maternal disposition and fetal exposure.
Collapse
Affiliation(s)
- Vanja Petrovic
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Depot medroxyprogesterone acetate in combination with a twice-daily lopinavir-ritonavir-based regimen in HIV-infected women showed effective contraception and a lack of clinically significant interactions, with good safety and tolerability: results of the ACTG 5283 study. Antimicrob Agents Chemother 2015; 59:2094-101. [PMID: 25624326 DOI: 10.1128/aac.04701-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We conducted an open-label, steady-state pharmacokinetic (PK) study of drug-drug interactions between depot medroxyprogesterone acetate (DMPA) and twice-daily lopinavir (LPV) plus low-dose ritonavir (RTV) (LPV/r) among 24 HIV-infected women and compared the results to those for HIV-infected women receiving DMPA while on no antiretroviral therapy or on nucleosides only (n = 14 subjects from the control arm of AIDS Clinical Trials Group [ACTG] study 5093). The objectives of the study were to address the effect of LPV/r on DMPA and to address the effect of DMPA on LPV/r therapy. PK parameters were estimated using noncompartmental analysis with between-group comparisons of medroxyprogesterone acetate (MPA) PKs and within-subject comparisons of LPV and RTV PKs before and 4 weeks after DMPA dosing. Plasma progesterone concentrations were measured every 2 weeks after DMPA dosing through week 12. Although the MPA area under the concentration-time curve and maximum concentration of drug in plasma were statistically significantly increased in the study women on LPV/r compared to those in the historical controls, these increases were not considered clinically significant. There were no changes in LPV or RTV exposure after DMPA. DMPA was well tolerated, and suppression of ovulation was maintained. (This study has been registered at ClinicalTrials.gov under registration no. NCT01296152.).
Collapse
|
34
|
Safety and pharmacokinetics of the CIME combination of drugs and their metabolites after a single oral dosing in healthy volunteers. Eur J Drug Metab Pharmacokinet 2014; 41:125-38. [DOI: 10.1007/s13318-014-0239-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/20/2014] [Indexed: 01/07/2023]
|
35
|
Clinical pharmacokinetic drug interactions associated with artemisinin derivatives and HIV-antivirals. Clin Pharmacokinet 2014; 53:141-53. [PMID: 24158666 DOI: 10.1007/s40262-013-0110-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Management of HIV and malaria co-infection is challenging due to potential drug-drug interactions between antimalarial and HIV-antiviral drugs. Little is known of the clinical significance of these drug interactions, and this review provides a comprehensive summary and critical evaluation of the literature. Specifically, drug interactions between WHO-recommended artemisinin combination therapies (ACT) and HIV-antivirals are discussed. An extensive literature search produced eight articles detailing n = 44 individual pharmacokinetic interactions. Only data pertaining to artemether-lumefantrine and two other artesunate combinations are available, but most of the interactions are characterized on at least two occasions by two different groups. Overall, protease inhibitors (PIs) tended to increase the exposure of lumefantrine and decrease the exposures of artemether and dihydroartemisinin, a pharmacologically active metabolite of artemether. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) tended to decrease the exposures of artemether, dihydroartemisinin, and lumefantrine when co-administered with artemether-lumefantrine. Fewer studies characterized the effects of PIs or NNRTIs on artesunate combinations, but nevirapine increased artesunate exposure and ritonavir decreased dihydroartemisinin exposure. On the other hand, artemether-lumefantrine or artesunate combinations had little effect on the pharmacokinetics of HIV-antivirals, with the exception of decreased nevirapine exposure from artemether-lumefantrine or increased ritonavir exposure from pyronaridine/artesunate co-administration. In general, pharmacokinetic interactions can be explained by the metabolic properties of the co-administered drugs. Despite several limitations to the studies, these data do provide valuable insights into the potential pharmacokinetic perturbations, and the consistently marked elevation or reduction in ACT exposure in some cases cannot be overlooked.
