1
|
Ohtsuka H, Ohara K, Shimasaki T, Hatta Y, Maekawa Y, Aiba H. A novel transcription factor Sdr1 involving sulfur depletion response in fission yeast. Genes Cells 2024; 29:667-680. [PMID: 39105351 DOI: 10.1111/gtc.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
In the fission yeast Schizosaccharomyces pombe, the response to sulfur depletion has been less studied compared to the response to nitrogen depletion. Our study reveals that the fission yeast gene, SPCC417.09c, plays a significant role in the sulfur depletion response. This gene encodes a protein with a Zn2Cys6 fungal-type DNA-binding domain and a transcription factor domain, and we have named it sdr1+ (sulfur depletion response 1). Interestingly, while sulfur depletion typically induces autophagy akin to nitrogen depletion, we found that autophagy was not induced under sulfur depletion in the absence of sdr1+. This suggests that sdr1+ is necessary for the induction of autophagy under conditions of sulfur depletion. Although sdr1+ is not essential for the growth of fission yeast, its overexpression, driven by the nmt1 promoter, inhibits growth. This implies that Sdr1 may possess cell growth-inhibitory capabilities. In addition, our analysis of Δsdr1 cells revealed that sdr1+ also plays a role in regulating the expression of genes associated with the phosphate depletion response. In conclusion, our study introduces Sdr1 as a novel transcription factor that contributes to an appropriate cellular nutrient starvation response. It does so by inhibiting inappropriate cell growth and inducing autophagy in response to sulfur depletion.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Kotaro Ohara
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiko Hatta
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Ohtsuka H, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. ecl family genes: Factors linking starvation and lifespan extension in Schizosaccharomyces pombe. Mol Microbiol 2023; 120:645-657. [PMID: 37525511 DOI: 10.1111/mmi.15134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
In the fission yeast Schizosaccharomyces pombe, the duration of survival in the stationary phase, termed the chronological lifespan (CLS), is affected by various environmental factors and the corresponding gene activities. The ecl family genes were identified in the genomic region encoding non-coding RNA as positive regulators of CLS in S. pombe, and subsequently shown to encode relatively short proteins. Several studies revealed that ecl family genes respond to various nutritional starvation conditions via different mechanisms, and they are additionally involved in stress resistance, autophagy, sexual differentiation, and cell cycle control. Recent studies reported that Ecl family proteins strongly suppress target of rapamycin complex 1, which is a conserved eukaryotic nutrient-sensing kinase complex that also regulates longevity in a variety of organisms. In this review, we introduce the regulatory mechanisms of Ecl family proteins and discuss their emerging findings.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Kolhe N, Damle E, Pradhan A, Zinjarde S. A comprehensive assessment of Yarrowia lipolytica and its interactions with metals: Current updates and future prospective. Biotechnol Adv 2022; 59:107967. [PMID: 35489656 DOI: 10.1016/j.biotechadv.2022.107967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
The non-conventional yeast Yarrowia lipolytica has been popular as a model system for understanding biological processes such as dimorphism and lipid accumulation. The organism can efficiently utilize hydrophobic substrates (hydrocarbons and triglycerides) thereby rendering it relevant in bioremediation of oil polluted environments. The current review focuses on the interactions of this fungus with metal pollutants and its potential application in bioremediation of metal contaminated locales. This fungus is intrinsically equipped with a variety of physiological and biochemical features that enable it to tide over stress conditions induced by the presence of metals. Production of enzymes such as phosphatases, reductases and superoxide dismutases are worth a special mention. In the presence of metals, levels of inherently produced metal binding proteins (metallothioneins) and the pigment melanin are seen to be elevated. Morphological alterations with respect to biofilm formation and dimorphic transition from yeast to mycelial form are also induced by certain metals. The biomass of Y. lipolytica is inherently important as a biosorbent and cell surface modification, process optimization or whole cell immobilization techniques have aided in improving this capability. In the presence of metals such as mercury, cadmium, copper and uranium, the culture forms nanoparticulate deposits. In addition, on account of its intrinsic reductive ability, Y. lipolytica is being exploited for synthesizing nanoparticles of gold, silver, cadmium and selenium with applications as antimicrobial compounds, location agents for bioimaging and as feed supplements. This versatile organism thus has great potential in interacting with various metals and addressing problems related to their pollutant status.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Eeshan Damle
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Aditya Pradhan
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
4
|
Shrivastava M, Feng J, Coles M, Clark B, Islam A, Dumeaux V, Whiteway M. Modulation of the complex regulatory network for methionine biosynthesis in fungi. Genetics 2021; 217:6078591. [PMID: 33724418 DOI: 10.1093/genetics/iyaa049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023] Open
Abstract
The assimilation of inorganic sulfate and the synthesis of the sulfur-containing amino acids methionine and cysteine is mediated by a multibranched biosynthetic pathway. We have investigated this circuitry in the fungal pathogen Candida albicans, which is phylogenetically intermediate between the filamentous fungi and Saccharomyces cerevisiae. In S. cerevisiae, this pathway is regulated by a collection of five transcription factors (Met4, Cbf1, Met28, and Met31/Met32), while in the filamentous fungi the pathway is controlled by a single Met4-like factor. We found that in C. albicans, the Met4 ortholog is also a core regulator of methionine biosynthesis, where it functions together with Cbf1. While C. albicans encodes this Met4 protein, a Met4 paralog designated Met28 (Orf19.7046), and a Met31 protein, deletion, and activation constructs suggest that of these proteins only Met4 is actually involved in the regulation of methionine biosynthesis. Both Met28 and Met31 are linked to other functions; Met28 appears essential, and Met32 appears implicated in the regulation of genes of central metabolism. Therefore, while S. cerevisiae and C. albicans share Cbf1 and Met4 as central elements of the methionine biosynthesis control, the other proteins that make up the circuit in S. cerevisiae are not members of the C. albicans control network, and so the S. cerevisiae circuit likely represents a recently evolved arrangement.
Collapse
Affiliation(s)
| | - Jinrong Feng
- Medical School, Nantong University, Nangtong, Jiangsu, China
| | - Mark Coles
- Depatment of Biology, Concordia University, Montreal, QC, Canada
| | - Benjamin Clark
- Depatment of Biology, Concordia University, Montreal, QC, Canada
| | - Amjad Islam
- Depatment of Biology, Concordia University, Montreal, QC, Canada
| | - Vanessa Dumeaux
- Depatment of Biology, Concordia University, Montreal, QC, Canada
| | - Malcolm Whiteway
- Depatment of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
5
|
Ohtsuka H, Shimasaki T, Aiba H. Response to sulfur in Schizosaccharomyces pombe. FEMS Yeast Res 2021; 21:6324000. [PMID: 34279603 PMCID: PMC8310684 DOI: 10.1093/femsyr/foab041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Sulfur is an essential component of various biologically important molecules, including methionine, cysteine and glutathione, and it is also involved in coping with oxidative and heavy metal stress. Studies using model organisms, including budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), have contributed not only to understanding various cellular processes but also to understanding the utilization and response mechanisms of each nutrient, including sulfur. Although fission yeast can use sulfate as a sulfur source, its sulfur metabolism pathway is slightly different from that of budding yeast because it does not have a trans-sulfuration pathway. In recent years, it has been found that sulfur starvation causes various cellular responses in S. pombe, including sporulation, cell cycle arrest at G2, chronological lifespan extension, autophagy induction and reduced translation. This MiniReview identifies two sulfate transporters in S. pombe, Sul1 (encoded by SPBC3H7.02) and Sul2 (encoded by SPAC869.05c), and summarizes the metabolic pathways of sulfur assimilation and cellular response to sulfur starvation. Understanding these responses, including metabolism and adaptation, will contribute to a better understanding of the various stress and nutrient starvation responses and chronological lifespan regulation caused by sulfur starvation.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Identification of Grafting-Responsive MicroRNAs Associated with Growth Regulation in Pecan [Carya illinoinensis (Wangenh.) K. Koch]. FORESTS 2020. [DOI: 10.3390/f11020196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pecan [Carya illinoinensis (Wangenh.) K. Koch] is an economically important nut tree and grafting is often used for clonal propagation of cultivars. However, there is a lack of research on the effects of rootstocks on scions, which are meaningful targets for directed breeding of pecan grafts. MicroRNAs (miRNAs) play an important role in many biological processes, but the mechanism underlying the involvement of miRNAs in grafting-conferred physiological changes is unclear. To identify the grafting-responsive miRNAs that may be involved in the regulation of growth in grafted pecan, six small RNA libraries were constructed from the phloem of two groups of grafts with significantly different growth performance on short and tall rootstocks. A total of 441 conserved miRNAs belonging to 42 miRNA families and 603 novel miRNAs were identified. Among the identified miRNAs, 24 (seven conserved and 17 novel) were significantly differentially expressed by the different grafts, implying that they might be responsive to grafting and potentially involved in the regulation of graft growth. Ninety-five target genes were predicted for the differentially expressed miRNAs; gene annotation was available for 33 of these. Analysis of their targets suggested that the miRNAs may regulate auxin transport, cell activity, and inorganic phosphate (Pi) acquisition, and thereby, mediate pecan graft growth. Use of the recently-published pecan genome enabled identification of a substantial population of miRNAs, which are now available for further research. We also identified the grafting-responsive miRNAs and their potential roles in pecan graft growth, providing a basis for research on long-distance regulation in grafted pecan.
