1
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
2
|
Jiang Y, Yang B, Liu X, Tian X, Wang Q, Wang B, Zhang Q, Yu W, Qi X, Jiang Y, Hsiang T. A Satellite dsRNA Attenuates the Induction of Helper Virus-Mediated Symptoms in Aspergillus flavus. Front Microbiol 2022; 13:895844. [PMID: 35711767 PMCID: PMC9195127 DOI: 10.3389/fmicb.2022.895844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillus flavus is an important fungal pathogen of animals and plants. Previously, we reported a novel partitivirus, Aspergillus flavus partitivirus 1 (AfPV1), infecting A. flavus. In this study, we obtained a small double-stranded (ds) RNA segment (734 bp), which is a satellite RNA of the helper virus, AfPV1. The presence of AfPV1 altered the colony morphology, decreased the number of conidiophores, created significantly larger vacuoles, and caused more sensitivity to osmotic, oxidative, and UV stresses in A. flavus, but the small RNA segment could attenuate the above symptoms caused by the helper virus AfPV1 in A. flavus. Moreover, AfPV1 infection reduced the pathogenicity of A. flavus in corn (Zea mays), honeycomb moth (Galleria mellonella), mice (Mus musculus), and the adhesion of conidia to host epithelial cells, and increased conidial death by macrophages. However, the small RNA segment could also attenuate the above symptoms caused by the helper virus AfPV1 in A. flavus, perhaps by reducing the genomic accumulation of the helper virus AfPV1 in A. flavus. We used this model to investigate transcriptional genes regulated by AfPV1 and the small RNA segment in A. flavus, and their role in generating different phenotypes. We found that the pathways of the genes regulated by AfPV1 in its host were similar to those of retroviral viruses. Therefore, some pathways may be of benefit to non-retroviral viral integration or endogenization into the genomes of its host. Moreover, some potential antiviral substances were also found in A. flavus using this system.
Collapse
Affiliation(s)
- Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Bi Yang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xiang Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xun Tian
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Bi Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yanping Jiang
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Wang G, Lv C, Liu C, Shen W. Neutrophil-to-lymphocyte ratio as a potential biomarker in predicting influenza susceptibility. Front Microbiol 2022; 13:1003380. [PMID: 36274727 PMCID: PMC9583527 DOI: 10.3389/fmicb.2022.1003380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human population exposed to influenza viruses exhibited wide variation in susceptibility. The ratio of neutrophils to lymphocytes (NLR) has been examined to be a marker of systemic inflammation. We sought to investigate the relationship between influenza susceptibility and the NLR taken before influenza virus infection. METHODS We investigated blood samples from five independent influenza challenge cohorts prior to influenza inoculation at the cellular level by using digital cytometry. We used multi-cohort gene expression analysis to compare the NLR between the symptomatic infected (SI) and asymptomatic uninfected (AU) subjects. We then used a network analysis approach to identify host factors associated with NLR and influenza susceptibility. RESULTS The baseline NLR was significantly higher in the SI group in both discovery and validation cohorts. The NLR achieved an AUC of 0.724 on the H3N2 data, and 0.736 on the H1N1 data in predicting influenza susceptibility. We identified four key modules that were not only significantly correlated with the baseline NLR, but also differentially expressed between the SI and AU groups. Genes within these four modules were enriched in pathways involved in B cell-mediated immune responses, cellular metabolism, cell cycle, and signal transduction, respectively. CONCLUSIONS This study identified the NLR as a potential biomarker for predicting disease susceptibility to symptomatic influenza. An elevated NLR was detected in susceptible hosts, who may have defects in B cell-mediated immunity or impaired function in cellular metabolism, cell cycle or signal transduction. Our work can serve as a comparative model to provide insights into the COVID-19 susceptibility.
Collapse
Affiliation(s)
- Guoyun Wang
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Cheng Lv
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Cheng Liu
- Department of Computer Science, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
| | - Wenjun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
- *Correspondence: Wenjun Shen
| |
Collapse
|
4
|
Bai L, Hirose T, Assi W, Wada S, Takeshima SN, Aida Y. Bovine Leukemia Virus Infection Affects Host Gene Expression Associated with DNA Mismatch Repair. Pathogens 2020; 9:pathogens9110909. [PMID: 33143351 PMCID: PMC7694100 DOI: 10.3390/pathogens9110909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/17/2023] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis, a malignant form of B-cell lymphoma, and is closely related to human T-cell leukemia viruses. We investigated whether BLV infection affects host genes associated with DNA mismatch repair (MMR). Next-generation sequencing of blood samples from five calves experimentally infected with BLV revealed the highest expression levels of seven MMR genes (EXO1, UNG, PCNA, MSH2, MSH3, MSH6, and PMS2) at the point of peak proviral loads (PVLs). Furthermore, MMR gene expression was only upregulated in cattle with higher PVLs. In particular, the expression levels of MSH2, MSH3, and UNG positively correlated with PVL in vivo. The expression levels of all seven MMR genes in pig kidney-15 cells and the levels of PMS2 and EXO1 in HeLa cells also increased tendencies after transient transfection with a BLV infectious clone. Moreover, MMR gene expression levels were significantly higher in BLV-expressing cell lines compared with those in the respective parental cell lines. Expression levels of MSH2 and EXO1 in BLV-infected cattle with lymphoma were significantly lower and higher, respectively, compared with those in infected cattle in vivo. These results reveal that BLV infection affects MMR gene expression, offering new candidate markers for lymphoma diagnosis.
Collapse
Affiliation(s)
- Lanlan Bai
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan; (L.B.); (W.A.); (S.W.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, Wako 351-0198, Japan;
| | - Tomoya Hirose
- Viral Infectious Diseases Unit, RIKEN, Wako 351-0198, Japan;
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wlaa Assi
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan; (L.B.); (W.A.); (S.W.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, Wako 351-0198, Japan;
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan; (L.B.); (W.A.); (S.W.); (S.-n.T.)
| | - Shin-nosuke Takeshima
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan; (L.B.); (W.A.); (S.W.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, Wako 351-0198, Japan;
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Niiza 352-0017, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako 351-0198, Japan;
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo 113-8657, Japan
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako 351-0198, Japan
- Correspondence: ; Tel.: +81-48-462-4418
| |
Collapse
|
5
|
Vpu modulates DNA repair to suppress innate sensing and hyper-integration of HIV-1. Nat Microbiol 2020; 5:1247-1261. [PMID: 32690953 DOI: 10.1038/s41564-020-0753-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
To avoid innate sensing and immune control, human immunodeficiency virus type 1 (HIV-1) has to prevent the accumulation of viral complementary DNA species. Here, we show that the late HIV-1 accessory protein Vpu hijacks DNA repair mechanisms to promote degradation of nuclear viral cDNA in cells that are already productively infected. Vpu achieves this by interacting with RanBP2-RanGAP1*SUMO1-Ubc9 SUMO E3-ligase complexes at the nuclear pore to reprogramme promyelocytic leukaemia protein nuclear bodies and reduce SUMOylation of Bloom syndrome protein, unleashing end degradation of viral cDNA. Concomitantly, Vpu inhibits RAD52-mediated homologous repair of viral cDNA, preventing the generation of dead-end circular forms of single copies of the long terminal repeat and permitting sustained nucleolytic attack. Our results identify Vpu as a key modulator of the DNA repair machinery. We show that Bloom syndrome protein eliminates nuclear HIV-1 cDNA and thereby suppresses immune sensing and proviral hyper-integration. Therapeutic targeting of DNA repair may facilitate the induction of antiviral immunity and suppress proviral integration replenishing latent HIV reservoirs.
Collapse
|
6
|
Current Understanding of RAD52 Functions: Fundamental and Therapeutic Insights. Cancers (Basel) 2020; 12:cancers12030705. [PMID: 32192055 PMCID: PMC7140074 DOI: 10.3390/cancers12030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
In this Special Issue, we would like to focus on the various functions of the RAD52 helicase-like protein and the current implications of such findings for cancer treatment. Over the last few years, various laboratories have discovered particular activities of mammalian RAD52—both in S and M phase—that are distinct from the auxiliary role of yeast RAD52 in homologous recombination. At DNA double-strand breaks, RAD52 was demonstrated to spur alternative pathways to compensate for the loss of homologous recombination functions. At collapsed replication forks, RAD52 activates break-induced replication. In the M phase, RAD52 promotes the finalization of DNA replication. Its compensatory role in the resolution of DNA double-strand breaks has put RAD52 in the focus of synthetic lethal strategies, which is particularly relevant for cancer treatment.
