1
|
Haufe Y, Kuruva V, Samanani Z, Lokaj G, Kamnesky G, Shadamarshan P, Shahoei R, Katz D, Sampson JM, Pusch M, Brik A, Nicke A, Leffler AE. Basic Residues at Position 11 of α-Conotoxin LvIA Influence Subtype Selectivity between α3β2 and α3β4 Nicotinic Receptors via an Electrostatic Mechanism. ACS Chem Neurosci 2023; 14:4311-4322. [PMID: 38051211 DOI: 10.1021/acschemneuro.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Understanding the determinants of α-conotoxin (α-CTX) selectivity for different nicotinic acetylcholine receptor (nAChR) subtypes is a prerequisite for the design of tool compounds to study nAChRs. However, selectivity optimization of these small, disulfide-rich peptides is difficult not only because of an absence of α-CTX/nAChR co-structures but also because it is challenging to predict how a mutation to an α-CTX will alter its potency and selectivity. As a prototypical system to investigate selectivity, we employed the α-CTX LvIA that is 25-fold selective for the α3β2 nAChR over the related α3β4 nAChR subtype, which is a target for nicotine addiction. Using two-electrode voltage clamp electrophysiology, we identified LvIA[D11R] that is 2-fold selective for the α3β4 nAChR, reversing the subtype preference. This effect is specifically due to the change in charge and not shape of LvIA[D11R], as substitution of D11 with citrulline retains selectivity for the α3β2 nAChR. Furthermore, LvIA[D11K] shows a stronger reversal, with 4-fold selectivity for the α3β4 nAChR. Motivated by these findings, using site-directed mutagenesis, we found that β2[K79A] (I79 on β4), but not β2[K78A] (N78 on β4), largely restores the potency of basic mutants at position 11. Finally, to understand the structural basis of this effect, we used AlphaFold2 to generate models of LvIA in complex with both nAChR subtypes. Both models confirm the plausibility of an electrostatic mechanism to explain the data and also reproduce a broad range of potency and selectivity structure-activity relationships for LvIA mutants, as measured using free energy perturbation simulations. Our work highlights how electrostatic interactions can drive α-CTX selectivity and may serve as a strategy for optimizing the selectivity of LvIA and other α-CTXs.
Collapse
Affiliation(s)
- Yves Haufe
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Veeresh Kuruva
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ziyana Samanani
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Gonxhe Lokaj
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Guy Kamnesky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - PranavKumar Shadamarshan
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Rezvan Shahoei
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Dana Katz
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Jared M Sampson
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Michael Pusch
- Istituto di Biofisica, CNR, Via De Marini 6, Genova 16149, Italy
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Annette Nicke
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Abba E Leffler
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| |
Collapse
|
2
|
Wilhelm P, Luna-Ramirez K, Chin YKY, Dekan Z, Abraham N, Tae HS, Chow CY, Eagles DA, King GF, Lewis RJ, Adams DJ, Alewood PF. Cysteine-Rich α-Conotoxin SII Displays Novel Interactions at the Muscle Nicotinic Acetylcholine Receptor. ACS Chem Neurosci 2022; 13:1245-1250. [PMID: 35357806 DOI: 10.1021/acschemneuro.1c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
α-Conotoxins that target muscle nicotinic acetylcholine receptors (nAChRs) commonly fall into two structural classes, frameworks I and II containing two and three disulfide bonds, respectively. Conotoxin SII is the sole member of the cysteine-rich framework II with ill-defined interactions at the nAChRs. Following directed synthesis of α-SII, NMR analysis revealed a well-defined structure containing a 310-helix frequently employed by framework I α-conotoxins; α-SII acted at the muscle nAChR with half-maximal inhibitory concentrations (IC50) of 120 nM (adult) and 370 nM (fetal) though weakly at neuronal nAChRs. Truncation of α-SII to a two disulfide bond amidated peptide with framework I disulfide connectivity led to similar activity. Surprisingly, the more constrained α-SII was less stable under mild reducing conditions and displayed a unique docking mode at the nAChR.
Collapse
Affiliation(s)
- Patrick Wilhelm
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karen Luna-Ramirez
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yanni K.-Y. Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nikita Abraham
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David A. Eagles
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Ho TNT, Abraham N, Lewis RJ. Unique Pharmacological Properties of α-Conotoxin OmIA at α7 nAChRs. Front Pharmacol 2021; 12:803397. [PMID: 34955864 PMCID: PMC8692984 DOI: 10.3389/fphar.2021.803397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
OmIA, isolated from Conus omaria venom, is a potent antagonist at α7 nAChRs. We determined the co-crystal structure of OmIA with Lymnae stagnalis acetylcholine binding protein (Ls-AChBP) that identified His5, Val10 and Asn11 as key determinants for the high potency of OmIA at α7 nAChRs. Remarkably, despite a competitive binding mode observed in the co-crystal structure, OmIA and analogues displayed functional insurmountable antagonism at α7 and α3β4 nAChRs, except OmIA analogues having long side chain at position 10 ([V10Q]OmIA and [V10L]OmIA), which were partial insurmountable antagonist at α7 nAChRs in the presence of type II positive allosteric modulators (PAMs). A “two-state, two-step” model was used to explain these observations, with [V10Q]OmIA and [V10L]OmIA co-existing in a fast reversible/surmountable as well as a tight binding/insurmountable state. OmIA and analogues also showed biphasic-inhibition at α7 nAChRs in the presence of PNU120596, with a preference for the high-affinity binding site following prolonged exposure. The molecular basis of binding and complex pharmacological profile of OmIA at α7 nAChRs presented in here expands on the potential of α-conotoxins to probe the pharmacological properties of nAChRs and may help guide the development novel α7 modulators.
Collapse
Affiliation(s)
- Thao N T Ho
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Nikita Abraham
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Ho TNT, Abraham N, Lewis RJ. Rigidity of loop 1 contributes to equipotency of globular and ribbon isomers of α-conotoxin AusIA. Sci Rep 2021; 11:21928. [PMID: 34753970 PMCID: PMC8578332 DOI: 10.1038/s41598-021-01277-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
α-Conotoxins are small disulfide-rich peptides targeting nicotinic acetylcholine receptors (nAChRs) characterised by a CICII-Xm-CIII-Xn-CIV framework that invariably adopt the native globular conformations which is typically most potent. α-Conotoxins are divided into several structural subgroups based on the number of residues within the two loops braced by the disulfide bonds (m/n), with the 4/7 and 4/3 subgroups dominating. AusIA is a relatively rare α5/5-conotoxin isolated from the venom of Conus australis. Surprisingly, the ribbon isomer displayed equipotency to the wild-type globular AusIA at human α7-containing nAChR. To understand the molecular basis for equipotency, we determined the co-crystal structures of both isomers at Lymnea stagnalis acetylcholine binding protein. The additional residue in the first loop of AusIA was found to be a critical determinant of equipotency, with 11-fold and 86-fold shifts in potency in favour of globular AusIA over ribbon AusIA observed following deletion of Ala4 or Arg5, respectively. This divergence in the potency between globular AusIA and ribbon AusIA was further enhanced upon truncation of the non-conserved Val at the C-termini. Conversely, equipotency could be replicated in LsIA and TxIA [A10L] following insertion of an Ala in the first loop. These findings provide a new understanding of the role the first loop in ribbon and globular α-conotoxins can play in directing α-conotoxin nAChR pharmacology.
