1
|
Gong H, Yao S, Zhao X, Chen F, Chen C, Cai C. DNA nanosensor based on bipedal 3D DNA walker-driven proximal catalytic hairpin assembly for sensitive and fast TK1 mRNA detection. Mikrochim Acta 2024; 191:494. [PMID: 39073465 DOI: 10.1007/s00604-024-06569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Hyperproliferative diseases are the first step for tumor formation; thymidine kinase 1 (TK1) mRNA is closely related to cell proliferation. Therefore, the risk of malignant proliferation can be identified by sensitively detecting the variance in TK1 mRNA concentration, which can be used for tumor auxiliary diagnosis and monitoring tumor treatment. Owing to the low abundance and instability of TK1 mRNA in real samples, the development of a sensitive and fast mRNA detection method is necessary. A DNA nanosensor that can be used for detecting TK1 mRNA based on bipedal 3D DNA walker-driven proximal catalytic hairpin assembly (P-CHA) was developed. P-CHA hairpins were hybridized to a linker DNA strand coupled with magnetic nanoparticles to increase their local concentrations. The bipedal DNA walking on the surface of NPs accelerates reaction kinetics using the proximity effect. Taking advantage of the signal amplification of P-CHA as well as the rapid reaction rate of the DNA walker in 80 min, the proposed sensor detects TK1 mRNA with a low detection limit of 14 pM and may then be applied to clinical diagnosis.
Collapse
Affiliation(s)
- Hang Gong
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China.
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Shufen Yao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xiaojia Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Feng Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chunyan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
2
|
Dong F, Yan W, Qu M, Shang X, Dong W, Lu Z, Zhang H, Du W, Zhang R, Zhang Z, Zhao T. Strand displacement-triggered FRET nanoprobe tracking TK1 mRNA in living cells for ratiometric fluorimetry of nucleic acid biomarker. Mikrochim Acta 2024; 191:390. [PMID: 38871953 DOI: 10.1007/s00604-024-06453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
A precisely designed dual-color biosensor has realized a visual assessment of thymidine kinase 1 (TK1) mRNA in both living cells and cell lysates. The oligonucleotide probe is constructed by hybridizing the antisense strand of the target and two recognition sequences, in which FAM serves as the donor and TAMRA as the acceptor. Once interacting with the target, two recognition strands are replaced, and then the antisense complementary sequence forms a more stable double-stranded structure. Due to the increasing spatial distance between two dyes, the FRET is attenuated, leading to a rapid recovery of FAM fluorescence and a reduction of TAMRA fluorescence. A discernible color response from orange to green could be observed by the naked eye, with a limit of detection (LOD) of 0.38 nM and 5.22 nM for spectrometer- and smartphone-based assays, respectively. The proposed ratiometric method transcends previous reports in its capacities in visualizing TK1 expression toward reliable nucleic acid biomarker analysis, which might establish a general strategy for ratiometric biosensing via strand displacement.
Collapse
Affiliation(s)
- Fengqi Dong
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Weizhen Yan
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mingsheng Qu
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiaofei Shang
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wuqi Dong
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zhengdong Lu
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hanyuan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Wei Du
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Tingting Zhao
- School of Basic Medical Sciences, Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
3
|
Zuo S, Wang H, Li L, Pan H, Lu L. Thymidine Kinase 1 Drives Skin Cutaneous Melanoma Malignant Progression and Metabolic Reprogramming. Front Oncol 2022; 12:802807. [PMID: 35311151 PMCID: PMC8927676 DOI: 10.3389/fonc.2022.802807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background Thymidine kinase 1 (TK1) is a cell cycle-dependent kinase that catalyzes the addition of a gamma-phosphate group to thymidine. The protumorigenic role of TK1 has been reported in various malignancies. However, the role of TK1 in skin cutaneous melanoma (SKCM) remains unclear. This study aimed to explore the molecular function of TK1 in SKCM progression. Methods Bioinformatics data were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Subcutaneous xenografts were established to observe the effect of TK1 knockdown on the proliferation of SKCM cells in vivo. RNA sequencing (RNA-seq; deposited in Sequence Read Archive, SRX10950283-SRX10950285 for A375 control cells and SRX10950286-SRX10950288 for TK1-silenced A375 cells) and immunoprecipitation–mass spectrometry (IP-MS) were used to analyze TK1-related genes and pathways. Seahorse XF Cell Mito tests and glycolysis stress assays were conducted for metabolic testing. Results TK1 was upregulated in malignant SKCM compared to that in normal tissues and cell lines. Elevated expression of TK1 was associated with poor prognosis. In vitro and in vivo assays demonstrated that TK1 promoted the proliferation and migration of SKCM cells. Moreover, TK1 was strongly associated with multiple intracellular metabolic pathways, facilitating cell mitochondrial respiration and glycolysis in SKCM malignant progression. Conclusions TK1 drives SKCM malignant progression and supports metabolic reprogramming, indicating that TK1 serves as a therapeutic target for SKCM.
