1
|
Sinclair AJ. Navigating my career in lipid research. Eur J Clin Nutr 2024:10.1038/s41430-024-01452-6. [PMID: 38802606 DOI: 10.1038/s41430-024-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Andrew J Sinclair
- Faculty of Health, Deakin University, Burwood, VIC, 3125, Australia.
- Department of Nutrition, Dietetics and Food, Notting Hill, VIC, 3168, Australia.
| |
Collapse
|
2
|
Olas B. New light on changes in the number and function of blood platelets stimulated by cocoa and its products. Front Pharmacol 2024; 15:1366076. [PMID: 38533262 PMCID: PMC10963627 DOI: 10.3389/fphar.2024.1366076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Hyperactivation of blood platelets, one of the causes of heart attack, and other cardiovascular diseases (CVDs), is influenced by various dietary components, including phenolic compounds from vegetables, fruits, teas, wines, cocoa and its products, including chocolate. The present paper sheds new light on the effect of cocoa and its products, especially dark chocolate, on the number and function of blood platelets, and the anti-platelet activity of their constituent phenolic compounds. A review was performed of papers identified in various electronic databases, including PubMed, Science Direct, Scopus, Web of Knowledge, and Google Scholar, with the aim of determining whether their anti-platelet activity may serve as part of a sweet strategy in countering CVDs. Various studies demonstrate that cocoa consumption, especially in the form of dark chocolate, with a high flavanol concentration, has anti-platelet activity and may play a significant role in cardioprotection; they also note that cocoa consumption may be a good strategy in diminishing cardiovascular risk, including hyperactivation of blood platelets.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Jafari Azad B, Daneshzad E, Meysamie AP, Koohdani F. Chronic and acute effects of cocoa products intake on arterial stiffness and platelet count and function: A systematic review and dose-response Meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr 2020; 61:357-379. [PMID: 32126803 DOI: 10.1080/10408398.2020.1733484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The findings of trials investigating the effect of cocoa products consumption on vascular stiffness and platelet are controversial. The aim of this study is to summarize the findings on the acute and chronic effects of different forms of cocoa on the risk factors of cardiovascular disease. We searched SCOPUS, Pub Med and Web of Science from inception to Jan 2020. Finally, the random-effect model was used to report the pooled effect sizes. Results are expressed as weighted mean difference (WMD) with 95% confidence intervals (CI).Overall, 41 trials were included, of which only 14 studies met the eligibility criteria for analysis, including 11 long-term RCTs (more than a week was considered as a chronic phase) and 7 short-term RCTs (less than a week was considered as an acute phase). According to the result of 11 long-term RCTs, cocoa products had a negative significant effect on pulse wave velocity; PWV (WMD: -0.33 m/s, P < 0.0001), Augmentation index; AIx (WMD: -4.50%, P = 0.001) but had no significant effect on platelet count (WMD: -10.41 109/L, P = 0.053). Also, according to the results of 7 short-term RCTs, cocoa products had a negative significant effect on PWV (WMD: -0.27 m/s, P = 0.019), AIx (WMD: -4.47%, P = 0.003).Current study indicated the beneficial effect of acute and chronic consumption of cocoa-based products ingestion on platelet function and arterial stiffness in healthy adult regardless of age especially in male and for consumption (≤4 weeks) in the chronic intake and (≤120 minutes) in acute intake, but did not affect on platelet count. However, further studies are required to shed light on this issue.
Collapse
Affiliation(s)
- Banafsheh Jafari Azad
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Daneshzad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Pasha Meysamie
- Departmentof Community Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Koohdani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
van Rooijen MA, Mensink RP. Palmitic Acid Versus Stearic Acid: Effects of Interesterification and Intakes on Cardiometabolic Risk Markers - A Systematic Review. Nutrients 2020; 12:nu12030615. [PMID: 32111040 PMCID: PMC7146500 DOI: 10.3390/nu12030615] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022] Open
Abstract
Fats that are rich in palmitic or stearic acids can be interesterified to increase their applicability for the production of certain foods. When compared with palmitic acid, stearic acid lowers low-density lipoprotein (LDL)-cholesterol, which is a well-known risk factor for coronary heart disease (CHD), but its effects on other cardiometabolic risk markers have been studied less extensively. In addition, the positional distribution of these two fatty acids within the triacylglycerol molecule may affect their metabolic effects. The objective was to compare the longer-term and postprandial effects of (interesterified) fats that are rich in either palmitic or stearic acids on cardiometabolic risk markers in humans. Two searches in PubMed/Medline, Embase (OVID) and Cochrane Library were performed; one to identify articles that studied effects of the position of palmitic or stearic acids within the triacylglycerol molecule and one to identify articles that compared side-by-side effects of palmitic acid with those of stearic acid. The interesterification of palmitic or stearic acid-rich fats does not seem to affect fasting serum lipids and (apo) lipoproteins. However, substituting palmitic acid with stearic acid lowers LDL-cholesterol concentrations. Postprandial lipemia is attenuated if the solid fat content of a fat blend at body temperature is increased. How (the interesterification of) palmitic or stearic acid-rich fats affects other cardiometabolic risk markers needs further investigation.
