1
|
Kai M, Kondo M. Suppression of Pcdh8/paraxial protocadherin is required for efficient neighbor exchange in morphogenetic cell movement during zebrafish notochord formation. Sci Rep 2024; 14:25697. [PMID: 39465278 PMCID: PMC11514211 DOI: 10.1038/s41598-024-76762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
In certain forms of collective cell migration, changes in neighboring cells (neighbor exchange, NE) are essential. In the axial mesoderm in zebrafish, for example, the notochord is established through cell movements known as convergence and extension (C&E), which involves NE. For NE to occur efficiently, the balance between cell-scale and supracellular stresses plays a crucial role, but the molecular basis of how these stresses are controlled remains unclear. In this study, we focused on Pcdh8/Paraxial protocadherin (PAPC), which is specifically suppressed in the region (notochord) where and at the time (early gastrula) when extensive C&E occurs. Forced expression of PAPCΔC (PAPC lacking its intracellular domain) persisted in the developing notochord and resulted in morphogenetic defects in zebrafish. PAPCΔC was found to downregulate NE in the notochord in a homophilic contact-dependent manner. By examining oil droplets inserted between cells, we revealed that while cell-scale stresses were apparently unaffected, the direction of bias in the supracellular stresses was stabilized by the introduction of PAPCΔC in the notochordal region. Taken together, our results suggest that suppression of PAPC in the notochord is required to modify supracellular stresses and provide the conditions in which NE occurs efficiently, thus promoting morphogenetic cell movements.
Collapse
Affiliation(s)
- Masatake Kai
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Osaka, Japan.
| | - Makoto Kondo
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Osaka, Japan.
| |
Collapse
|
2
|
Takeichi M. Cell sorting in vitro and in vivo: How are cadherins involved? Semin Cell Dev Biol 2022; 147:2-11. [PMID: 36376196 DOI: 10.1016/j.semcdb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Animal tissues are composed of heterogenous cells, and their sorting into different compartments of the tissue is a pivotal process for organogenesis. Cells accomplish sorting by themselves-it is well known that singly dispersed cells can self-organize into tissue-like structures in vitro. Cell sorting is regulated by both biochemical and physical mechanisms. Adhesive proteins connect cells together, selecting particular partners through their specific binding properties, while physical forces, such as cell-cortical tension, control the cohesiveness between cells and in turn cell assembly patterns in mechanical ways. These processes cooperate in determining the overall cell sorting behavior. This article focuses on the 'cadherin' family of adhesion molecules as a biochemical component of cell-cell interactions, addressing how they regulate cell sorting by themselves or by cooperating with other factors. New ideas beyond the classical models of cell sorting are also discussed.
Collapse
|
3
|
McFann SE, Shvartsman SY, Toettcher JE. Putting in the Erk: Growth factor signaling and mesoderm morphogenesis. Curr Top Dev Biol 2022; 149:263-310. [PMID: 35606058 DOI: 10.1016/bs.ctdb.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has long been known that FGF signaling contributes to mesoderm formation, a germ layer found in triploblasts that is composed of highly migratory cells that give rise to muscles and to the skeletal structures of vertebrates. FGF signaling activates several pathways in the developing mesoderm, including transient activation of the Erk pathway, which triggers mesodermal fate specification through the induction of the gene brachyury and activates morphogenetic programs that allow mesodermal cells to position themselves in the embryo. In this review, we discuss what is known about the generation and interpretation of transient Erk signaling in mesodermal tissues across species. We focus specifically on mechanisms that translate the level and duration of Erk signaling into cell fate and cell movement instructions and discuss strategies for further interrogating the role that Erk signaling dynamics play in mesodermal gastrulation and morphogenesis.
Collapse
Affiliation(s)
- Sarah E McFann
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
4
|
Gur M, Edri T, Moody SA, Fainsod A. Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation. Front Cell Dev Biol 2022; 10:857230. [PMID: 35531100 PMCID: PMC9068879 DOI: 10.3389/fcell.2022.857230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Retinoic acid (RA) is a central regulatory signal that controls numerous developmental processes in vertebrate embryos. Although activation of Hox expression is considered one of the earliest functions of RA signaling in the embryo, there is evidence that embryos are poised to initiate RA signaling just before gastrulation begins, and manipulations of the RA pathway have been reported to show gastrulation defects. However, which aspects of gastrulation are affected have not been explored in detail. We previously showed that partial inhibition of RA biosynthesis causes a delay in the rostral migration of some of the earliest involuting cells, the leading edge mesendoderm (LEM) and the prechordal mesoderm (PCM). Here we identify several detrimental gastrulation defects resulting from inhibiting RA biosynthesis by three different treatments. RA reduction causes a delay in the progression through gastrulation as well as the rostral migration of the goosecoid-positive PCM cells. RA inhibition also hampered the elongation of explanted dorsal marginal zones, the compaction of the blastocoel, and the length of Brachet’s cleft, all of which indicate an effect on LEM/PCM migration. The cellular mechanisms underlying this deficit were shown to include a reduced deposition of fibronectin along Brachet’s cleft, the substrate for their migration, as well as impaired separation of the blastocoel roof and involuting mesoderm, which is important for the formation of Brachet’s cleft and successful LEM/PCM migration. We further show reduced non-canonical Wnt signaling activity and altered expression of genes in the Ephrin and PDGF signaling pathways, both of which are required for the rostral migration of the LEM/PCM, following RA reduction. Together, these experiments demonstrate that RA signaling performs a very early function critical for the progression of gastrulation morphogenetic movements.
Collapse
Affiliation(s)
- Michal Gur
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamir Edri
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
- *Correspondence: Sally A. Moody, ; Abraham Fainsod,
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Sally A. Moody, ; Abraham Fainsod,
| |
Collapse
|
5
|
Usami C, Inomata H. Rapalog-induced cell adhesion molecule inhibits mesoderm migration in Xenopus embryos by increasing frequency of adhesion to the ectoderm. Genes Cells 2022; 27:436-450. [PMID: 35437867 DOI: 10.1111/gtc.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
During the gastrula stage of Xenopus laevis, mesodermal cells migrate on the blastocoel roof (BCR) toward the animal pole. In this process, mesodermal cells directly adhere to the BCR via adhesion molecules, such as cadherins, which in turn trigger a repulsive reaction through factors such as Eph/ephrin. Therefore, the mesoderm and BCR repeatedly adhere to and detach from each other, and the frequency of this adhesion is thought to control mesoderm migration. Although knockdown of cadherin or Eph/ephrin causes severe gastrulation defects, these molecules have been reported to contribute not only to boundary formation but also to the internal function of each tissue. Therefore, it is possible that the defect caused by knockdown occurs due to tissue function abnormalities. To address this problem, we developed a method to specifically induce adhesion between different tissues using rapalog (an analog of rapamycin). When adhesion between the BCR and mesoderm was specifically enhanced by rapalog, mesoderm migration was strongly suppressed. Furthermore, we confirmed that rapalog significantly increased the frequency of adhesion between the two tissues. These results support the idea that the adhesion frequency controls mesoderm migration, and demonstrate that our method effectively enhances adhesion between specific tissues in vivo.