Collapse
Affiliation(s)
- Sipeng Zuo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huixue Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lin Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hui Pan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
4
|
Hsiao YC, Peng SF, Lai KC, Liao CL, Huang YP, Lin CC, Lin ML, Liu KC, Tsai CC, Ma YS, Chung JG. Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL-60 cancer cell xenograft growth in vivo. ENVIRONMENTAL TOXICOLOGY 2019; 34:443-456. [PMID: 30618158 DOI: 10.1002/tox.22698] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Genistein, a major isoflavone compound in soybeans, has been shown to have biological activities including anti-cancer activates. In the present, we investigated the anti-leukemia activity of genistein on HL-60 cells in vitro. The percentage of viable cell, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS), and Ca2+ production and the level of ΔΨm were measured by flow cytometric assay. Cell apoptosis and endoplasmic reticulum (ER) stress associated protein expressions were examined by Western blotting assay. Calpain 1, GRP78, and GADD153 expression were measured by confocal laser microscopy. Results indicated that genistein-induced cell morphological changes, decreased the total viable cells, induced G2 /M phase arrest and DNA damage and fragmentation (cell apoptosis) in HL-60 cells. Genistein promoted ROS and Ca2+ productions and decreased the level of ΔΨm in HL-60 cells. Western blotting assay demonstrated that genistein increased ER stress-associated protein expression such as IRE-1α, Calpain 1, GRP78, GADD153, caspase-7, caspase-4, and ATF-6α at 20-50 μM treatment and increased apoptosis associated protein expression such as pro-apoptotic protein Bax, PARP-cleavage, caspase-9, and -3, but decreased anti-apoptotic protein such as Bcl-2 and Bid in HL-60 cells. Calpain 1, GRP78, and GADD153 were increased in HL-60 cells after exposure to 40 μM of genistein. In animal xenografted model, mice were intraperitoneally injected with genistein (0, 0.2, and 0.4 mg/kg) for 28 days and the body weight and tumor volume were recorded. Results showed that genistein did not affect the body weights but significantly reduced the tumor weight in 0.4 mg/kg genistein-treated group. Genistein also increased the expressions of ATF-6α, GRP78, Bax, Bad, and Bak in tumor. In conclusion, genistein decreased cell number through G2 /M phase arrest and the induction of cell apoptosis through ER stress- and mitochondria-dependent pathways in HL-60 cells and suppressed tumor properties in vivo.
Collapse
Affiliation(s)
- Yin-Chen Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Chung Lin
- Department of Chinese Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Executive Yuan, Taichung, Taiwan
- General Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chin-Chuan Tsai
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
5
|
Honndorf VS, Wiehr S, Rolle AM, Schmitt J, Kreft L, Quintanilla-Martinez L, Kohlhofer U, Reischl G, Maurer A, Boldt K, Schwarz M, Schmidt H, Pichler BJ. Preclinical evaluation of the anti-tumor effects of the natural isoflavone genistein in two xenograft mouse models monitored by [18F]FDG, [18F]FLT, and [64Cu]NODAGA-cetuximab small animal PET. Oncotarget 2017; 7:28247-61. [PMID: 27070087 PMCID: PMC5053724 DOI: 10.18632/oncotarget.8625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/28/2016] [Indexed: 12/11/2022] Open
Abstract
The natural phytoestrogen genistein is known as protein kinase inhibitor and tumor suppressor in various types of cancers. We studied its antitumor effect in two different xenograft models using positron emission tomography (PET) in vivo combined with ex vivo histology and nuclear magnetic resonance (NMR) metabolic fingerprinting.