Collapse
|
5
|
Stonehouse W, Benassi-Evans B, James-Martin G, Abeywardena M. Fatty acid regio-specificity of triacylglycerol molecules may affect plasma lipid responses to dietary fats-a randomised controlled cross-over trial. Eur J Clin Nutr 2020; 74:268-277. [PMID: 31227804 PMCID: PMC7007409 DOI: 10.1038/s41430-019-0452-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/28/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND/OBJECTIVES Hypercholesterolaemic effects of saturated fatty acids (SFA) may be influenced not only by the chain length, but also by their specific location within the triacylglycerol (TAG) molecule. We examined the hypothesis that dietary fats rich in SFA, but containing mostly unsaturated fatty acids in the sn-2 position with most SFA in sn-1 and -3 (palm olein [PO] and cocoa butter [CB]) will have similar serum lipid outcomes to unsaturated olive oil (OO). SUBJECTS/METHODS Thirty-eight participants (20-40 yr, 18.5- ≤ 27.5 kg/m2) completed a 4-week randomised 3 × 3 crossover feeding intervention, preceded by 2-week run-in and separated by 2-week washout periods. Background diet contained 35 percentage of total energy (%E) fat, 18%E protein, 48%E carbohydrates, differing in test fats only (palm olein (PO), CB, OO; 20%E). Total cholesterol (TC)/high density lipoprotein cholesterol (HDL-C) ratio and related variables; TC, HDL-C, low density lipoprotein cholesterol (LDL-C), TAG, apoA1, ApoB, ApoA1 (apolipoprotein A1)/ApoB (apolipoprotein B), lipoprotein (a) (Lp(a)), NEFA, LDL sub-fractions, were assessed pre- and post-intervention. Data were analysed using mixed effects longitudinal models with a P-value < 0.05 considered significant. RESULTS Changes in plasma fatty acids (P < 0.05) confirmed compliance; C18:1 increased with OO compared to PO and CB; C16:0 decreased with OO and C18:0 increased following CB. No differences were seen for TC/HDL-C (mean [95%CI] change for PO, 0.08[0.00, 0.15] mmol/L; CB, 0.06 [-0.05, 0.16] mmol/L; and OO, -0.01 [-0.15, 0.13] mmol/L; P = 0.53] or any other parameter including LDL sub-fractions. OO decreased IDL-A compared to PO (-2.2 [-4.31, -0.21] mg/dL, P = 0.03). CONCLUSION In healthy young participants, plasma lipid responses to PO and CB, enriched in SFA but having primarily unsaturated fatty acid in the sn-2 position of TAG, did not differ from OO.
Collapse
Affiliation(s)
- Welma Stonehouse
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia.
| | - Bianca Benassi-Evans
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia
| | - Genevieve James-Martin
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia
| | - Mahinda Abeywardena
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Bard JM, Drouet L, Lairon D, Cazaubiel M, Marmonier C, Ninio E, Bal Dit Sollier C, Martin JC, Boyer C, Bobin-Dubigeon C. Effect of milk fat on LDL cholesterol and other cardiovascular risk markers in healthy humans: the INNOVALAIT project. Eur J Clin Nutr 2019; 74:285-296. [PMID: 31712768 DOI: 10.1038/s41430-019-0528-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Milk has a specific saturated fatty acid profile and its calcium content may change the kinetics of fat absorption. OBJECTIVE The goal of this study was to compare the effect on LDL Cholesterol and other risk markers of four isolipidic diets differing by their fat food source, vegetable fat, spring milk fat, winter milk fat or winter milk fat supplemented with calcium, in healthy moderately hypercholesterolemic humans. INDIVIDUALS AND METHODS This double-blind, randomized trial with four parallel arms included 172 healthy adults with plasma LDL cholesterol (LDL-C) from 130 to 220 mg/dL and triglycerides below 300 mg/dL. Individual meal plans ensured a stable energy intake. In the three diets containing milk fat, milk fat provided 38% of energy. Vegetable fat and spring milk fat diets provided the same amount of saturated fatty acids while the winter milk fat diets were slightly richer in saturated fatty acids. Vegetable fat diet and winter milk fat diets provided the same amount of palmitic acid (7.0% EI), while the spring milk fat diet was slightly poorer in this fatty acid (5.1% EI). Cardiovascular risk markers were analyzed after 8 weeks of dietary intervention. RESULTS There was no significant difference in LDL-C and other markers, except total cholesterol (TC), apo C3 and CRP. TC was significantly higher with spring milk fat than with vegetable fat. CONCLUSIONS In this trial, the chosen vegetable fat did not have a significant beneficial effect on LDL-C compared to dairy fat. However, sub-group analysis showed differences in TC, apo C3 and CRP. These results need confirmation and long-term studies aiming at cardiovascular endpoints are warranted.