Collapse
|
36
|
Umeyama Y, Fujioka Y, Okuda T. Clarification of P-glycoprotein inhibition-related drug–drug interaction risks based on a literature search of the clinical information. Xenobiotica 2014; 44:1135-44. [DOI: 10.3109/00498254.2014.928958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Feng B, Varma MV, Costales C, Zhang H, Tremaine L. In vitroandin vivoapproaches to characterize transporter-mediated disposition in drug discovery. Expert Opin Drug Discov 2014; 9:873-90. [DOI: 10.1517/17460441.2014.922540] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Kharasch ED, Stubbert K. Cytochrome P4503A does not mediate the interaction between methadone and ritonavir-lopinavir. Drug Metab Dispos 2013; 41:2166-74. [PMID: 24067429 DOI: 10.1124/dmd.113.053991] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plasma concentrations of orally administered methadone are reduced by the human immunodeficiency virus protease inhibitor combination ritonavir and lopinavir, but the mechanism is unknown. Methadone metabolism, clearance, and drug interactions have been attributed to CYP3A4, but this remains controversial. This investigation assessed the effects of acute (2 days) and steady-state (2 weeks) ritonavir-lopinavir on intravenous and oral methadone metabolism and clearance, hepatic and intestinal CYP3A4/5 activity (using the probe substrate intravenous and oral alfentanil), and intestinal transporter activity (using oral fexofenadine) in healthy volunteers. Plasma and urine concentrations of methadone and metabolite enantiomers, and other analytes, were determined by mass spectrometry. Acute and chronic ritonavir-lopinavir reduced plasma methadone enantiomer concentrations in half, with an average 2.6- and 1.5-fold induction of systemic and apparent oral methadone clearances. Induction was attributable to stereoselectively increased hepatic methadone N-demethylation, hepatic extraction, and hepatic clearance, and there was a strong correlation between methadone N-demethylation and clearance. Methadone renal clearance was unchanged. Alfentanil's systemic clearance and hepatic extraction, apparent oral clearance, and intestinal extraction were reduced to 25%, 16%, and 35% of control, indicating strong inhibition of hepatic and intestinal CYP3A activities. Ritonavir-lopinavir (acute > chronic) increased fexofenadine exposure, suggesting intestinal P-glycoprotein inhibition. No correlation was found between methadone clearance and CYP3A activity. Acute and steady-state ritonavir-lopinavir stereoselectively induced methadone N-demethylation and clearance, despite significant inhibition of hepatic and intestinal CYP3A activity. Ritonavir-lopinavir inhibited intestinal transporters activity but had no effect on methadone bioavailability. These results do not support a significant role for CYP3A or ritonavir-lopinavir-inhibitable intestinal transporters in single-dose methadone disposition.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Division of Clinical and Translational Research (E.D.K., K.S.), and Department of Biochemistry and Molecular Biophysics (E.D.K.), Washington University in St. Louis, St. Louis, Missouri
| | | |
Collapse
|
39
|
Sevrioukova IF, Poulos TL. Pyridine-substituted desoxyritonavir is a more potent inhibitor of cytochrome P450 3A4 than ritonavir. J Med Chem 2013; 56:3733-41. [PMID: 23586711 DOI: 10.1021/jm400288z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Utilization of the cytochrome P450 3A4 (CYP3A4) inhibitor ritonavir as a pharmacoenhancer for anti-HIV drugs revolutionized the treatment of HIV infection. However, owing to ritonavir-related complications, there is a need for development of new CYP3A4 inhibitors with improved pharmacochemical properties, which requires a full understanding of the CYP3A4 inactivation mechanisms and the unraveling of possible inhibitor binding modes. We investigated the mechanism of CYP3A4 interaction with three desoxyritonavir analogues, containing the heme-ligating imidazole, oxazole, or pyridine group instead of the thiazole moiety (compounds 1, 2, and 3, respectively). Our data show that compound 3 is superior to ritonavir in terms of binding affinity and inhibitory potency owing to greater flexibility and the ability to adopt a conformation that minimizes steric clashing and optimizes protein-ligand interactions. Additionally, Ser119 was identified as a key residue assisting binding of ritonavir-like inhibitors, which emphasizes the importance of polar interactions in the CYP3A4-ligand association.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States.