Collapse
Affiliation(s)
- Valerie S Honndorf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Stefan Wiehr
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Anna-Maria Rolle
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Julia Schmitt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Luisa Kreft
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | | | - Ursula Kohlhofer
- Institute of Pathology, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Karsten Boldt
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University, Tuebingen, Germany
| | - Michael Schwarz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Eberhard Karls University, Tuebingen, Germany
| | - Holger Schmidt
- Department of Radiology, Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
6
|
Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, Lu X, Chen K, Xia Y, Lu J, Zhou Y, Fan X, Mo W, Xu L, Guo C. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer 2017; 117:1518-1528. [PMID: 28926527 PMCID: PMC5680469 DOI: 10.1038/bjc.2017.323] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/23/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Genistein is a natural isoflavone with many health benefits, including antitumour effects. Increased hypoxia-inducible factor 1 α (HIF-1α) levels and glycolysis in tumour cells are associated with an increased risk of mortality, cancer progression, and resistance to therapy. However, the effect of genistein on HIF-1α and glycolysis in hepatocellular carcinoma (HCC) is still unclear. Methods: Cell viability, apoptosis rate, lactate production, and glucose uptake were measured in HCC cell lines with genistein incubation. Lentivirus-expressed glucose transporter 1 (GLUT1) or/and hexokinase 2 (HK2) and siRNA of HIF-1α were used to test the direct target of genistein. Subcutaneous xenograft mouse models were used to measure in vivo efficacy of genistein and its combination with sorafenib. Results: Genistein inhibited aerobic glycolysis and induced mitochondrial apoptosis in HCC cells. Neither inhibitors nor overexpression of HK2 or GLUTs enhance or alleviate this effect. Although stabiliser of HIF-1α reversed the effect of genistein, genistein no longer has effects on HIF-1α siRNA knockdown HCC cells. In addition, genistein enhanced the antitumour effect of sorafenib in sorafenib-resistant HCC cells and HCC-bearing mice. Conclusions: Genistein sensitised aerobic glycolytic HCC cells to apoptosis by directly downregulating HIF-1α, therefore inactivating GLUT1 and HK2 to suppress aerobic glycolysis. The inhibitory effect of genistein on tumour cell growth and glycolysis may help identify effective treatments for HCC patients at advanced stages.
Collapse
Affiliation(s)
- Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, JiangSu 215300, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China
| | - Wenhui Mo
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
7
|
Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int J Mol Sci 2015; 16:26880-913. [PMID: 26569225 PMCID: PMC4661850 DOI: 10.3390/ijms161125991] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.
Collapse
|
8
|
Fujii Y, Okada A, Yasui T, Niimi K, Hamamoto S, Hirose M, Kubota Y, Tozawa K, Hayashi Y, Kohri K. Effect of adiponectin on kidney crystal formation in metabolic syndrome model mice via inhibition of inflammation and apoptosis. PLoS One 2013; 8:e61343. [PMID: 23630583 PMCID: PMC3632593 DOI: 10.1371/journal.pone.0061343] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/07/2013] [Indexed: 12/03/2022] Open
Abstract
The aims of the present study were to elucidate a possible mechanism of kidney crystal formation by using a metabolic syndrome (MetS) mouse model and to assess the effectiveness of adiponectin treatment for the prevention of kidney crystals. Further, we performed genome-wide expression analyses for investigating novel genetic environmental changes. Wild-type (+/+) mice showed no kidney crystal formation, whereas ob/ob mice showed crystal depositions in their renal tubules. However, this deposition was remarkably reduced by adiponectin. Expression analysis of genes associated with MetS-related kidney crystal formation identified 259 genes that were >2.0-fold up-regulated and 243 genes that were <0.5-fold down-regulated. Gene Ontology (GO) analyses revealed that the up-regulated genes belonged to the categories of immunoreaction, inflammation, and adhesion molecules and that the down-regulated genes belonged to the categories of oxidative stress and lipid metabolism. Expression analysis of adiponectin-induced genes related to crystal prevention revealed that the numbers of up- and down-regulated genes were 154 and 190, respectively. GO analyses indicated that the up-regulated genes belonged to the categories of cellular and mitochondrial repair, whereas the down-regulated genes belonged to the categories of immune and inflammatory reactions and apoptosis. The results of this study provide compelling evidence that the mechanism of kidney crystal formation in the MetS environment involves the progression of an inflammation and immunoresponse, including oxidative stress and adhesion reactions in renal tissues. This is the first report to prove the preventive effect of adiponectin treatment for kidney crystal formation by renoprotective activities and inhibition of inflammation and apoptosis.