Collapse
Affiliation(s)
- Jean-Marie Bard
- Institut de Cancérologie de l'Ouest, Biopathologie, Centre de Recherche en Nutrition Humaine Ouest, EA 2160 - IUML FR3473 CNRS, Université de Nantes, Nantes, France.
| | - Ludovic Drouet
- LTA-IVS INSERM U689, Hôpital Lariboisière, Paris, France
| | - Denis Lairon
- UMR 1062-INSERM/1260-INRA, Faculté de Médecine, Université Aix-Marseille, Marseille, France
| | | | | | - Ewa Ninio
- Genomics and Pathophysiology of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière, INSERM UMR_S 1166-ICAN, Sorbonne Université, Paris, France
| | | | - Jean-Charles Martin
- UMR 1062-INSERM/1260-INRA, Faculté de Médecine, Université Aix-Marseille, Marseille, France
| | | | - Christine Bobin-Dubigeon
- Institut de Cancérologie de l'Ouest, Biopathologie, Centre de Recherche en Nutrition Humaine Ouest, EA 2160 - IUML FR3473 CNRS, Université de Nantes, Nantes, France
| | | |
Collapse
|
7
|
Meng H, Matthan NR, Wu D, Li L, Rodríguez-Morató J, Cohen R, Galluccio JM, Dolnikowski GG, Lichtenstein AH. Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women-randomized crossover trial. Am J Clin Nutr 2019; 110:305-315. [PMID: 31179489 DOI: 10.1093/ajcn/nqz095] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Direct comparisons between SFAs varying in chain length, specifically palmitic acid (16:0) and stearic acid (18:0), relative to the latter's metabolic product, oleic acid (18:1), on cardiometabolic risk factors are limited. OBJECTIVE The aim of this study was to determine the relative comparability of diets enriched in palmitic acid, stearic acid, and oleic acid on inflammation and coagulation markers, T lymphocyte proliferation/ex-vivo cytokine secretion, plasma cardiometabolic risk factors, and fecal bile acid concentrations. METHODS Hypercholesterolemic postmenopausal women (n = 20, mean ± SD age 64 ± 7 y, BMI 26.4 ± 3.4 kg/m2, LDL cholesterol ≥ 2.8 mmol/L) were provided with each of 3 diets [55% energy (%E) carbohydrate, 15%E protein, 30%E fat, with ∼50% fat contributed by palmitic acid, stearic acid, or oleic acid in each diet; 5 wk/diet phase] using a randomized crossover design with 2-wk washouts between phases. Outcome measures were assessed at the end of each phase. RESULTS Fasting LDL-cholesterol and non-HDL-cholesterol concentrations were lower after the stearic acid and oleic acid diets than the palmitic acid diet (all P < 0.01). Fasting HDL-cholesterol concentrations were lower after the stearic acid diet than the palmitic acid and oleic acid diets (P < 0.01). The stearic acid diet resulted in lower lithocholic acid (P = 0.01) and total secondary bile acid (SBA) concentrations (P = 0.04) than the oleic acid diet. All other outcome measures were similar between diets. Lithocholic acid concentrations were positively correlated with fasting LDL-cholesterol concentrations (r = 0.33; P = 0.011). Total SBA, lithocholic acid, and deoxycholic acid concentrations were negatively correlated with fasting HDL cholesterol (r = -0.51 to -0.44; P < 0.01) concentrations and positively correlated with LDL cholesterol:HDL cholesterol (r = 0.37-0.54; P < 0.01) ratios. CONCLUSIONS Dietary stearic acid and oleic acid had similar effects on fasting LDL-cholesterol and non-HDL-cholesterol concentrations and more favorable ones than palmitic acid. Unlike oleic acid, the hypocholesterolemic effect of stearic acid may be mediated by inhibition of intestinal hydrophobic SBA synthesis. These findings add to the data suggesting there should be a reassessment of current SFA dietary guidance and Nutrient Facts panel labeling.This trial was registered at clinicaltrials.gov as NCT02145936.