Collapse
|
7
|
RAD52: Viral Friend or Foe? Cancers (Basel) 2020; 12:cancers12020399. [PMID: 32046320 PMCID: PMC7072633 DOI: 10.3390/cancers12020399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian Radiation Sensitive 52 (RAD52) is a gene whose scientific reputation has recently seen a strong resurgence. In the past decade, RAD52, which was thought to be dispensable for most DNA repair and recombination reactions in mammals, has been shown to be important for a bevy of DNA metabolic pathways. One of these processes is termed break-induced replication (BIR), a mechanism that can be used to re-start broken replication forks and to elongate the ends of chromosomes in telomerase-negative cells. Viruses have historically evolved a myriad of mechanisms in which they either conscript cellular factors or, more frequently, inactivate them as a means to enable their own replication and survival. Recent data suggests that Adeno-Associated Virus (AAV) may replicate its DNA in a BIR-like fashion and/or utilize RAD52 to facilitate viral transduction and, as such, likely conscripts/requires the host RAD52 protein to promote its perpetuation.
Collapse
|
8
|
Yadav P, Sur S, Desai D, Kulkarni S, Sharma V, Tandon V. Interaction of HIV-1 integrase with polypyrimidine tract binding protein and associated splicing factor (PSF) and its impact on HIV-1 replication. Retrovirology 2019; 16:12. [PMID: 31036027 PMCID: PMC6489298 DOI: 10.1186/s12977-019-0474-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background The different interactions between viral proteins and cellular host proteins are required for efficient replication of HIV-1. Various reports implicated host cellular proteins as a key factor that either interact directly with HIV-1 integrase (IN) or get involved in the integration process of virus resulting in the modulation of integration step. Polypyrimidine tract binding protein and associated splicing factor (PSF) has diverse functions inside the cell such as transcriptional regulation, DNA repair, acts as nucleic acids binding protein and regulate replication and infectivity of different viruses. Results The protein binding study identified the association of host protein PSF with HIV-1 integrase. The siRNA knockdown (KD) of PSF resulted in increased viral replication in TZM-bl cells, suggesting PSF has negative influence on viral replication. The quantitative PCR of virus infected PSF knockdown TZM-bl cells showed more integrated DNA and viral cDNA as compared to control cells. We did not observe any significant difference between the amount of early reverse transcription products as well as infectivity of virus in the PSF KD and control TZM-bl cells. Molecular docking study supported the argument that PSF hinders the binding of viral DNA with IN. Conclusion In an attempt to study the host interacting protein of IN, we have identified a new interacting host protein PSF which is a splicing factor and elucidated its role in integration and viral replication. Experimental as well as in silico analysis inferred that the host protein causes not only change in the integration events but also targets the incoming viral DNA or the integrase-viral DNA complex. The role of PSF was also investigated at early reverse transcript production as well as late stages. The PSF is causing changes in integration events, but it does not over all make any changes in the virus infectivity. MD trajectory analyses provided a strong clue of destabilization of Integrase-viral DNA complex occurred due to PSF interaction with the conserved bases of viral DNA ends that are extremely crucial contact points with integrase and indispensable for integration. Thus our study emphasizes the negative influence of PSF on HIV-1 replication. Electronic supplementary material The online version of this article (10.1186/s12977-019-0474-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Souvik Sur
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dipen Desai
- National AIDS Research Institute, Pune, Maharashtra, 411026, India
| | - Smita Kulkarni
- National AIDS Research Institute, Pune, Maharashtra, 411026, India
| | - Vartika Sharma
- International Centre for Genetics Engineering and Biotechnology, New Delhi, 110067, India
| | - Vibha Tandon
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Yoshinaga N, Shindo K, Matsui Y, Takiuchi Y, Fukuda H, Nagata K, Shirakawa K, Kobayashi M, Takeda S, Takaori-Kondo A. A screening for DNA damage response molecules that affect HIV-1 infection. Biochem Biophys Res Commun 2019; 513:93-98. [PMID: 30935695 DOI: 10.1016/j.bbrc.2019.03.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 01/14/2023]
Abstract
Host DNA damage response molecules affect retroviral infection, as DNA intermediates of the viruses play essential roles in the viral life cycles. Although several such molecules have been reported, interactions between HIV-1 and host DNA damage response molecules have not been fully elucidated. To screen DNA damage response molecules that might affect HIV-1 infection, a set of 32 DNA-repair-deficient DT40 isogenic mutant cells were tested for HIV-1 infectivity. Seven out of the 32 clones showed less than 50% infectivity compared to parental DT40 cells, implying that DNA repair molecules deficient in these cells might support HIV-1 infection. Of these, EXO1 -/-, TP53BP1 -/- and WRN -/- cells showed more than twofold accumulation of two long terminal repeat circles and less than 50% integrated proviral DNA in quantitative-PCR analyses, indicating that the integration step is impaired. RAD18 -/- cells showed twofold higher HIV-1 infectivity and increased reverse transcription products at earlier time points, suggesting that RAD18 suppresses reverse transcription. The HIV-1 suppressive effects of RAD18 were confirmed by over-expression and knockdown experiments in human cells. L274P, a DNA-binding-impaired mutant of RAD18, showed impaired HIV-1 suppression and DNA binding, suggesting that binding HIV-1 DNA intermediates is critical for RAD18 to suppress reverse transcription and HIV-1 infection. Our data help understand interactions between host DNA damage response molecules and viral DNA.
Collapse
Affiliation(s)
- Noriyoshi Yoshinaga
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Keisuke Shindo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan.
| | - Yusuke Matsui
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Yoko Takiuchi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Hirofumi Fukuda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Kayoko Nagata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Masayuki Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
10
|
Abstract
My laboratory investigations have been driven by an abiding interest in understanding the consequences of genetic rearrangement in evolution and disease, and in using viruses to elucidate fundamental mechanisms in biology. Starting with bacteriophages and moving to the retroviruses, my use of the tools of genetics, molecular biology, biochemistry, and biophysics has spanned more than half a century-from the time when DNA structure was just discovered to the present day of big data and epigenetics. Both riding and contributing to the successive waves of technology, my laboratory has elucidated fundamental mechanisms in DNA replication, repair, and recombination. We have made substantial contributions in the area of retroviral oncogenesis, delineated mechanisms that control retroviral gene expression, and elucidated critical details of the structure and function of the retroviral enzymes-reverse transcriptase, protease, and integrase-and have had the satisfaction of knowing that the fundamental knowledge gained from these studies contributed important groundwork for the eventual development of antiviral drugs to treat AIDS. While pursuing laboratory research as a principal investigator, I have also been a science administrator-moving from laboratory head to department chair and, finally, to institute director. In addition, I have undertaken a number of community service, science-related "extracurricular" activities during this time. Filling all of these roles, while being a wife and mother, has required family love and support, creative management, and, above all, personal flexibility-with not too much long-term planning. I hope that this description of my journey, with various roles, obstacles, and successes, will be both interesting and informative, especially to young female scientists.
Collapse
Affiliation(s)
- Anna Marie Ann Skalka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111;
| |
Collapse
|
11
|
Bueno MTD, Reyes D, Llano M. LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends. Viruses 2017; 9:v9090259. [PMID: 28914817 PMCID: PMC5618025 DOI: 10.3390/v9090259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 11/17/2022] Open
Abstract
Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3′ processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3′ processed linear HIV-1 cDNA from exonucleolytic degradation.
Collapse
Affiliation(s)
- Murilo T D Bueno
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| | - Daniel Reyes
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| |
Collapse
|
12
|
Kan Y, Batada NN, Hendrickson EA. Human somatic cells deficient for RAD52 are impaired for viral integration and compromised for most aspects of homology-directed repair. DNA Repair (Amst) 2017; 55:64-75. [PMID: 28549257 DOI: 10.1016/j.dnarep.2017.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 01/28/2023]
Abstract
Homology-directed repair (HDR) maintains genomic integrity by eliminating lesions such as DNA double-strand breaks (DSBs), interstrand crosslinks (ICLs) and stalled replication forks and thus a deficiency in HDR is associated with genomic instability and cancer predisposition. The mechanism of HDR is best understood and most rigorously characterized in yeast. The inactivation of the fungal radiation sensitive 52 (RAD52) gene, which has both recombination mediator and single-strand annealing (SSA) activities in vitro, leads to severe HDR defects in vivo. Confusingly, however, the inactivation of murine and chicken RAD52 genes resulted in mouse and chicken cells, respectively, that were largely aphenotypic. To clarify this issue, we have generated RAD52 knockout human cell lines. Human RAD52-null cells retain a significant level of SSA activity demonstrating perforce that additional SSA-like activities must exist in human cells. Moreover, we confirmed that the SSA activity associated with RAD52 is involved in, but not absolutely required for, most HDR subpathways. Specifically, a deficiency in RAD52 impaired the repair of DNA DSBs and intriguingly decreased the random integration of recombinant adeno-associated virus (rAAV). Finally, an analysis of pan-cancer genome data from The Cancer Genome Atlas (TCGA) revealed an association between aberrant levels of RAD52 expression and poor overall survival in multiple cancers. In toto, our work demonstrates that RAD52 contributes to the maintenance of genome stability and tumor suppression in human cells.