Collapse
Affiliation(s)
- Chisa Usami
- Axial Pattern Dynamics Team, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hidehiko Inomata
- Axial Pattern Dynamics Team, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
6
|
Shook DR, Wen JWH, Rolo A, O'Hanlon M, Francica B, Dobbins D, Skoglund P, DeSimone DW, Winklbauer R, Keller RE. Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians. eLife 2022; 11:e57642. [PMID: 35404236 PMCID: PMC9064293 DOI: 10.7554/elife.57642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
The morphogenic process of convergent thickening (CT) was originally described as the mediolateral convergence and radial thickening of the explanted ventral involuting marginal zone (IMZ) of Xenopus gastrulae (Keller and Danilchik, 1988). Here, we show that CT is expressed in all sectors of the pre-involution IMZ, which transitions to expressing convergent extension (CE) after involution. CT occurs without CE and drives symmetric blastopore closure in ventralized embryos. Assays of tissue affinity and tissue surface tension measurements suggest CT is driven by increased interfacial tension between the deep IMZ and the overlying epithelium. The resulting minimization of deep IMZ surface area drives a tendency to shorten the mediolateral (circumblastoporal) aspect of the IMZ, thereby generating tensile force contributing to blastopore closure (Shook et al., 2018). These results establish CT as an independent force-generating process of evolutionary significance and provide the first clear example of an oriented, tensile force generated by an isotropic, Holtfreterian/Steinbergian tissue affinity change.
Collapse
Affiliation(s)
- David R Shook
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Jason WH Wen
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Ana Rolo
- Centre for Craniofacial and Regenerative Biology, King's College LondonLondonUnited Kingdom
| | - Michael O'Hanlon
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | | | | | - Paul Skoglund
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Douglas W DeSimone
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Ray E Keller
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| |
Collapse
|
7
|
Barua D, Nagel M, Winklbauer R. Cell-cell contact landscapes in Xenopus gastrula tissues. Proc Natl Acad Sci U S A 2021; 118:e2107953118. [PMID: 34544871 PMCID: PMC8488617 DOI: 10.1073/pnas.2107953118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 01/26/2023] Open
Abstract
Molecular and structural facets of cell-cell adhesion have been extensively studied in monolayered epithelia. Here, we perform a comprehensive analysis of cell-cell contacts in a series of multilayered tissues in the Xenopus gastrula model. We show that intercellular contact distances range from 10 to 1,000 nm. The contact width frequencies define tissue-specific contact spectra, and knockdown of adhesion factors modifies these spectra. This allows us to reconstruct the emergence of contact types from complex interactions of the factors. We find that the membrane proteoglycan Syndecan-4 plays a dominant role in all contacts, including narrow C-cadherin-mediated junctions. Glypican-4, hyaluronic acid, paraxial protocadherin, and fibronectin also control contact widths, and unexpectedly, C-cadherin functions in wide contacts. Using lanthanum staining, we identified three morphologically distinct forms of glycocalyx in contacts of the Xenopus gastrula, which are linked to the adhesion factors examined and mediate cell-cell attachment. Our study delineates a systematic approach to examine the varied contributions of adhesion factors individually or in combinations to nondiscrete and seemingly amorphous intercellular contacts.
Collapse
Affiliation(s)
- Debanjan Barua
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Martina Nagel
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
8
|
Frizzled 7 Activates β-Catenin-Dependent and β-Catenin-Independent Wnt Signalling Pathways During Developmental Morphogenesis: Implications for Therapeutic Targeting in Colorectal Cancer. Handb Exp Pharmacol 2021. [PMID: 34455486 DOI: 10.1007/164_2021_524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Frizzled7 activates β-catenin-dependent and β-catenin-independent Wnt signalling pathways, is highly conserved through evolution from the ancient phylum hydra to man, plays essential roles in stem cells, tissue homeostasis and regeneration in the adult, and is upregulated in diverse cancers. Much of what is known about the core components of the Wnt signalling pathways was derived from studying the function of Frizzled7 orthologues in the development of lower organism. As we interrogate Frizzled7 signalling and function for therapeutic targeting in cancer, it is timely to revisit lower organisms to gain insight into the context dependent and dynamic nature of Wnt signalling for effective drug design.
Collapse
|
9
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Bosze B, Ono Y, Mattes B, Sinner C, Gourain V, Thumberger T, Tlili S, Wittbrodt J, Saunders TE, Strähle U, Schug A, Scholpp S. Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish. Histochem Cell Biol 2020; 154:463-480. [PMID: 32488346 PMCID: PMC7609436 DOI: 10.1007/s00418-020-01887-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 01/07/2023]
Abstract
The notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord.
Collapse
Affiliation(s)
- Bernadett Bosze
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Benjamin Mattes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Claude Sinner
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany.,Department of Physics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Timothy E Saunders
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Alexander Schug
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany
| | - Steffen Scholpp
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany. .,Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
11
|
Abstract
This review is a comprehensive analysis of the cell biology and biomechanics of Convergent Extension in Xenopus.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA, United States.
| | - Ann Sutherland
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Dilling C, Roewer N, Förster CY, Burek M. Multiple protocadherins are expressed in brain microvascular endothelial cells and might play a role in tight junction protein regulation. J Cereb Blood Flow Metab 2017; 37:3391-3400. [PMID: 28094605 PMCID: PMC5624389 DOI: 10.1177/0271678x16688706] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protocadherins (Pcdhs) are a large family of cadherin-related molecules. They play a role in cell adhesion, cellular interactions, and development of the central nervous system. However, their expression and role in endothelial cells has not yet been characterized. Here, we examined the expression of selected clustered Pcdhs in endothelial cells from several vascular beds. We analyzed human and mouse brain microvascular endothelial cell (BMEC) lines and primary cells, mouse myocardial microvascular endothelial cell line, and human umbilical vein endothelial cells. We examined the mRNA and protein expression of selected Pcdhs using RT-PCR, Western blot, and immunostaining. A strong mRNA expression of Pcdhs was observed in all endothelial cells tested. At the protein level, Pcdhs-gamma were detected using an antibody against the conserved C-terminal domain of Pcdhs-gamma or an antibody against PcdhgC3. Deletion of highly expressed PcdhgC3 led to differences in the tight junction protein expression and mRNA expression of Wnt/mTOR (mechanistic target of rapamycin) pathway genes as well as lower transendothelial electrical resistance. Staining of PcdhgC3 showed diffused cytoplasmic localization in mouse BMEC. Our results suggest that Pcdhs may play a critical role in the barrier-stabilizing pathways at the blood-brain barrier.
Collapse
Affiliation(s)
- Christina Dilling
- University of Würzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany
| | - Norbert Roewer
- University of Würzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany
| | - Carola Y Förster
- University of Würzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany
| | - Malgorzata Burek
- University of Würzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany
| |
Collapse
|
13
|
Mah KM, Weiner JA. Regulation of Wnt signaling by protocadherins. Semin Cell Dev Biol 2017; 69:158-171. [PMID: 28774578 PMCID: PMC5586504 DOI: 10.1016/j.semcdb.2017.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022]
Abstract
The ∼70 protocadherins comprise the largest group within the cadherin superfamily. Their diversity, the complexity of the mechanisms through which their genes are regulated, and their many critical functions in nervous system development have engendered a growing interest in elucidating the intracellular signaling pathways through which they act. Recently, multiple protocadherins across several subfamilies have been implicated as modulators of Wnt signaling pathways, and through this as potential tumor suppressors. Here, we review the extant data on the regulation by protocadherins of Wnt signaling pathways and components, and highlight some key unanswered questions that could shape future research.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
14
|
Winklbauer R, Parent SE. Forces driving cell sorting in the amphibian embryo. Mech Dev 2017; 144:81-91. [DOI: 10.1016/j.mod.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/18/2016] [Accepted: 09/29/2016] [Indexed: 01/05/2023]
|
15
|
Schille C, Schambony A. Signaling pathways and tissue interactions in neural plate border formation. NEUROGENESIS 2017; 4:e1292783. [PMID: 28352644 DOI: 10.1080/23262133.2017.1292783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 02/04/2023]
Abstract
The neural crest is a transient cell population that gives rise to various cell types of multiple tissues and organs in the vertebrate embryo. Neural crest cells arise from the neural plate border, a region localized at the lateral borders of the prospective neural plate. Temporally and spatially coordinated interaction with the adjacent tissues, the non-neural ectoderm, the neural plate and the prospective dorsolateral mesoderm, is required for neural plate border specification. Signaling molecules, namely BMP, Wnt and FGF ligands and corresponding antagonists are derived from these tissues and interact to induce the expression of neural plate border specific genes. The present mini-review focuses on the current understanding of how the NPB territory is formed and accentuates the need for coordinated interaction of BMP and Wnt signaling pathways and precise tissue communication that are required for the definition of the prospective NC in the competent ectoderm.