Collapse
Affiliation(s)
- Yasuhiro Fujii
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuhiro Niimi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masahito Hirose
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasue Kubota
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keiichi Tozawa
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaro Hayashi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kenjiro Kohri
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
9
|
Kanimozhi G, Prasad NR, Ramachandran S, Pugalendi KV. Umbelliferone modulates gamma-radiation induced reactive oxygen species generation and subsequent oxidative damage in human blood lymphocytes. Eur J Pharmacol 2011; 672:20-9. [DOI: 10.1016/j.ejphar.2011.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 08/26/2011] [Accepted: 09/07/2011] [Indexed: 11/30/2022]
|
10
|
Identification of genes involved in the regulation of 14-deoxy-11,12-didehydroandrographolide-induced toxicity in T-47D mammary cells. Food Chem Toxicol 2011; 50:431-44. [PMID: 22101062 DOI: 10.1016/j.fct.2011.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/30/2011] [Accepted: 11/03/2011] [Indexed: 12/19/2022]
Abstract
14-Deoxy-11,12-didehydroandrographolide is one of the principle compounds of the medicinal plant, Andrographis paniculata Nees. This study explored the mechanisms of 14-deoxy-11,12-didehydroandrographolide-induced toxicity and non-apoptotic cell death in T-47D breast carcinoma cells. Gene expression analysis revealed that 14-deoxy-11,12-didehydroandrographolide exerted its cytotoxic effects by regulating genes that inhibit the cell cycle or promote cell cycle arrest. This compound regulated genes that are known to reduce/inhibit cell proliferation, induce growth arrest and suppress cell growth. The growth suppression activities of this compound were demonstrated by a downregulation of several genes normally found to be over-expressed in cancers. Microscopic analysis revealed positive monodansylcadaverine (MDC) staining at 8h, indicating possible autophagosomes. TEM analysis revealed that the treated cells were highly vacuolated, thereby suggesting that 14-deoxy-11,12-didehydroandrographolide may cause autophagic morphology in these cells. This morphology may be correlated with the concurrent expression of genes known to affect lysosomal activity, ion transport, protein degradation and vesicle transport. Interestingly, some apoptotic-like bodies were found, and these bodies contained multiple large vacuoles, suggesting that this compound is capable of eliciting a combination of apoptotic and autophagic-like morphological characteristics.