Collapse
Affiliation(s)
- Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Nizar N Batada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Eric A Hendrickson
- BMBB Department, University of Minnesota Medical School, 6-155 Jackson Hall, 321 Church St., SE., Minneapolis, MN 55455, United States.
| |
Collapse
|
13
|
Hamid FB, Kim J, Shin CG. Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update. AIDS Res Ther 2017; 14:9. [PMID: 28209198 PMCID: PMC5314604 DOI: 10.1186/s12981-016-0127-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022] Open
Abstract
Reverse transcription of viral RNA and the subsequent integration of reverse transcripts are the classical early events of the HIV-1 life-cycle. Simultaneously, abundant unintegrated DNAs (uDNAs), are formed in cells ubiquitously. The uDNAs either undergo recombination or degradation or persist inactively for long periods in the nucleus as future resources. Among them, 2-LTR circles are considered a dead-end for viral spread. Their contribution to the HIV-1 infection is still poorly understood. Nevertheless, the preintegration transcription of the aberrant DNAs and the consequent alterations of cellular factors have already been reported. Since the major fate of the viral genome is to persist as episomal DNA, precise characterization is required for studying the biology of HIV-1. This review compiles the biochemical and genetic updates on uDNA in the HIV-1 life cycle and could provide direction to further study of their roles in HIV-1 replication and application in HIV-1 pathogenesis.
Collapse
|
14
|
Activation of the DNA Damage Response by RNA Viruses. Biomolecules 2016; 6:2. [PMID: 26751489 PMCID: PMC4808796 DOI: 10.3390/biom6010002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses.
Collapse
|
15
|
Craigie R, Bushman FD. Host Factors in Retroviral Integration and the Selection of Integration Target Sites. Microbiol Spectr 2014; 2:10.1128/microbiolspec.MDNA3-0026-2014. [PMID: 26104434 PMCID: PMC4525071 DOI: 10.1128/microbiolspec.mdna3-0026-2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
In order to replicate, a retrovirus must integrate a DNA copy of the viral RNA genome into a chromosome of the host cell. The study of retroviral integration has advanced considerably in the past few years. Here we focus on host factor interactions and the linked area of integration targeting. Genome-wide screens for cellular factors affecting HIV replication have identified a series of host cell proteins that may mediate subcellular trafficking for preintegration complexes, nuclear import, and integration target site selection. The cell transcriptional co-activator protein LEDGF/p75 has been identified as a tethering factor important for HIV integration, and recently, BET proteins (Brd2, 4, and 4) have been identified as tethering factors for the gammaretroviruses. A new class of HIV inhibitors has been developed targeting the HIV-1 IN-LEDGF binding site, though surprisingly these inhibitors appear to block assembly late during replication and do not act at the integration step. Going forward, genome-wide studies of HIV-host interactions offer many new starting points to investigate HIV replication and identify potential new inhibitor targets.
Collapse
Affiliation(s)
- Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0560
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Abstract
Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive.
Collapse
Affiliation(s)
- Anna Marie Skalka
- Fox Chase Cancer Center 333 Cottman Avenue Philadelphia, PA 19111 United States 2157282192 2157282778 (fax)
| |
Collapse
|
17
|
Fontes FL, Pinheiro DML, Oliveira AHSD, Oliveira RKDM, Lajus TBP, Agnez-Lima LF. Role of DNA repair in host immune response and inflammation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:246-57. [PMID: 25795123 DOI: 10.1016/j.mrrev.2014.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/28/2022]
Abstract
In recent years, the understanding of how DNA repair contributes to the development of innate and acquired immunity has emerged. The DNA damage incurred during the inflammatory response triggers the activation of DNA repair pathways, which are required for host-cell survival. Here, we reviewed current understanding of the mechanism by which DNA repair contributes to protection against the oxidized DNA damage generated during infectious and inflammatory diseases and its involvement in innate and adaptive immunity. We discussed the functional role of DNA repair enzymes in the immune activation and the relevance of these processes to: transcriptional regulation of cytokines and other genes involved in the inflammatory response; V(D)J recombination; class-switch recombination (CSR); and somatic hypermutation (SHM). These three last processes of DNA damage repair are required for effective humoral adaptive immunity, creating genetic diversity in developing T and B cells. Furthermore, viral replication is also dependent on host DNA repair mechanisms. Therefore, the elucidation of the pathways of DNA damage and its repair that activate innate and adaptive immunity will be important for a better understanding of the immune and inflammatory disorders and developing new therapeutic interventions for treatment of these diseases and for improving their outcome.
Collapse
Affiliation(s)
- Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | - Daniele Maria Lopes Pinheiro
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | - Ana Helena Sales de Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | | | - Tirzah Braz Petta Lajus
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil; Liga Contra o Cancer, Natal, RN, Brazil.
| | | |
Collapse
|
18
|
Lou DI, McBee RM, Le UQ, Stone AC, Wilkerson GK, Demogines AM, Sawyer SL. Rapid evolution of BRCA1 and BRCA2 in humans and other primates. BMC Evol Biol 2014; 14:155. [PMID: 25011685 PMCID: PMC4106182 DOI: 10.1186/1471-2148-14-155] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/27/2014] [Indexed: 12/04/2022] Open
Abstract
Background The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1, an essential gene involved in DNA repair, has been reported to be evolving rapidly despite the fact that many protein-altering mutations within this gene convey a significantly elevated risk for breast and ovarian cancers. Results To obtain a deeper understanding of the evolutionary trajectory of BRCA1, we analyzed complete BRCA1 gene sequences from 23 primate species. We show that specific amino acid sites have experienced repeated selection for amino acid replacement over primate evolution. This selection has been focused specifically on humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). After examining BRCA1 polymorphisms in 7 bonobo, 44 chimpanzee, and 44 rhesus macaque (Macaca mulatta) individuals, we find considerable variation within each of these species and evidence for recent selection in chimpanzee populations. Finally, we also sequenced and analyzed BRCA2 from 24 primate species and find that this gene has also evolved under positive selection. Conclusions While mutations leading to truncated forms of BRCA1 are clearly linked to cancer phenotypes in humans, there is also an underlying selective pressure in favor of amino acid-altering substitutions in this gene. A hypothesis where viruses are the drivers of this natural selection is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sara L Sawyer
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Sasaki MS, Tachibana A, Takeda S. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors. JOURNAL OF RADIATION RESEARCH 2014; 55:391-406. [PMID: 24366315 PMCID: PMC4014156 DOI: 10.1093/jrr/rrt133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking.
Collapse
Affiliation(s)
- Masao S. Sasaki
- Kyoto University, 17-12 Shironosato, Nagaokakyo-shi, Kyoto 617-0835, Japan
| | - Akira Tachibana
- Department of Biology, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Ingrao D, Majdoul S, Seye AK, Galy A, Fenard D. Concurrent measures of fusion and transduction efficiency of primary CD34+ cells with human immunodeficiency virus 1-based lentiviral vectors reveal different effects of transduction enhancers. Hum Gene Ther Methods 2013; 25:48-56. [PMID: 24152219 DOI: 10.1089/hgtb.2013.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lentiviral vectors (LVs) are used for various gene transfer applications, notably for hematopoietic gene therapy, but methods are lacking for precisely evaluating parameters that control the efficiency of transduction in relation to the entry of vectors into target cells. We adapted a fluorescence resonance energy transfer-based human immunodeficiency virus-1 fusion assay to measure the entry of nonreplicative recombinant LVs in various cell types, including primary human hematopoietic stem progenitor cells (HSPCs), and to quantify the level of transduction of the same initially infected cells. The assay utilizes recombinant LVs containing β-lactamase (BLAM)-Vpr chimeric proteins (BLAM-LVs) and encoding a truncated form of the low-affinity nerve growth factor receptor (ΔNGFR). After infection of target cells with BLAM-LVs, the vector entry rapidly leads to BLAM-Vpr release into the cytoplasm, which is measured by cleavage of a fluorescent substrate using flow cytometry. Parallel cultures of the same infected cells show transduction efficiency resulting from ΔNGFR expression. This LV-based fusion/transduction assay is a dynamic and versatile tool, revealing, for instance, the postentry restrictions of LVs known to occur in cells of hematopoietic origin, especially human HSPCs. Furthermore, this BLAM-LV assay allowed us to evaluate the effect of cytokine prestimulation of HSPCs on the entry step of LVs. The assay also shows that transduction enhancers such as Vectofusin-1 or Retronectin can partially relieve the postentry block, but their effects differ in how they promote LV entry. In conclusion, one such assay should be useful to study hematopoietic postentry restrictions directed against LVs and therefore should allow improvements in various LV-based gene therapy protocols.