Collapse
Affiliation(s)
- Huicui Meng
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lijun Li
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Jose Rodríguez-Morató
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Rebecca Cohen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Jean M Galluccio
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Gregory G Dolnikowski
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
8
|
Rogerson D. Vegan diets: practical advice for athletes and exercisers. J Int Soc Sports Nutr 2017; 14:36. [PMID: 28924423 PMCID: PMC5598028 DOI: 10.1186/s12970-017-0192-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/03/2017] [Indexed: 02/07/2023] Open
Abstract
With the growth of social media as a platform to share information, veganism is becoming more visible, and could be becoming more accepted in sports and in the health and fitness industry. However, to date, there appears to be a lack of literature that discusses how to manage vegan diets for athletic purposes. This article attempted to review literature in order to provide recommendations for how to construct a vegan diet for athletes and exercisers. While little data could be found in the sports nutrition literature specifically, it was revealed elsewhere that veganism creates challenges that need to be accounted for when designing a nutritious diet. This included the sufficiency of energy and protein; the adequacy of vitamin B12, iron, zinc, calcium, iodine and vitamin D; and the lack of the long-chain n-3 fatty acids EPA and DHA in most plant-based sources. However, via the strategic management of food and appropriate supplementation, it is the contention of this article that a nutritive vegan diet can be designed to achieve the dietary needs of most athletes satisfactorily. Further, it was suggested here that creatine and β-alanine supplementation might be of particular use to vegan athletes, owing to vegetarian diets promoting lower muscle creatine and lower muscle carnosine levels in consumers. Empirical research is needed to examine the effects of vegan diets in athletic populations however, especially if this movement grows in popularity, to ensure that the health and performance of athletic vegans is optimised in accordance with developments in sports nutrition knowledge.
Collapse
Affiliation(s)
- David Rogerson
- Academy of Sport and Physical Activity, Sheffield Hallam University, S10 2BP, Sheffield, UK
| |
Collapse
|
9
|
Ahhmed A, Özcan C, Karaman S, Öztürk İ, Çam M, Fayemi PO, Kaneko G, Muguruma M, Sakata R, Yetim H. Utilization of fermented soybeans paste as flavoring lamination for Turkish dry-cured meat. Meat Sci 2017; 127:35-44. [PMID: 28113096 DOI: 10.1016/j.meatsci.2016.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/24/2022]
Abstract
The effects of utilizing fermented soybeans paste (miso) as an alternative flavor-coating material for eliminating unpleasant odor of sulphuric and sotolone compounds from cemen in commercial pastirma were investigated. Results showed that miso-pastirma (MP) and commercial pastirma (CP) had higher L* values in comparison with the fresh meat. While no pathogen was detected in all the meat samples, statistically significant stearic acid was increased (P<0.05) and also oleic and arachidic acids were observed in MP. SDS-PAGE patterns indicated that miso had higher impacts on muscle proteins than cemen suggesting that miso can generate proteins and peptides with better technological or nutritional properties. None of the sulphur containing compounds responsible for unpleasant odor was detected in MP. Limonene, 5 esters, beta-pinene and saponins in MP contributed to citrus fruit aroma with smoother, roasty flavor and delicious taste. These findings suggest that miso contain good flavoring molecules for enhancing fruity smell and quality of pastirma. Thus, laminating cured meat with miso can be used as an alternative to cemen for producing healthier pastirma with extended shelf life and better flavor.
Collapse
Affiliation(s)
- Abdulatef Ahhmed
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey.
| | - Ceyda Özcan
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Safa Karaman
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - İsmet Öztürk
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Mustafa Çam
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Peter O Fayemi
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Gen Kaneko
- Department of Biology, School of Arts and Sciences, University of Houston-Victoria, TX, USA
| | - Michio Muguruma
- Department of Nutrition Management, Faculty of Health and Nutrition, Minami- Kyushu University, Miyazaki, Japan
| | - Ryoichi Sakata
- Laboratory of Food Science, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hasan Yetim
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Peluso I, Palmery M, Serafini M. Effect of cocoa products and flavanols on platelet aggregation in humans: a systematic review. Food Funct 2015; 6:2128-2134. [DOI: 10.1039/c5fo00113g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The percentage of healthy subjects with decreased platelet aggregation after bolus consumption of cocoa products is reported.