| | | |
Collapse
|
40
|
Schoen JC, Erlandson KM, Anderson PL. Clinical pharmacokinetics of antiretroviral drugs in older persons. Expert Opin Drug Metab Toxicol 2013; 9:573-88. [PMID: 23514375 DOI: 10.1517/17425255.2013.781153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Combination antiretroviral therapy has enabled HIV-infected persons to reach older ages in high numbers. Hepatic and renal changes that normally occur with advancing age occur earlier and with higher incidence in HIV-infected individuals. A limited number of prospective controlled studies have demonstrated small reductions (17 to 41%) in lopinavir, atazanavir and lamivudine clearance in older versus younger adults. A much larger number of retrospective studies in adults (age range ∼ 20 to 60 years), including all antiretroviral drugs, have evaluated age as a covariate for pharmacokinetics. Most studies did not detect substantial associations between drug exposures and age. AREAS COVERED This review summarizes antiretroviral drug pharmacokinetics in older persons. The authors review articles from PubMed (search terms: elderly, antiretroviral, pharmacokinetics) in addition to the bibliographies of those selected. EXPERT OPINION The evidence to date does not support major pharmacokinetic changes in adults between ∼ 20 and 60 years of age. However, additional prospective, well-controlled studies are needed in more persons > 60 years, including those with frailty and comorbidities, with assessment of unbound drug clearance, and incorporation of adherence, pharmacogenetics and concomitant medications. Until then, guidelines for drug-drug interactions and dosing in renal and hepatic impairment should be followed in older HIV-infected individuals.
Collapse
Affiliation(s)
- John C Schoen
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO, USA
| | | | | |
Collapse
|
41
|
Huang F, Scholl P, Huang DB, MacGregor TR, Vinisko R, Castles MA, Berger F, Robinson P. Coadministration With Lopinavir and Ritonavir Decreases Exposure to BILR 355, a Nonnucleoside Reverse Transcriptase Inhibitor, in Healthy Volunteers. J Clin Pharmacol 2013; 51:1061-70. [DOI: 10.1177/0091270010376971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Ancrenaz V, Déglon J, Samer C, Staub C, Dayer P, Daali Y, Desmeules J. Pharmacokinetic interaction between prasugrel and ritonavir in healthy volunteers. Basic Clin Pharmacol Toxicol 2012; 112:132-7. [PMID: 22900583 PMCID: PMC3561686 DOI: 10.1111/j.1742-7843.2012.00932.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/09/2012] [Indexed: 12/22/2022]
Abstract
The new anti-aggregating agent prasugrel is bioactivated by cytochromes P450 (CYP) 3A and 2B6. Ritonavir is a potent CYP3A inhibitor and was shown in vitro as a CYP2B6 inhibitor. The aim of this open-label cross-over study was to assess the effect of ritonavir on prasugrel active metabolite (prasugrel AM) pharmacokinetics in healthy volunteers. Ten healthy male volunteers received 10 mg prasugrel. After at least a week washout, they received 100 mg ritonavir, followed by 10 mg prasugrel 2 hr later. We used dried blood spot sampling method to monitor prasugrel AM pharmacokinetics (Cmax, t1/2, tmax, AUC0–6 hr) at 0, 0.25, 0.5, 1, 1.5, 2, 4 and 6 hr after prasugrel administration. A ‘cocktail’ approach was used to measure CYP2B6, 2C9, 2C19 and 3A activities. In the presence of ritonavir, prasugrel AM Cmax and AUC were decreased by 45% (mean ratio: 0.55, CI 90%: 0.40–0.7, p = 0.007) and 38% (mean ratio: 0.62, CI 90%: 0.54–0.7, p = 0.005), respectively, while t1/2 and tmax were not affected. Midazolam metabolic ratio (MR) dramatically decreased in presence of ritonavir (6.7 ± 2.6 versus 0.13 ± 0.07) reflecting an almost complete inhibition of CYP3A4, whereas omeprazole, flurbiprofen and bupropion MR were not affected. These data demonstrate that ritonavir is able to block prasugrel CYP3A4 bioactivation. This CYP-mediated drug–drug interaction might lead to a significant reduction of prasugrel efficacy in HIV-infected patients with acute coronary syndrome.
Collapse
Affiliation(s)
- Virginie Ancrenaz
- Clinical Pharmacology and Toxicology Service, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
43
|
Lamorde M, Byakika-Kibwika P, Boffito M, Nabukeera L, Mayito J, Ogwal-Okeng J, Tjia J, Back D, Khoo S, Ryan M, Merry C. Steady-state pharmacokinetics of lopinavir plus ritonavir when administered under different meal conditions in HIV-infected Ugandan adults. J Acquir Immune Defic Syndr 2012; 60:295-8. [PMID: 22481601 PMCID: PMC3817537 DOI: 10.1097/qai.0b013e3182567a35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the effect of food on the steady-state pharmacokinetics of lopinavir and ritonavir in 12 Ugandan patients receiving lopinavir coformulated with ritonavir (LPV/r) tablets using a crossover design. Intensive pharmacokinetic sampling was performed 7 days apart after LPV/r dosing under moderate fat, high fat, and fasted meal conditions. Lopinavir and ritonavir concentrations were determined by liquid chromatography and tandem mass spectrometry. Compared with the fasted state, a high fat meal reduced lopinavir and ritonavir area under the curve by 14% and 29%, respectively. With a moderate fat meal, area under the curve for both drugs was similar to the fasted state.