Collapse
|
21
|
Manic G, Maurin-Marlin A, Laurent F, Vitale I, Thierry S, Delelis O, Dessen P, Vincendeau M, Leib-Mösch C, Hazan U, Mouscadet JF, Bury-Moné S. Impact of the Ku complex on HIV-1 expression and latency. PLoS One 2013; 8:e69691. [PMID: 23922776 PMCID: PMC3726783 DOI: 10.1371/journal.pone.0069691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 06/17/2013] [Indexed: 01/20/2023] Open
Abstract
Ku, a cellular complex required for human cell survival and involved in double strand break DNA repair and multiple other cellular processes, may modulate retroviral multiplication, although the precise mechanism through which it acts is still controversial. Recently, Ku was identified as a possible anti-human immunodeficiency virus type 1 (HIV-1) target in human cells, in two global approaches. Here we investigated the role of Ku on the HIV-1 replication cycle by analyzing the expression level of a panel of non-replicative lentiviral vectors expressing the green fluorescent protein in human colorectal carcinoma HCT 116 cells, stably or transiently depleted of Ku. We found that in this cellular model the depletion of Ku did not affect the efficiency of (pre-)integrative steps but decreased the early HIV-1 expression by acting at the transcriptional level. This negative effect was specific of the HIV-1 promoter, required the obligatory step of viral DNA integration and was reversed by transient depletion of p53. We also provided evidence on a direct binding of Ku to HIV-1 LTR in transduced cells. Ku not only promotes the early transcription from the HIV-1 promoter, but also limits the constitution of viral latency. Moreover, in the presence of a normal level of Ku, HIV-1 expression was gradually lost over time, likely due to the counter-selection of HIV-1-expressing cells. On the contrary, the reactivation of transgene expression from HIV-1 by means of trichostatin A- or tumor necrosis factor α-administration was enhanced under condition of Ku haplodepletion, suggesting a phenomenon of provirus latency. These observations plead in favor of the hypothesis that Ku has an impact on HIV-1 expression and latency at early- and mid-time after integration.
Collapse
Affiliation(s)
- Gwenola Manic
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Aurélie Maurin-Marlin
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Fanny Laurent
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy
- National Institute of Health, Rome, Italy
| | - Sylvain Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Philippe Dessen
- Institut Gustave Roussy, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale-U985, Villejuif, France
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christine Leib-Mösch
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Hematology and Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Uriel Hazan
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Jean-François Mouscadet
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Stéphanie Bury-Moné
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre national de la recherche scientifique-UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
22
|
HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature 2013; 498:376-9. [PMID: 23739328 DOI: 10.1038/nature12274] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/09/2013] [Indexed: 01/08/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) has infected more than 60 million people and caused nearly 30 million deaths worldwide, ultimately the consequence of cytolytic infection of CD4(+) T cells. In humans and in macaque models, most of these cells contain viral DNA and are rapidly eliminated at the peak of viraemia, yet the mechanism by which HIV-1 induces helper T-cell death has not been defined. Here we show that virus-induced cell killing is triggered by viral integration. Infection by wild-type HIV-1, but not an integrase-deficient mutant, induced the death of activated primary CD4 lymphocytes. Similarly, raltegravir, a pharmacologic integrase inhibitor, abolished HIV-1-induced cell killing both in cell culture and in CD4(+) T cells from acutely infected subjects. The mechanism of killing during viral integration involved the activation of DNA-dependent protein kinase (DNA-PK), a central integrator of the DNA damage response, which caused phosphorylation of p53 and histone H2AX. Pharmacological inhibition of DNA-PK abolished cell death during HIV-1 infection in vitro, suggesting that processes which reduce DNA-PK activation in CD4 cells could facilitate the formation of latently infected cells that give rise to reservoirs in vivo. We propose that activation of DNA-PK during viral integration has a central role in CD4(+) T-cell depletion, raising the possibility that integrase inhibitors and interventions directed towards DNA-PK may improve T-cell survival and immune function in infected individuals.
Collapse
|
23
|
|
24
|
Risler JK, Kenny AE, Palumbo RJ, Gamache ER, Curcio MJ. Host co-factors of the retrovirus-like transposon Ty1. Mob DNA 2012; 3:12. [PMID: 22856544 PMCID: PMC3522557 DOI: 10.1186/1759-8753-3-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Long-terminal repeat (LTR) retrotransposons have complex modes of mobility involving reverse transcription of their RNA genomes in cytoplasmic virus-like particles (VLPs) and integration of the cDNA copies into the host genome. The limited coding capacity of retrotransposons necessitates an extensive reliance on host co-factors; however, it has been challenging to identify co-factors that are required for endogenous retrotransposon mobility because retrotransposition is such a rare event. RESULTS To circumvent the low frequency of Ty1 LTR-retrotransposon mobility in Saccharomyces cerevisiae, we used iterative synthetic genetic array (SGA) analysis to isolate host mutations that reduce retrotransposition. Query strains that harbor a chromosomal Ty1his3AI reporter element and either the rtt101Δ or med1Δ mutation, both of which confer a hypertransposition phenotype, were mated to 4,847 haploid ORF deletion strains. Retrotransposition was measured in the double mutant progeny, and a set of 275 ORF deletions that suppress the hypertransposition phenotypes of both rtt101Δ and med1Δ were identified. The corresponding set of 275 retrotransposition host factors (RHFs) includes 45 previously identified Ty1 or Ty3 co-factors. More than half of the RHF genes have statistically robust human homologs (E < 1 x 10-10). The level of unintegrated Ty1 cDNA in 181 rhfΔ single mutants was altered <2-fold, suggesting that the corresponding co-factors stimulate retrotransposition at a step after cDNA synthesis. However, deletion of 43 RHF genes, including specific ribosomal protein and ribosome biogenesis genes and RNA degradation, modification and transport genes resulted in low Ty1 cDNA levels. The level of Ty1 Gag but not RNA was reduced in ribosome biogenesis mutants bud21Δ, hcr1Δ, loc1Δ, and puf6Δ. CONCLUSION Ty1 retrotransposition is dependent on multiple co-factors acting at different steps in the replication cycle. Human orthologs of these RHFs are potential, or in a few cases, presumptive HIV-1 co-factors in human cells. RHF genes whose absence results in decreased Ty1 cDNA include characterized RNA metabolism and modification genes, consistent with their having roles in early steps in retrotransposition such as expression, nuclear export, translation, localization, or packaging of Ty1 RNA. Our results suggest that Bud21, Hcr1, Loc1, and Puf6 promote efficient synthesis or stability of Ty1 Gag.
Collapse
Affiliation(s)
- Jenni K Risler
- Laboratory of Molecular Genetics, Wadsworth Center, Albany, NY, 12201, USA.
| | | | | | | | | |
Collapse
|
25
|
Yeast and the AIDS virus: the odd couple. J Biomed Biotechnol 2012; 2012:549020. [PMID: 22778552 PMCID: PMC3385842 DOI: 10.1155/2012/549020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/14/2012] [Accepted: 04/16/2012] [Indexed: 12/13/2022] Open
Abstract
Despite being simple eukaryotic organisms, the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have been widely used as a model to study human pathologies and the replication of human, animal, and plant viruses, as well as the function of individual viral proteins. The complete genome of S. cerevisiae was the first of eukaryotic origin to be sequenced and contains about 6,000 genes. More than 75% of the genes have an assigned function, while more than 40% share conserved sequences with known or predicted human genes. This strong homology has allowed the function of human orthologs to be unveiled starting from the data obtained in yeast. RNA plant viruses were the first to be studied in yeast. In this paper, we focus on the use of the yeast model to study the function of the proteins of human immunodeficiency virus type 1 (HIV-1) and the search for its cellular partners. This human retrovirus is the cause of AIDS. The WHO estimates that there are 33.4 million people worldwide living with HIV/AIDS, with 2.7 million new HIV infections per year and 2.0 million annual deaths due to AIDS. Current therapy is able to control the disease but there is no permanent cure or a vaccine. By using yeast, it is possible to dissect the function of some HIV-1 proteins and discover new cellular factors common to this simple cell and humans that may become potential therapeutic targets, leading to a long-lasting treatment for AIDS.