Collapse
Affiliation(s)
- Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg , Erlangen, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg , Erlangen, Germany
| |
Collapse
|
16
|
Chal J, Guillot C, Pourquié O. PAPC couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion. Development 2017; 144:664-676. [PMID: 28087631 DOI: 10.1242/dev.143974] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
Vertebrate segmentation is characterized by the periodic formation of epithelial somites from the mesenchymal presomitic mesoderm (PSM). How the rhythmic signaling pulse delivered by the segmentation clock is translated into the periodic morphogenesis of somites remains poorly understood. Here, we focused on the role of paraxial protocadherin (PAPC/Pcdh8) in this process. We showed that in chicken and mouse embryos, PAPC expression is tightly regulated by the clock and wavefront system in the posterior PSM. We observed that PAPC exhibits a striking complementary pattern to N-cadherin (CDH2), marking the interface of the future somite boundary in the anterior PSM. Gain and loss of function of PAPC in chicken embryos disrupted somite segmentation by altering the CDH2-dependent epithelialization of PSM cells. Our data suggest that clathrin-mediated endocytosis is increased in PAPC-expressing cells, subsequently affecting CDH2 internalization in the anterior compartment of the future somite. This in turn generates a differential adhesion interface, allowing formation of the acellular fissure that defines the somite boundary. Thus, periodic expression of PAPC in the anterior PSM triggers rhythmic endocytosis of CDH2, allowing for segmental de-adhesion and individualization of somites.
Collapse
Affiliation(s)
- Jérome Chal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden 67400, France.,Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Charlène Guillot
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, USA
| | - Olivier Pourquié
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA .,Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden 67400, France.,Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Howard Hughes Medical Institute, Kansas City, MO 64110, USA
| |
Collapse
|
17
|
Abstract
ROR-family receptor tyrosine kinases form a small subfamily of receptor tyrosine kinases (RTKs), characterized by a conserved, unique domain architecture. ROR RTKs are evolutionary conserved throughout the animal kingdom and act as alternative receptors and coreceptors of WNT ligands. The intracellular signaling cascades activated downstream of ROR receptors are diverse, including but not limited to ROR-Frizzled-mediated activation of planar cell polarity signaling, RTK-like signaling, and antagonistic regulation of WNT/β-Catenin signaling. In line with their diverse repertoire of signaling functions, ROR receptors are involved in the regulation of multiple processes in embryonic development such as development of the axial and paraxial mesoderm, the nervous system and the neural crest, the axial and appendicular skeleton, and the kidney. In humans, mutations in the ROR2 gene cause two distinct developmental syndromes, recessive Robinow syndrome (RRS; MIM 268310) and dominant brachydactyly type B1 (BDB1; MIM 113000). In Robinow syndrome patients and animal models, the development of multiple organs is affected, whereas BDB1 results only in shortening of the distal phalanges of fingers and toes, reflecting the diversity of functions and signaling activities of ROR-family RTKs. In this chapter, we give an overview on ROR receptor structure and function. We discuss their signaling functions and role in vertebrate embryonic development with a focus on those developmental processes that are affected by mutations in the ROR2 gene in human patients.
Collapse
|
18
|
Kumar R, Ciprianidis A, Theiß S, Steinbeißer H, Kaufmann LT. Nemo-like kinase 1 (Nlk1) and paraxial protocadherin (PAPC) cooperatively control Xenopus gastrulation through regulation of Wnt/planar cell polarity (PCP) signaling. Differentiation 2016; 93:27-38. [PMID: 27875771 DOI: 10.1016/j.diff.2016.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022]
Abstract
The Wnt/planar cell polarity (PCP) pathway directs cell migration during vertebrate gastrulation and is essential for proper embryonic development. Paraxial protocadherin (PAPC, Gene Symbol pcdh8.2) is an important activator of Wnt/PCP signaling during Xenopus gastrulation, but how PAPC activity is controlled is incompletely understood. Here we show that Nemo-like kinase 1 (Nlk1), an atypical mitogen-activated protein (MAP) kinase, physically associates with the C-terminus of PAPC. This interaction mutually stabilizes both proteins by inhibiting polyubiquitination. The Nlk1 mediated stabilization of PAPC is essential for Wnt/PCP signaling, tissue separation and gastrulation movements. We identified two conserved putative phosphorylation sites in the PAPC C-terminus that are critical for Nlk1 mediated PAPC stabilization and Wnt/PCP regulation. Intriguingly, the kinase activity of Nlk1 itself was not essential for its cooperation with PAPC, suggesting an indirect regulation for example by impeding a different kinase that promotes protein degradation. Overall these results outline a novel, kinase independent role of Nlk1, wherein Nlk1 regulates PAPC stabilization and thereby controls gastrulation movements and Wnt/PCP signaling during development.
Collapse
Affiliation(s)
- Rahul Kumar
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Anja Ciprianidis
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Susanne Theiß
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Herbert Steinbeißer
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Lilian T Kaufmann
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Schille C, Bayerlová M, Bleckmann A, Schambony A. Ror2 signaling is required for local upregulation of GDF6 and activation of BMP signaling at the neural plate border. Development 2016; 143:3182-94. [DOI: 10.1242/dev.135426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
Abstract
The receptor tyrosine kinase Ror2 is a major Wnt receptor that activates β-catenin-independent signaling and plays a conserved role in the regulation of convergent extension movements and planar cell polarity in vertebrates. Mutations in the ROR2 gene cause recessive Robinow syndrome in humans, a short-limbed dwarfism associated with craniofacial malformations. Here, we show that Ror2 is required for local upregulation of gdf6 at the neural plate border in Xenopus embryos. Ror2 morphant embryos fail to upregulate neural plate border genes and show defects in the induction of neural crest cell fate. These embryos lack the spatially restricted activation of BMP signaling at the neural plate border at early neurula stages, which is required for neural crest induction. Ror2-dependent planar cell polarity signaling is required in the dorsolateral marginal zone during gastrulation indirectly to upregulate the BMP ligand Gdf6 at the neural plate border and Gdf6 is sufficient to rescue neural plate border specification in Ror2 morphant embryos. Thereby, Ror2 links Wnt/planar cell polarity signaling to BMP signaling in neural plate border specification and neural crest induction.