Collapse
Affiliation(s)
- Mohammed Lamorde
- Research Department, Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu L, Mugundu GM, Kirby BJ, Samineni D, Desai PB, Unadkat JD. Quantification of human hepatocyte cytochrome P450 enzymes and transporters induced by HIV protease inhibitors using newly validated LC-MS/MS cocktail assays and RT-PCR. Biopharm Drug Dispos 2012; 33:207-17. [PMID: 22498895 DOI: 10.1002/bdd.1788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 11/08/2022]
Abstract
Human immunodeficiency virus (HIV) protease inhibitors (PIs) produce profound and unpredictable drug-drug interactions (DDIs) that cannot be explained fully by their inhibition/inactivation of CYP3A enzymes. Delineating and quantifying the CYPs and transporters inducible by PIs are crucial in developing an integrative mechanistic understanding and prediction of PI-based DDIs. To do so, two LC-MS/MS cocktail assays were modified and validated simultaneously to quantify the CYP activity of CYP3A, 2B6, 2C8, 2C9, 2C19, 1A, 2E1, 2A6 and 2D6 enzymes. These new assays were applied to evaluate the induction potential of eight PIs in microsomes isolated from PI-treated human hepatocytes. The mRNA expression of these CYPs and transporters (OATP1B1, OATP1B3, OATP1A2, MDR1, MRP2 and MRP4) was also evaluated using relative RT-PCR. The majority of PIs were net inducers of CYP3As and 2B6 at both the mRNA and activity level (> 2-fold), while ritonavir, saquinavir, nelfinavir or lopinavir did not induce CYP3A activity (< 2-fold), presumably due to CYP3A inactivation. OATP1B1 and MDR1 were the only two hepatic transporters induced (> 2-fold) by the PIs. Amprenavir was the most potent net inducer. In conclusion, our validated cocktail assays can be implemented to comprehensively quantify CYP activities in human liver microsomes and hepatocyte studies. The results also provide the much needed data on the net induction potential of the PIs for hepatic CYPs and transporters. A qualitative agreement was observed between our results and published PI-based DDIs, suggesting that human hepatocytes are a useful platform for more extensive and quantitative in vitro-in vivo prediction of PI-based DDIs.
Collapse
Affiliation(s)
- Li Liu
- Department of Pharmaceutics, University of Washington, Seattle, 98195, USA
| | | | | | | | | | | |
Collapse
|
45
|
Assessment of the pharmacokinetic interaction between eltrombopag and lopinavir-ritonavir in healthy adult subjects. Antimicrob Agents Chemother 2012; 56:2846-51. [PMID: 22391553 DOI: 10.1128/aac.05214-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Eltrombopag is an orally bioavailable thrombopoietin receptor agonist that is approved for the treatment of chronic idiopathic thrombocytopenic purpura. It is being developed for other medical disorders that are associated with thrombocytopenia. Patients with human immunodeficiency virus (HIV) may suffer from thrombocytopenia as a result of their HIV disease or coinfection with hepatitis C virus (HCV). HIV medications, particularly ritonavir (RTV)-boosted HIV protease inhibitors, are involved in many drug interactions. This study evaluated the potential drug-drug interaction between eltrombopag and lopinavir (LPV)/RTV. Forty healthy adult subjects enrolled in this open-label, three-period, single-sequence crossover study received a single 100-mg dose of eltrombopag (period 1), LPV/RTV at 400/100 mg twice daily (BID) for 14 days (period 2), and LPV/RTV at 400/100 mg BID (2 doses) with a single 100-mg dose of eltrombopag administered with the morning LPV/RTV dose (period 3). There was a 3-day washout between periods 1 and 2 and no washout between periods 2 and 3. Serial pharmacokinetic samples were collected during 72 h in periods 1 and 3 and during 12 h in period 2. The coadministration of 400/100 mg LPV/RTV BID with a single dose of 100 mg eltrombopag decreased the plasma eltrombopag area under the plasma concentration-time curve from time zero extrapolated to infinity (AUC(0-∞)) by 17%, on average, with no change in plasma LPV/RTV exposure. Adverse events (AEs) reported in period 2 were consistent with known LPV/RTV AEs, such as diarrhea, abdominal pain, nausea, vomiting, rash, and fatigue. No subjects withdrew due to AEs, and no serious AEs were reported. These study results suggest that platelet counts should be monitored and the eltrombopag dose adjusted accordingly if LPV/RTV therapy is initiated or discontinued.