Collapse
|
26
|
Stimulation of the human RAD51 nucleofilament restricts HIV-1 integration in vitro and in infected cells. J Virol 2011; 86:513-26. [PMID: 22013044 DOI: 10.1128/jvi.05425-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable HIV-1 replication requires the DNA repair of the integration locus catalyzed by cellular factors. The human RAD51 (hRAD51) protein plays a major role in homologous recombination (HR) DNA repair and was previously shown to interact with HIV-1 integrase (IN) and inhibit its activity. Here we determined the molecular mechanism of inhibition of IN. Our standard in vitro integration assays performed under various conditions promoting or inhibiting hRAD51 activity demonstrated that the formation of an active hRAD51 nucleofilament is required for optimal inhibition involving an IN-DNA complex dissociation mechanism. Furthermore we show that this inhibition mechanism can be promoted in HIV-1-infected cells by chemical stimulation of the endogenous hRAD51 protein. This hRAD51 stimulation induced both an enhancement of the endogenous DNA repair process and the inhibition of the integration step. Elucidation of this molecular mechanism leading to the restriction of viral proliferation paves the way to a new concept of antiretroviral therapy based on the enhancement of endogenous hRAD51 recombination activity and highlights the functional interaction between HIV-1 IN and hRAD51.
Collapse
|
27
|
Sloan RD, Wainberg MA. The role of unintegrated DNA in HIV infection. Retrovirology 2011; 8:52. [PMID: 21722380 PMCID: PMC3148978 DOI: 10.1186/1742-4690-8-52] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/01/2011] [Indexed: 01/09/2023] Open
Abstract
Integration of the reverse transcribed viral genome into host chromatin is the hallmark of retroviral replication. Yet, during natural HIV infection, various unintegrated viral DNA forms exist in abundance. Though linear viral cDNA is the precursor to an integrated provirus, increasing evidence suggests that transcription and translation of unintegrated DNAs prior to integration may aid productive infection through the expression of early viral genes. Additionally, unintegrated DNA has the capacity to result in preintegration latency, or to be rescued and yield productive infection and so unintegrated DNA, in some circumstances, may be considered to be a viral reservoir. Recently, there has been interest in further defining the role and function of unintegrated viral DNAs, in part because the use of anti-HIV integrase inhibitors leads to an abundance of unintegrated DNA, but also because of the potential use of non-integrating lentiviral vectors in gene therapy and vaccines. There is now increased understanding that unintegrated viral DNA can either arise from, or be degraded through, interactions with host DNA repair enzymes that may represent a form of host antiviral defence. This review focuses on the role of unintegrated DNA in HIV infection and additionally considers the potential implications for antiviral therapy.
Collapse
Affiliation(s)
- Richard D Sloan
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
| | | |
Collapse
|
28
|
Wu PE, Shen CY. 'Hide-then-hit' to explain the importance of genotypic polymorphism of DNA repair genes in determining susceptibility to cancer. J Mol Cell Biol 2011; 3:59-65. [DOI: 10.1093/jmcb/mjq054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Smith JA, Daniel R. Up-regulation of HIV-1 transduction in nondividing cells by double-strand DNA break-inducing agents. Biotechnol Lett 2010; 33:243-52. [PMID: 20972817 DOI: 10.1007/s10529-010-0449-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/11/2010] [Indexed: 11/30/2022]
Abstract
Efficient HIV-1 transduction depends on a number of cellular co-factors. Cellular double-strand DNA break (DSB) repair proteins have been proposed, by ourselves and others, to be required for efficient HIV-1 transduction. Expression and/or activity of these DNA repair proteins can be induced by the introduction of DSBs into the host cell genome. HIV-1 transduction was up-regulated by treatment with DSB-inducing agents in both drug-arrested cells and differentiated neuronal cells. The presented data support the hypothesis that DSB repair proteins are involved in the early steps of the retroviral life-cycle.
Collapse
Affiliation(s)
- Johanna A Smith
- Division of Infectious Diseases, Department of Medicine, Center for Human Virology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
30
|
Demogines A, East AM, Lee JH, Grossman SR, Sabeti PC, Paull TT, Sawyer SL. Ancient and recent adaptive evolution of primate non-homologous end joining genes. PLoS Genet 2010; 6:e1001169. [PMID: 20975951 PMCID: PMC2958818 DOI: 10.1371/journal.pgen.1001169] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 09/21/2010] [Indexed: 02/07/2023] Open
Abstract
In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to characterize the molecular evolution of the human NHEJ pathway, we generated large simian primate sequence datasets for NHEJ genes. Codon-based models of gene evolution yielded statistical support for the recurrent positive selection of five NHEJ genes during primate evolution: XRCC4, NBS1, Artemis, POLλ, and CtIP. Analysis of human polymorphism data using the composite of multiple signals (CMS) test revealed that XRCC4 has also been subjected to positive selection in modern humans. Crystal structures are available for XRCC4, Nbs1, and Polλ; and residues under positive selection fall exclusively on the surfaces of these proteins. Despite the positive selection of such residues, biochemical experiments with variants of one positively selected site in Nbs1 confirm that functions necessary for DNA repair and checkpoint signaling have been conserved. However, many viruses interact with the proteins of the NHEJ pathway as part of their infectious lifecycle. We propose that an ongoing evolutionary arms race between viruses and NHEJ genes may be driving the surprisingly rapid evolution of these critical genes. Because all cells experience DNA damage, they must also have mechanisms for repairing DNA. When the proteins that repair DNA malfunction, mutation and disease often result. Based on their fundamental importance, DNA repair proteins would be expected to be well preserved over evolutionary time in order to ensure optimal DNA repair function. However, a previous genome-wide study of molecular evolution in Saccharomyces yeast identified the non-homologous end joining (NHEJ) DNA repair pathway as one of the two most rapidly evolving pathways in the yeast genome. In order to analyze the evolution of this pathway in humans, we have generated large evolutionary sequence sets of NHEJ genes from our primate relatives. Similar to the scenario in yeast, several genes in this pathway are evolving rapidly in primate genomes and in modern human populations. Thus, complex and seemingly opposite selective forces are shaping the evolution of these important DNA repair genes. The finding that NHEJ genes are rapidly evolving in species groups as diverse as yeasts and primates indicates a systematic perturbation of the NHEJ pathway, one that is potentially important to human health.
Collapse
Affiliation(s)
- Ann Demogines
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alysia M. East
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ji-Hoon Lee
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Sharon R. Grossman
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Pardis C. Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tanya T. Paull
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Sara L. Sawyer
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Warren K, Warrilow D, Meredith L, Harrich D. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription. Viruses 2009; 1:873-94. [PMID: 21994574 PMCID: PMC3185528 DOI: 10.3390/v1030873] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 01/16/2023] Open
Abstract
There is ample evidence that synthesis of HIV-1 proviral DNA from the viral RNA genome during reverse transcription requires host factors. However, only a few cellular proteins have been described in detail that affect reverse transcription and interact with reverse transcriptase (RT). HIV-1 integrase is an RT binding protein and a number of IN-binding proteins including INI1, components of the Sin3a complex, and Gemin2 affect reverse transcription. In addition, recent studies implicate the cellular proteins HuR, AKAP149, and DNA topoisomerase I in reverse transcription through an interaction with RT. In this review we will consider interactions of reverse transcription complex with viral and cellular factors and how they affect the reverse transcription process.
Collapse
Affiliation(s)
- Kylie Warren
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- School of Natural Sciences, University of Western Sydney, Hawkesbury, NSW, Australia
| | - David Warrilow
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
| | - Luke Meredith
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, QLD, 4006, Australia
| | - David Harrich
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, QLD, 4006, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3845-36791; Fax: +61-7-3362-0107
| |
Collapse
|
32
|
Fenard D, Houzet L, Bernard E, Tupin A, Brun S, Mougel M, Devaux C, Chazal N, Briant L. Uracil DNA Glycosylase 2 negatively regulates HIV-1 LTR transcription. Nucleic Acids Res 2009; 37:6008-18. [PMID: 19696076 PMCID: PMC2764447 DOI: 10.1093/nar/gkp673] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Numerous cellular factors belonging to the DNA repair machineries, including RAD18, RAD52, XPB and XPD, have been described to counteract human immunodeficiency virus type 1 (HIV-1) replication. Recently, Uracil DNA glycosylase 2 (UNG2), a major determinant of the uracil base excision repair pathway, was shown to undergo rapid proteasome-dependent degradation following HIV-1 infection. However, the specific role of intracellular UNG2 depletion during the course of HIV-1 infection is not clearly understood. Our study shows for the first time that overexpression of UNG2 inhibits HIV-1 replication. We demonstrate that this viral inhibition is correlated with a marked decrease in transcription efficiency as shown by monitoring HIV-1 LTR promoter activity and quantification of HIV-1 RNA levels. Interestingly, UNG2 inhibits LTR activity when stimulated by Tat transactivator or TNFalpha, while barely affected using Phorbol ester activation. Mutational analysis of UNG2 indicates that antiviral activity may require the integrity of the UNG2 catalytic domain. Altogether, our data indicate that UNG2 is likely to represent a new host defense factor specifically counteracted by HIV-1 Vpr. The molecular mechanisms involved in the UNG2 antiviral activity still remain elusive but may rely on the sequestration of specific cellular factor(s) critical for viral transcription.