Collapse
|
7
|
Wilson S, Liu YH, Cardona-Soto C, Wadhwa V, Foster MP, Bird AJ. The Loz1 transcription factor from Schizosaccharomyces pombe binds to Loz1 response elements and represses gene expression when zinc is in excess. Mol Microbiol 2019; 112:1701-1717. [PMID: 31515876 PMCID: PMC6904500 DOI: 10.1111/mmi.14384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2019] [Indexed: 12/14/2022]
Abstract
In Schizosaccharomyces pombe, the expression of the zrt1 zinc uptake gene is tightly regulated by zinc status. When intracellular zinc levels are low, zrt1 is highly expressed. However, when zinc levels are high, transcription of zrt1 is blocked in a manner that is dependent upon the transcription factor Loz1. To gain additional insight into the mechanism by which Loz1 inhibits gene expression in high zinc, we used RNA-seq to identify Loz1-regulated genes, and ChIP-seq to analyze the recruitment of Loz1 to target gene promoters. We find that Loz1 is recruited to the promoters of 27 genes that are also repressed in high zinc in a Loz1-dependent manner. We also find that the recruitment of Loz1 to the majority of target gene promoters is dependent upon zinc and the motif 5'-CGN(A/C)GATCNTY-3', which we have named the Loz1 response element (LRE). Using reporter assays, we show that LREs are both required and sufficient for Loz1-mediated gene repression, and that the level of gene repression is dependent upon the number and sequence of LREs. Our results elucidate the Loz1 regulon in fission yeast and provide new insight into how eukaryotic cells are able to respond to changes in zinc availability in the environment.
Collapse
Affiliation(s)
- Stevin Wilson
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210
| | - Yi-Hsuan Liu
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
| | - Carlos Cardona-Soto
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
| | - Vibhuti Wadhwa
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Mark P. Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Amanda J. Bird
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
8
|
Yoo SJ, Sohn MJ, Jeong DM, Kang HA. Short bZIP homologue of sulfur regulator Met4 from Ogataea parapolymorpha does not depend on DNA-binding cofactors for activating genes in sulfur starvation. Environ Microbiol 2019; 22:310-328. [PMID: 31680403 DOI: 10.1111/1462-2920.14849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
The acquisition of sulfur from environment and its assimilation is essential for fungal growth and activities. Here, we describe novel features of the regulatory network of sulfur metabolism in Ogataea parapolymorpha, a thermotolerant methylotrophic yeast with high resistance to harsh environmental conditions. A short bZIP protein (OpMet4p) of O. parapolymorpha, displaying the combined structural characteristics of yeast and filamentous fungal Met4 homologues, plays a key role as a master regulator of cell homeostasis during sulfur limitation, but also its function is required for the tolerance of various stresses. Domain swapping analysis, combined with deletion analysis of the regulatory domains and genes encoding OpCbf1p, OpMet28p, and OpMet32p, indicated that OpMet4p does not require the interaction with these DNA-binding cofactors to induce the expression of sulfur genes, unlike the Saccharomyces cerevisiae Met4p. ChIP analysis confirmed the notion that OpMet4p, which contains a canonical bZIP domain, can bind the target DNA in the absence of cofactors, similar to homologues in other filamentous fungi. Collectively, the identified unique features of the O. parapolymorpha regulatory network, as the first report on the sulfur regulation by a short yeast Met4 homologue, provide insights into conservation and divergence of the sulfur regulatory networks among diverse ascomycetous fungi.
Collapse
Affiliation(s)
- Su Jin Yoo
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Min Jeong Sohn
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Da Min Jeong
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Hyun Ah Kang
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
9
|
Sanchez-Marinas M, Gimenez-Zaragoza D, Martin-Ramos E, Llanes J, Cansado J, Pujol MJ, Bachs O, Aligue R. Cmk2 kinase is essential for survival in arsenite by modulating translation together with RACK1 orthologue Cpc2 in Schizosaccharomyces pombe. Free Radic Biol Med 2018; 129:116-126. [PMID: 30236788 DOI: 10.1016/j.freeradbiomed.2018.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/24/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
Different studies have demonstrated multiple effects of arsenite on human physiology. However, there are many open questions concerning the mechanism of response to arsenite. Schizosaccharomyces pombe activates the Sty1 MAPK pathway as a common response to several stress conditions. The specificity of the response is due to the activation of different transcription factors and specific targets such the Cmk2 MAPKAP kinase. We have previously shown that Cmk2 is phosphorylated and activated by the MAPK Sty1 in response to oxidative stress. Here, we report that Cmk2 kinase is specifically necessary to overcome the stress caused by metalloid agents, in particular arsenite. Deletion of cmk2 increases the protein level of various components of the MAPK pathway. Moreover, Cmk2 negatively regulates translation through the Cpc2 kinase: the RACK1 orthologue in fission yeast. RACK1 is a receptor for activated C-kinase. Interestingly, RACK1 is a constituent of the eukaryotic ribosome specifically localized in the head region of the 40 S subunit. Cmk2 controls arsenite response through Cpc2 and it does so through Cpc2 ribosomal function, as observed in genetic analysis using a Cpc2 mutant unable to bind to ribosome. These findings suggest a role for Cmk2 in regulating translation and facilitating adaptation to arsenite stress in the ribosome.
Collapse
Affiliation(s)
- Marta Sanchez-Marinas
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - David Gimenez-Zaragoza
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Edgar Martin-Ramos
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Julia Llanes
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia 30071, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Oriol Bachs
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Rosa Aligue
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain.
| |
Collapse
|
10
|
Jain S, Sekonyela R, Knox BP, Palmer JM, Huttenlocher A, Kabbage M, Keller NP. Selenate sensitivity of a laeA mutant is restored by overexpression of the bZIP protein MetR in Aspergillus fumigatus. Fungal Genet Biol 2018; 117:1-10. [PMID: 29753128 PMCID: PMC6064392 DOI: 10.1016/j.fgb.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
LaeA is a conserved global regulator of secondary metabolism and development in filamentous fungi. Examination of Aspergillus fumigatus transcriptome data of laeA deletion mutants have been fruitful in identifying genes and molecules contributing to the laeA mutant phenotype. One of the genes significantly down regulated in A. fumigatus ΔlaeA is metR, encoding a bZIP DNA binding protein required for sulfur and methionine metabolism in fungi. LaeA and MetR deletion mutants exhibit several similarities including down regulation of sulfur assimilation and methionine metabolism genes and ability to grow on the toxic sulfur analog, sodium selenate. However, unlike ΔmetR, ΔlaeA strains are able to grow on sulfur, sulfite, and cysteine. To examine if any parameter of the ΔlaeA phenotype is due to decreased metR expression, an over-expression allele (OE::metR) was placed in a ΔlaeA background. The OE::metR allele could not significantly restore expression of MetR regulated genes in ΔlaeA but did restore sensitivity to sodium selenate. In A. nidulans a second bZIP protein, MetZ, also regulates sulfur and methionine metabolism genes. However, addition of an OE::metZ construct to the A. fumigatus ΔlaeA OE::metR strain still was unable to rescue the ΔlaeA phenotype to wildtype with regards gliotoxin synthesis and virulence in a zebrafish aspergillosis model.