Collapse
|
46
|
Byakika-Kibwika P, Lamorde M, Okaba-Kayom V, Mayanja-Kizza H, Katabira E, Hanpithakpong W, Pakker N, Dorlo TPC, Tarning J, Lindegardh N, de Vries PJ, Back D, Khoo S, Merry C. Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults. J Antimicrob Chemother 2012; 67:1217-23. [PMID: 22316571 PMCID: PMC3324422 DOI: 10.1093/jac/dkr596] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Treatment of HIV/malaria-coinfected patients with antiretroviral therapy (ART) and artemisinin-based combination therapy has potential for drug interactions. We investigated the pharmacokinetics of artemether, dihydroartemisinin and lumefantrine after administration of a single dose of 80/480 mg of artemether/lumefantrine to HIV-infected adults, taken with and without lopinavir/ritonavir. Methods A two-arm parallel study of 13 HIV-infected ART-naive adults and 16 HIV-infected adults stable on 400/100 mg of lopinavir/ritonavir plus two nucleoside reverse transcriptase inhibitors (ClinicalTrials.gov, NCT 00619944). Each participant received a single dose of 80/480 mg of artemether/lumefantrine under continuous cardiac function monitoring. Plasma concentrations of artemether, dihydroartemisinin and lumefantrine were measured. Results Co-administration of artemether/lumefantrine with lopinavir/ritonavir significantly reduced artemether maximum concentration (Cmax) and area under the concentration–time curve (AUC) [median (range): 112 (20–362) versus 56 (17–236) ng/mL, P = 0.03; and 264 (92–1129) versus 151 (38–606) ng · h/mL, P < 0.01]. Dihydroartemisinin Cmax and AUC were not affected [66 (10–111) versus 73 (31–224) ng/mL, P = 0.55; and 213 (68–343) versus 175 (118–262) ng · h/mL P = 0.27]. Lumefantrine Cmax and AUC increased during co-administration [2532 (1071–5957) versus 7097 (2396–9462) ng/mL, P < 0.01; and 41 119 (12 850–125 200) versus 199 678 (71 205–251 015) ng · h/mL, P < 0.01]. Conclusions Co-administration of artemether/lumefantrine with lopinavir/ritonavir significantly increases lumefantrine exposure, but decreases artemether exposure. Population pharmacokinetic and pharmacodynamic trials will be highly valuable in evaluating the clinical significance of this interaction and determining whether dosage modifications are indicated.
Collapse
|
47
|
CYP3A5, ABCB1, and SLCO1B1 polymorphisms and pharmacokinetics and virologic outcome of lopinavir/ritonavir in HIV-infected children. Ther Drug Monit 2012; 33:417-24. [PMID: 21743379 DOI: 10.1097/ftd.0b013e318225384f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE CYP3A5, MDR1 (ABCB1), and OATP1 (SLCO1B1) polymorphisms have been associated with variability in the pharmacokinetics (PK) of protease inhibitors. The aim of this study was to investigate the influence of CYP3A5 A6986G, ABCB1 (C3435T and G2677T), and SLCO1B1 (T521C and A388AG) polymorphisms on the PK and virologic outcome of lopinavir/ritonavir (LPV/RTV) in HIV-infected children. DESIGN AND METHODS We conducted a prospective cohort study in children (4-18 years old) on stable antiretroviral therapy with LPV/RTV. CYP3A5, ABCB1, and SLCO1B1 genotypes were determined using polymerase chain reaction amplification with allelic discrimination assays. The 12-hour plasma area under the concentration-time curves (AUC) and clearances (CL) of LPV and RTV were estimated using noncompartmental models. HIV RNA viral load was evaluated every 12 weeks for a total study period of 52 weeks. Analysis of covariance models with adjustment for age and adherence and allometric adjustment of CL were used to assess associations between studied polymorphisms and AUC, CL, and HIV RNA. RESULTS Fifty children (median age 11.2 years) were enrolled. Allele frequencies of the genotypes studied were in Hardy-Weinberg equilibrium. There was no statistically significant association between LPV or RTV AUC or CL, and CYP3A5, ABCB1, or SLCO1B1 A388G polymorphisms. There was a significant association between SLCO1B1 T521C genotype and increased LPV AUC (P = 0.042) and a nearly significant association with decreased LPV CL (P = 0.063). None of the studied polymorphisms, including SLCO1B1 T521C, were associated with virologic outcome during 52 weeks of study follow-up. CONCLUSIONS There was no statistically significant influence of the CYP3A5, ABCB1, or SLCO1B1 A388AG polymorphisms on the PK and virologic outcome of LPV/RTV in HIV-infected children. SLCO1B1 T521C polymorphism was significantly associated with an increase in LPV AUC but was not associated with undetectable HIV RNA during the study period.