Collapse
Affiliation(s)
- David Fenard
- Université Montpellier 1, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS, UMR 5236, CPBS, F-34965 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chaurushiya MS, Weitzman MD. Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair (Amst) 2009; 8:1166-76. [PMID: 19473887 DOI: 10.1016/j.dnarep.2009.04.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recognition and repair of DNA damage is critical for maintaining genomic integrity and suppressing tumorigenesis. In eukaryotic cells, the sensing and repair of DNA damage are coordinated with cell cycle progression and checkpoints, in order to prevent the propagation of damaged DNA. The carefully maintained cellular response to DNA damage is challenged by viruses, which produce a large amount of exogenous DNA during infection. Viruses also express proteins that perturb cellular DNA repair and cell cycle pathways, promoting tumorigenesis in their quest for cellular domination. This review presents an overview of strategies employed by viruses to manipulate DNA damage responses and cell cycle checkpoints as they commandeer the cell to maximize their own viral replication. Studies of viruses have identified key cellular regulators and revealed insights into molecular mechanisms governing DNA repair, cell cycle checkpoints, and transformation.
Collapse
Affiliation(s)
- Mira S Chaurushiya
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
34
|
The SET complex acts as a barrier to autointegration of HIV-1. PLoS Pathog 2009; 5:e1000327. [PMID: 19266025 PMCID: PMC2644782 DOI: 10.1371/journal.ppat.1000327] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 02/04/2009] [Indexed: 12/27/2022] Open
Abstract
Retroviruses and retrotransposons are vulnerable to a suicidal pathway known as autointegration, which occurs when the 3′-ends of the reverse transcript are activated by integrase and then attack sites within the viral DNA. Retroelements have diverse strategies for suppressing autointegration, but how HIV-1 protects itself from autointegration is not well-understood. Here we show that knocking down any of the components of the SET complex, an endoplasmic reticulum-associated complex that contains 3 DNases (the base excision repair endonuclease APE1, 5′-3′ exonuclease TREX1, and endonuclease NM23-H1), inhibits HIV-1 and HIV-2/SIV, but not MLV or ASV, infection. Inhibition occurs at a step in the viral life cycle after reverse transcription but before chromosomal integration. Antibodies to SET complex proteins capture HIV-1 DNA in the cytoplasm, suggesting a direct interaction between the SET complex and the HIV preintegration complex. Cloning of HIV integration sites in cells with knocked down SET complex components revealed an increase in autointegration, which was verified using a novel semi-quantitative nested PCR assay to detect autointegrants. When SET complex proteins are knocked down, autointegration increases 2–3–fold and chromosomal integration correspondingly decreases ∼3-fold. Therefore, the SET complex facilitates HIV-1 infection by preventing suicidal autointegration. When HIV-1 infects a cell, its genomic RNA is copied into DNA. The ends of the viral DNA are then activated by the viral integrase enzyme to enable DNA insertion into a host cell chromosome. However, the activated ends can alternately insert into the virus itself by a process called autointegration, which is a suicidal pathway that aborts the infection. How HIV-1 protects itself from suicidal autointegration is not known. Here we show that a cytoplasmic complex, called the SET complex, which contains three DNA digesting enzymes, binds to HIV-1 and protects it from autointegration.
Collapse
|
35
|
Interactions of Transposons with the Cellular DNA Repair Machinery. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2008_043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
36
|
Lee SA, Roques C, Magwood AC, Masson JY, Baker MD. Recovery of deficient homologous recombination in Brca2-depleted mouse cells by wild-type Rad51 expression. DNA Repair (Amst) 2008; 8:170-81. [PMID: 18992372 DOI: 10.1016/j.dnarep.2008.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 08/11/2008] [Accepted: 10/01/2008] [Indexed: 01/15/2023]
Abstract
The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.
Collapse
Affiliation(s)
- Shauna A Lee
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1 Canada
| | | | | | | | | |
Collapse
|
37
|
Ploquin M, Bransi A, Paquet ER, Stasiak AZ, Stasiak A, Yu X, Cieslinska AM, Egelman EH, Moineau S, Masson JY. Functional and structural basis for a bacteriophage homolog of human RAD52. Curr Biol 2008; 18:1142-6. [PMID: 18656357 DOI: 10.1016/j.cub.2008.06.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
In eukaryotes, homologous recombination proteins such as RAD51 and RAD52 play crucial roles in DNA repair and genome stability. Human RAD52 is a member of a large single-strand annealing protein (SSAP) family [1] and stimulates Rad51-dependent recombination [2, 3]. In prokaryotes and phages, it has been difficult to establish the presence of RAD52 homologs with conserved sequences. Putative SSAPs were recently found in several phages that infect strains of Lactococcus lactis[4]. One of these SSAPs was identified as Sak and was found in the virulent L. lactis phage ul36, which belongs to the Siphoviridae family [4, 5]. In this study, we show that Sak is homologous to the N terminus of human RAD52. Purified Sak binds single-stranded DNA (ssDNA) preferentially over double-stranded DNA (dsDNA) and promotes the renaturation of long complementary ssDNAs. Sak also binds RecA and stimulates homologous recombination reactions. Mutations shown to modulate RAD52 DNA binding [6] affect Sak similarly. Remarkably, electron-microscopic reconstruction of Sak reveals an undecameric (11) subunit ring, similar to the crystal structure of the N-terminal fragment of human RAD52 [7, 8]. For the first time, we propose a viral homolog of RAD52 at the amino acid, phylogenic, functional, and structural levels.
Collapse
Affiliation(s)
- Mickaël Ploquin
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Québec City G1R 2J6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Chromosomal genes modulate Ty retrotransposon movement in the genome of Saccharomyces cerevisiae. We have screened a collection of 4739 deletion mutants to identify those that increase Ty1 mobility (Ty1 restriction genes). Among the 91 identified mutants, 80% encode products involved in nuclear processes such as chromatin structure and function, DNA repair and recombination, and transcription. However, bioinformatic analyses encompassing additional Ty1 and Ty3 screens indicate that 264 unique genes involved in a variety of biological processes affect Ty mobility in yeast. Further characterization of 33 of the mutants identified here show that Ty1 RNA levels increase in 5 mutants and the rest affect mobility post-transcriptionally. RNA and cDNA levels remain unchanged in mutants defective in transcription elongation, including ckb2Delta and elf1Delta, suggesting that Ty1 integration may be more efficient in these strains. Insertion-site preference at the CAN1 locus requires Ty1 restriction genes involved in histone H2B ubiquitination by Paf complex subunit genes, as well as BRE1 and RAD6, histone H3 acetylation by RTT109 and ASF1, and transcription elongation by SPT5. Our results indicate that multiple pathways restrict Ty1 mobility and histone modifications may protect coding regions from insertional mutagenesis.
Collapse
|
39
|
S-phase checkpoint pathways stimulate the mobility of the retrovirus-like transposon Ty1. Mol Cell Biol 2007; 27:8874-85. [PMID: 17923678 DOI: 10.1128/mcb.01095-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobility of the Ty1 retrotransposon in the yeast Saccharomyces cerevisiae is restricted by a large collection of proteins that preserve the integrity of the genome during replication. Several of these repressors of Ty1 transposition (Rtt)/genome caretakers are orthologs of mammalian retroviral restriction factors. In rtt/genome caretaker mutants, levels of Ty1 cDNA and mobility are increased; however, the mechanisms underlying Ty1 hypermobility in most rtt mutants are poorly characterized. Here, we show that either or both of two S-phase checkpoint pathways, the replication stress pathway and the DNA damage pathway, partially or strongly stimulate Ty1 mobility in 19 rtt/genome caretaker mutants. In contrast, neither checkpoint pathway is required for Ty1 hypermobility in two rtt mutants that are competent for genome maintenance. In rtt101delta mutants, hypermobility is stimulated through the DNA damage pathway components Rad9, Rad24, Mec1, Rad53, and Dun1 but not Chk1. We provide evidence that Ty1 cDNA is not the direct target of the DNA damage pathway in rtt101delta mutants; instead, levels of Ty1 integrase and reverse transcriptase proteins, as well as reverse transcriptase activity, are significantly elevated. We propose that DNA lesions created in the absence of Rtt/genome caretakers trigger S-phase checkpoint pathways to stimulate Ty1 reverse transcriptase activity.