Collapse
Affiliation(s)
- Sachin Jain
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Relebohile Sekonyela
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jonathan M Palmer
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
11
|
Ohtsuka H, Aiba H. Factors extending the chronological lifespan of yeast: Ecl1 family genes. FEMS Yeast Res 2018; 17:4085637. [PMID: 28934413 DOI: 10.1093/femsyr/fox066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023] Open
Abstract
Ecl1 family genes are conserved among yeast, in which their overexpression extends chronological lifespan. Ecl1 family genes were first identified in the fission yeast Schizosaccharomyces pombe; at the time, they were considered noncoding RNA owing to their short coding sequence of fewer than 300 base pairs. Schizosaccharomyces pombe carries three Ecl1 family genes, ecl1+, ecl2+ and ecl3+, whereas Saccharomyces cerevisiae has one, ECL1. Their overexpression extends chronological lifespan, increases oxidative stress resistance and induces sexual development in fission yeast. A recent study indicated that Ecl1 family genes play a significant role in responding to environmental zinc or sulfur depletion. In this review, we focus on Ecl1 family genes in fission yeast and describe the relationship between nutritional depletion and cellular output, as the latter depends on Ecl1 family genes. Furthermore, we present the roles and functions of Ecl1 family genes characterized to date.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Qiu C, Yi YY, Lucena R, Wu MJ, Sun JH, Wang X, Jin QW, Wang Y. F-box proteins Pof3 and Pof1 regulate Wee1 degradation and mitotic entry in fission yeast. J Cell Sci 2018; 131:jcs.202895. [PMID: 29361524 DOI: 10.1242/jcs.202895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
The key cyclin-dependent kinase Cdk1 (Cdc2) promotes irreversible mitotic entry, mainly by activating the phosphatase Cdc25 while suppressing the tyrosine kinase Wee1. Wee1 needs to be downregulated at the onset of mitosis to ensure rapid activation of Cdk1. In human somatic cells, one mechanism of suppressing Wee1 activity is mediated by ubiquitylation-dependent proteolysis through the Skp1/Cul1/F-box protein (SCF) ubiquitin E3 ligase complex. This mechanism is believed to be conserved from yeasts to humans. So far, the best-characterized human F-box proteins involved in recognition of Wee1 are β-TrCP (BTRCP) and Tome-1 (CDCA3). Although fission yeast Wee1 was the first identified member of its conserved kinase family, the F-box proteins involved in recognition and ubiquitylation of Wee1 have not been identified in this organism. In this study, our screen using Wee1-Renilla luciferase as the reporter revealed that two F-box proteins, Pof1 and Pof3, are required for downregulating Wee1 and are possibly responsible for recruiting Wee1 to SCF. Our genetic analyses supported a functional relevance between Pof1 and Pof3 and the rate of mitotic entry, and Pof3 might play a major role in this process.
Collapse
Affiliation(s)
- Cui Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuan-Yuan Yi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Rafael Lucena
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Meng-Juan Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Jia-Hao Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
13
|
Ohtsuka H, Takinami M, Shimasaki T, Hibi T, Murakami H, Aiba H. Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes by downregulation of ribosome. Mol Microbiol 2017; 105:84-97. [PMID: 28388826 DOI: 10.1111/mmi.13686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 01/11/2023]
Abstract
Nutritional restrictions such as calorie restrictions are known to increase the lifespan of various organisms. Here, we found that a restriction of sulfur extended the chronological lifespan (CLS) of the fission yeast Schizosaccharomyces pombe. The restriction decreased cellular size, RNA content, and ribosomal proteins and increased sporulation rate. These responses depended on Ecl1 family genes, the overexpression of which results in the extension of CLS. We also showed that the Zip1 transcription factor results in the sulfur restriction-dependent expression of the ecl1+ gene. We demonstrated that a decrease in ribosomal activity results in the extension of CLS. Based on these observations, we propose that sulfur restriction extends CLS through Ecl1 family genes in a ribosomal activity-dependent manner.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Masahiro Takinami
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takahide Hibi
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Murakami
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
14
|
Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:3317-3333. [PMID: 27558664 PMCID: PMC5068951 DOI: 10.1534/g3.116.033829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.
Collapse
|
15
|
The Aspergillus nidulans metZ gene encodes a transcription factor involved in regulation of sulfur metabolism in this fungus and other Eurotiales. Curr Genet 2014; 61:115-25. [PMID: 25391366 DOI: 10.1007/s00294-014-0459-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
In Aspergillus nidulans, expression of sulfur metabolism genes is activated by the MetR transcription factor containing a basic region and leucine zipper domain (bZIP). Here we identified and characterized MetZ, a new transcriptional regulator in A. nidulans and other Eurotiales. It contains a bZIP domain similar to the corresponding region in MetR and this similarity suggests that MetZ could potentially complement the MetR deficiency. The metR and metZ genes are interrupted by unusually long introns. Transcription of metZ, unlike that of metR, is controlled by the sulfur metabolite repression system (SMR) dependent on the MetR protein. Overexpression of metZ from a MetR-independent promoter in a ΔmetR background activates transcription of genes encoding sulfate permease, homocysteine synthase and methionine permease, partially complementing the phenotype of the ΔmetR mutation. Thus, MetZ appears to be a second transcription factor involved in regulation of sulfur metabolism genes.
Collapse
|
16
|
Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network. Biochem Soc Trans 2013; 41:1696-700. [DOI: 10.1042/bst20130224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.
Collapse
|
17
|
Guo L, Ghassemian M, Komives EA, Russell P. Cadmium-induced proteome remodeling regulated by Spc1/Sty1 and Zip1 in fission yeast. Toxicol Sci 2012; 129:200-12. [PMID: 22610605 DOI: 10.1093/toxsci/kfs179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Stress-activated protein kinases and transcription factors are crucial for surviving exposure to cadmium and other environmental toxicants, but their effects on the proteome remain largely unexplored. In this study, isobaric tag for relative and absolute quantitation reveals that cadmium stress triggers rapid proteome remodeling in the fission yeast Schizosaccharomyces pombe. Spc1/Sty1, a mitogen/stress-activated protein kinase homologous to human p38 and Saccharomyces cerevisiae Hog1, controls many of these changes, including enzymes of the oxidative phase of the pentose phosphate pathway and trehalose metabolism. Genetic studies indicate that control of carbohydrate metabolism by Spc1 is required for cadmium tolerance. The bZIP transcription factor Zip1, which is functionally related to human Nrf2 and S. cerevisiae Met4, has a smaller effect on cadmium-induced proteome remodeling, but it is required for production of key proteins involved in sulfur metabolism, which are essential for cadmium resistance. These studies reveal how Spc1 and Zip1 independently reshape the proteome to modulate cellular defense mechanisms against the toxic effects of cadmium.
Collapse
Affiliation(s)
- Lan Guo
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
18
|
Okamoto SY, Sato M, Toda T, Yamamoto M. SCF ensures meiotic chromosome segregation through a resolution of meiotic recombination intermediates. PLoS One 2012; 7:e30622. [PMID: 22292001 PMCID: PMC3264600 DOI: 10.1371/journal.pone.0030622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022] Open
Abstract
The SCF (Skp1-Cul1-F-box) complex contributes to a variety of cellular events including meiotic cell cycle control, but its function during meiosis is not understood well. Here we describe a novel function of SCF/Skp1 in meiotic recombination and subsequent chromosome segregation. The skp1 temperature-sensitive mutant exhibited abnormal distribution of spindle microtubules in meiosis II, which turned out to originate from abnormal bending of the spindle in meiosis I. Bent spindles were reported in mitosis of this mutant, but it remained unknown how SCF could affect spindle morphology. We found that the meiotic bent spindle in skp1 cells was due to a hypertension generated by chromosome entanglement. The spindle bending was suppressed by inhibiting double strand break (DSB) formation, indicating that the entanglement was generated by the meiotic recombination machinery. Consistently, Rhp51/Rad51-Rad22/Rad52 foci persisted until meiosis I in skp1 cells, proving accumulation of recombination intermediates. Intriguingly bent spindles were also observed in the mutant of Fbh1, an F-box protein containing the DNA helicase domain, which is involved in meiotic recombination. Genetic evidence suggested its cooperation with SCF/Skp1. Thus, SCF/Skp1 together with Fbh1 is likely to function in the resolution of meiotic recombination intermediates, thereby ensuring proper chromosome segregation.