Collapse
Affiliation(s)
- Thao N T Ho
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4067, Australia
| | - Nikita Abraham
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4067, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4067, Australia.
| |
Collapse
|
5
|
Ning H, Huang B, Tae HS, Liu Z, Yu S, Li L, Zhang L, Adams DJ, Guo C, Dai Q. α-Conotoxin Bt1.8 from Conus betulinus selectively inhibits α6/α3β2β3 and α3β2 nicotinic acetylcholine receptor subtypes. J Neurochem 2021; 159:90-100. [PMID: 34008858 DOI: 10.1111/jnc.15434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/01/2022]
Abstract
α-Conotoxins are small disulfide-rich peptides found in the venom of marine cone snails and are potent antagonists of nicotinic acetylcholine receptors (nAChRs). They are valuable pharmacological tools and have potential therapeutic applications for the treatment of chronic pain or neurological diseases and disorders. In the present study, we synthesized and functionally characterized a novel α-conotoxin Bt1.8, which was cloned from Conus betulinus. Bt1.8 selectively inhibited ACh-evoked currents in Xenopus oocytes expressing rat(r) α6/α3β2β3 and rα3β2 nAChRs with an IC50 of 2.1 nM and 9.4 nM, respectively, and similar potency for human (h) α6/α3β2β3 and hα3β2 nAChRs. Additionally, Bt1.8 had higher binding affinity with a slower dissociation rate for the rα6/α3β2β3 subtype compared to rα3β2. The amino acid sequence of Bt1.8 is significantly different from other reported α-conotoxins targeting the two nAChR subtypes. Further Alanine scanning analyses demonstrated that residues Ile9, Leu10, Asn11, Asn12 and Asn14 are critical for its inhibitory activity at the α6/α3β2β3 and α3β2 subtypes. Moreover, the NMR structure of Bt1.8 indicated the presence of a relatively larger hydrophobic zone than other α4/7-conotoxins which may explain its potent inhibition at α6/α3β2β3 nAChRs.
Collapse
Affiliation(s)
- Huying Ning
- Beijing Institute of Biotechnology, Beijing, China
| | - Biling Huang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing, China
| | - Liang Li
- Beijing Institute of Biotechnology, Beijing, China
| | | | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Chenyun Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
6
|
Ho TNT, Abraham N, Lewis RJ. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci 2020; 14:609005. [PMID: 33324158 PMCID: PMC7723979 DOI: 10.3389/fnins.2020.609005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are prototypical cation-selective, ligand-gated ion channels that mediate fast neurotransmission in the central and peripheral nervous systems. nAChRs are involved in a range of physiological and pathological functions and hence are important therapeutic targets. Their subunit homology and diverse pentameric assembly contribute to their challenging pharmacology and limit their drug development potential. Toxins produced by an extensive range of algae, plants and animals target nAChRs, with many proving pivotal in elucidating receptor pharmacology and biochemistry, as well as providing templates for structure-based drug design. The crystal structures of these toxins with diverse chemical profiles in complex with acetylcholine binding protein (AChBP), a soluble homolog of the extracellular ligand-binding domain of the nAChRs and more recently the extracellular domain of human α9 nAChRs, have been reported. These studies have shed light on the diverse molecular mechanisms of ligand-binding at neuronal nAChR subtypes and uncovered critical insights useful for rational drug design. This review provides a comprehensive overview and perspectives obtained from structure and function studies of diverse plant and animal toxins and their associated inhibitory mechanisms at neuronal nAChRs.
Collapse
Affiliation(s)
| | | | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
7
|
Gulsevin A, Meiler J. An Investigation of Three-Finger Toxin-nAChR Interactions through Rosetta Protein Docking. Toxins (Basel) 2020; 12:E598. [PMID: 32947868 PMCID: PMC7551183 DOI: 10.3390/toxins12090598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
Three-finger toxins (3FTX) are a group of peptides that affect multiple receptor types. One group of proteins affected by 3FTX are nicotinic acetylcholine receptors (nAChR). Structural information on how neurotoxins interact with nAChR is limited and is confined to a small group of neurotoxins. Therefore, in silico methods are valuable in understanding the interactions between 3FTX and different nAChR subtypes, but there are no established protocols to model 3FTX-nAChR interactions. We followed a homology modeling and protein docking protocol to address this issue and tested its success on three different systems. First, neurotoxin peptides co-crystallized with acetylcholine binding protein (AChBP) were re-docked to assess whether Rosetta protein-protein docking can reproduce the native poses. Second, experimental data on peptide binding to AChBP was used to test whether the docking protocol can qualitatively distinguish AChBP-binders from non-binders. Finally, we docked eight peptides with known α7 and muscle-type nAChR binding properties to test whether the protocol can explain the differential activities of the peptides at the two receptor subtypes. Overall, the docking protocol predicted the qualitative and some specific aspects of 3FTX binding to nAChR with reasonable success and shed light on unknown aspects of 3FTX binding to different receptor subtypes.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA;
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA;
- Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Gulsevin A. Nicotinic receptor pharmacology in silico: Insights and challenges. Neuropharmacology 2020; 177:108257. [PMID: 32738311 DOI: 10.1016/j.neuropharm.2020.108257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChR) are homo- or hetero-pentameric ligand-gated ion channels of the Cys-loop superfamily and play important roles in the nervous system and muscles. Studies on nAChR benefit from in silico modeling due to the lack of high-resolution structures for most receptor subtypes and challenges in experiments addressing the complex mechanism of activation involving allosteric sites. Although there is myriad of computational modeling studies on nAChR, the multitude of the methods and parameters used in these studies makes modeling nAChR a daunting task, particularly for the non-experts in the field. To address this problem, the modeling literature on Torpedo nAChR and α7 nAChR were focused on as examples of heteromeric and homomeric nAChR, and the key in silico modeling studies between the years 1995-2019 were concisely reviewed. This was followed by a critical analysis of these studies by comparing the findings with each other and with the emerging experimental and computational data on nAChR. Based on these critical analyses, suggestions were made to guide the future researchers in the field of in silico modeling of nAChR. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA, 37221.
| |
Collapse
|
9
|
Interactions of the α3β2 Nicotinic Acetylcholine Receptor Interfaces with α-Conotoxin LsIA and its Carboxylated C-terminus Analogue: Molecular Dynamics Simulations. Mar Drugs 2020; 18:md18070349. [PMID: 32635340 PMCID: PMC7401271 DOI: 10.3390/md18070349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Notably, α-conotoxins with carboxy-terminal (C-terminal) amidation are inhibitors of the pentameric nicotinic acetylcholine receptors (nAChRs), which are therapeutic targets for neurological diseases and disorders. The (α3)2(β2)3 nAChR subunit arrangement comprises a pair of α3(+)β2(−) and β2(+)α3(−) interfaces, and a β2(+)β2(−) interface. The β2(+)β2(−) interface has been suggested to have higher agonist affinity relative to the α3(+)β2(−) and β2(+)α3(−) interfaces. Nevertheless, the interactions formed by these subunit interfaces with α-conotoxins are not well understood. Therefore, in order to address this, we modelled the interactions between α-conotoxin LsIA and the α3β2 subtype. The results suggest that the C-terminal carboxylation of LsIA predominantly influenced the enhanced contacts of the conotoxin via residues P7, P14 and C17 on LsIA at the α3(+)β2(−) and β2(+)α3(−) interfaces. However, this enhancement is subtle at the β2(+)β2(−) site, which can compensate the augmented interactions by LsIA at α3(+)β2(−) and β2(+)α3(−) binding sites. Therefore, the divergent interactions at the individual binding interface may account for the minor changes in binding affinity to α3β2 subtype by C-terminal carboxylation of LsIA versus its wild type, as shown in previous experimental results. Overall, these findings may facilitate the development of new drug leads or subtype-selective probes.