Collapse
Affiliation(s)
- Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Michaela Bayerlová
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Annalen Bleckmann
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen 37073, Germany
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
20
|
Brinkmann EM, Mattes B, Kumar R, Hagemann AIH, Gradl D, Scholpp S, Steinbeisser H, Kaufmann LT, Özbek S. Secreted Frizzled-related Protein 2 (sFRP2) Redirects Non-canonical Wnt Signaling from Fz7 to Ror2 during Vertebrate Gastrulation. J Biol Chem 2016; 291:13730-42. [PMID: 27129770 DOI: 10.1074/jbc.m116.733766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 02/04/2023] Open
Abstract
Convergent extension movements during vertebrate gastrulation require a balanced activity of non-canonical Wnt signaling pathways, but the factors regulating this interplay on the molecular level are poorly characterized. Here we show that sFRP2, a member of the secreted frizzled-related protein (sFRP) family, is required for morphogenesis and papc expression during Xenopus gastrulation. We further provide evidence that sFRP2 redirects non-canonical Wnt signaling from Frizzled 7 (Fz7) to the receptor tyrosine kinase-like orphan receptor 2 (Ror2). During this process, sFRP2 promotes Ror2 signal transduction by stabilizing Wnt5a-Ror2 complexes at the membrane, whereas it inhibits Fz7 signaling, probably by blocking Fz7 receptor endocytosis. The cysteine-rich domain of sFRP2 is sufficient for Ror2 activation, and related sFRPs can substitute for this function. Notably, direct interaction of the two receptors via their cysteine-rich domains also promotes Ror2-mediated papc expression but inhibits Fz7 signaling. We propose that sFRPs can act as a molecular switch, channeling the signal input for different non-canonical Wnt pathways during vertebrate gastrulation.
Collapse
Affiliation(s)
- Eva-Maria Brinkmann
- From the Institute of Human Genetics, Department of Developmental Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Mattes
- the Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, 76344 Karlsruhe, Germany
| | - Rahul Kumar
- From the Institute of Human Genetics, Department of Developmental Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Anja I H Hagemann
- the Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, 76344 Karlsruhe, Germany
| | - Dietmar Gradl
- the Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany, and
| | - Steffen Scholpp
- the Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, 76344 Karlsruhe, Germany
| | - Herbert Steinbeisser
- From the Institute of Human Genetics, Department of Developmental Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lilian T Kaufmann
- From the Institute of Human Genetics, Department of Developmental Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany,
| | - Suat Özbek
- the Centre of Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Himmelreich N, Kaufmann LT, Steinbeisser H, Körner C, Thiel C. Lack of phosphomannomutase 2 affects Xenopus laevis morphogenesis and the non-canonical Wnt5a/Ror2 signalling. J Inherit Metab Dis 2015; 38:1137-46. [PMID: 26141167 DOI: 10.1007/s10545-015-9874-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023]
Abstract
Reduced phosphomannomutase 2 activity in man leads to hypoglycosylation of glycoconjugates causing PMM2-CDG, the most common type of congenital disorders of glycosylation. Here we show that an antisense morpholino-mediated knockdown of the Xenopus laevis phosphomannomutase 2 gene provoked a general underglycosylation in frog embryos, which led to an altered phenotype and reduced glycosylation of Wnt5a as member of the non-canonical Wnt signalling. Loss of function experiments in hemi-sectioned embryos proved that due to the phosphomannomutase 2 knockdown expression of the Wnt5a/Ror2 target gene paraxial protocadherin was significantly decreased. Regarding the expression of paraxial protocadherin, a gain of function could only be achieved by injections of wnt5a and ror2 in dorsal neighbouring blastomeres, while a parallel injection of phosphomannomutase 2 morpholino led to a significant reduced level of expression. Our data show for the first time that a knockdown of phosphomannomutase 2 influences in vivo the non-canonical Wnt signalling during early embryogenesis.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Center for Child- and Adolescent Medicine and Center for Metabolic Diseases Heidelberg, Department I, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Lilian T Kaufmann
- Institute of Human Genetics, Division of Developmental Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Herbert Steinbeisser
- Institute of Human Genetics, Division of Developmental Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Christian Körner
- Center for Child- and Adolescent Medicine and Center for Metabolic Diseases Heidelberg, Department I, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Christian Thiel
- Center for Child- and Adolescent Medicine and Center for Metabolic Diseases Heidelberg, Department I, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Chen G, Tan R, Tao Q. Sebox regulates mesoderm formation in early amphibian embryos. Dev Dyn 2015; 244:1415-26. [DOI: 10.1002/dvdy.24323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 01/02/2023] Open
Affiliation(s)
- Geng Chen
- MOE Key Laboratory of Protein Sciences; Tsinghua University School of Life Sciences; Beijing China
| | - Renbo Tan
- MOE Key Laboratory of Protein Sciences; Tsinghua University School of Life Sciences; Beijing China
| | - Qinghua Tao
- MOE Key Laboratory of Protein Sciences; Tsinghua University School of Life Sciences; Beijing China
| |
Collapse
|
23
|
Luu O, Damm EW, Parent SE, Barua D, Smith THL, Wen JWH, Lepage SE, Nagel M, Ibrahim-Gawel H, Huang Y, Bruce AEE, Winklbauer R. PAPC mediates self/non-self-distinction during Snail1-dependent tissue separation. ACTA ACUST UNITED AC 2015; 208:839-56. [PMID: 25778923 PMCID: PMC4362454 DOI: 10.1083/jcb.201409026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Xenopus and zebrafish gastrulae, PAPC attenuates planar cell polarity signaling and controls formation of an adhesive, yet flexible, contact at the ectoderm–mesoderm boundary. Cleft-like boundaries represent a type of cell sorting boundary characterized by the presence of a physical gap between tissues. We studied the cleft-like ectoderm–mesoderm boundary in Xenopus laevis and zebrafish gastrulae. We identified the transcription factor Snail1 as being essential for tissue separation, showed that its expression in the mesoderm depends on noncanonical Wnt signaling, and demonstrated that it enables paraxial protocadherin (PAPC) to promote tissue separation through two novel functions. First, PAPC attenuates planar cell polarity signaling at the ectoderm–mesoderm boundary to lower cell adhesion and facilitate cleft formation. Second, PAPC controls formation of a distinct type of adhesive contact between mesoderm and ectoderm cells that shows properties of a cleft-like boundary at the single-cell level. It consists of short stretches of adherens junction–like contacts inserted between intermediate-sized contacts and large intercellular gaps. These roles of PAPC constitute a self/non–self-recognition mechanism that determines the site of boundary formation at the interface between PAPC-expressing and -nonexpressing cells.
Collapse
Affiliation(s)
- Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Erich W Damm
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Serge E Parent
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Debanjan Barua
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Tamara H L Smith
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Jason W H Wen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Stephanie E Lepage
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Martina Nagel
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | | | - Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
24
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
25
|
Kai M, Ueno N, Kinoshita N. Phosphorylation-dependent ubiquitination of paraxial protocadherin (PAPC) controls gastrulation cell movements. PLoS One 2015; 10:e0115111. [PMID: 25580871 PMCID: PMC4291225 DOI: 10.1371/journal.pone.0115111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/17/2014] [Indexed: 01/31/2023] Open
Abstract
Paraxial protocadherin (PAPC) has been shown to be involved in gastrulation cell movements during early embryogenesis. It is first expressed in the dorsal marginal zone at the early gastrula stage and subsequently restricted to the paraxial mesoderm in Xenopus and zebrafish. Using Xenopus embryos, we found that PAPC is also regulated at the protein level and is degraded and excluded from the plasma membrane in the axial mesoderm by the late gastrula stage. Regulation of PAPC requires poly-ubiquitination that is dependent on phosphorylation. PAPC is phosphorylated by GKS3 in the evolutionarily conserved cytoplasmic domain, and this in turn is necessary for poly-ubiquitination by an E3 ubiquitin ligase β-TrCP. We also show that precise control of PAPC by phosphorylation/ubiquitination is essential for normal Xenopus gastrulation cell movements. Taken together, our findings unveil a novel mechanism of regulation of a cell adhesion protein and show that this system plays a crucial role in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Masatake Kai
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- Department of Molecular Biomechanics, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Noriyuki Kinoshita
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- Department of Molecular Biomechanics, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- * E-mail:
| |
Collapse
|
26
|
Fagotto F. Regulation of Cell Adhesion and Cell Sorting at Embryonic Boundaries. Curr Top Dev Biol 2015; 112:19-64. [DOI: 10.1016/bs.ctdb.2014.11.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Abstract
The subdivision of the embryo into physically distinct regions is one of the most fundamental processes in development. General hypotheses for tissue separation based on differential adhesion or tension have been proposed in the past, but with little experimental support. During the last decade, the field has experienced a strong revival, largely driven by renewed interest in biophysical modeling of development. Here, I will discuss the various models of boundary formation and summarize recent studies that have shifted our understanding of the process from the simple juxtaposition of global tissue properties to the characterization of local cellular reactions. Current evidence favors a model whereby separation is controlled by cell surface cues, which, upon cell-cell contact, generate acute changes in cytoskeletal and adhesive properties to inhibit cell mixing, and whereby the integration of multiple local cues may dictate both the global morphogenetic properties of a tissue and its separation from adjacent cell populations.