Collapse
Affiliation(s)
- Shin-ya Okamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | - Masamitsu Sato
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Honcho Kawaguchi, Saitama, Japan
- * E-mail:
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| |
Collapse
|
19
|
Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2011; 34:925-51. [PMID: 20374295 DOI: 10.1111/j.1574-6976.2010.00217.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
20
|
Eshaghi M, Lee JH, Zhu L, Poon SY, Li J, Cho KH, Chu Z, Karuturi RKM, Liu J. Genomic binding profiling of the fission yeast stress-activated MAPK Sty1 and the bZIP transcriptional activator Atf1 in response to H2O2. PLoS One 2010; 5:e11620. [PMID: 20661279 PMCID: PMC2905393 DOI: 10.1371/journal.pone.0011620] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/18/2010] [Indexed: 11/19/2022] Open
Abstract
Background The evolutionally conserved MAPK Sty1 and bZIP transcriptional activator Atf1 are known to play a pivotal role in response to the reactive oxygen species in S. pombe. However, it is unclear whether all of the H2O2-induced genes are directly regulated by the Sty1-Atf1 pathway and involved in growth fitness under H2O2-induced stress conditions. Methodology/Principal Findings Here we present the study on ChIP-chip mapping of the genomic binding sites for Sty1, Atf1, and the Atf1's binding partner Pcr1; the genome-wide transcriptional profiling of the atf1 and pcr1 strains in response to H2O2; and the phenotypic assessment of ∼90 Atf1/Pcr1-bound or unbound genes for growth fitness under H2O2 conditions. ChIP-chip analysis shows that Atf1 and Pcr1 binding sites are overlapped in the genome and constitutively present before H2O2 stress. On the other hand, Sty1 recruitment primarily occurs at the Atf1/Pcr1 binding sites and is induced by H2O2. We found that Atf1/Pcr1 is clearly responsible for the high-level transcriptional response to H2O2. Furthermore, phenotypic assessment indicates that among the H2O2-induced genes, Atf1/Pcr1-bound genes exhibit a higher likelihood of functional requirement for growth fitness under the stress condition than the Atf1/Pcr1-unbound genes do. Notably, we found that the Atf1/Pcr1-bound genes regardless of their responsiveness to H2O2 show a high probability of requirement for growth fitness. Conclusion/Significance Together, our analyses on global mapping of protein binding sites, genome-wide transcriptional profiling, and phenotypic assessment provide insight into mechanisms for global transcriptional regulation by the Sty1-Atf1 pathway in response to H2O2-induced reactive oxygen species.
Collapse
Affiliation(s)
- Majid Eshaghi
- Systems Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Jong Hoon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Lei Zhu
- Systems Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Suk Yean Poon
- Systems Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Juntao Li
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Zhaoqing Chu
- Systems Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - R. Krishna M. Karuturi
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Jianhua Liu
- Systems Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
21
|
Takayama Y, Toda T. Coupling histone homeostasis to centromere integrity via the ubiquitin-proteasome system. Cell Div 2010; 5:18. [PMID: 20604974 PMCID: PMC2910015 DOI: 10.1186/1747-1028-5-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/07/2010] [Indexed: 12/26/2022] Open
Abstract
In many eukaryotes, histone gene expression is regulated in a cell cycle-dependent manner, with a spike pattern at S phase. In fission yeast the GATA-type transcription factor Ams2 is required for transcriptional activation of all the core histone genes during S phase and Ams2 protein levels per se show concomitant periodic patterns. We have recently unveiled the molecular mechanisms underlying Ams2 fluctuation during the cell cycle. We have found that Ams2 stability varies during the cell cycle, and that the ubiquitin-proteasome pathway is responsible for Ams2 instability. Intriguingly, Ams2 proteolysis requires Hsk1-a Cdc7 homologue in fission yeast generally called Dbf4-dependent protein kinase (DDK)-and the SCF ubiquitin ligase containing the substrate receptor Pof3 F-box protein. Here, we discuss why histone synthesis has to occur only during S phase. Our results indicate that excess synthesis of core histones outside S phase results in deleterious effects on cell survival. In particular, functions of the centromere, in which the centromere-specific H3 variant CENP-A usually form centromeric nucleosomes, are greatly compromised. This defect is, at least in part, ascribable to abnormal incorporation of canonical histone H3 into these nucleosomes. Finally, we address the significance and potential implications of our work from an evolutionary point of view.
Collapse
Affiliation(s)
- Yuko Takayama
- Division of Cell Biology, Institute of Life Science, Kurume University, 1-1 Hyakunen-kohen, Kurume, Fukuoka 839-0864, Japan.
| | | |
Collapse
|
22
|
Pancaldi V, Schubert F, Bähler J. Meta-analysis of genome regulation and expression variability across hundreds of environmental and genetic perturbations in fission yeast. ACTA ACUST UNITED AC 2010; 6:543-52. [DOI: 10.1039/b913876p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Sung DY, Kim TH, Komives EA, Mendoza-Cózatl DG, Schroeder JI. ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:802-13. [PMID: 19453443 PMCID: PMC2830867 DOI: 10.1111/j.1365-313x.2009.03914.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A forward-genetic screen in Arabidopsis led to the isolation of several arsenic tolerance mutants. ars5 was the strongest arsenate- and arsenite-resistant mutant identified in this genetic screen. Here, we report the characterization and cloning of the ars5 mutant gene. ars5 is shown to exhibit an increased accumulation of arsenic and thiol compounds during arsenic stress. Rough mapping together with microarray-based expression mapping identified the ars5 mutation in the alpha subunit F (PAF1) of the 26S proteasome complex. Characterization of an independent paf1 T-DNA insertion allele and complementation by PAF1 confirmed that paf1 mutation is responsible for the enhanced thiol accumulation and arsenic tolerance phenotypes. Arsenic tolerance was not observed in a knock-out mutant of the highly homologous PAF2 gene. However, genetic complementation of ars5 by the overexpression of PAF2 suggests that the PAF2 protein is functionally equivalent to PAF1 when expressed at high levels. No detectible difference was observed in total ubiquitinylated protein profiles between ars5 and wild-type (WT) Arabidopsis, suggesting that the arsenic tolerance observed in ars5 is not derived from a general impairment in proteasome-mediated protein degradation. Quantitative RT-PCR showed that arsenic induces the enhanced transcriptional activation of several key genes that function in glutathione and phytochelatin biosynthesis in the WT, and this arsenic induction of gene expression is more dramatic in ars5. The enhanced transcriptional response to arsenic and the increased accumulation of thiol compounds in ars5, compared with WT, suggest the presence of a positive regulation pathway for thiol biosynthesis that is enhanced in the ars5 background.
Collapse
Affiliation(s)
- Dong-Yul Sung
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
24
|
A Cds1-mediated checkpoint protects the MBF activator Rep2 from ubiquitination by anaphase-promoting complex/cyclosome-Ste9 at S-phase arrest in fission yeast. Mol Cell Biol 2009; 29:4959-70. [PMID: 19596787 DOI: 10.1128/mcb.00562-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the MluI cell cycle box (MCB) motif-containing genes at G(1) phase is regulated by the MCB-binding factors (MBF) (also called DSC1) in Schizosaccharomyces pombe. Upon S-phase arrest, the MBF transcriptional activity is induced through the accumulation of the MBF activator Rep2. In this study, we show that the turnover of Rep2 is attributable to ubiquitin-mediated proteolysis. Levels of Rep2 oscillate during the cell cycle, with a peak at G(1) phase, coincident with the MBF activity. Furthermore, we show that Rep2 ubiquitination requires the function of the E3 ligase anaphase-promoting complex/cyclosome (APC/C). Ste9 can be phosphorylated by the checkpoint kinase Cds1 in vitro, and its inhibition/phosphorylation at S-phase arrest is dependent on the function of Cds1. Our data indicate that the Cds1-dependent stabilization of Rep2 is achieved through the inhibition/phosphorylation of APC/C-Ste9 at the onset of S-phase arrest. Stabilization of Rep2 is important for stimulating transcription of the MBF-dependent genes to ensure a sufficient supply of proteins essential for cell recovery from S-phase arrest. We propose that oscillation of Rep2 plays a role in regulation of periodic transcription of the MBF-dependent genes during cell cycle progression.