Collapse
|
11
|
Li W, Frame LT, Hoo KA, Li Y, D'Cunha N, Cobos E. Genistein inhibited proliferation and induced apoptosis in acute lymphoblastic leukemia, lymphoma and multiple myeloma cells in vitro. Leuk Lymphoma 2011; 52:2380-90. [PMID: 21749310 DOI: 10.3109/10428194.2011.598251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genistein is one of the major isoflavones in soy products. It has been reported that genistein has apoptotic effects on certain hematological malignancies. However, so far there have been no completely comparative studies of the effect of genistein on malignant hematological diseases, especially multiple myeloma. We investigated genistein's inhibitory effect on the growth of acute lymphoblastic leukemia (RS4;11 and CEM), lymphoma (Toledo and GA10) and multiple myeloma (OPM-2 and U266) cell lines in vitro. We observed that genistein dose- and time-dependently inhibited proliferation of these cells. The cell line sensitivity to genistein treatment based on the 50% inhibitory concentration (IC(50)) values in decreasing order of toxicity was found to be as follows: RS4;11 (4.89 ± 4.28 μM) > GA10 (13.08 ± 3.49 μM) > Toledo (16.94 ± 3.89 μM) > CEM (17.31 ± 0.72 μM) > OPM-2 (46.76 ± 2.26 μM) > U266 (128.82 ± 1.90 μM). The mechanism of growth inhibition was through induction of apoptosis and cell cycle arrest. The concomitant altered expression of apoptosis pathway proteins and cell cycle modulators (caspases 9, 3, 7, PARP [poly(ADP-ribose) polymerase], cIAP1 [inhibitor of apoptosis protein 1], Bcl-2 and cyclin B1) were observed by Western blot and real-time polymerase chain reaction (PCR) analyses. In addition, some malignancy-related embryologic pathway proteins, e.g. Notch1 and Gli1, were modulated by genistein treatment in sensitive cell lines.
Collapse
Affiliation(s)
- Wang Li
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-9410, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Li W, Frame LT, Hirsch S, Cobos E. Genistein and hematological malignancies. Cancer Lett 2010; 296:1-8. [DOI: 10.1016/j.canlet.2010.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 02/04/2023]
|
13
|
Atkinson DM, Clarke MJ, Mladek AC, Carlson BL, Trump DP, Jacobson MS, Kemp BJ, Lowe VJ, Sarkaria JN. Using fluorodeoxythymidine to monitor anti-EGFR inhibitor therapy in squamous cell carcinoma xenografts. Head Neck 2008; 30:790-9. [PMID: 18286491 DOI: 10.1002/hed.20770] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND 3'-18F-fluoro-3'-deoxy-fluorothymidine (18F-FLT), a nucleoside analog, could monitor effects of molecularly targeted therapeutics on tumor proliferation. METHODS We tested whether (18)F-FLT positron emission tomography (PET) uptake changes are associated with antitumor effects of erlotinib in A431 xenografts or cetuximab in SCC1 xenografts. RESULTS Compared with pretreatment FLT PET scans, 3 days of erlotinib in A431 reduced the standardized uptake value (SUV) by 18%, whereas placebo increased SUV by 1% (p = .005). One week of cetuximab in SCC1 reduced SUV by 62%, whereas placebo reduced SUV by 16% (p = .005). FLT uptake suppression following anti-epidermal growth factor receptor (EGFR) treatment was associated with reduced tumor thymidine kinase-1 (TK1) activity. In vitro TK1 knockdown studies confirmed the importance of TK1 activity on intracellular FLT accumulation suppression. CONCLUSIONS 18F-FLT PET imaging detects tumor responses to EGFR-inhibitors within days of starting therapy. This technique may identify patients likely to benefit from EGFR-inhibitors early in their treatment course.
Collapse
Affiliation(s)
- David M Atkinson
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pan MH, Huang SC, Liao YP, Schaue D, Wang CC, Stout DB, Barrio JR, McBride WH. FLT-PET imaging of radiation responses in murine tumors. Mol Imaging Biol 2008; 10:325-34. [PMID: 18670825 DOI: 10.1007/s11307-008-0158-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/28/2008] [Accepted: 05/06/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND 3'-[F-18]fluoro-3'-deoxythymidine (FLT) traces thymidine phosphorylation catalyzed by thymidine kinase during cell proliferation. Knowing the rate of cell proliferation during cancer treatment, such as radiation therapy, would be valuable in assessing whether tumor recurrence is likely and might indicate the need for additional treatments. However, the relationship between FLT kinetics and the effects of radiation is not well-understood. Nor has the method for optimal quantification of FLT uptake within the irradiated tumor microenvironment been extensively examined. MATERIALS AND METHODS We performed dynamic FLT-positron emission tomography (PET) studies (60 min) on 22 mice implanted subcutaneously with syngeneic mammary MCaK tumors bilaterally in