Collapse
|
10
|
Structure and Activity Studies of Disulfide-Deficient Analogues of αO-Conotoxin GeXIVA. J Med Chem 2020; 63:1564-1575. [DOI: 10.1021/acs.jmedchem.9b01409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Li X, Liu H, Gao C, Li Y, Jia D, Yang Y, Yang J, Wei Z, Jiang T, Yu R. ConoMode, a database for conopeptide binding modes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5880464. [PMID: 32754758 PMCID: PMC7402919 DOI: 10.1093/database/baaa058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022]
Abstract
ConoMode is a database for complex three-dimensional (3D) structures of conopeptides binding with their target proteins. Conopeptides, a large family of peptides from the venom of marine snails of the Conus genus, have exceptionally diverse sequences, and their high specificity to block ion channels makes them crucial as drug leads and tools for physiological studies. ConoMode is a specialized archive for the collection of 3D coordinate data for the conopeptides and their binding target proteins from published literature and the Protein Data Bank. These 3D structures can be determined using experimental methods such as X-ray crystallography and electron microscopy and computational methods including docking, homology modeling and molecular dynamics simulations. The binding modes for the conopeptides determined using computational modeling must be validated based on experimental data. The 3D coordinate data from ConoMode can be searched, visualized, downloaded and uploaded. Currently, ConoMode manages 19 conopeptide sequences (from 10 Conus species), 15 protein sequences and 37 3D structures. ConoMode utilizes a modern technical framework to provide a good user experience on mobile devices with touch interaction features. Furthermore, the database is fully optimized for unstructured data and flexible data models. Database URL: http://conomode.qnlm.ac/conomode/conomode/index
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Hao Liu
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Chunxiao Gao
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Yangyang Li
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Dongning Jia
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Yanbo Yang
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Zhiqiang Wei
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
12
|
Gulsevin A, Papke RL, Horenstein N. In Silico Modeling of the α7 Nicotinic Acetylcholine Receptor: New Pharmacological Challenges Associated with Multiple Modes of Signaling. Mini Rev Med Chem 2020; 20:841-864. [PMID: 32000651 PMCID: PMC8719523 DOI: 10.2174/1389557520666200130105256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
The α7 nicotinic acetylcholine receptor is a homopentameric ion-channel of the Cys-loop superfamily characterized by its low probability of opening, high calcium permeability, and rapid desensitization. The α7 receptor has been targeted for the treatment of the cognitive symptoms of schizophrenia, depression, and Alzheimer's disease, but it is also involved in inflammatory modulation as a part of the cholinergic anti-inflammatory pathway. Despite its functional importance, in silico studies of the α7 receptor cannot produce a general model explaining the structural features of receptor activation, nor predict the mode of action for various ligand classes. Two particular problems in modeling the α7 nAChR are the absence of a high-resolution structure and the presence of five potentially nonequivalent orthosteric ligand binding sites. There is wide variability regarding the templates used for homology modeling, types of ligands investigated, simulation methods, and simulation times. However, a systematic survey focusing on the methodological similarities and differences in modeling α7 has not been done. In this work, we make a critical analysis of the modeling literature of α7 nAChR by comparing the findings of computational studies with each other and with experimental studies under the main topics of structural studies, ligand binding studies, and comparisons with other nAChR. In light of our findings, we also summarize current problems in the field and make suggestions for future studies concerning modeling of the α7 receptor.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL 32610, United States
| | - Nicole Horenstein
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| |
Collapse
|
13
|
Lebedev DS, Kryukova EV, Ivanov IA, Egorova NS, Timofeev ND, Spirova EN, Tufanova EY, Siniavin AE, Kudryavtsev DS, Kasheverov IE, Zouridakis M, Katsarava R, Zavradashvili N, Iagorshvili I, Tzartos SJ, Tsetlin VI. Oligoarginine Peptides, a New Family of Nicotinic Acetylcholine Receptor Inhibitors. Mol Pharmacol 2019; 96:664-673. [PMID: 31492697 DOI: 10.1124/mol.119.117713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022] Open
Abstract
Many peptide ligands of nicotinic acetylcholine receptors (nAChRs) contain a large number of positively charged amino acid residues, a striking example being conotoxins RgIA and GeXIVA from marine mollusk venom, with an arginine content of >30%. To determine whether peptides built exclusively from arginine residues will interact with different nAChR subtypes or with their structural homologs such as the acetylcholine-binding protein and ligand-binding domain of the nAChR α9 subunit, we synthesized a series of R3, R6, R8, and R16 oligoarginines and investigated their activity by competition with radioiodinated α-bungarotoxin, two-electrode voltage-clamp electrophysiology, and calcium imaging. R6 and longer peptides inhibited muscle-type nAChRs, α7 nAChRs, and α3β2 nAChRs in the micromolar range. The most efficient inhibition of ion currents was detected for muscle nAChR by R16 (IC50 = 157 nM) and for the α9α10 subtype by R8 and R16 (IC50 = 44 and 120 nM, respectively). Since the R8 affinity for other tested nAChRs was 100-fold lower, R8 appears to be a selective antagonist of α9α10 nAChR. For R8, the electrophysiological and competition experiments indicated the existence of two distinct binding sites on α9α10 nAChR. Since modified oligoarginines and other cationic molecules are widely used as cell-penetrating peptides, we studied several cationic polymers and demonstrated their nAChR inhibitory activity. SIGNIFICANT STATEMENT: By using radioligand analysis, electrophysiology, and calcium imaging, we found that oligoarginine peptides are a new group of inhibitors for muscle nicotinic acetylcholine receptors (nAChRs) and some neuronal nAChRs, the most active being those with 16 and 8 Arg residues. Such compounds and other cationic polymers are cell-penetrating tools for drug delivery, and we also demonstrated the inhibition of nAChRs for several of the latter. Possible positive and negative consequences of such an action should be taken into account.
Collapse
Affiliation(s)
- Dmitry S Lebedev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Elena V Kryukova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Igor A Ivanov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Natalia S Egorova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Nikita D Timofeev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Ekaterina N Spirova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Elizaveta Yu Tufanova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Andrei E Siniavin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Denis S Kudryavtsev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Marios Zouridakis
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Ramaz Katsarava
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Nino Zavradashvili
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Ia Iagorshvili
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Socrates J Tzartos
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| |
Collapse
|
14
|
El Hamdaoui Y, Wu X, Clark RJ, Giribaldi J, Anangi R, Craik DJ, King GF, Dutertre S, Kaas Q, Herzig V, Nicke A. Periplasmic Expression of 4/7 α-Conotoxin TxIA Analogs in E. coli Favors Ribbon Isomer Formation - Suggestion of a Binding Mode at the α7 nAChR. Front Pharmacol 2019; 10:577. [PMID: 31214027 PMCID: PMC6554660 DOI: 10.3389/fphar.2019.00577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023] Open
Abstract
Peptides derived from animal venoms provide important research tools for biochemical and pharmacological characterization of receptors, ion channels, and transporters. Some venom peptides have been developed into drugs (such as the synthetic ω-conotoxin MVIIA, ziconotide) and several are currently undergoing clinical trials for various clinical indications. Challenges in the development of peptides include their usually limited supply from natural sources, cost-intensive chemical synthesis, and potentially complicated stereoselective disulfide-bond formation in the case of disulfide-rich peptides. In particular, if extended structure–function analysis is performed or incorporation of stable isotopes for NMR studies is required, the comparatively low yields and high costs of synthesized peptides might constitute a limiting factor. Here we investigated the expression of the 4/7 α-conotoxin TxIA, a potent blocker at α3β2 and α7 nicotinic acetylcholine receptors (nAChRs), and three analogs in the form of maltose binding protein fusion proteins in Escherichia coli. Upon purification via nickel affinity chromatography and release of the toxins by protease cleavage, HPLC analysis revealed one major peak with the correct mass for all peptides. The final yield was 1–2 mg of recombinant peptide per liter of bacterial culture. Two-electrode voltage clamp analysis on oocyte-expressed nAChR subtypes demonstrated the functionality of these peptides but also revealed a 30 to 100-fold potency decrease of expressed TxIA compared to chemically synthesized TxIA. NMR spectroscopy analysis of TxIA and two of its analogs confirmed that the decreased activity was due to an alternative disulfide linkage rather than the missing C-terminal amidation, a post-translational modification that is common in α-conotoxins. All peptides preferentially formed in the ribbon conformation rather than the native globular conformation. Interestingly, in the case of the α7 nAChR, but not the α3β2 subtype, the loss of potency could be rescued by an R5D substitution. In conclusion, we demonstrate efficient expression of functional but alternatively folded ribbon TxIA variants in E. coli and provide the first structure–function analysis for a ribbon 4/7-α-conotoxin at α7 and α3β2 nAChRs. Computational analysis based on these data provide evidence for a ribbon α-conotoxin binding mode that might be exploited to design ligands with optimized selectivity.