Collapse
Affiliation(s)
- Ilaria Peluso
- Center of Nutrition
- Council for Agricultural Research and Economics (CRA-NUT)
- 00178 Rome
- Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology “V. Erspamer”
- “Sapienza” University of Rome
- 00185 Rome
- Italy
| | - Mauro Serafini
- Center of Nutrition
- Council for Agricultural Research and Economics (CRA-NUT)
- 00178 Rome
- Italy
| |
Collapse
|
11
|
May CY, Nesaretnam K. Research advancements in palm oil nutrition. EUR J LIPID SCI TECH 2014; 116:1301-1315. [PMID: 25821404 PMCID: PMC4371640 DOI: 10.1002/ejlt.201400076] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/19/2014] [Accepted: 05/25/2014] [Indexed: 02/05/2023]
Abstract
Palm oil is the major oil produced, with annual world production in excess of 50 million tonnes. About 85% of global palm oil produced is used in food applications. Over the past three decades, research on nutritional benefits of palm oil have demonstrated the nutritional adequacy of palm oil and its products, and have resulted in transitions in the understanding these attributes. Numerous studies have demonstrated that palm oil was similar to unsaturated oils with regards to effects on blood lipids. Palm oil provides a healthy alternative to trans-fatty acid containing hydrogenated fats that have been demonstrated to have serious deleterious effects on health. The similar effects of palm oil on blood lipids, comparable to other vegetable oils could very well be due to the structure of the major triglycerides in palm oil, which has an unsaturated fatty acid in the stereospecific numbers (sn)-2 position of the glycerol backbone. In addition, palm oil is well endowed with a bouquet of phytonutrients beneficial to health, such as tocotrienols, carotenoids, and phytosterols. This review will provide an overview of studies that have established palm oil as a balanced and nutritious oil.
Collapse
Affiliation(s)
- Choo Yuen May
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru BangiKajang, Selangor, Malaysia
| | - Kalanithi Nesaretnam
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru BangiKajang, Selangor, Malaysia
| |
Collapse
|
12
|
|
13
|
Fattore E, Bosetti C, Brighenti F, Agostoni C, Fattore G. Palm oil and blood lipid-related markers of cardiovascular disease: a systematic review and meta-analysis of dietary intervention trials. Am J Clin Nutr 2014; 99:1331-50. [PMID: 24717342 DOI: 10.3945/ajcn.113.081190] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Palm oil (PO) may be an unhealthy fat because of its high saturated fatty acid content. OBJECTIVE The objective was to assess the effect of substituting PO for other primary dietary fats on blood lipid-related markers of coronary heart disease (CHD) and cardiovascular disease (CVD). DESIGN We performed a systematic review and meta-analysis of dietary intervention trials. Studies were eligible if they included original data comparing PO-rich diets with other fat-rich diets and analyzed at least one of the following CHD/CVD biomarkers: total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, TC/HDL cholesterol, LDL cholesterol/HDL cholesterol, triacylglycerols, apolipoprotein A-I and B, very-low-density lipoprotein cholesterol, and lipoprotein(a). RESULTS Fifty-one studies were included. Intervention times ranged from 2 to 16 wk, and different fat substitutions ranged from 4% to 43%. Comparison of PO diets with diets rich in stearic acid, monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) showed significantly higher TC, LDL cholesterol, apolipoprotein B, HDL cholesterol, and apolipoprotein A-I, whereas most of the same biomarkers were significantly lower when compared with diets rich in myristic/lauric acid. Comparison of PO-rich diets with diets rich in trans fatty acids showed significantly higher concentrations of HDL cholesterol and apolipoprotein A-I and significantly lower apolipoprotein B, triacylglycerols, and TC/HDL cholesterol. Stratified and meta-regression analyses showed that the higher concentrations of TC and LDL cholesterol, when PO was substituted for MUFAs and PUFAs, were not significant in young people and in subjects with diets with a lower percentage of energy from fat. CONCLUSIONS Both favorable and unfavorable changes in CHD/CVD risk markers occurred when PO was substituted for the primary dietary fats, whereas only favorable changes occurred when PO was substituted for trans fatty acids. Additional studies are needed to provide guidance for policymaking.