Collapse
|
25
|
Identification of a conserved F-box protein 6 interactor essential for endocytosis and cytokinesis in fission yeast. Biochem J 2009; 420:169-77. [PMID: 19243310 DOI: 10.1042/bj20081659] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The F-box domain is a degenerated motif consisting of approximately 40 amino acid residues that specifically bind Skp1, a core component of the SCF (Skp1-Cdc53/Cullin 1-F-box protein) ubiquitin ligase. Recent work, mainly performed in budding yeast, indicates that certain F-box proteins form non-SCF complexes together with Skp1 in the absence of cullins and play various roles in cell cycle and signalling pathways. However, it is not established whether these non-SCF complexes are unique to budding yeast or common in other eukaryotes. In the present paper, using TAP (tandem affinity purification) coupled to MudPIT (Multidimensional Protein Identification Technology) analysis, we have identified a novel conserved protein, Sip1, in fission yeast, as an interacting partner of an essential F-box protein Pof6. Sip1 is a large HEAT (huntingtin, elongation factor 3, the PR65/A subunit of protein phosphatase 2A and the lipid kinase Tor)-repeats containing protein (217 kDa) and forms a complex with Pof6 and Skp1. This complex does not contain cullins, indicating that it is a novel non-SCF complex. Like Pof6 and Skp1, Sip1 is essential for cell viability and temperature-sensitive sip1 mutants display cell division arrest as binucleate cells with septa. Sip1 localizes to the nucleus and dynamic cytoplasmic dots, which are shown in the present study to be endocytic vesicles. Consistent with this, sip1 mutants are defective in endocytosis. Furthermore, towards the end of cytokinesis, constriction of the actomyosin ring and dissociation of type II myosin and septum materials are substantially delayed in the absence of functional Sip1. These results indicate that the conserved Sip1 protein comprises a novel non-SCF F-box complex that plays an essential role in endocytosis, cytokinesis and cell division.
Collapse
|
26
|
|
27
|
Kennedy PJ, Vashisht AA, Hoe KL, Kim DU, Park HO, Hayles J, Russell P. A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe. Toxicol Sci 2008; 106:124-39. [PMID: 18684775 PMCID: PMC2563147 DOI: 10.1093/toxsci/kfn153] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 07/21/2008] [Indexed: 11/14/2022] Open
Abstract
Cadmium is a worldwide environmental toxicant responsible for a range of human diseases including cancer. Cellular injury from cadmium is minimized by stress-responsive detoxification mechanisms. We explored the genetic requirements for cadmium tolerance by individually screening mutants from the fission yeast (Schizosaccharomyces pombe) haploid deletion collection for inhibited growth on agar growth media containing cadmium. Cadmium-sensitive mutants were further tested for sensitivity to oxidative stress (hydrogen peroxide) and osmotic stress (potassium chloride). Of 2649 mutants screened, 237 were sensitive to cadmium, of which 168 were cadmium specific. Most were previously unknown to be involved in cadmium tolerance. The 237 genes represent a number of pathways including sulfate assimilation, phytochelatin synthesis and transport, ubiquinone (Coenzyme Q10) biosynthesis, stress signaling, cell wall biosynthesis and cell morphology, gene expression and chromatin remodeling, vacuole function, and intracellular transport of macromolecules. The ubiquinone biosynthesis mutants are acutely sensitive to cadmium but only mildly sensitive to hydrogen peroxide, indicating that Coenzyme Q10 plays a larger role in cadmium tolerance than just as an antioxidant. These and several other mutants turn yellow when exposed to cadmium, suggesting cadmium sulfide accumulation. This phenotype can potentially be used as a biomarker for cadmium. There is remarkably little overlap with a comparable screen of the Saccharomyces cerevisiae haploid deletion collection, indicating that the two distantly related yeasts utilize significantly different strategies for coping with cadmium stress. These strategies and their relation to cadmium detoxification in humans are discussed.
Collapse
Affiliation(s)
- Patrick J. Kennedy
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Ajay A. Vashisht
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Kwang-Lae Hoe
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Republic of Korea
| | - Dong-Uk Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Republic of Korea
| | - Han-Oh Park
- BiONEER Corporation, Daejeon 306-220, Republic of Korea
| | - Jacqueline Hayles
- Cell Cycle Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, UK
| | - Paul Russell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
28
|
Udagawa T, Nemoto N, Wilkinson CRM, Narashimhan J, Jiang L, Watt S, Zook A, Jones N, Wek RC, Bähler J, Asano K. Int6/eIF3e promotes general translation and Atf1 abundance to modulate Sty1 MAPK-dependent stress response in fission yeast. J Biol Chem 2008; 283:22063-75. [PMID: 18502752 PMCID: PMC2494926 DOI: 10.1074/jbc.m710017200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 05/22/2008] [Indexed: 11/06/2022] Open
Abstract
int-6 is one of the frequent integration sites for mouse mammary tumor viruses. Although its product is the e-subunit of translation initiation factor eIF3, other evidence indicates that it interacts with proteasomes or other proteins to regulate protein stability. Here we report that the fission yeast int6(+) is required for overcoming stress imposed by histidine starvation, using the drug 3-aminotriazole (3AT). Microarray and complementary Northern studies using wild-type, int6Delta or gcn2Delta mutants indicate that 3AT-treated wild-type yeast induces core environmental stress response (CESR) genes in addition to typical general amino acid control (GAAC) genes whose transcription depends on the eIF2 kinase, Gcn2. In agreement with this, Sty1 MAPK and its target transcription factor Atf1, which signal the CESR, are required for overcoming 3AT-induced starvation. We find that Int6 is required for maintaining the basal level of Atf1 and for rapid transcriptional activation of the CESR on 3AT-insult. Pulse labeling experiments indicate that int6Delta significantly slows down de novo protein synthesis. Moreover, Atf1 protein half-life was reduced in int6Delta cells. These effects would account for the compromised Atf1 activity on 3AT-induced stress. Thus, the robust protein synthesis promoted by intact eIF3 appears to be a part of the requisites for sound Sty1 MAPK-dependent signaling governed by the activity of the Atf1 transcription factor.
Collapse
Affiliation(s)
- Tsuyoshi Udagawa
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mata J, Wilbrey A, Bähler J. Transcriptional regulatory network for sexual differentiation in fission yeast. Genome Biol 2008; 8:R217. [PMID: 17927811 PMCID: PMC2246291 DOI: 10.1186/gb-2007-8-10-r217] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/11/2007] [Accepted: 10/10/2007] [Indexed: 11/25/2022] Open
Abstract
Microarray analysis of the transcriptome of fission yeast after genetic perturbation of 6 genes known to have a role in sexual differentiation reveals insights into the regulatory principles controlling the gene expression program driving this process. Background Changes in gene expression are hallmarks of cellular differentiation. Sexual differentiation in fission yeast (Schizosaccharomyces pombe) provides a model system for gene expression programs accompanying and driving cellular specialization. The expression of hundreds of genes is modulated in successive waves during meiosis and sporulation in S. pombe, and several known transcription factors are critical for these processes. Results We used DNA microarrays to investigate meiotic gene regulation by examining transcriptomes after genetic perturbations (gene deletion and/or overexpression) of rep1, mei4, atf21 and atf31, which encode known transcription factors controlling sexual differentiation. This analysis reveals target genes at a genome-wide scale and uncovers combinatorial control by Atf21p and Atf31p. We also studied two transcription factors not previously implicated in sexual differentiation whose meiotic induction depended on Mei4p: Rsv2p induces stress-related genes during spore formation, while Rsv1p represses glucose-metabolism genes. Our data further reveal negative feedback interactions: both Rep1p and Mei4p not only activate specific gene expression waves (early and middle genes, respectively) but are also required for repression of genes induced in the previous waves (Ste11p-dependent and early genes, respectively). Conclusion These data give insight into regulatory principles controlling the extensive gene expression program driving sexual differentiation and highlight sophisticated interactions and combinatorial control among transcription factors. Besides triggering simultaneous expression of gene waves, transcription factors also repress genes in the previous wave and induce other factors that in turn regulate a subsequent wave. These dependencies ensure an ordered and timely succession of transcriptional waves during cellular differentiation.