Collapse
Affiliation(s)
- Yamina El Hamdaoui
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiaosa Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Julien Giribaldi
- CNRS, Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Montpellier, France
| | - Raveendra Anangi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Sebastien Dutertre
- CNRS, Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Montpellier, France
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
15
|
Zouridakis M, Papakyriakou A, Ivanov IA, Kasheverov IE, Tsetlin V, Tzartos S, Giastas P. Crystal Structure of the Monomeric Extracellular Domain of α9 Nicotinic Receptor Subunit in Complex With α-Conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding to α9α10 Nicotinic Receptors. Front Pharmacol 2019; 10:474. [PMID: 31118896 PMCID: PMC6504684 DOI: 10.3389/fphar.2019.00474] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
The α9 subunit of nicotinic acetylcholine receptors (nAChRs) exists mainly in heteropentameric assemblies with α10. Accumulating data indicate the presence of three different binding sites in α9α10 nAChRs: the α9(+)/α9(−), the α9(+)/α10(−), and the α10(+)/α9(−). The major role of the principal (+) side of the extracellular domain (ECD) of α9 subunit in binding of the antagonists methyllylcaconitine and α-bungarotoxin was shown previously by the crystal structures of the monomeric α9-ECD with these molecules. Here we present the 2.26-Å resolution crystal structure of α9-ECD in complex with α-conotoxin (α-Ctx) RgIA, a potential drug for chronic pain, the first structure reported for a complex between an nAChR domain and an α-Ctx. Superposition of this structure with those of other α-Ctxs bound to the homologous pentameric acetylcholine binding proteins revealed significant similarities in the orientation of bound conotoxins, despite the monomeric state of the α9-ECD. In addition, ligand-binding studies calculated a binding affinity of RgIA to the α9-ECD at the low micromolar range. Given the high identity between α9 and α10 ECDs, particularly at their (+) sides, the presented structure was used as template for molecular dynamics simulations of the ECDs of the human α9α10 nAChR in pentameric assemblies. Our results support a favorable binding of RgIA at α9(+)/α9(−) or α10(+)/α9(−) rather than the α9(+)/α10(−) interface, in accordance with previous mutational and functional data.
Collapse
Affiliation(s)
- Marios Zouridakis
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,PhysBio of MEPhI, Moscow, Russia
| | - Socrates Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece.,Department of Pharmacy, University of Patras, Patras, Greece
| | - Petros Giastas
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
16
|
Wen J, Hung A. Effects of C-Terminal Carboxylation on α-Conotoxin LsIA Interactions with Human α7 Nicotinic Acetylcholine Receptor: Molecular Simulation Studies. Mar Drugs 2019; 17:md17040206. [PMID: 30987002 PMCID: PMC6521072 DOI: 10.3390/md17040206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 01/25/2023] Open
Abstract
α-Conotoxins selectively bind to nicotinic acetylcholine receptors (nAChRs), which are therapeutic targets due to their important role in signaling transmission in excitable cells. A previous experimental study has demonstrated that carboxylation of the C-terminal of α-conotoxin LsIA reduces its potency to inhibit human α7 nAChR relative to naturally amidated LsIA. However, little is known about the contribution of conformational changes in the receptor and interactions, induced by C-terminal amidation/carboxylation of conotoxins, to selective binding to nAChRs, since most conotoxins and some disulfide-rich peptides from other conotoxin subfamilies possess a naturally amidated C-terminal. In this study, we employ homology modeling and molecular dynamics (MD) simulations to propose the determinants for differential interactions between amidated and carboxylated LsIAs with α7 nAChR. Our findings indicate an overall increased number of contacts favored by binding of amidated LsIA versus its carboxylated counterpart. Toxin-receptor pairwise interactions, which may play a role in enhancing the potency of the former, include ARG10-TRP77, LEU141 and CYS17-GLN79 via persistent hydrogen bonds and cation-π interactions, which are weakened in the carboxylated form due to a strong intramolecular salt-bridge formed by ARG10 and carboxylated C-terminus. The binding of amidated LsIA also induces enhanced movements in loop C and the juxtamembrane Cys-loop that are closely associated with receptor function. Additionally, the impacts of binding of LsIA on the overall structure and inter-subunit contacts were examined using inter-residue network analysis, suggesting a clockwise tilting of the α7 C and F loops upon binding to carboxylated LsIA, which is absent for amidated LsIA binding. The predicted molecular mechanism of LsIA binding to the α7 receptor may provide new insights into the important role of the C-terminal in the binding potency of conotoxins at neuronal nAChRs for pharmacological purposes.
Collapse
Affiliation(s)
- Jierong Wen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC3001, Australia.
| | - Andrew Hung
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC3001, Australia.
| |
Collapse
|
17
|
Turner MW, Marquart LA, Phillips PD, McDougal OM. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:E113. [PMID: 30781866 PMCID: PMC6409848 DOI: 10.3390/toxins11020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/04/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are found throughout the mammalian body and have been studied extensively because of their implication in a myriad of diseases. α-Conotoxins (α-CTxs) are peptide neurotoxins found in the venom of marine snails of genus Conus. α-CTxs are potent and selective antagonists for a variety of nAChR isoforms. Over the past 40 years, α-CTxs have proven to be valuable molecular probes capable of differentiating between closely related nAChR subtypes and have contributed greatly to understanding the physiological role of nAChRs in the mammalian nervous system. Here, we review the amino acid composition and structure of several α-CTxs that selectively target nAChR isoforms and explore strategies and outcomes for introducing mutations in native α-CTxs to direct selectivity and enhance binding affinity for specific nAChRs. This review will focus on structure-activity relationship studies involving native α-CTxs that have been rationally mutated and molecular interactions that underlie binding between ligand and nAChR isoform.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University; Boise, ID 83725, USA.