Collapse
Affiliation(s)
- Elena Fattore
- From the Departments of Environmental Health Sciences (EF) and Epidemiology (CB), IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy; the Department of Food Science, Università di Parma, Parma, Italy (FB); the Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ospedale Maggiore Policlinico, Milan, Italy (CA); and the Department of Policy Analysis and Public Management & Centre for Research on Health and Social Care Management, Università Bocconi, Milan, Italy (GF)
| | - Cristina Bosetti
- From the Departments of Environmental Health Sciences (EF) and Epidemiology (CB), IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy; the Department of Food Science, Università di Parma, Parma, Italy (FB); the Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ospedale Maggiore Policlinico, Milan, Italy (CA); and the Department of Policy Analysis and Public Management & Centre for Research on Health and Social Care Management, Università Bocconi, Milan, Italy (GF)
| | - Furio Brighenti
- From the Departments of Environmental Health Sciences (EF) and Epidemiology (CB), IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy; the Department of Food Science, Università di Parma, Parma, Italy (FB); the Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ospedale Maggiore Policlinico, Milan, Italy (CA); and the Department of Policy Analysis and Public Management & Centre for Research on Health and Social Care Management, Università Bocconi, Milan, Italy (GF)
| | - Carlo Agostoni
- From the Departments of Environmental Health Sciences (EF) and Epidemiology (CB), IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy; the Department of Food Science, Università di Parma, Parma, Italy (FB); the Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ospedale Maggiore Policlinico, Milan, Italy (CA); and the Department of Policy Analysis and Public Management & Centre for Research on Health and Social Care Management, Università Bocconi, Milan, Italy (GF)
| | - Giovanni Fattore
- From the Departments of Environmental Health Sciences (EF) and Epidemiology (CB), IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy; the Department of Food Science, Università di Parma, Parma, Italy (FB); the Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ospedale Maggiore Policlinico, Milan, Italy (CA); and the Department of Policy Analysis and Public Management & Centre for Research on Health and Social Care Management, Università Bocconi, Milan, Italy (GF)
| |
Collapse
|
14
|
Fattore E, Fanelli R. Palm oil and palmitic acid: a review on cardiovascular effects and carcinogenicity. Int J Food Sci Nutr 2013; 64:648-59. [DOI: 10.3109/09637486.2013.768213] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Baldizán G, Oviedo M, Michelangeli C, Vargas R. Effects of peach palm oil on performance, serum lipoproteins and haemostasis in broilers. Br Poult Sci 2010; 51:784-90. [DOI: 10.1080/00071668.2010.526925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Hunter JE, Zhang J, Kris-Etherton PM. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am J Clin Nutr 2010; 91:46-63. [PMID: 19939984 DOI: 10.3945/ajcn.2009.27661] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND High stearic acid (STA) soybean oil is a trans-free, oxidatively stable, non-LDL-cholesterol-raising oil that can be used to replace trans fatty acids (TFAs) in solid fat applications. OBJECTIVE The objective was to assess the cardiovascular health effects of dietary STA compared with those of trans, other saturated, and unsaturated fatty acids. DESIGN We reviewed epidemiologic and clinical studies that evaluated the relation between STA and cardiovascular disease (CVD) risk factors, including plasma lipids and lipoproteins, hemostatic variables, and inflammatory markers. RESULTS In comparison with other saturated fatty acids, STA lowered LDL cholesterol, was neutral with respect to HDL cholesterol, and directionally lowered the ratio of total to HDL cholesterol. STA tended to raise LDL cholesterol, lower HDL cholesterol, and increase the ratio of total to HDL cholesterol in comparison with unsaturated fatty acids. In 2 of 4 studies, high-STA diets increased lipoprotein(a) in comparison with diets high in saturated fatty acids. Three studies showed increased plasma fibrinogen when dietary STA exceeded 9% of energy (the current 90th percentile of intake is 3.5%). Replacing industrial TFAs with STA might increase STA intake from 3.0% (current) to approximately 4% of energy and from 4% to 5% of energy at the 90th percentile. One-to-one substitution of STA for TFAs showed a decrease or no effect on LDL cholesterol, an increase or no effect on HDL cholesterol, and a decrease in the ratio of total to HDL cholesterol. CONCLUSIONS TFA intake should be reduced as much as possible because of its adverse effects on lipids and lipoproteins. The replacement of TFA with STA compared with other saturated fatty acids in foods that require solid fats beneficially affects LDL cholesterol, the primary target for CVD risk reduction; unsaturated fats are preferred for liquid fat applications. Research is needed to evaluate the effects of STA on emerging CVD risk markers such as fibrinogen and to understand the responses in different populations.
Collapse
Affiliation(s)
- J Edward Hunter
- Department of Chemistry University of Cincinnati Cincinnati OH 45221-0172, USA.
| | | | | |
Collapse
|
17
|
McAfee AJ, McSorley EM, Cuskelly GJ, Moss BW, Wallace JM, Bonham MP, Fearon AM. Red meat consumption: An overview of the risks and benefits. Meat Sci 2010; 84:1-13. [DOI: 10.1016/j.meatsci.2009.08.029] [Citation(s) in RCA: 444] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 11/29/2022]
|
18
|
Affiliation(s)
- Roberto Corti
- From the Cardiovascular Center, Cardiology University Hospital, Zurich, Switzerland (R.C., A.J.F., T.F.L.), and Department of Medicine and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (N.K.H.)
| | - Andreas J. Flammer
- From the Cardiovascular Center, Cardiology University Hospital, Zurich, Switzerland (R.C., A.J.F., T.F.L.), and Department of Medicine and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (N.K.H.)
| | - Norman K. Hollenberg
- From the Cardiovascular Center, Cardiology University Hospital, Zurich, Switzerland (R.C., A.J.F., T.F.L.), and Department of Medicine and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (N.K.H.)
| | - Thomas F. Lüscher
- From the Cardiovascular Center, Cardiology University Hospital, Zurich, Switzerland (R.C., A.J.F., T.F.L.), and Department of Medicine and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (N.K.H.)