the shoulder area. A day before the FLT-PET imaging, the tumor on the right side was irradiated with a single dose (0, 2.5, 5, 10, or 20 Gy) or with fractionated exposures (4x2.5 Gy given in 12 h intervals). Standardized uptake value (SUVs) of FLT on tumors at 10 and 60 min post injection were calculated; model fitting was used to estimate the kinetic parameters. Significant radiation-induced changes were shown by comparing the irradiated tumor with the control tumor in the same animal and by comparing it to nonirradiated mice. The effect of radiation on MCaK cell cycle parameters and FLT uptake was also examined in vitro. RESULTS In vivo FLT kinetics were sensitive to radiation doses of 5 Gy and higher (administered 1 day earlier), as judged by SUV semiquantitative measures and by modeling. Single irradiation with 10 Gy had greater impact on SUVs and kinetic parameters than fractionated exposures. Overall, the uptake constant Ki appeared to be the best marker for these radiation effects. FLT uptake by irradiated cells in vitro at various doses gave similar findings, and the in vitro FLT uptake correlated well with Ki. Radiation-induced G2/M arrest appeared to influence FLT uptake, and this was more pronounced after single than fractionated doses. CONCLUSION The kinetics of FLT uptake into murine mammary tumors was altered 1 day after radiation treatment. The dose-dependent response correlated well with in vitro FLT cellular uptake. Parameters (e.g., Ki) derived from FLT kinetics are expected to be useful for assessing the efficacy of irradiation treatment of tumors.
Collapse
Affiliation(s)
- M H Pan
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California in Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jin W, Qu LF, Chen Q, Chang XZ, Wu J, Shao ZM. Gene expression pattern in apoptotic QGY-7703 cells induced by homoharringtonine. Acta Pharmacol Sin 2007; 28:859-68. [PMID: 17506945 DOI: 10.1111/j.1745-7254.2007.00569.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To classify the genes responsible for apoptosis in QGY-7703 cells induced by homoharringtonine (HHT). METHODS Apoptosis in QGY-7703 cells induced by HHT was demonstrated by DNA fragmentation and morphological observation. cDNA microarray technology was used to detect gene transcription, and the result of microarrays for genes was confirmed by RT-PCR. RESULTS Seventy-eight individual mRNA were identified and their transcription levels changed significantly. Those genes, of which 68% were upregulated and 32% were downregulated, were partially related to apoptosis. They were mostly oncogenes, tumor suppressors, enzymes, and kinases. CONCLUSION HHT is a potential drug in the treatment of liver cancer. TGF-beta, TNF, FAS, p38MAPK, and p53 apoptosis signaling pathways were activated during apoptosis in QGY-7703 cells. Such inducible genes may play important roles in apoptosis and deserve to be further studied.
Collapse
Affiliation(s)
- Wei Jin
- Breast Cancer Institute, Cancer Hospital, Department of Oncology, Shanghai Medical College, Institute of Biomedical Science, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | |
Collapse
|
16
|
Koria P, Andreadis ST. Epidermal Morphogenesis: The Transcriptional Program of Human Keratinocytes during Stratification. J Invest Dermatol 2006; 126:1834-41. [PMID: 16645587 DOI: 10.1038/sj.jid.5700325] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The epidermis serves to protect the body against environmental assaults and at the same time is able to survive and replenish itself under harsh conditions. The epidermis accomplishes this feat via a well-orchestrated program of stratification and terminal differentiation that provides barrier against infection, radiation, and water loss. Despite significant progress in skin biology, many molecules and pathways that are involved in stratification and barrier formation remain unknown. Here, we employed tissue-engineered models of complete versus impaired epidermal stratification to discover the genes that may be important in this process. Transcriptional profiling at different stages of development showed significant differences in transcription, signaling, and most important metabolism-associated genes between fully stratified and poorly stratified epithelia. These transcriptional changes correlated well with functional data on cell proliferation, expression of adhesion molecules, and utilization of metabolic pathways, ultimately leading to different phenotypes. Our data identified genes that were not previously known to play a role in epidermis and established a link between metabolism and morphogenesis in skin epithelium.
Collapse
Affiliation(s)
- Piyush Koria
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York 14260, USA
| | | |
Collapse
|