Collapse
Affiliation(s)
- François Fagotto
- Department of Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
28
|
Young T, Poobalan Y, Tan EK, Tao S, Ong S, Wehner P, Schwenty-Lara J, Lim CY, Sadasivam A, Lovatt M, Wang ST, Ali Y, Borchers A, Sampath K, Dunn NR. The PDZ domain protein Mcc is a novel effector of non-canonical Wnt signaling during convergence and extension in zebrafish. Development 2014; 141:3505-16. [DOI: 10.1242/dev.114033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During vertebrate gastrulation, a complex set of mass cellular rearrangements shapes the embryonic body plan and appropriately positions the organ primordia. In zebrafish and Xenopus, convergence and extension (CE) movements simultaneously narrow the body axis mediolaterally and elongate it from head to tail. This process is governed by polarized cell behaviors that are coordinated by components of the non-canonical, β-catenin-independent Wnt signaling pathway, including Wnt5b and the transmembrane planar cell polarity (PCP) protein Vangl2. However, the intracellular events downstream of Wnt/PCP signals are not fully understood. Here, we show that zebrafish mutated in colorectal cancer (mcc), which encodes an evolutionarily conserved PDZ domain-containing putative tumor suppressor, is required for Wnt5b/Vangl2 signaling during gastrulation. Knockdown of mcc results in CE phenotypes similar to loss of vangl2 and wnt5b, whereas overexpression of mcc robustly rescues the depletion of wnt5b, vangl2 and the Wnt5b tyrosine kinase receptor ror2. Biochemical experiments establish a direct physical interaction between Mcc and the Vangl2 cytoplasmic tail. Lastly, CE defects in mcc morphants are suppressed by downstream activation of RhoA and JNK. Taken together, our results identify Mcc as a novel intracellular effector of non-canonical Wnt5b/Vangl2/Ror2 signaling during vertebrate gastrulation.
Collapse
Affiliation(s)
- Teddy Young
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Yogavalli Poobalan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Shijie Tao
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
| | - Sheena Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Peter Wehner
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, GZMB, University of Göttingen, Göttingen 37077, Germany
| | - Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg 35043, Germany
| | - Chin Yan Lim
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Akila Sadasivam
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Matthew Lovatt
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Siew Tein Wang
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Yusuf Ali
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| | - Annette Borchers
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, GZMB, University of Göttingen, Göttingen 37077, Germany
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg 35043, Germany
| | - Karuna Sampath
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543
- Division of Biomedical Cell Biology, B040, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - N. Ray Dunn
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore138648
| |
Collapse
|
29
|
β-Arrestin interacts with the beta/gamma subunits of trimeric G-proteins and dishevelled in the Wnt/Ca(2+) pathway in xenopus gastrulation. PLoS One 2014; 9:e87132. [PMID: 24489854 PMCID: PMC3906129 DOI: 10.1371/journal.pone.0087132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation of morphogenetic movements in vertebrates. The term non-canonical Wnt signaling comprises multiple, intracellularly divergent, Wnt-activated and β-Catenin independent signaling cascades including the Wnt/Planar Cell Polarity and the Wnt/Ca2+ cascades. Wnt/Planar Cell Polarity and Wnt/Ca2+ pathways share common effector proteins, including the Wnt ligand, Frizzled receptors and Dishevelled, with each other and with additional branches of Wnt signaling. Along with the aforementioned proteins, β-Arrestin has been identified as an essential effector protein in the Wnt/β-Catenin and the Wnt/Planar Cell Polarity pathway. Our results demonstrate that β-Arrestin is required in the Wnt/Ca2+ signaling cascade upstream of Protein Kinase C (PKC) and Ca2+/Calmodulin-dependent Protein Kinase II (CamKII). We have further characterized the role of β-Arrestin in this branch of non-canonical Wnt signaling by knock-down and rescue experiments in Xenopus embryo explants and analyzed protein-protein interactions in 293T cells. Functional interaction of β-Arrestin, the β subunit of trimeric G-proteins and Dishevelled is required to induce PKC activation and membrane translocation. In Xenopus gastrulation, β-Arrestin function in Wnt/Ca2+ signaling is essential for convergent extension movements. We further show that β-Arrestin physically interacts with the β subunit of trimeric G-proteins and Dishevelled, and that the interaction between β-Arrestin and Dishevelled is promoted by the beta/gamma subunits of trimeric G-proteins, indicating the formation of a multiprotein signaling complex.
Collapse
|
30
|
Schneider M, Huang C, Becker SF, Gradl D, Wedlich D. Protocadherin PAPC is expressed in the CNC and can compensate for the loss of PCNS. Genesis 2014; 52:120-6. [DOI: 10.1002/dvg.22736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Martina Schneider
- Department of Cell and Developmental Biology; KIT, Campus South, Zoological Institute; 76131 Karlsruhe Germany
| | - Chaolie Huang
- Department of Cell and Developmental Biology; KIT, Campus South, Zoological Institute; 76131 Karlsruhe Germany
| | - Sarah F.S. Becker
- Department of Cell and Developmental Biology; KIT, Campus South, Zoological Institute; 76131 Karlsruhe Germany
| | - Dietmar Gradl
- Department of Cell and Developmental Biology; KIT, Campus South, Zoological Institute; 76131 Karlsruhe Germany
| | - Doris Wedlich
- Department of Cell and Developmental Biology; KIT, Campus South, Zoological Institute; 76131 Karlsruhe Germany
| |
Collapse
|
31
|
Fagotto F, Winklbauer R, Rohani N. Ephrin-Eph signaling in embryonic tissue separation. Cell Adh Migr 2014; 8:308-26. [PMID: 25482630 PMCID: PMC4594459 DOI: 10.4161/19336918.2014.970028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/19/2023] Open
Abstract
The physical separation of the embryonic regions that give rise to the tissues and organs of multicellular organisms is a fundamental aspect of morphogenesis. Pioneer experiments by Holtfreter had shown that embryonic cells can sort based on "tissue affinities," which have long been considered to rely on differences in cell-cell adhesion. However, vertebrate embryonic tissues also express a variety of cell surface cues, in particular ephrins and Eph receptors, and there is now firm evidence that these molecules are systematically used to induce local repulsion at contacts between different cell types, efficiently preventing mixing of adjacent cell populations.