Collapse
|
40
|
Partridge JJ, Madsen MA, Ardi VC, Papagiannakopoulos T, Kupriyanova TA, Quigley JP, Deryugina EI. Functional analysis of matrix metalloproteinases and tissue inhibitors of metalloproteinases differentially expressed by variants of human HT-1080 fibrosarcoma exhibiting high and low levels of intravasation and metastasis. J Biol Chem 2007; 282:35964-77. [PMID: 17895241 DOI: 10.1074/jbc.m705993200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of tumor-derived matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) in cancer cell dissemination was analyzed by employing two variants of human HT-1080 fibrosarcoma, HT-hi/diss and HT-lo/diss, which differ by 50-100-fold in their ability to intravasate and metastasize in the chick embryo. HT-hi/diss and HT-lo/diss were compared by quantitative reverse transcription-PCR and Western blot analyses for mRNA and protein expression of nine MMPs (MMP-1, -2, -3, -7, -8, -9, -10, -13, and -14) and three TIMPs (TIMP-1, -2, and -3) in cultured cells in vitro and in primary tumors in vivo. MMP-1 and MMP-9 were more abundant in the HT-hi/diss variant, both in cultures and in tumors, whereas the HT-lo/diss variant consistently expressed higher levels of MMP-2, TIMP-1, and TIMP-2. Small interfering RNA-mediated down-regulation of MMP-2 and TIMP-2 increased intravasation of HT-lo/diss cells. Coordinately, treatment of the developing HT-hi/diss tumors with recombinant TIMP-1 and TIMP-2 significantly reduced HT-hi/diss cell intravasation. However, a substantial increase of HT-hi/diss dissemination was observed upon small interfering RNA-mediated down-regulation of three secreted MMPs, including the interstitial collagenase MMP-1 and the two gelatinases, MMP-2 and MMP-9, but not the membrane-tethered MMP-14. The addition of recombinant pro-MMP-9 protein to the HT-hi/diss tumors reversed the increased intravasation of HT-hi/diss cells, in which MMP-9 was stably down-regulated by short hairpin RNA interference. This rescue did not occur if the pro-MMP-9 was stoichiometrically complexed with TIMP-1, pointing to a direct role of the MMP-9 enzyme in regulation of HT-hi/diss intravasation. Collectively, these findings demonstrate that tumor-derived MMPs may have protective functions in cancer cell intravasation, i.e. not promoting but rather catalytically interfering with the early stages of cancer dissemination.
Collapse
Affiliation(s)
- Juneth J Partridge
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Lech P, Somia NV. Isolation and characterization of human cells resistant to retrovirus infection. Retrovirology 2007; 4:45. [PMID: 17608937 PMCID: PMC1925114 DOI: 10.1186/1742-4690-4-45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 07/03/2007] [Indexed: 11/25/2022] Open
Abstract
Background Identification of host cell proteins required for HIV-1 infection will add to our knowledge of the life cycle of HIV-1 and in the development of therapeutics to combat viral infection. We and other investigators have mutagenized rodent cells and isolated mutant cell lines resistant to retrovirus infection. Since there are differences in the efficiency of single round infection with VSVG pseudotyped HIV-1 on cells of different species, we conducted a genetic screen to isolate human cells resistant to HIV-1 infection. We chemically mutagenized human HeLa cells and validated our ability to isolate mutants at test diploid loci. We then executed a screen to isolate HeLa cell mutants resistant to infection by an HIV-1 vector coding for a toxic gene product. Results We isolated two mutant cell lines that exhibit up to 10-fold resistance to infection by HIV-1 vectors. We have verified that the cells are resistant to infection and not defective in gene expression. We have confirmed that the resistance phenotype is not due to an entry defect. Fusion experiments between mutant and wild-type cells have established that the mutations conferring resistance in the two clones are recessive. We have also determined the nature of the block in the two mutants. One clone exhibits a block at or before reverse transcription of viral RNA and the second clone has a retarded kinetic of viral DNA synthesis and a block at nuclear import of the preintegration complex. Conclusion Human cell mutants can be isolated that are resistant to infection by HIV-1. The mutants are genetically recessive and identify two points where host cell factors can be targeted to block HIV-1 infection.
Collapse
Affiliation(s)
- Patrycja Lech
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nikunj V Somia
- Dept. of Genetics, Cell Biology and Development and the Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
42
|
Maxwell PH, Curcio MJ. Host factors that control long terminal repeat retrotransposons in Saccharomyces cerevisiae: implications for regulation of mammalian retroviruses. EUKARYOTIC CELL 2007; 6:1069-80. [PMID: 17496126 PMCID: PMC1951103 DOI: 10.1128/ec.00092-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Patrick H Maxwell
- Center for Medical Sciences, Wadsworth Center, PO Box 2002, Albany, NY 12201-2002, USA
| | | |
Collapse
|
43
|
Masson C, Bury-Moné S, Guiot E, Saez-Cirion A, Schoëvaërt-Brossault D, Brachet-Ducos C, Delelis O, Subra F, Jeanson-Leh L, Mouscadet JF. Ku80 participates in the targeting of retroviral transgenes to the chromatin of CHO cells. J Virol 2007; 81:7924-32. [PMID: 17507472 PMCID: PMC1951289 DOI: 10.1128/jvi.02015-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The heterodimer Ku70/80 Ku is the DNA-binding component of the DNA-PK complex required for the nonhomologous end-joining pathway. It participates in numerous nuclear processes, including telomere and chromatin structure maintenance, replication, and transcription. Ku interacts with retroviral preintegration complexes and is thought to interfere with the retroviral replication cycle, in particular the formation of 2-long terminal repeat (LTR) viral DNA circles, viral DNA integration, and transcription. We describe here the effect of Ku80 on both provirus integration and the resulting transgene expression in cells transduced with retroviral vectors. We found that transgene expression was systematically higher in Ku80-deficient xrs6 cells than in Ku80-expressing CHO cells. This higher expression was observed irrespective of the presence of the viral LTR and was also not related to the nature of the promoter. Real-time PCR monitoring of the early viral replicative steps demonstrated that the absence of Ku80 does not affect the efficiency of transduction. We analyzed the transgene distributions localization in nucleus by applying a three-dimensional reconstruction model to two-dimensional fluorescence in situ hybridization images. This indicated that the presence of Ku80 resulted in a bias toward the transgenes being located at the periphery of the nucleus associated with their being repressed; in the absence of this factor the transgenes tend to be randomly distributed and actively expressed. Therefore, although not strictly required for retroviral integration, Ku may be involved in targeting retroviral elements to chromatin domains prone to gene silencing.
Collapse
Affiliation(s)
- Christel Masson
- LBPA, CNRS, E.N.S. Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang J, Scadden DT, Crumpacker CS. Primitive hematopoietic cells resist HIV-1 infection via p21. J Clin Invest 2007; 117:473-81. [PMID: 17273559 PMCID: PMC1783820 DOI: 10.1172/jci28971] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 11/21/2006] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells are resistant to HIV-1 infection. Here, we report a novel mechanism by which the cyclin-dependent kinase inhibitor (CKI) p21(Waf1/Cip1/Sdi1) (p21), a known regulator of stem cell pool size, restricts HIV-1 infection of primitive hematopoietic cells. Modifying p21 expression altered HIV-1 infection prior to changes in cell cycling and was selective for p21 since silencing the related CKIs, p27(Kip1) and p18(INK4C), had no effect on HIV-1. We show that p21 blocked viral infection by complexing with HIV-1 integrase and aborting chromosomal integration. A closely related lentivirus with a distinct integrase, SIVmac-251, and the other cell-intrinsic inhibitors of HIV-1, Trim5alpha, PML, Murr1, and IFN-alpha, were unaffected by p21. Therefore, p21 is an endogenous cellular component in stem cells that provides a unique molecular barrier to HIV-1 infection and may explain how these cells remain an uninfected "sanctuary" in HIV disease.
Collapse
Affiliation(s)
- Jielin Zhang
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - David T. Scadden
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Clyde S. Crumpacker
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
45
|
Lilley CE, Schwartz RA, Weitzman MD. Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 2007; 15:119-26. [PMID: 17275307 DOI: 10.1016/j.tim.2007.01.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/04/2007] [Accepted: 01/23/2007] [Indexed: 11/29/2022]
Abstract
During infection, viruses attempt to hijack the cell while the host responds with various defense systems. Traditional defenses include the interferon response and apoptosis, but recent work suggests that this antiviral arsenal also includes the cellular DNA damage response machinery. The observation of interactions between viruses and cellular DNA repair proteins has not only uncovered new complexities of the virus-host interaction but is also reinforcing the view that viruses can reveal key regulators of cellular pathways through the proteins they target.