Collapse
Affiliation(s)
- Juan Mata
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1HH, UK.
| | | | | |
Collapse
|
30
|
Abstract
A component of the cellular response to zinc deficiency operates via control of transcript abundance. Therefore, microarray analysis was employed to identify Schizosaccharomyces pombe genes whose mRNA levels are regulated by intracellular zinc status. A set of 57 genes whose mRNA levels were substantially reduced in response to zinc deficiency was identified, while the mRNA levels of 63 genes were increased by this condition. In order to investigate the mechanisms that control these responses, a genetic screen was employed to identify mutants with defective zinc-responsive gene expression. Two strains (II-1 and V7) that were identified by this screen harbor mutations that are linked to zrt1+, which encodes a putative Zrt/IRT-like protein (ZIP) zinc uptake transporter. Importantly, zrt1+ mRNA levels are increased in response to zinc deprivation, and cells lacking functional Zrt1 are highly impaired in their ability to proliferate at limiting zinc concentrations. Furthermore, zrt1 null cells were found to have severely reduced zinc contents, indicating that Zrt1 functions as a key regulator of intracellular zinc levels in fission yeast. The deletion of fet4+, another zinc-responsive gene encoding a putative metal ion transporter, exacerbated the phenotypes associated with the loss of Zrt1, suggesting that Fet4 also plays a role in zinc uptake under limiting conditions.
Collapse
|
31
|
Abstract
In fungal cells, transcriptional regulatory mechanisms play a central role in both the homeostatic regulation of the essential metals iron, copper and zinc and in the detoxification of heavy metal ions such as cadmium. Fungi detect changes in metal ion levels using unique metallo-regulatory factors whose activity is responsive to the cellular metal ion status. New studies have revealed that these factors not only regulate the expression of genes required for metal ion acquisition, storage or detoxification but also globally remodel metabolism to conserve metal ions or protect against metal toxicity. This review focuses on the mechanisms metallo-regulators use to up- and down-regulate gene expression.
Collapse
Affiliation(s)
- Amanda J Bird
- Division of Hematology, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| |
Collapse
|
32
|
Thompson J, Wong L, Lau PS, Bannigan J. Adherens junction breakdown in the periderm following cadmium administration in the chick embryo: distribution of cadherins and associated molecules. Reprod Toxicol 2007; 25:39-46. [PMID: 18031986 DOI: 10.1016/j.reprotox.2007.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/18/2007] [Accepted: 10/02/2007] [Indexed: 01/15/2023]
Abstract
BACKGROUND The teratogenic metal cadmium (Cd) has been found to cause ventral body wall defects similar to human omphalocele when administered to post-gastrulation chick embryos prior to body wall folding. From 4h after Cd, affected embryos demonstrate varying degrees of cell junction breakdown and desquamation in the periderm. We examined the effect of Cd on tissue and cell distribution of cadherins and their intracellular associates. METHODS Chicks were explanted and given 50microl of 50microM Cd solution at 60h incubation (Hamburger-Hamilton stage 16-17). To examine peridermal junctions, embryos were processed into resin and ultra-thin sections examined by transmission electron microscopy (TEM). Tissue was processed into paraffin and 6microm sections treated according to standard protocols for immunohistochemical detection of L-CAM, pan-cadherin, beta-catenin, alpha-1 and alpha-2 catenin. To examine actin distribution, frozen sections were cut at 10-20microm, stained with oragon green phalloidin and nuclei counter-stained with propidium iodide. RESULTS The overall tissue distribution of L-CAM, pan-cadherin and the alpha-catenins did not appear to be altered following Cd. However, beta-catenin changed from its normal sub-membranous location to a more general cytoplasmic distribution, with translocation to the nucleus in both peridermal and ectodermal cells. Similarly, actin distribution in the periderm in embryos demonstrating cell junction breakdown was markedly altered, with clumping and disorganization after 4h. CONCLUSIONS Although L-CAM is distributed normally after Cd, post-translational modification may occur causing breakdown of its normal association with the catenins and actin, and allowing beta-catenin to translocate to the nucleus in peri-ectodermal tissue, mimicking the canonical Wnt pathway.
Collapse
Affiliation(s)
- Jennifer Thompson
- School of Medicine and Medical Science and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | | | | | | |
Collapse
|
33
|
Penkett CJ, Birtle ZE, Bähler J. Simplified primer design for PCR-based gene targeting and microarray primer database: two web tools for fission yeast. Yeast 2007; 23:921-8. [PMID: 17072893 PMCID: PMC2964512 DOI: 10.1002/yea.1422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PCR-based gene targeting is a popular method for manipulating yeast genes in their normal chromosomal locations. The manual design of primers, however, can be cumbersome and error-prone. We have developed a straightforward web-based tool that applies user-specified inputs to automate and simplify the task of primer selection for deletion, tagging and/or regulated expression of genes in Schizosaccharomyces pombe. This tool, named PPPP (for Pombe PCR Primer Programs), is available at http://www.sanger.ac.uk/PostGenomics/S_pombe/software/. We also present a searchable Microarray Primer Database to retrieve the sequences and accompanying information for primers and PCR products used to build our in-house Sz. pombe microarrays. This database contains information on both coding and intergenic regions to provide context for the microarray data, and it should be useful also for other applications, such as quantitative PCR. The database can be accessed at http://www.sanger.ac.uk/PostGenomics/S_pombe/microarray/. Copyright © 2006 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - Jürg Bähler
- *Correspondence to: Jürg Bähler,Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK. E-mail:
| |
Collapse
|
34
|
Abstract
Regulation of protein stability through the ubiquitin proteasome system is a key mechanism underlying numerous cellular processes. The ubiquitin protein ligases (or E3) are in charge of substrate specificity and therefore play a pivotal role in the pathway. Among the several different E3 enzyme families, the SCF (Skp1-Cullin-F box protein) is one of the largest and best characterized. F-box proteins, in addition to the loosely conserved F-box motif that binds Skp1, often carry typical protein interaction domains and are proposed to recruit the substrate to the SCF complex. Strikingly, genomes analysis revealed the presence of large numbers of F-box proteins topping to nearly 700 predicted in Arabidopsis thaliana. Recent evidences in various species suggest that some F-box proteins have functions not directly related to the SCF complex raising questions about the actual connection between the large F-box protein family and protein degradation, but also about their origins and evolution.
Collapse
Affiliation(s)
- Damien Hermand
- Laboratoire de Génétique Moléculaire (GEMO), Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
35
|
Mamnun YM, Katayama S, Toda T. Fission yeast Mcl1 interacts with SCF(Pof3) and is required for centromere formation. Biochem Biophys Res Commun 2006; 350:125-30. [PMID: 16997270 DOI: 10.1016/j.bbrc.2006.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/01/2006] [Indexed: 11/20/2022]
Abstract
The fission yeast S-phase regulator Mcl1, an orthologue of budding yeast Ctf4, is an interacting protein of DNA polymerase alpha and an important factor to ensure DNA replication and sister chromatid cohesion. Deletion of this protein results in severe cohesion defects, however, the function and cellular role of this protein remains elusive. In this study we isolate Mcl1 as an interaction partner of the F-box protein Pof3, which is a component of the ubiquitin ligase complex SCF(Pof3). Comparing the phenotypes of cells lacking pof3+ or mcl1+ we find a broad overlap including the accumulation of DNA damage and activation of the DNA damage pathway. Importantly, we identity a novel, specific role for Mcl1 in the transcriptional silencing and the localisation of CENP-A at the centromeres.
Collapse
Affiliation(s)
- Yasmine M Mamnun
- Laboratory of Cell Regulation, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
36
|
Tafforeau L, Le Blastier S, Bamps S, Dewez M, Vandenhaute J, Hermand D. Repression of ergosterol level during oxidative stress by fission yeast F-box protein Pof14 independently of SCF. EMBO J 2006; 25:4547-56. [PMID: 17016471 PMCID: PMC1589992 DOI: 10.1038/sj.emboj.7601329] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 08/14/2006] [Indexed: 11/09/2022] Open
Abstract
We describe a new member of the F-box family, Pof14, which forms a canonical, F-box dependent SCF (Skp1, Cullin, F-box protein) ubiquitin ligase complex. The Pof14 protein has intrinsic instability that is abolished by inactivation of its Skp1 interaction motif (the F-box), Skp1 or the proteasome, indicating that Pof14 stability is controlled by an autocatalytic mechanism. Pof14 interacts with the squalene synthase Erg9, a key enzyme in ergosterol metabolism, in a membrane-bound complex that does not contain the core SCF components. pof14 transcription is induced by hydrogen peroxide and requires the Pap1 transcription factor and the Sty1 MAP kinase. Pof14 binds to and decreases Erg9 activity in vitro and a pof14 deletion strain quickly loses viability in the presence of hydrogen peroxide due to its inability to repress ergosterol synthesis. A pof14 mutant lacking the F-box and an skp1-3 ts mutant behave as wild type in the presence of oxidant showing that Pof14 function is independent of SCF. This indicates that modulation of ergosterol level plays a key role in adaptation to oxidative stress.