| | - Leanna A Marquart
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Paul D Phillips
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| |
Collapse
|
18
|
Discovery, cocrystallization and biological evaluation of novel piperidine derivatives as high affinity Ls-AChBP ligands possessing α7 nAChR activities. Eur J Med Chem 2018; 160:37-48. [PMID: 30317024 DOI: 10.1016/j.ejmech.2018.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/05/2018] [Accepted: 09/30/2018] [Indexed: 11/23/2022]
Abstract
A series of novel pyridine-substituted piperidine derivatives were discovered as low nanomolar Ls-AChBP ligands with α7 nAChR partial agonism or antagonism activities. A high-resolution antagonist-bound Ls-AChBP complex was successfully resolved with a classic Loop C opening phenomenon and unique sulfur-π interactions which deviated from our previous docking mode to a large extent. With the knowledge of the co-complex, 27 novel piperidine derivatives were designed and synthesized. The structure-activity relationships (SARs) of the aromatic and pyridine regions were well established and binding modes were illustrated with the help of molecular docking which indicated that interactions with Trp 143 and the "water bridge" are essential for the high binding affinities. Halogen bonding as well as the space around 5'- or 6'- position of the pyridine ring was also proposed to influence the binding conformation of the compounds. Notably, two enantiomers of compound 2 showed opposite functions toward α7 nAChR and compound (S)-2 showed sub-nanomolar affinity (Ki = 0.86 nM) on Ls-AChBP and partial agonism (pEC50 = 4.69 ± 0.11,Emax = 36.1%) on α7 nAChR with reasonable pharmacokinetics (PK) properties and fine ability of blood-brain-barrier (BBB) penetration. This study provided promising hits to develop candidates targeting nAChR-related CNS diseases.
Collapse
|
19
|
Kryukova EV, Ivanov IA, Lebedev DS, Spirova EN, Egorova NS, Zouridakis M, Kasheverov IE, Tzartos SJ, Tsetlin VI. Orthosteric and/or Allosteric Binding of α-Conotoxins to Nicotinic Acetylcholine Receptors and Their Models. Mar Drugs 2018; 16:md16120460. [PMID: 30469507 PMCID: PMC6315749 DOI: 10.3390/md16120460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
α-Conotoxins from Conus snails are capable of distinguishing muscle and neuronal nicotinic acetylcholine receptors (nAChRs). α-Conotoxin RgIA and αO-conotoxin GeXIVA, blocking neuronal α9α10 nAChR, are potential analgesics. Typically, α-conotoxins bind to the orthosteric sites for agonists/competitive antagonists, but αO-conotoxin GeXIVA was proposed to attach allosterically, judging by electrophysiological experiments on α9α10 nAChR. We decided to verify this conclusion by radioligand analysis in competition with α-bungarotoxin (αBgt) on the ligand-binding domain of the nAChR α9 subunit (α9 LBD), where, from the X-ray analysis, αBgt binds at the orthosteric site. A competition with αBgt was registered for GeXIVA and RgIA, IC50 values being in the micromolar range. However, high nonspecific binding of conotoxins (detected with their radioiodinated derivatives) to His6-resin attaching α9 LBD did not allow us to accurately measure IC50s. However, IC50s were measured for binding to Aplysia californica AChBP: the RgIA globular isomer, known to be active against α9α10 nAChR, was more efficient than the ribbon one, whereas all three GeXIVA isomers had similar potencies at low µM. Thus, radioligand analysis indicated that both conotoxins can attach to the orthosteric sites in these nAChR models, which should be taken into account in the design of analgesics on the basis of these conotoxins.
Collapse
Affiliation(s)
- Elena V Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Dmitry S Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Ekaterina N Spirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Natalia S Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Marios Zouridakis
- Department of Neurobiology, Hellenic Pasteur Institute, 127, Vas. Sofias ave., Athens 115 21, Greece.
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Street 8, bld. 2, 119991 Moscow, Russia.
| | - Socrates J Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, 127, Vas. Sofias ave., Athens 115 21, Greece.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
- PhysBio of MEPhI, Kashirskoye Ave., 31, 115409 Moscow, Russia.
| |
Collapse
|
20
|
Yu J, Zhu X, Harvey PJ, Kaas Q, Zhangsun D, Craik DJ, Luo S. Single Amino Acid Substitution in α-Conotoxin TxID Reveals a Specific α3β4 Nicotinic Acetylcholine Receptor Antagonist. J Med Chem 2018; 61:9256-9265. [DOI: 10.1021/acs.jmedchem.8b00967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jinpeng Yu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Peta J. Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
21
|
Hone AJ, Talley TT, Bobango J, Huidobro Melo C, Hararah F, Gajewiak J, Christensen S, Harvey PJ, Craik DJ, McIntosh JM. Molecular determinants of α-conotoxin potency for inhibition of human and rat α6β4 nicotinic acetylcholine receptors. J Biol Chem 2018; 293:17838-17852. [PMID: 30249616 DOI: 10.1074/jbc.ra118.005649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/20/2018] [Indexed: 12/15/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) containing α6 and β4 subunits are expressed by dorsal root ganglion neurons and have been implicated in neuropathic pain. Rodent models are often used to evaluate the efficacy of analgesic compounds, but species differences may affect the activity of some nAChR ligands. A previous candidate α-conotoxin-based therapeutic yielded promising results in rodent models, but failed in human clinical trials, emphasizing the importance of understanding species differences in ligand activity. Here, we show that human and rat α6/α3β4 nAChRs expressed in Xenopus laevis oocytes exhibit differential sensitivity to α-conotoxins. Sequence homology comparisons of human and rat α6β4 nAChR subunits indicated that α6 residues forming the ligand-binding pocket are highly conserved between the two species, but several residues of β4 differed, including a Leu-Gln difference at position 119. X-ray crystallography of α-conotoxin PeIA complexed with the Aplysia californica acetylcholine-binding protein (AChBP) revealed that binding of PeIA orients Pro13 in close proximity to residue 119 of the AChBP complementary subunit. Site-directed mutagenesis studies revealed that Leu119 of human β4 contributes to higher sensitivity of human α6/α3β4 nAChRs to α-conotoxins, and structure-activity studies indicated that PeIA Pro13 is critical for high potency. Human and rat α6/α3β4 nAChRs displayed differential sensitivities to perturbations of the interaction between PeIA Pro13 and residue 119 of the β4 subunit. These results highlight the potential significance of species differences in α6β4 nAChR pharmacology that should be taken into consideration when evaluating the activity of candidate human therapeutics in rodent models.
Collapse
Affiliation(s)
| | | | - Janet Bobango
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812
| | | | | | | | | | - Peta J Harvey
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - J Michael McIntosh
- From the Departments of Biology; Psychiatry, University of Utah, Salt Lake City, Utah 84112; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148.
| |
Collapse
|
22
|
Wu X, Tae HS, Huang YH, Adams DJ, Craik DJ, Kaas Q. Stoichiometry dependent inhibition of rat α3β4 nicotinic acetylcholine receptor by the ribbon isomer of α-conotoxin AuIB. Biochem Pharmacol 2018; 155:288-297. [PMID: 30009767 DOI: 10.1016/j.bcp.2018.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022]
Abstract
The ribbon isomer of α-conotoxin AuIB has 10-fold greater potency than the wild-type globular isomer at inhibiting nicotinic acetylcholine receptors (nAChRs) in rat parasympathetic neurons, and unlike its globular isoform, ribbon AuIB only targets a specific stoichiometry of the α3β4 nAChR subtype. Previous electrophysiological recordings of AuIB indicated that ribbon AuIB binds to the α3(+)α3(-) interface within the nAChR extracellular domain, which is displayed by the (α3)3(β4)2 stoichiometry but not by (α3)2(β4)3. This specificity for a particular stoichiometry is remarkable and suggests that ribbon isoforms of α-conotoxins might have great potential in drug design. In this study, we investigated the binding mode and structure-activity relationships of ribbon AuIB using a combination of molecular modeling and electrophysiology recording to determine the features that underpin its selectivity. An alanine scan showed that positions 4 and 9 of ribbon AuIB are the main determinants of the interaction with (α3)3(β4)2 nAChR. Our computational models indicate that the first loop of ribbon AuIB binds in the "aromatic box" of the acetylcholine orthosteric binding site, similar to that of globular AuIB. In contrast, the second loop and the termini of the ribbon isomer have different orientations and interactions in the binding sites to those of the globular isomer. The structure-activity relationships reported herein should be useful to design peptides displaying a ribbon α-conotoxin scaffold for inhibition of nAChR subtypes that have hitherto been difficult to selectively target.