| |
Collapse
|
19
|
Hodge AM, English DR, O'Dea K, Sinclair AJ, Makrides M, Gibson RA, Giles GG. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr 2007; 86:189-97. [PMID: 17616780 DOI: 10.1093/ajcn/86.1.189] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dietary fatty acids may be associated with diabetes but are difficult to measure accurately. OBJECTIVE We aimed to investigate the associations of fatty acids in plasma and diet with diabetes incidence. DESIGN This was a prospective case-cohort study of 3737 adults aged 36-72 y. Fatty acid intake (/kJ) and plasma phospholipid fatty acids (%) were measured at baseline, and diabetes incidence was assessed by self-report 4 y later. Logistic regression excluding (model 1) and including (model 2) body mass index and waist-hip ratio was used to calculate odds ratios (ORs) for plasma phospholipid and dietary fatty acids. RESULTS In plasma phospholipid, positive associations with diabetes were seen for stearic acid [OR model 1, highest versus lowest quintile: 4.14 (95% CI: 2.65, 6.49), P for trend < 0.0001] and total saturated fatty acids [OR model 1: 3.76 (2.43, 5.81), P for trend < 0.0001], whereas an inverse association was seen for linoleic acid [OR model 1: 0.22 (0.14, 0.36), P for trend < 0.0001]. Dietary linoleic [OR model 1: 1.77 (1.19, 2.64), P for trend = 0.002], palmitic [OR model 1: 1.65 (1.12, 2.43), P for trend = 0.012], and stearic [OR model 1: 1.46 (1.00, 2.14), P for trend = 0.030] acids were positively associated with diabetes incidence before adjustment for body size. Within each quintile of linoleic acid intake, cases had lower baseline plasma phospholipid linoleic acid proportions than did controls. CONCLUSIONS Dietary saturated fat intake is inversely associated with diabetes risk. More research is required to determine whether linoleic acid is an appropriate dietary substitute.
Collapse
Affiliation(s)
- Allison M Hodge
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ding EL, Hutfless SM, Ding X, Girotra S. Chocolate and prevention of cardiovascular disease: a systematic review. Nutr Metab (Lond) 2006; 3:2. [PMID: 16390538 PMCID: PMC1360667 DOI: 10.1186/1743-7075-3-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 01/03/2006] [Indexed: 02/05/2023] Open
Abstract
Background Consumption of chocolate has been often hypothesized to reduce the risk of cardiovascular disease (CVD) due to chocolate's high levels of stearic acid and antioxidant flavonoids. However, debate still lingers regarding the true long term beneficial cardiovascular effects of chocolate overall. Methods We reviewed English-language MEDLINE publications from 1966 through January 2005 for experimental, observational, and clinical studies of relations between cocoa, cacao, chocolate, stearic acid, flavonoids (including flavonols, flavanols, catechins, epicatechins, and procynadins) and the risk of cardiovascular disease (coronary heart disease (CHD), stroke). A total of 136 publications were selected based on relevance, and quality of design and methods. An updated meta-analysis of flavonoid intake and CHD mortality was also conducted. Results The body of short-term randomized feeding trials suggests cocoa and chocolate may exert beneficial effects on cardiovascular risk via effects on lowering blood pressure, anti-inflammation, anti-platelet function, higher HDL, decreased LDL oxidation. Additionally, a large body of trials of stearic acid suggests it is indeed cholesterol-neutral. However, epidemiologic studies of serum and dietary stearic acid are inconclusive due to many methodologic limitations. Meanwhile, the large body of prospective studies of flavonoids suggests the flavonoid content of chocolate may reduce risk of cardiovascular mortality. Our updated meta-analysis indicates that intake of flavonoids may lower risk of CHD mortality, RR = 0.81 (95% CI: 0.71–0.92) comparing highest and lowest tertiles. Conclusion Multiple lines of evidence from laboratory experiments and randomized trials suggest stearic acid may be neutral, while flavonoids are likely protective against CHD mortality. The highest priority now is to conduct larger randomized trials to definitively investigate the impact of chocolate consumption on long-term cardiovascular outcomes.