Collapse
|
48
|
Garg V, Kauffman RS, Beaumont M, van Heeswijk RPG. Telaprevir: pharmacokinetics and drug interactions. Antivir Ther 2012; 17:1211-21. [DOI: 10.3851/imp2356] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2012] [Indexed: 10/27/2022]
|
49
|
VandenBrink BM, Foti RS, Rock DA, Wienkers LC, Wahlstrom JL. Prediction of CYP2D6 drug interactions from in vitro data: evidence for substrate-dependent inhibition. Drug Metab Dispos 2011; 40:47-53. [PMID: 21976621 DOI: 10.1124/dmd.111.041210] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Predicting the magnitude of potential drug-drug interactions is important for underwriting patient safety in the clinical setting. Substrate-dependent inhibition of cytochrome P450 enzymes may confound extrapolation of in vitro results to the in vivo situation. However, the potential for substrate-dependent inhibition with CYP2D6 has not been well characterized. The inhibition profiles of 20 known inhibitors of CYP2D6 were characterized in vitro against four clinically relevant CYP2D6 substrates (desipramine, dextromethorphan, metoprolol, and thioridazine) and bufuralol. Dextromethorphan exhibited the highest sensitivity to in vitro inhibition, whereas metoprolol was the least sensitive. In addition, when metoprolol was the substrate, inhibitors with structurally constrained amino moieties (clozapine, debrisoquine, harmine, quinidine, and yohimbine) exhibited at least a 5-fold decrease in inhibition potency when results were compared with those for dextromethorphan. Atypical inhibition kinetics were observed for these and other inhibitor-substrate pairings. In silico docking studies suggested that interactions with Glu216 and an adjacent hydrophobic binding pocket may influence substrate sensitivity and inhibition potency for CYP2D6. The in vivo sensitivities of the clinically relevant CYP2D6 substrates desipramine, dextromethorphan, and metoprolol were determined on the basis of literature drug-drug interaction (DDI) outcomes. Similar to the in vitro results, dextromethorphan exhibited the highest sensitivity to CYP2D6 inhibition in vivo. Finally, the magnitude of in vivo CYP2D6 DDIs caused by quinidine was predicted using desipramine, dextromethorphan, and metoprolol. Comparisons of the predictions with literature results indicated that the marked decrease in inhibition potency observed for the metoprolol-quinidine interaction in vitro translated to the in vivo situation.
Collapse
Affiliation(s)
- Brooke M VandenBrink
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., 1201 Amgen Court West, Seattle, WA 98119, USA
| | | | | | | | | |
Collapse
|
50
|
Griffin L, Annaert P, Brouwer KLR. Influence of drug transport proteins on the pharmacokinetics and drug interactions of HIV protease inhibitors. J Pharm Sci 2011; 100:3636-54. [PMID: 21698598 DOI: 10.1002/jps.22655] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/15/2011] [Accepted: 05/17/2011] [Indexed: 12/28/2022]
Abstract
Protease inhibitors, a class of antiretroviral agents frequently used in the treatment of HIV infection, interact with numerous transport proteins resulting in clinically significant drug-drug interactions (DDIs). This review focuses on the proteins that transport protease inhibitors and directly influence the pharmacokinetics of these drugs, as well as the transport proteins that are inhibited or induced by protease inhibitors. Clinically relevant DDIs involving drug transporters and protease inhibitors, either as "victim" drugs or as "perpetrator" drugs, and the pharmacokinetic consequences of such interactions are highlighted. A summary of transporter-mediated processes underlying the toxicity of protease inhibitors is provided. Finally, the effect of HIV infection or co-infection on drug transport proteins, and the implications for protease inhibitor pharmacokinetics is discussed. Transport proteins significantly influence the pharmacokinetics, efficacy and toxicity profiles of this important class of drugs.
Collapse
Affiliation(s)
- Latoya Griffin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|