Collapse
Affiliation(s)
- Xiaosa Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), The University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), The University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
23
|
Quick MM, Crittenden CM, Rosenberg JA, Brodbelt JS. Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Anal Chem 2018; 90:8523-8530. [PMID: 29902373 PMCID: PMC6050148 DOI: 10.1021/acs.analchem.8b01556] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Deciphering disulfide bond patterns in proteins remains a significant challenge. In the present study, interlinked disulfide bonds connecting peptide chains are homolytically cleaved with 193 nm ultraviolet photodissociation (UVPD). Analysis of insulin showcased the ability of UVPD to cleave multiple disulfide bonds and provide sequence coverage of the peptide chains in the same MS/MS event. For proteins containing more complex disulfide bonding patterns, an approach combining partial reduction and alkylation mitigated disulfide scrambling and allowed assignment of the array of disulfide bonds. The 4 disulfide bonds of lysozyme and the 19 disulfide bonds of serotransferrin were characterized through LC/UVPD-MS analysis of nonreduced and partially reduced protein digests.
Collapse
|
24
|
Ren J, Li R, Ning J, Zhu X, Zhangsun D, Wu Y, Luo S. Effect of Methionine Oxidation and Substitution of α-Conotoxin TxID on α3β4 Nicotinic Acetylcholine Receptor. Mar Drugs 2018; 16:md16060215. [PMID: 29925760 PMCID: PMC6025358 DOI: 10.3390/md16060215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
α-Conotoxin TxID was discovered from Conus textile by gene cloning, which has 4/6 inter-cysteine loop spacing and selectively inhibits α3β4 nicotinic acetylcholine receptor (nAChR) subtype. However, TxID is susceptible to modification due to it containing a methionine (Met) residue that easily forms methionine sulfoxide (MetO) in oxidative environment. In this study, we investigated how Met-11 and its derivatives affect the activity of TxID using a combination of electrophysiological recordings and molecular modelling. The results showed most TxID analogues had substantially decreased activities on α3β4 nAChR with more than 10-fold potency loss and 5 of them demonstrated no inhibition on α3β4 nAChR. However, one mutant, [M11I]TxID, displayed potent inhibition at α3β4 nAChR with an IC50 of 69 nM, which only exhibited 3.8-fold less compared with TxID. Molecular dynamics simulations were performed to expound the decrease in the affinity for α3β4 nAChR. The results indicate replacement of Met with a hydrophobic moderate-sized Ile in TxID is an alternative strategy to reduce the impact of Met oxidation, which may help to redesign conotoxins containing methionine residue.
Collapse
Affiliation(s)
- Jie Ren
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Rui Li
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Jiong Ning
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| |
Collapse
|
25
|
Abraham N, Lewis RJ. Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. Mar Drugs 2018; 16:E208. [PMID: 29899286 PMCID: PMC6024932 DOI: 10.3390/md16060208] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Marine cone snails are a large family of gastropods that have evolved highly potent venoms for predation and defense. The cone snail venom has exceptional molecular diversity in neuropharmacologically active compounds, targeting a range of receptors, ion channels, and transporters. These conotoxins have helped to dissect the structure and function of many of these therapeutically significant targets in the central and peripheral nervous systems, as well as unravelling the complex cellular mechanisms modulated by these receptors and ion channels. This review provides an overview of α-conotoxins targeting neuronal nicotinic acetylcholine receptors. The structure and activity of both classical and non-classical α-conotoxins are discussed, along with their contributions towards understanding nicotinic acetylcholine receptor (nAChR) structure and function.
Collapse
Affiliation(s)
- Nikita Abraham
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Richard J Lewis
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
26
|
Chen J, Liu XM, Zhang Y. Venom based neural modulators. Exp Ther Med 2018; 15:615-619. [PMID: 29399064 PMCID: PMC5772594 DOI: 10.3892/etm.2017.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
Different types of neuronal nicotinic acetylcholine receptors (nAChRs) are expected to occur in vivo, most structure-activity relationship studies have been carried out for just a few neuronal subtypes. The present review enlightens current aspects of venom modulators of nAChRs. Important electronic databases such as PubMed or Google scholar were explored for the collection of latest studies in the field. Clinical and basic research has shown that cholinergic receptors play a role in several disorders of the nervous system such as chronic pain, Alzheimers disease and addiction to nicotine, alcohol and drugs. Unfortunately, the lack of selective modulators for each subtype of nAChR makes their pharmacological characterization difficult, which has slowed the development of therapeutic nAChR modulators with high selectivity and absence of off-target side-effects. Animal venoms have proven to be an excellent natural source of bioactive molecules with activity against ion channels. The present review concludes that the presence of small-molecule nAChR modulators in spider venoms support the use of venoms as a potential source of novel modulators.
Collapse
Affiliation(s)
- Jiao Chen
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiao-Ming Liu
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuan Zhang
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
27
|
α-Conotoxins to explore the molecular, physiological and pathophysiological functions of neuronal nicotinic acetylcholine receptors. Neurosci Lett 2017; 679:24-34. [PMID: 29199094 DOI: 10.1016/j.neulet.2017.11.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Abstract
The vast diversity of neuronal nicotinic acetylcholine subunits expressed in the central and peripheral nervous systems, as well as in non-neuronal tissues, constitutes a formidable challenge for researchers and clinicians to decipher the role of particular subtypes, including complex subunit associations, in physiological and pathophysiological functions. Many natural products target the nAChRs, but there is no richer source of nicotinic ligands than the venom of predatory gastropods known as cone snails. Indeed, every single species of cone snail was shown to produce at least one type of such α-conotoxins. These tiny peptides (10-25 amino acids), constrained by disulfide bridges, proved to be unvaluable tools to investigate the structure and function of nAChRs, some of them having also therapeutic potential. In this review, we provide a recent update on the pharmacology and subtype specificity of several major α-conotoxins.