Collapse
Affiliation(s)
- Eric L Ding
- Department of Epidemiology, Harvard University, School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard University, School of Public Health, Boston, MA, USA
| | - Susan M Hutfless
- Department of Epidemiology, Harvard University, School of Public Health, Boston, MA, USA
| | - Xin Ding
- Department of Epidemiology, Harvard University, School of Public Health, Boston, MA, USA
| | - Saket Girotra
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
|
22
|
Flickinger BD, Huth PJ. Dietary fats and oils: Technologies for improving cardiovascular health. Curr Atheroscler Rep 2004; 6:468-76. [PMID: 15485593 DOI: 10.1007/s11883-004-0088-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of dietary lipids in the etiology of coronary heart disease (CHD) continues to evolve as we gain a better understanding of the metabolic effects of individual fatty acids and their impact on surrogate markers of risk. A recent meta-analysis of 60 human studies suggests that for each 1% energy replacement of carbohydrates in the diet with saturated fat or trans fat, serum low-density lipoprotein cholesterol concentrations increase by 0.032 (1.23 mg/dL) and 0.04 mmol/L (1.54 mg/dL), respectively. Current dietary recommendations to keep saturated fat and trans fat intake as low as possible, and to increase the intake of cis mono-unsaturated and polyunsaturated fatty acids, as well as growing recognition of these recommendations by consumers and food regulatory agencies in the United States, have been major driving forces for the edible oil industry and food manufacturers to develop alternative fats and oils with nutritionally improved fatty acid compositions. As solutions for use of trans fatty acids are being sought, oilseeds with modified fatty acid compositions are being viewed as a means to provide such solutions. Additionally, oilseeds with modified fatty acid composition, such as enhanced content of long-chain omega-3 fatty acids or conjugated linoleic acid, have been developed as a way to increase delivery of these fatty acids directly into the food supply or indirectly as use for feed ingredients for livestock. New processing technologies are being utilized around the world to create dietary fats and oils with specific physiologic functions relevant to risk factors for cardiovascular disease.
Collapse
|
23
|
Abstract
Public health recommendations for the US population in 1977 were to reduce fat intake to as low as 30% of calories to lower the incidence of coronary artery disease. These recommendations resulted in a compositional shift in food materials throughout the agricultural industry, and the fractional content of fats was replaced principally with carbohydrates. Subsequently, high-carbohydrate diets were recognized as contributing to the lipoprotein pattern that characterizes atherogenic dyslipidemia and hypertriacylglycerolemia. The rising incidences of metabolic syndrome and obesity are becoming common themes in the literature. Current recommendations are to keep saturated fatty acid, trans fatty acid, and cholesterol intakes as low as possible while consuming a nutritionally adequate diet. In the face of such recommendations, the agricultural industry is shifting food composition toward lower proportions of all saturated fatty acids. To date, no lower safe limit of specific saturated fatty acid intakes has been identified. This review summarizes research findings and observations on the disparate functions of saturated fatty acids and seeks to bring a more quantitative balance to the debate on dietary saturated fat. Whether a finite quantity of specific dietary saturated fatty acids actually benefits health is not yet known. Because agricultural practices to reduce saturated fat will require a prolonged and concerted effort, and because the world is moving toward more individualized dietary recommendations, should the steps to decrease saturated fatty acids to as low as agriculturally possible not wait until evidence clearly indicates which amounts and types of saturated fatty acids are optimal?
Collapse
Affiliation(s)
- J Bruce German
- Department of Food Science and Technology, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
24
|
Lefevre M, Kris-Etherton PM, Zhao G, Tracy RP. Dietary fatty acids, hemostasis, and cardiovascular disease risk. ACTA ACUST UNITED AC 2004; 104:410-9; quiz 492. [PMID: 14993864 DOI: 10.1016/j.jada.2003.12.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cause of many myocardial infarctions is occlusive thrombosis, or a blood clot that stops blood flow in a coronary artery. Hemostasis involves a complex system of factors, which normally form and degrade blood clots, that work within a delicate balance. Emerging evidence suggests that some hemostatic factors, including factor VII, fibrinogen, and plasminogen activator inhibitor-1, are associated with increased risk for cardiovascular disease (CVD). Accumulating evidence suggests a relationship between dietary fatty acids and emerging hemostatic CVD risk factors, although much of this evidence is incomplete or conflicting. Dietary supplementation with marine n-3 fatty acids prolongs bleeding time and may decrease risk for thrombosis. Factor VII coagulant activity modestly decreases with reductions in saturated fatty acid (SFA) intake and thereby may contribute to the beneficial effects of low SFA diets. Large triglyceride-rich particles formed during postprandial lipemia can support the assembly and function of coagulation complexes and seem to play a role in the activation of factor VII, and thus may partially explain increased CVD risk associated with increased postprandial triglyceridemia. As our understanding of the role of dietary fatty acids and hemostasis evolves, it is likely that we will be able to make specific dietary recommendations to further decrease CVD risk. At this juncture, however, increasing marine n-3 fatty acids and decreasing certain SFAs are leading strategies to reduce hemostatic CVD risk factors. An array of dietary strategies that target multiple CVD risk factors could have a greater impact on CVD than a single risk factor intervention strategy.
Collapse
Affiliation(s)
- Michael Lefevre
- Division of Functional Foods Research, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808-4124, USA.
| | | | | | | |
Collapse
|