Collapse
Affiliation(s)
- Lionel Tafforeau
- Laboratoire de Génétique Moléculaire (GEMO), Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | - Sophie Le Blastier
- Laboratoire de Génétique Moléculaire (GEMO), Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | - Sophie Bamps
- Laboratoire de Génétique Moléculaire (GEMO), Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | - Monique Dewez
- Laboratoire de Génétique Moléculaire (GEMO), Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | - Jean Vandenhaute
- Laboratoire de Génétique Moléculaire (GEMO), Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | - Damien Hermand
- Laboratoire de Génétique Moléculaire (GEMO), Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
- Corresponding author. Laboratoire de Genetique Moleculaire, University of Namur, Facultes Universitaires Notre Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur, Belgium. Tel.: +32 81 724241; Fax: +32 81 724297; E-mail:
| |
Collapse
|
37
|
Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A. Uptake and toxicity of Cr(III) in celery seedlings. CHEMOSPHERE 2006; 64:1695-703. [PMID: 16481028 DOI: 10.1016/j.chemosphere.2006.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/22/2005] [Accepted: 01/02/2006] [Indexed: 05/06/2023]
Abstract
The present study shows that in celery Cr(III) induces deleterious effects on seedling development and morphology, and a number of metabolic responses related to stress. Exogenous CrCl3 from 0.01 to 1 mM increasingly inhibited seed germination and hypocotyl elongation, or completely blocked it (10 mM), while the root apparatus was dramatically damaged even at the lowest dose. Seedlings took up exogenous Cr(III) in a dose-dependent manner, roots being the site of major metal accumulation; translocation towards the hypocotyl and cotyledonary leaves was also detected. Either total or chlorophyll a content was significantly reduced by chromium as low as 0.01 mM. A large accumulation of free and, to a lesser extent, conjugated polyamines occurred in all segments of treated plants. A dose-dependent relationship linking actual amounts of Cr(III) recovered in the entire seedling or organ and the respective polyamine titre was evidenced. Free putrescine, in particular, was the polyamine exhibiting the highest rate of increase, and cotyledonary leaves the organ where the major response occurred. A marked increase in ubiquitin-protein conjugates after Cr(III) treatment was also observed, particularly in roots. Thus, the study suggests for the first time a possible relationship between ubiquitination and Cr(III)-stress. The putative function of polyamines as a stress response, and the recruitment of the ubiquitin pathway to remove damaged or aberrant proteins which might have been produced in metal-treated seedlings are discussed.
Collapse
Affiliation(s)
- Valeria Scoccianti
- Istituto di Botanica, Università di Urbino Carlo Bo, 61029 Urbino, Italy.
| | | | | | | | | |
Collapse
|
38
|
Kaiser P, Su NY, Yen JL, Ouni I, Flick K. The yeast ubiquitin ligase SCFMet30: connecting environmental and intracellular conditions to cell division. Cell Div 2006; 1:16. [PMID: 16895602 PMCID: PMC1579207 DOI: 10.1186/1747-1028-1-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 08/08/2006] [Indexed: 11/18/2022] Open
Abstract
Ubiquitination regulates a host of cellular processes and is well known for its role in progression through the cell division cycle. In budding yeast, cadmium and arsenic stress, the availability of sulfur containing amino acids, and the intracellular concentration of S-adenosylmethionine are linked to cell cycle regulation through the ubiquitin ligase SCFMet30. Regulation is achieved by ubiquitination of the transcription factor Met4. Met4 activity is controlled by a regulatory K48-linked ubiquitin chain that is synthesized by Cdc34/SCFMet30. A ubiquitin-interacting-motif (UIM) present in Met4 prevents degradation of ubiquitinated Met4 allowing the ubiquitin chain to function as a reversible switch of Met4 activity. Here we discuss mechanisms of Met4 and SCFMet30 regulation in response to intracellular and environmental conditions, and describe the integration of these signals with cell cycle control.
Collapse
Affiliation(s)
- Peter Kaiser
- University of California Irvine, Department of Biological Chemistry, School of Medicine 240D Med Sci I Irvine, CA 92697-1700, USA
| | - Ning-Yuan Su
- University of California Irvine, Department of Biological Chemistry, School of Medicine 240D Med Sci I Irvine, CA 92697-1700, USA
| | - James L Yen
- University of California Irvine, Department of Biological Chemistry, School of Medicine 240D Med Sci I Irvine, CA 92697-1700, USA
| | - Ikram Ouni
- University of California Irvine, Department of Biological Chemistry, School of Medicine 240D Med Sci I Irvine, CA 92697-1700, USA
| | - Karin Flick
- University of California Irvine, Department of Biological Chemistry, School of Medicine 240D Med Sci I Irvine, CA 92697-1700, USA
| |
Collapse
|
39
|
Wai PY, Guo L, Gao C, Mi Z, Guo H, Kuo PC. Osteopontin inhibits macrophage nitric oxide synthesis to enhance tumor proliferation. Surgery 2006; 140:132-40. [PMID: 16904962 DOI: 10.1016/j.surg.2006.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/16/2006] [Accepted: 02/18/2006] [Indexed: 11/23/2022]
Abstract
BACKGROUND Interactions between tumor cells and their host environment can play a major role in regulating survival programs required for tumor progression. Osteopontin (OPN) is a glycophosphoprotein overexpressed by tumors, and is a key molecule for tumor progression and metastasis. OPN also inhibits expression of autocrine and paracrine inducible nitric oxide synthase (iNOS). Given the cytotoxic effects of macrophage NO expression, we hypothesized that tumor-derived OPN inhibits expression of local macrophage iNOS to potentiate tumor survival. METHODS We used a coculture system of murine CT26 colorectal cancer cells with RAW264.7 murine macrophage cells. CT26 expresses OPN at high levels. RNA interference was utilized to produce long-term specific silencing of OPN in CT26. RESULTS Inhibition of constitutive OPN synthesis in CT26 upregulates local NO production with inhibition of CT26 proliferation and promotion of CT26 apoptosis. Macrophage iNOS expression is accompanied by increased binding activity of nuclear factor-kappaB DNA. When the CT26 culture media were examined for a panel of proinflammatory cytokines, elevated concentrations of granulocyte colony-stimulating factor (G-CSF) were found. Subsequently, in CT26 cells treated with antisense-G-CSF, NO levels in CT26-RAW cocultures were significantly decreased. CONCLUSION In our system of CT26-RAW264.7 coculture, we conclude that inhibition of OPN synthesis in CT26 results in G-CSF-mediated induction of macrophage iNOS expression with resultant inhibition of CT26 proliferation via increased apoptosis. Our results suggest that tumor-derived OPN may enhance tumor survival by down regulating expression of NO in the local microenvironment. This is one mechanism by which OPN may potentiate cancer survival and progression.
Collapse
Affiliation(s)
- Philip Y Wai
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
40
|
Weber M, Trampczynska A, Clemens S. Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd(2+)-hypertolerant facultative metallophyte Arabidopsis halleri. PLANT, CELL & ENVIRONMENT 2006; 29:950-63. [PMID: 17087478 DOI: 10.1111/j.1365-3040.2005.01479.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Toxic effects of both essential and non-essential heavy metals are well documented in plants. Very little is known, however, about their modes of toxicity, about tolerance mechanisms and the signalling cascades involved in mediating transcriptional responses to toxic metal excess. We analysed transcriptome changes upon Cd2+ and Cu2+ exposure in roots of Arabidopsis thaliana and the Cd(2+)-hypertolerant metallophyte Arabidopsis halleri. Particularly, three categories of genes were identified with the help of this comparative approach: (1) common responses, which might indicate stable and functionally relevant changes conserved across plant species; (2) metallophyte-specific responses as well as transcripts differentially regulated between the two species, representing candidate genes for Cd2+ hypertolerance; and (3) those specifically responsive to Cd2+ and therefore indicative of toxicity mechanisms or potentially involved in signalling cascades. Our data define, for instance, Arabidopsis core responses to Cd2+ and Cu2+. In addition, they suggest that Cd2+ exposure very rapidly results in apparent Zn deficiency, and they show the existence of highly specific Cd2+ responses and distinct signalling cascades. Array results were independently confirmed by real-time quantitative PCR, thereby further validating cross-species transcriptome analysis with oligonucleotide microarrays.