Collapse
Affiliation(s)
| | - Rudolf Winklbauer
- Dpt. of Cell and Systems Biology; University of Toronto; Toronto, Canada
| | - Nazanin Rohani
- Dpt. of Biology; McGill University; Montreal, Quebec, Canada
| |
Collapse
|
32
|
Wylie AD, Fleming JAGW, Whitener AE, Lekven AC. Post-transcriptional regulation of wnt8a is essential to zebrafish axis development. Dev Biol 2013; 386:53-63. [PMID: 24333179 DOI: 10.1016/j.ydbio.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022]
Abstract
wnt8a Is essential for normal patterning during vertebrate embryonic development, and either gain or loss-of-function gene dysregulation results in severe axis malformations. The zebrafish wnt8a locus is structured such that transcripts may possess two regulatory 3' untranslated regions (UTRs), raising the possibility of post-transcriptional regulation as an important mode of wnt8a signaling control. To determine whether both UTRs contribute to post-transcriptional wnt8a gene regulation, each UTR (UTR1 and UTR2) was tested in transient and transgenic reporter assays. Both UTRs suppress EGFP reporter expression in cis, with UTR2 exhibiting a more pronounced effect. UTR2 contains a 6 base sequence necessary for UTR2 regulatory function that is complementary to the seed of the microRNA, miR-430. A target protector morpholino that overlaps the seed complement stabilizes both reporter mRNAs and wnt8a mRNAs, and produces phenotypic abnormalities consistent with wnt8a gain-of-function. In rescue assays, specific functions can be attributed to each of the two wnt8a proteins encoded by the locus. An interplay of wnt8a.1 and wnt8a.2 regulates neural and mesodermal patterning and morphogenesis as well as patterning between brain subdivisions. Thus, post-transcriptional control of wnt8a is essential to fine tune the balance of the signaling outputs of the complex wnt8a locus.
Collapse
Affiliation(s)
- Annika D Wylie
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Jo-Ann G W Fleming
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Amy E Whitener
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Arne C Lekven
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States.
| |
Collapse
|
33
|
He Y, Xu X, Zhao S, Ma S, Sun L, Liu Z, Luo C. Maternal control of axial-paraxial mesoderm patterning via direct transcriptional repression in zebrafish. Dev Biol 2013; 386:96-110. [PMID: 24296303 DOI: 10.1016/j.ydbio.2013.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
Abstract
Axial-paraxial mesoderm patterning is a special dorsal-ventral patterning event of establishing the vertebrate body plan. Though dorsal-ventral patterning has been extensively studied, the initiation of axial-paraxial mesoderm pattering remains largely unrevealed. In zebrafish, spt cell-autonomously regulates paraxial mesoderm specification and flh represses spt expression to promote axial mesoderm fate, but the expression domains of spt and flh initially overlap in the entire marginal zone of the embryo. Defining spt and flh territories is therefore a premise of axial-paraxial mesoderm patterning. In this study, we investigated why and how the initial expression of flh becomes repressed in the ventrolateral marginal cells during blastula stage. Loss- and gain-of-function experiments showed that a maternal transcription factor Vsx1 is essential for restricting flh expression within the dorsal margin and preserving spt expression and paraxial mesoderm specification in the ventrolateral margin of embryo. Chromatin immunoprecipitation and electrophoretic mobility shift assays in combination with core consensus sequence mutation analysis further revealed that Vsx1 can directly repress flh by binding to the proximal promoter at a specific site. Inhibiting maternal vsx1 translation resulted in confusion of axial and paraxial mesoderm markers expression and axial-paraxial mesoderm patterning. These results demonstrated that direct transcriptional repression of the decisive axial mesoderm gene by maternal ventralizing factor is a crucial regulatory mechanism of initiating axial-paraxial mesoderm patterning in vertebrates.
Collapse
Affiliation(s)
- Ying He
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Xiaofeng Xu
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Shufang Zhao
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Shanshan Ma
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Lei Sun
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Zhenghua Liu
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | - Chen Luo
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
34
|
McClay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, Hudson AD, Harada A, Hultman CM, Magnusson PKE, Sullivan PF, Van Den Oord EJCG. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet 2013; 23:1175-85. [PMID: 24135035 DOI: 10.1093/hmg/ddt511] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The central importance of epigenetics to the aging process is increasingly being recognized. Here we perform a methylome-wide association study (MWAS) of aging in whole blood DNA from 718 individuals, aged 25-92 years (mean = 55). We sequenced the methyl-CpG-enriched genomic DNA fraction, averaging 67.3 million reads per subject, to obtain methylation measurements for the ∼27 million autosomal CpGs in the human genome. Following extensive quality control, we adaptively combined methylation measures for neighboring, highly-correlated CpGs into 4 344 016 CpG blocks with which we performed association testing. Eleven age-associated differentially methylated regions (DMRs) passed Bonferroni correction (P-value < 1.15 × 10(-8)). Top findings replicated in an independent sample set of 558 subjects using pyrosequencing of bisulfite-converted DNA (min P-value < 10(-30)). To examine biological themes, we selected 70 DMRs with false discovery rate of <0.1. Of these, 42 showed hypomethylation and 28 showed hypermethylation with age. Hypermethylated DMRs were more likely to overlap with CpG islands and shores. Hypomethylated DMRs were more likely to be in regions associated with polycomb/regulatory proteins (e.g. EZH2) or histone modifications H3K27ac, H3K4m1, H3K4m2, H3K4m3 and H3K9ac. Among genes implicated by the top DMRs were protocadherins, homeobox genes, MAPKs and ryanodine receptors. Several of our DMRs are at genes with potential relevance for age-related disease. This study successfully demonstrates the application of next-generation sequencing to MWAS, by interrogating a large proportion of the methylome and returning potentially novel age DMRs, in addition to replicating several loci implicated in previous studies using microarrays.
Collapse
Affiliation(s)
- Joseph L McClay
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fagotto F, Rohani N, Touret AS, Li R. A molecular base for cell sorting at embryonic boundaries: contact inhibition of cadherin adhesion by ephrin/ Eph-dependent contractility. Dev Cell 2013; 27:72-87. [PMID: 24094740 DOI: 10.1016/j.devcel.2013.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/26/2013] [Accepted: 09/04/2013] [Indexed: 12/20/2022]
Abstract
The mechanism responsible for subdividing the embryo into individual tissues is a fundamental, yet still poorly understood, question in developmental biology. Various general hypotheses have been proposed, involving differences in cell adhesion, contractility, or contact-mediated repulsion. However, the key parameter in tissue separation, i.e., the regulation of cadherin-based adhesion at the boundary, has not yet been investigated. We show that cadherin clustering is specifically inhibited at the vertebrate notochord-presomitic mesoderm boundary, preventing formation of adhesive bonds between cells of the two different types. This local regulation depends on differentially expressed ephrins and Eph receptors, which increase cell contractility and generate a membrane blebbing-like behavior along the boundary. Inhibiting myosin activity is sufficient to induce cadherin clustering and formation of stable contacts across the boundary, causing notochord and presomitic tissues to fuse. Local inhibition of cadherin adhesion explains how sharp separation can be achieved in response to cell-cell contact signals.