Collapse
Affiliation(s)
- Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
46
|
Desfarges S, San Filippo J, Fournier M, Calmels C, Caumont-Sarcos A, Litvak S, Sung P, Parissi V. Chromosomal integration of LTR-flanked DNA in yeast expressing HIV-1 integrase: down regulation by RAD51. Nucleic Acids Res 2006; 34:6215-24. [PMID: 17090598 PMCID: PMC1693895 DOI: 10.1093/nar/gkl843] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
HIV-1 integrase (IN) is the key enzyme catalyzing the proviral DNA integration step. Although the enzyme catalyzes the integration step accurately in vitro, whether IN is sufficient for in vivo integration and how it interacts with the cellular machinery remains unclear. We set up a yeast cellular integration system where integrase was expressed as the sole HIV-1 protein and targeted the chromosomes. In this simple eukaryotic model, integrase is necessary and sufficient for the insertion of a DNA containing viral LTRs into the genome, thereby allowing the study of the isolated integration step independently of other viral mechanisms. Furthermore, the yeast system was used to identify cellular mechanisms involved in the integration step and allowed us to show the role of homologous recombination systems. We demonstrated physical interactions between HIV-1 IN and RAD51 protein and showed that HIV-1 integrase activity could be inhibited both in the cell and in vitro by RAD51 protein. Our data allowed the identification of RAD51 as a novel in vitro IN cofactor able to down regulate the activity of this retroviral enzyme, thereby acting as a potential cellular restriction factor to HIV infection.
Collapse
Affiliation(s)
- S. Desfarges
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - J. San Filippo
- Deptartment of Molecular Biophysics and Biochemistry, Yale University School of Medicine333 Cedar Street, SHM C130, New Haven, CT 06520, USA
| | - M. Fournier
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - C. Calmels
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - A. Caumont-Sarcos
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - S. Litvak
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
| | - P. Sung
- Deptartment of Molecular Biophysics and Biochemistry, Yale University School of Medicine333 Cedar Street, SHM C130, New Haven, CT 06520, USA
| | - V. Parissi
- UMR 5097-CNRS, BordeauxFrance
- Université Victor Segalen Bordeaux 2, BordeauxFrance
- IFR 66 ‘Pathologies Infectieuses et Cancers’, BordeauxFrance
- 146 rue Léo Saignat, 33076 Bordeaux cedexFrance
- To whom correspondence should be addressed. Tel: +33 5 57 57 1740; Fax: +33 5 57 57 1766;
| |
Collapse
|
47
|
Garfinkel DJ, Stefanisko KM, Nyswaner KM, Moore SP, Oh J, Hughes SH. Retrotransposon suicide: formation of Ty1 circles and autointegration via a central DNA flap. J Virol 2006; 80:11920-34. [PMID: 17005648 PMCID: PMC1676259 DOI: 10.1128/jvi.01483-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite their evolutionary distance, the Saccharomyces cerevisiae retrotransposon Ty1 and retroviruses use similar strategies for replication, integration, and interactions with their hosts. Here we examine the formation of circular Ty1 DNA, which is comparable to the dead-end circular products that arise during retroviral infection. Appreciable levels of circular Ty1 DNA are present with one-long terminal repeat (LTR) circles and deleted circles comprising major classes, while two-LTR circles are enriched when integration is defective. One-LTR circles persist when homologous recombination pathways are blocked by mutation, suggesting that they result from reverse transcription. Ty1 autointegration events readily occur, and many are coincident with and dependent upon DNA flap structures that result from DNA synthesis initiated at the central polypurine tract. These results suggest that Ty1-specific mechanisms minimize copy number and raise the possibility that special DNA structures are a targeting determinant.
Collapse
Affiliation(s)
- David J Garfinkel
- National Cancer Institute, P.O. Box B, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Nakai-Murakami C, Shimura M, Kinomoto M, Takizawa Y, Tokunaga K, Taguchi T, Hoshino S, Miyagawa K, Sata T, Kurumizaka H, Yuo A, Ishizaka Y. HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination. Oncogene 2006; 26:477-86. [PMID: 16983346 DOI: 10.1038/sj.onc.1209831] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An ATM-dependent cellular signal, a DNA-damage response, has been shown to be involved during infection of human immunodeficiency virus type-1 (HIV-1), and a high incidence of malignant tumor development has been observed in HIV-1-positive patients. Vpr, an accessory gene product of HIV-1, delays the progression of the cell cycle at the G2/M phase, and ATR-Chk1-Wee-1, another DNA-damage signal, is a proposed cellular pathway responsible for the Vpr-induced cell cycle arrest. In this study, we present evidence that Vpr also activates ATM, and induces expression of gamma-H2AX and phosphorylation of Chk2. Strikingly, Vpr was found to stimulate the focus formation of Rad51 and BRCA1, which are involved in repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), and biochemical analysis revealed that Vpr dissociates the interaction of p53 and Rad51 in the chromatin fraction, as observed under irradiation-induced DSBs. Vpr was consistently found to increase the rate of HR in the locus of I-SceI, a rare cutting-enzyme site that had been introduced into the genome. An increase of the HR rate enhanced by Vpr was attenuated by an ATM inhibitor, KU55933, suggesting that Vpr-induced DSBs activate ATM-dependent cellular signal that enhances the intracellular recombination potential. In context with a recent report that KU55933 attenuated the integration of HIV-1 into host genomes, we discuss the possible role of Vpr-induced DSBs in viral integration and also in HIV-1 associated malignancy.
Collapse
Affiliation(s)
- C Nakai-Murakami
- Department of Intractable Diseases, International Medical Center of Japan, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cara A, Klotman ME. Retroviral E-DNA: persistence and gene expression in nondividing immune cells. J Leukoc Biol 2006; 80:1013-7. [PMID: 16923918 DOI: 10.1189/jlb.0306151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Following retroviral infection of cells, not only is the proviral DNA integrated into the host genome, but there is also an accumulation of unintegrated extrachromosomal DNA (E-DNA), both linear and circular. Although the integrated DNA is responsible for the production of viral proteins and new viral progeny, the role of E-DNA has remained uncertain. Several reports have shown that E-DNA is transcriptionally active producing both RNA, as well as viral proteins and that circular E-DNA can persist in nondividing cells, raising questions regarding the potential consequences of this reservoir. Furthermore, integrase inhibitors, presently in clinical trials, shifts the balance of proviral DNA to the E-DNA form. This review is focused on recent work in this field with an emphasis on exploring the potential role of E-DNA in both pathogenesis of retroviral infections, especially HIV-1, and as a tool to deliver and express genes.
Collapse
Affiliation(s)
- Andrea Cara
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Itlay
| | | |
Collapse
|
50
|
Maroun M, Delelis O, Coadou G, Bader T, Ségéral E, Mbemba G, Petit C, Sonigo P, Rain JC, Mouscadet JF, Benarous R, Emiliani S. Inhibition of early steps of HIV-1 replication by SNF5/Ini1. J Biol Chem 2006; 281:22736-43. [PMID: 16772295 DOI: 10.1074/jbc.m604849200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To replicate, human immunodeficiency virus, type 1 (HIV-1) needs to integrate a cDNA copy of its RNA genome into a chromosome of the host cell, a step controlled by the viral integrase (IN) protein. Viral integration involves the participation of several cellular proteins. SNF5/Ini1, a subunit of the SWI/SNF chromatin remodeling complex, was the first cofactor identified to interact with IN. We report here that SNF5/Ini1 interferes with early steps of HIV-1 replication. Inhibition of SNF5/Ini1 expression by RNA interference increases HIV-1 replication. Using quantitative PCR, we show that both the 2-long terminal repeat circle and integrated DNA forms accumulate upon SNF5/Ini1 knock down. By yeast two-hybrid assay, we screened a library of HIV-1 IN random mutants obtained by PCR random mutagenesis using SNF5/Ini1 as prey. Two different mutants of interaction, IN E69G and IN K71R, were impaired for SNF5/Ini1 interaction. The E69G substitution completely abolished integrase catalytic activity, leading to a replication-defective virus. On the contrary, IN K71R retained in vitro integrase activity. K71R substitution stimulates viral replication and results in higher infectious titers. Taken together, these results suggest that, by interacting with IN, SNF5/Ini1 interferes with early steps of HIV-1 infection.
Collapse
Affiliation(s)
- Marlène Maroun
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, Inserm, U567, F-75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|