Collapse
Affiliation(s)
- Michael Weber
- Leibniz Institute of Plant Biochemistry, 06120 Halle/Saale, Germany
| | | | | |
Collapse
|
41
|
Baudouin-Cornu P, Labarre J. Regulation of the cadmium stress response through SCF-like ubiquitin ligases: comparison between Saccharomyces cerevisiae, Schizosaccharomyces pombe and mammalian cells. Biochimie 2006; 88:1673-85. [PMID: 16584827 DOI: 10.1016/j.biochi.2006.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 03/02/2006] [Indexed: 01/23/2023]
Abstract
Saccharomyces cerevisiae has developed several mechanisms to cope with exposure to cadmium. In particular, the sulfur compound glutathione plays a pivotal role in cadmium detoxification, and exposure to cadmium leads to a wide reorganization of S. cerevisiae transcriptome and proteome, resulting in a significant increase in glutathione synthesis. Met4, the transcriptional activator of the sulfur metabolism enzymes, is a critical actor in this reorganization. Recent work has uncovered a part of the mechanism of cadmium-induced Met4 regulation, and showed that it occurs trough the SCF ubiquitin ligase complex SCF(Met30). We discuss this regulation in S. cerevisiae and compare it with the regulation of two other transcriptional activators involved in cadmium detoxification: the Schizosaccharomyces pombe Zip1, regulated by SCF(Pof1), and the mammalian Nrf2, regulated by the SCF-like ubiquitin ligase Cul3:Rbx1:Keap1.
Collapse
Affiliation(s)
- P Baudouin-Cornu
- SBGM/DBJC/DSV, bâtiment 144, CEA/Saclay, Laboratoire de Physiogénomique, 91191 Gif-sur-Yvette cedex, France.
| | | |
Collapse
|
42
|
Abstract
Ubiquitin-mediated proteolysis is one of the key mechanisms underlying cell cycle control. The removal of barriers posed by accumulation of negative regulators, as well as the clearance of proteins when they are no longer needed or deleterious, are carried out via the ubiquitin-proteasome system. Ubiquitin conjugating enzymes and protein-ubiquitin ligases collaborate to mark proteins destined for degradation by the proteasome by covalent attachment of multi-ubiquitin chains. Most regulated proteolysis during the cell cycle can be attributed to two families of protein-ubiquitin ligases. The anaphase promoting complex/cyclosome (APC/C) is activated during mitosis and G1 where it is responsible for eliminating proteins that impede mitotic progression and that would have deleterious consequences if allowed to accumulate during G1. SCF (Skp1/Culin/F-box protein) protein-ubiquitin ligases ubiquitylate proteins that are marked by phosphorylation at specific sequences known as phosphodegrons. Targeting of proteins for destruction by phosphorylation provides a mechanism for linking cell cycle regulation to internal and external signaling pathways via regulated protein kinase activities.
Collapse
Affiliation(s)
- Steven I Reed
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Rodríguez-Gabriel MA, Russell P. Distinct signaling pathways respond to arsenite and reactive oxygen species in Schizosaccharomyces pombe. EUKARYOTIC CELL 2005; 4:1396-402. [PMID: 16087744 PMCID: PMC1214538 DOI: 10.1128/ec.4.8.1396-1402.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure to certain metal and metalloid species, such as arsenic, cadmium, chromium, and nickel, has been associated with an increased risk of cancer in humans. The biological effects of these metals are thought to result from induction of reactive oxygen species (ROS) and inhibition of DNA repair enzymes, although alterations in signal transduction pathways may also be involved in tumor development. To better understand metal toxicity and its connection to ROS, we have compared the effects of arsenite and hydrogen peroxide in wild-type and mutant strains of the fission yeast Schizosaccharomyces pombe. An atf1Delta pap1Delta strain, which is defective in two transcription factors that control stress responses, is extremely sensitive to hydrogen peroxide but not to arsenite. A strain that lacks the transcription factor Zip1 has the opposite relationship. Spc1 (Sty1) mitogen-activated protein kinase (MAPK), a homologue of mammalian p38 MAPK, and the upstream MAPK kinase (MAPKK) Wis1 are essential for survival of both arsenite and hydrogen peroxide. Inactivation of two MAPKK kinases, Win1 and Wis4, almost completely eliminates Spc1 activation by arsenite, yet these cells survive arsenite treatment. The two-component phosphorelay protein Mcs4, which acts upstream of Win1 and Wis4 and is required for Spc1 activation in response to oxidative stress, is not required for Spc1 activation in response to arsenite. We conclude that the toxic effects of arsenic are not strongly connected to oxidative stress and that although Spc1 is activated by arsenic exposure, the basal activity of Spc1 is largely sufficient for the survival of arsenic.
Collapse
Affiliation(s)
- Miguel A Rodríguez-Gabriel
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
44
|
Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 2005; 38:317-32. [PMID: 16290097 DOI: 10.1016/j.biocel.2005.09.018] [Citation(s) in RCA: 424] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/31/2005] [Accepted: 09/29/2005] [Indexed: 12/16/2022]
Abstract
In the broadest sense, cellular stress describes conditions wherein cells encounter and react to a 'non-normal' state. Perturbations may originate through both extracellular and intracellular means. Whereas transient levels of stress are expected to occur on a regular basis, a series of checks and balances ensures that cells are well equipped to maintain a homeostatic state. In the case of supra-physiological stress signaling, cellular challenges are more severe, and programmed cell death may be the best option for the organism. The ability of a cell, and by extension, an organism, to adequately manage cellular stress is fundamental--a question of life or death. The endoplasmic reticulum (ER) is exquisitely poised to sense and respond to cellular stresses including those that result from metabolic and/or protein folding imbalances. In response to stress originating from within the ER, the PERK and Ire1 protein kinases, along with other proximal signaling molecules, initiate a program of transcriptional and translational regulation termed the unfolded protein response. A consequence of ER stress is the accumulation of reactive oxygen species that promotes a state of oxidative stress. PERK signaling, via activation of the Nrf2 and ATF4 transcription factors, coordinates the convergence of ER stress with oxidative stress signaling. Here we discuss progress regarding the signaling pathways involved in these cellular stresses and the implications of the intersection between the two signaling pathways.
Collapse
Affiliation(s)
- Sara B Cullinan
- The Leonard and Madlyn Abramson Family Cancer Research Institute and Cancer Center, Philadelphia, PA 19104, USA
| | | |
Collapse
|
45
|
Thon G, Hansen KR, Altes SP, Sidhu D, Singh G, Verhein-Hansen J, Bonaduce MJ, Klar AJS. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics 2005; 171:1583-95. [PMID: 16157682 PMCID: PMC1456086 DOI: 10.1534/genetics.105.048298] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fission yeast heterochromatin is formed at centromeres, telomeres, and in the mating-type region where it mediates the transcriptional silencing of the mat2-P and mat3-M donor loci and the directionality of mating-type switching. We conducted a genetic screen for directionality mutants. This screen revealed the essential role of two previously uncharacterized factors, Clr7 and Clr8, in heterochromatin formation. Clr7 and Clr8 are required for localization of the Swi6 chromodomain protein and for histone H3 lysine 9 methylation, thereby influencing not only mating-type switching but also transcriptional silencing in all previously characterized heterochromatic regions, chromosome segregation, and meiotic recombination in the mating-type region. We present evidence for physical interactions between Clr7 and the mating-type region and between Clr7 and the S. pombe cullin Pcu4, indicating that a complex containing these proteins mediates an early step in heterochromatin formation and implying a role for ubiquitination at this early stage prior to the action of the Clr4 histone methyl-transferase. Like Clr7 and Clr8, Pcu4 is required for histone H3 lysine 9 methylation, and bidirectional centromeric transcripts that are normally processed into siRNA by the RNAi machinery in wild-type cells are easily detected in cells lacking Clr7, Clr8, or Pcu4. Another physical interaction, between the nucleoporin Nup189 and Clr8, suggests that Clr8 might be involved in tethering heterochromatic regions to the nuclear envelope by association with the nuclear-pore complex.
Collapse
Affiliation(s)
- Geneviève Thon
- Department of Genetics, Institute of Molecular Biology and Physiology, University of Copenhagen, Øster Farimasgade 2A, DK-1353 Copenhagen K, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Current awareness on yeast. Yeast 2005; 22:919-26. [PMID: 16201058 DOI: 10.1002/yea.1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
47
|
|