Collapse
|
28
|
Leffler AE, Kuryatov A, Zebroski HA, Powell SR, Filipenko P, Hussein AK, Gorson J, Heizmann A, Lyskov S, Tsien RW, Poget SF, Nicke A, Lindstrom J, Rudy B, Bonneau R, Holford M. Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models. Proc Natl Acad Sci U S A 2017; 114:E8100-E8109. [PMID: 28874590 PMCID: PMC5617267 DOI: 10.1073/pnas.1703952114] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Venom peptide toxins such as conotoxins play a critical role in the characterization of nicotinic acetylcholine receptor (nAChR) structure and function and have potential as nervous system therapeutics as well. However, the lack of solved structures of conotoxins bound to nAChRs and the large size of these peptides are barriers to their computational docking and design. We addressed these challenges in the context of the α4β2 nAChR, a widespread ligand-gated ion channel in the brain and a target for nicotine addiction therapy, and the 19-residue conotoxin α-GID that antagonizes it. We developed a docking algorithm, ToxDock, which used ensemble-docking and extensive conformational sampling to dock α-GID and its analogs to an α4β2 nAChR homology model. Experimental testing demonstrated that a virtual screen with ToxDock correctly identified three bioactive α-GID mutants (α-GID[A10V], α-GID[V13I], and α-GID[V13Y]) and one inactive variant (α-GID[A10Q]). Two mutants, α-GID[A10V] and α-GID[V13Y], had substantially reduced potency at the human α7 nAChR relative to α-GID, a desirable feature for α-GID analogs. The general usefulness of the docking algorithm was highlighted by redocking of peptide toxins to two ion channels and a binding protein in which the peptide toxins successfully reverted back to near-native crystallographic poses after being perturbed. Our results demonstrate that ToxDock can overcome two fundamental challenges of docking large toxin peptides to ion channel homology models, as exemplified by the α-GID:α4β2 nAChR complex, and is extendable to other toxin peptides and ion channels. ToxDock is freely available at rosie.rosettacommons.org/tox_dock.
Collapse
Affiliation(s)
- Abba E Leffler
- Neuroscience Graduate Program, Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016
| | - Alexander Kuryatov
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Henry A Zebroski
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065
| | - Susan R Powell
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065
| | - Petr Filipenko
- Department of Chemistry, Belfer Research Center-Hunter College, New York, NY 10021
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10024
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Adel K Hussein
- Department of Chemistry, College of Staten Island, Staten Island, NY 10314
- Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016
| | - Juliette Gorson
- Department of Chemistry, Belfer Research Center-Hunter College, New York, NY 10021
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10024
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10021
- Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016
| | - Anna Heizmann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany
| | - Sergey Lyskov
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Richard W Tsien
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Sébastien F Poget
- Department of Chemistry, College of Staten Island, Staten Island, NY 10314
- Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Bernardo Rudy
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
- Center for Computational Biology, Simons Foundation, New York, NY 10010
| | - Mandë Holford
- Department of Chemistry, Belfer Research Center-Hunter College, New York, NY 10021;
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10024
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10021
- Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016
| |
Collapse
|
29
|
Hua Y, Wang B, Zhao N, Lou W, Yang J. Synthesis and Functional Identification of Oligopeptides Derived from the α3/5-Conotoxins. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Ma Q, Tae HS, Wu G, Jiang T, Yu R. Exploring the Relationship between Nicotinic Acetylcholine Receptor Ligand Size, Efficiency, Efficacy, and C-Loop Opening. J Chem Inf Model 2017; 57:1947-1956. [PMID: 28718646 DOI: 10.1021/acs.jcim.7b00152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels mediating fundamental physiological activities in the nervous system and have become important targets for drug design. For a long time, the acetylcholine binding protein (AChBP) has been used as a surrogate to study the nAChR structure-function. Taking advantage of more than 100 AChBP crystal structures in the Protein DataBank (PDB), we explored the relationship between the size, efficiency, and efficacy of nAChR ligands and the C-loop movement. We found that the size of the ligand is correlated with the opening of the C-loop, which can be used in selecting AChBP crystal structures with appropriate C-loop opening to be used for nAChR ligand docking. Ligand size and C-loop opening are reversely correlated with the ligand efficiency rather than the binding affinity. Ligand efficiency could be accurately predicted using simple computational docking, giving a correlation coefficients (R2) up to 0.73. The efficacy of nAChR ligands might be related to ligand size, C-loop opening, and ligand efficiency. Results from this study are useful for engineering the binding affinity and efficacy of nAChR ligands.
Collapse
Affiliation(s)
- Qianyun Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong , Wollongong, New South Wales 2522, Australia
| | - Guanzhao Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003, China
| |
Collapse
|
31
|
Hung A, Kuyucak S, Schroeder CI, Kaas Q. Modelling the interactions between animal venom peptides and membrane proteins. Neuropharmacology 2017; 127:20-31. [PMID: 28778835 DOI: 10.1016/j.neuropharm.2017.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022]
Abstract
The active components of animal venoms are mostly peptide toxins, which typically target ion channels and receptors of both the central and peripheral nervous system, interfering with action potential conduction and/or synaptic transmission. The high degree of sequence conservation of their molecular targets makes a range of these toxins active at human receptors. The high selectivity and potency displayed by some of these toxins have prompted their use as pharmacological tools as well as drugs or drug leads. Molecular modelling has played an essential role in increasing our molecular-level understanding of the activity and specificity of animal toxins, as well as engineering them for biotechnological and pharmaceutical applications. This review focuses on the biological insights gained from computational and experimental studies of animal venom toxins interacting with membranes and ion channels. A host of recent X-ray crystallography and electron-microscopy structures of the toxin targets has contributed to a dramatic increase in the accuracy of the molecular models of toxin binding modes greatly advancing this exciting field of study. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Andrew Hung
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
32
|
Wu Y, Zhangsun D, Zhu X, Kaas Q, Zhangsun M, Harvey PJ, Craik DJ, McIntosh JM, Luo S. α-Conotoxin [S9A]TxID Potently Discriminates between α3β4 and α6/α3β4 Nicotinic Acetylcholine Receptors. J Med Chem 2017; 60:5826-5833. [PMID: 28603989 DOI: 10.1021/acs.jmedchem.7b00546] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
α3β4 nAChRs have been implicated in various pathophysiological conditions. However, the expression profile of α3β4 nAChRs and α6/α3β4 nAChRs overlap in a variety of tissues. To distinguish between these two subtypes, we redesigned peptide 1 (α-conotoxin TxID), which inhibits α3β4 and α6/α3β4 nAChR subtypes. We systematically mutated 1 to evaluate analogue selectivity for α3β4 vs α6/α3β4 nAChRs expressed in Xenopus laevis oocytes. One analogue, peptide 7 ([S9A]TxID), had 46-fold greater potency for α3β4 versus α6/α3β4 nAChRs. Peptide 7 had IC50s > 10 μM for other nAChR subtypes. Molecular dynamics simulations suggested that Ser-9 of TxID was involved in a weak hydrogen bond with β4 Lys-81 in the α6β4 binding site but not in the α3β4 binding site. When Ser-9 was substituted by an Ala, this hydrogen bond interaction was disrupted. These results provide further molecular insights into the selectivity of 7 and provide a guide for designing ligands that block α3β4 nAChRs.
Collapse
Affiliation(s)
- Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Manqi Zhangsun
- Departments of Biology and Psychiatry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - J Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah , Salt Lake City, Utah 84112, United States.,George E. Wahlen Veterans Affairs Medical Center , Salt Lake City, Utah 84108, United States
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| |
Collapse
|
33
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
34
|
Xu M, Zhu X, Yu J, Yu J, Luo S, Wang X. The crystal structure of Ac-AChBP in complex with α-conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes. Protein Cell 2017; 8:675-685. [PMID: 28585176 PMCID: PMC5563285 DOI: 10.1007/s13238-017-0426-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
The α3* nAChRs, which are considered to be promising drug targets for problems such as pain, addiction, cardiovascular function, cognitive disorders etc., are found throughout the central and peripheral nervous system. The α-conotoxin (α-CTx) LvIA has been identified as the most selective inhibitor of α3β2 nAChRs known to date, and it can distinguish the α3β2 nAChR subtype from the α6/α3β2β3 and α3β4 nAChR subtypes. However, the mechanism of its selectivity towards α3β2, α6/α3β2β3, and α3β4 nAChRs remains elusive. Here we report the co-crystal structure of LvIA in complex with Aplysia californica acetylcholine binding protein (Ac-AChBP) at a resolution of 3.4 Å. Based on the structure of this complex, together with homology modeling based on other nAChR subtypes and binding affinity assays, we conclude that Asp-11 of LvIA plays an important role in the selectivity of LvIA towards α3β2 and α3/α6β2β3 nAChRs by making a salt bridge with Lys-155 of the rat α3 subunit. Asn-9 lies within a hydrophobic pocket that is formed by Met-36, Thr-59, and Phe-119 of the rat β2 subunit in the α3β2 nAChR model, revealing the reason for its more potent selectivity towards the α3β2 nAChR subtype. These results provide molecular insights that can be used to design ligands that selectively target α3β2 nAChRs, with significant implications for the design of new therapeutic α-CTxs.