Collapse
Affiliation(s)
- François Fagotto
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| | | | | | | |
Collapse
|
36
|
Hwang YS, Lee HS, Kamata T, Mood K, Cho HJ, Winterbottom E, Ji YJ, Singh A, Daar IO. The Smurf ubiquitin ligases regulate tissue separation via antagonistic interactions with ephrinB1. Genes Dev 2013; 27:491-503. [PMID: 23475958 DOI: 10.1101/gad.208355.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The formation of tissue boundaries is dependent on the cell-cell adhesion/repulsion system that is required for normal morphogenetic processes during development. The Smad ubiquitin regulatory factors (Smurfs) are E3 ubiquitin ligases with established roles in cell growth and differentiation, but whose roles in regulating cell adhesion and migration are just beginning to emerge. Here, we demonstrate that the Smurfs regulate tissue separation at mesoderm/ectoderm boundaries through antagonistic interactions with ephrinB1, an Eph receptor ligand that has a key role in regulating the separation of embryonic germ layers. EphrinB1 is targeted by Smurf2 for degradation; however, a Smurf1 interaction with ephrinB1 prevents the association with Smurf2 and precludes ephrinB1 from ubiquitination and degradation, since it is a substantially weaker substrate for Smurf1. Inhibition of Smurf1 expression in embryonic mesoderm results in loss of ephrinB1-mediated separation of this tissue from the ectoderm, which can be rescued by the coincident inhibition of Smurf2 expression. This system of differential interactions between Smurfs and ephrinB1 regulates the maintenance of tissue boundaries through the control of ephrinB protein levels.
Collapse
Affiliation(s)
- Yoo-Seok Hwang
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang Z, Rankin SA, Zorn AM. Different thresholds of Wnt-Frizzled 7 signaling coordinate proliferation, morphogenesis and fate of endoderm progenitor cells. Dev Biol 2013; 378:1-12. [PMID: 23562607 DOI: 10.1016/j.ydbio.2013.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/06/2013] [Accepted: 02/22/2013] [Indexed: 11/27/2022]
Abstract
Wnt signaling has multiple dynamic roles during development of the gastrointestinal and respiratory systems. Differential Wnt signaling is thought to be a critical step in Xenopus endoderm patterning such that during late gastrula and early somite stages of embryogenesis, Wnt activity must be suppressed in the anterior to allow the specification of foregut progenitors. However, the foregut endoderm also expresses the Wnt-receptor Frizzled 7 (Fzd7) as well as several Wnt ligands suggesting that the current model may be too simple. In this study, we show that Fzd7 is required to transduce a low level of Wnt signaling that is essential to maintain foregut progenitors. Foregut-specific Fzd7-depletion from the Xenopus foregut resulted in liver and pancreas agenesis. Fzd7-depleted embryos failed to maintain the foregut progenitor marker hhex and exhibited decreased proliferation; in addition the foregut cells were enlarged with a randomized orientation. We show that in the foregut Fzd7 signals via both the Wnt/β-catenin and Wnt/JNK pathways and that different thresholds of Wnt-Fzd7 activity coordinate progenitor cell fate, proliferation and morphogenesis.
Collapse
Affiliation(s)
- Zheng Zhang
- Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati OH 45229, USA
| | | | | |
Collapse
|
38
|
Lin J, Wang C, Redies C. Expression of multiple delta-protocadherins during feather bud formation. Gene Expr Patterns 2013; 13:57-65. [DOI: 10.1016/j.gep.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/30/2012] [Accepted: 01/03/2013] [Indexed: 12/31/2022]
|
39
|
Kahr I, Vandepoele K, van Roy F. Delta-protocadherins in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:169-92. [PMID: 23481195 DOI: 10.1016/b978-0-12-394311-8.00008-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The protocadherin family comprises clustered and nonclustered protocadherin genes. The nonclustered genes encode mainly δ-protocadherins, which deviate markedly from classical cadherins. They can be subdivided phylogenetically into δ0-protocadherins (protocadherin-20), δ1-protocadherins (protocadherin-1, -7, -9, and -11X/Y), and δ2-protocadherins (protocadherin-8, -10, -17, -18, and -19). δ-Protocadherins share a similar gene structure and are expressed as multiple alternative splice forms differing mostly in their cytoplasmic domains (CDs). Some δ-protocadherins reportedly show cell-cell adhesion properties. Individual δ-protocadherins appear to be involved in specific signaling pathways, as they interact with proteins such as TAF1/Set, TAO2β, Nap1, and the Frizzled-7 receptor. The spatiotemporally restricted expression of δ-protocadherins in various tissues and species and their functional analysis suggest that they play multiple, tightly regulated roles in vertebrate development. Furthermore, several δ-protocadherins have been implicated in neurological disorders and in cancers, highlighting the importance of scrutinizing their properties and their dysregulation in various pathologies.
Collapse
Affiliation(s)
- Irene Kahr
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
40
|
Kraft B, Berger CD, Wallkamm V, Steinbeisser H, Wedlich D. Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin. ACTA ACUST UNITED AC 2012; 198:695-709. [PMID: 22908314 PMCID: PMC3514027 DOI: 10.1083/jcb.201110076] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Wnt-11/frizzled-7 reduces the lateral clustering of C-cadherin by capturing the
protocadherin PAPC and C-cadherin into distinct adhesion-modulating
complexes. Wnt-11/planar cell polarity signaling polarizes mesodermal cells undergoing
convergent extension during Xenopus laevis gastrulation. These
shape changes associated with lateral intercalation behavior require a dynamic
modulation of cell adhesion. In this paper, we report that Wnt-11/frizzled-7
(Fz7) controls cell adhesion by forming separate adhesion-modulating complexes
(AMCs) with the paraxial protocadherin (PAPC; denoted as AMCP) and C-cadherin
(denoted as AMCC) via distinct Fz7 interaction domains. When PAPC was part of a
Wnt-11–Fz7 complex, its Dynamin1- and clathrin-dependent internalization
was blocked. This membrane stabilization of AMCP (Fz7/PAPC) by Wnt-11 prevented
C-cadherin clustering, resulting in reduced cell adhesion and modified cell
sorting activity. Importantly, Wnt-11 did not influence C-cadherin
internalization; instead, it promoted the formation of AMCC (Fz7/Cadherin),
which competed with cis-dimerization of C-cadherin. Because PAPC and C-cadherin
did not directly interact and did not form a joint complex with Fz7, we suggest
that Wnt-11 triggers the formation of two distinct complexes, AMCC and AMCP,
that act in parallel to reduce cell adhesion by hampering lateral clustering of
C-cadherin.
Collapse
Affiliation(s)
- Bianca Kraft
- Cell and Developmental Biology, Zoological Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
41
|
Julier A, Goll C, Korte B, Knöchel W, Wacker SA. Pou-V factor Oct25 regulates early morphogenesis inXenopus laevis. Dev Growth Differ 2012; 54:702-16. [DOI: 10.1111/j.1440-169x.2012.01371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 07/16/2012] [Accepted: 07/22/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandra Julier
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Claudio Goll
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Brigitte Korte
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Walter Knöchel
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | | |
Collapse
|
42
|
Zhang D, Zhao W, Liao X, Bi T, Li H, Che X. Frequent silencing of protocadherin 8 by promoter methylation, a candidate tumor suppressor for human gastric cancer. Oncol Rep 2012; 28:1785-91. [PMID: 22941331 DOI: 10.3892/or.2012.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/30/2012] [Indexed: 11/05/2022] Open
Abstract
The cadherins are a family of cell surface glycoproteins responsible for cell adhesion which play an important role in cell morphology, contact inhibition and signal transduction during tumorigenesis. Protocadherin 8 (PCDH8), a member of the cadherin family, has been reported to act as a tumor suppressor involved in oncogenesis in breast cancer. In this study, we aimed to investigate the epigenetic inactivation of PCDH8 and its tumor suppressor function in gastric cancer. The expression of PCDH8 was markedly reduced or silenced in gastric cancer cell lines compared with normal gastric cells or tissues. Methylation of the PCDH8 gene promoter was observed in 100% (4/4) of cell lines and 55.38% (36/65) of the primary gastric cancer by methylation-specific PCR, but not in normal gastric mucosa (0/10). Methylated PCDH8 was significantly associated with lymph node metastasis in a logistic regression analysis. The demethylation reagent 5-aza-2'-deoxycytidine was able to restore or upregulate PCDH8 expression in gastric cancer cell lines. Ectopic expression of PCDH8 in silenced gastric cancer cells significantly inhibited cell migration and induced apoptosis. For the first time, our study demonstrates the epigenetic inactivation of PCDH8 by promoter methylation and its tumor suppressor function in human gastric cancer. Thus, PCDH8 could be identified as a candidate tumor suppressor in human gastric cancer.
Collapse
Affiliation(s)
- Danjie Zhang
- Department of General Surgery, First Affiliated Hospital of Medical College of Xi'an JiaoTong University, Xi'an 710061, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Becker SF, Langhe R, Huang C, Wedlich D, Kashef J. Giving the right tug for migration: Cadherins in tissue movements. Arch Biochem Biophys 2012; 524:30-42. [DOI: 10.1016/j.abb.2012.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 01/01/2023]
|
44
|
Ninomiya H, David R, Damm EW, Fagotto F, Niessen CM, Winklbauer R. Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo. J Cell Sci 2012; 125:1877-83. [PMID: 22328523 DOI: 10.1242/jcs.095315] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adhesion differences between cell populations are in principle a source of strong morphogenetic forces promoting cell sorting, boundary formation and tissue positioning, and cadherins are main mediators of cell adhesion. However, a direct link between cadherin expression, differential adhesion and morphogenesis has not yet been determined for a specific process in vivo. To identify such a connection, we modulated the expression of C-cadherin in the Xenopus laevis gastrula, and combined this with direct measurements of cell adhesion-related parameters. Our results show that gastrulation is surprisingly tolerant of overall changes in adhesion. Also, as expected, experimentally generated, cadherin-based adhesion differences promote cell sorting in vitro. Importantly, however, such differences do not lead to the sorting of cells in the embryo, showing that differential adhesion is not sufficient to drive morphogenesis in this system. Compensatory recruitment of cadherin protein to contacts between cadherin-deprived and -overexpressing cells could contribute to the prevention of sorting in vivo.
Collapse
Affiliation(s)
- Hiromasa Ninomiya
- University of Toronto, Department of Cell and Systems Biology, Toronto, M5S 3G5 Canada
| | | | | | | | | | | |
Collapse
|
45
|
Xenopus paraxial protocadherin inhibits Wnt/β-catenin signalling via casein kinase 2β. EMBO Rep 2012; 13:129-34. [PMID: 22193776 DOI: 10.1038/embor.2011.240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/25/2011] [Accepted: 11/16/2011] [Indexed: 11/09/2022] Open
Abstract
Xenopus paraxial protocadherin (PAPC) regulates cadherin-mediated cell adhesion and promotes the planar cell polarity (PCP) pathway. Here we report that PAPC functions in the Xenopus gastrula as an inhibitor of the Wnt/β-catenin pathway. The intracellular domain of PAPC interacts with casein kinase 2 beta (CK2β), which is part of the CK2 holoenzyme. The CK2α/β complex stimulates Wnt/β-catenin signalling, and the physical interaction of CK2β with PAPC antagonizes this activity. By this mechanism, PAPC restricts the expression of Wnt target genes during gastrulation. These experiments identify a novel function of protocadherins as regulators of the Wnt pathway.
Collapse
|
46
|
Abstract
Xenopus gastrulation consists of the orderly deformation of a single, multilayered cell sheet that resembles a multilayered epithelium, and flexible cell-cell adhesion has to provide tissue cohesion while allowing for cell rearrangements that drive gastrulation. A few classic cadherins are expressed in the Xenopus early embryo. The prominent C-cadherin is essential for the cohesion of the animal part of the gastrula including ectoderm and chordamesoderm, and it contributes to the adhesion of endoderm and anterior mesoderm in the vegetal moiety. The cadherin/catenin complex is expressed in a graded pattern which is stable during early development. Regional differences in cell adhesion conform to the graded cadherin/catenin expression pattern. However, although the cadherin/catenin pattern seems to be actively maintained, and cadherin function is modulated to reinforce differential adhesiveness, it is not clear how regional differences in tissue cohesion affect gastrulation. Manipulating cadherin expression or function does not induce cell sorting or boundary formation in the embryo. Moreover, known boundary formation mechanisms in the gastrula are based on active cell repulsion. Cell rearrangement is also compatible with variable tissue cohesion. Thus, identifying roles for differential adhesion in the Xenopus gastrula remains a challenge.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada,
| |
Collapse
|
47
|
Abstract
Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.
Collapse
|
48
|
Abstract
The planar cell polarity (PCP) pathway is a β-catenin-independent branch of the Wnt signaling cascade. In vertebrate embryos PCP signaling regulates morphogenetic events including convergent extension (CE) movements during gastrualtion. Xenopus embryo has been established as an excellent model system to dissect PCP signaling in vertebrates because morphogenetic cell behaviors including CE can easily be monitored in vivo. Xenopus Paraxial protocadherin (xPAPC) is a transmembrane protein which serves as a link between patterning factors in the Spemann's organizer and regulators of the morphogenetic movements. xPAPC regulates morphogenesis in part by modulating cell adhesion and PCP signaling. Here two methods, GST pull-down assay and yeast two-hybrid assay, are described for the identification of xPAPC interacting proteins to elucidate the mechanism by which xPAPC regulates PCP signaling.
Collapse
Affiliation(s)
- Yingqun Wang
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Gorny AK, Steinbeisser H. Brachet's cleft: a model for the analysis of tissue separation in Xenopus. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:294-300. [PMID: 23801443 DOI: 10.1002/wdev.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tissue border formation is an important process that prevents mixing of cells during embryonic development. The establishment of tissue borders is not a trivial problem, particularly in early embryos when cells and tissues are not fully differentiated. An example of an early tissue separation process is the formation of Brachet's cleft in Xenopus. During early gastrulation, this morphologically visible cleft separates mesendoderm and ectoderm. Over the last decade, it was recognized that morphogenetic processes, including tissue separation, can be experimentally uncoupled from embryonic patterning events. In this study, we summarize the data explaining the regulation of Brachet's cleft and introduce the experimental arsenal that was used for this analysis. The formation of Brachet's cleft involves the activity of transcription factors, cell adhesion molecules, and signaling modules, which act in a complex regulatory network. According to the current state of knowledge, Rho signaling seems to be the central player during this process. The mechanisms that regulate Rho during tissue separation and the experimental approaches to monitor Rho activity are discussed.
Collapse
|
50
|
Yoder MD, Gumbiner BM. Axial protocadherin (AXPC) regulates cell fate during notochordal morphogenesis. Dev Dyn 2011; 240:2495-504. [PMID: 21960065 DOI: 10.1002/dvdy.22754] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 12/25/2022] Open
Abstract
The separation and specification of mesoderm into the notochord and somites involves members of the non-clustered δ-protocadherins. Axial (AXPC) and paraxial (PAPC) protocadherins are expressed in the early dorsal mesoderm and later become refined to the developing notochordal and somitic mesoderm, respectively. The role of PAPC in this process has been studied extensively, but the role of AXPC is poorly understood. Partial knockdown of AXPC causes a specific bent-axis phenotype, while more severe knockdown results in the loss of notochord formation. The inability of these embryos to develop a notochord is not due to a cell-sorting event via changes in cell adhesion during gastrulation, but rather this defect is manifested through the loss of axial mesoderm specification, but not general mesoderm induction. The results presented here show that AXPC functions in notochord morphogenesis by directing cell-fate decisions rather than cell-cell adhesion.
Collapse
Affiliation(s)
- Michael D Yoder
- Department of Cell Biology, School of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|