Collapse
Affiliation(s)
- Manyu Xu
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, 100084, China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University, Haikou, 570228, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, 100084, China
| | - Jinpeng Yu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University, Haikou, 570228, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University, Haikou, 570228, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
35
|
Abraham N, Healy M, Ragnarsson L, Brust A, Alewood PF, Lewis RJ. Structural mechanisms for α-conotoxin activity at the human α3β4 nicotinic acetylcholine receptor. Sci Rep 2017; 7:45466. [PMID: 28361878 PMCID: PMC5374441 DOI: 10.1038/srep45466] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/01/2017] [Indexed: 01/22/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are therapeutic targets for a range of human diseases. α-Conotoxins are naturally occurring peptide antagonists of nAChRs that have been used as pharmacological probes and investigated as drug leads for nAChR related disorders. However, α-conotoxin interactions have been mostly characterised at the α7 and α3β2 nAChRs, with interactions at other subtypes poorly understood. This study provides novel structural insights into the molecular basis for α-conotoxin activity at α3β4 nAChR, a therapeutic target where subtype specific antagonists have potential to treat nicotine addiction and lung cancer. A co-crystal structure of α-conotoxin LsIA with Lymnaea stagnalis acetylcholine binding protein guided the design and functional characterisations of LsIA analogues that identified the minimum pharmacophore regulating α3β4 antagonism. Interactions of the LsIA R10F with β4 K57 and the conserved -NN- α-conotoxin motif with β4 I77 and I109 conferred α3β4 activity to the otherwise inactive LsIA. Using these structural insights, we designed LsIA analogues with α3β4 activity. This new understanding of the structural basis of protein-protein interactions between α-conotoxins and α3β4 may help rationally guide the development of α3β4 selective antagonists with therapeutic potential.
Collapse
Affiliation(s)
- Nikita Abraham
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Michael Healy
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lotten Ragnarsson
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andreas Brust
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Paul F Alewood
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Richard J Lewis
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
36
|
Saez NJ, Cristofori-Armstrong B, Anangi R, King GF. A Strategy for Production of Correctly Folded Disulfide-Rich Peptides in the Periplasm of E. coli. Methods Mol Biol 2017; 1586:155-180. [PMID: 28470604 DOI: 10.1007/978-1-4939-6887-9_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recombinant expression of disulfide-reticulated peptides and proteins is often challenging. We describe a method that exploits the periplasmic disulfide-bond forming machinery of Escherichia coli and combines this with a cleavable, solubility-enhancing fusion tag to obtain higher yields of correctly folded target protein than is achievable via cytoplasmic expression. The protocols provided herein cover all aspects of this approach, from vector construction and transformation to purification of the cleaved target protein and subsequent quality control.
Collapse
Affiliation(s)
- Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St. Lucia, QLD, 4067, Australia.
| | - Ben Cristofori-Armstrong
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St. Lucia, QLD, 4067, Australia
| | - Raveendra Anangi
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St. Lucia, QLD, 4067, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St. Lucia, QLD, 4067, Australia.
| |
Collapse
|
37
|
King MD, Long T, Andersen T, McDougal OM. Genetic Algorithm Managed Peptide Mutant Screening: Optimizing Peptide Ligands for Targeted Receptor Binding. J Chem Inf Model 2016; 56:2378-2387. [PMID: 28024403 DOI: 10.1021/acs.jcim.6b00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study demonstrates the utility of genetic algorithms to search exceptionally large and otherwise intractable mutant libraries for sequences with optimal binding affinities for target receptors. The Genetic Algorithm Managed Peptide Mutant Screening (GAMPMS) program was used to search an α-conotoxin (α-CTx) MII mutant library of approximately 41 billion possible peptide sequences for those exhibiting the greatest binding affinity for the α3β2-nicotinic acetylcholine receptor (nAChR) isoform. A series of top resulting peptide ligands with high sequence homology was obtained, with each mutant having an estimated ΔGbind approximately double that of the potent native α-CTx MII ligand. A consensus sequence from the top GAMPMS results was subjected to more rigorous binding free energy calculations by molecular dynamics and compared to α-CTx MII and other related variants for binding with α3β2-nAChR. In this study, the efficiency of GAMPMS to substantially reduce the sample population size through evolutionary selection criteria to produce ligands with higher predicted binding affinity is demonstrated.
Collapse
Affiliation(s)
- Matthew D King
- Department of Chemistry and Biochemistry and ‡Department of Computer Science, Boise State University , 1910 University Drive, Boise, Idaho 83725, United States
| | - Thomas Long
- Department of Chemistry and Biochemistry and ‡Department of Computer Science, Boise State University , 1910 University Drive, Boise, Idaho 83725, United States
| | - Timothy Andersen
- Department of Chemistry and Biochemistry and ‡Department of Computer Science, Boise State University , 1910 University Drive, Boise, Idaho 83725, United States
| | - Owen M McDougal
- Department of Chemistry and Biochemistry and ‡Department of Computer Science, Boise State University , 1910 University Drive, Boise, Idaho 83725, United States
| |
Collapse
|
38
|
High-Affinity α-Conotoxin PnIA Analogs Designed on the Basis of the Protein Surface Topography Method. Sci Rep 2016; 6:36848. [PMID: 27841338 PMCID: PMC5107951 DOI: 10.1038/srep36848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/21/2016] [Indexed: 11/08/2022] Open
Abstract
Despite some success for small molecules, elucidating structure-function relationships for biologically active peptides - the ligands for various targets in the organism - remains a great challenge and calls for the development of novel approaches. Some of us recently proposed the Protein Surface Topography (PST) approach, which benefits from a simplified representation of biomolecules' surface as projection maps, which enables the exposure of the structure-function dependencies. Here, we use PST to uncover the "activity pattern" in α-conotoxins - neuroactive peptides that effectively target nicotinic acetylcholine receptors (nAChRs). PST was applied in order to design several variants of the α-conotoxin PnIA, which were synthesized and thoroughly studied. Among the best was PnIA[R9, L10], which exhibits nanomolar affinity for the α7 nAChR, selectivity and a slow wash-out from this target. Importantly, these mutations could hardly be delineated by "standard" structure-based drug design. The proposed combination of PST with a set of experiments proved very efficient for the rational construction of new bioactive molecules.
Collapse
|
39
|
Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs. Mar Drugs 2016; 14:md14100173. [PMID: 27727162 PMCID: PMC5082321 DOI: 10.3390/md14100173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are targets for developing new drugs to treat severe pain, nicotine addiction, Alzheimer disease, epilepsy, etc. α-Conotoxins are biologically and chemically diverse. With 12–19 residues and two disulfides, they can be specifically selected for different nAChRs. Acetylcholine-binding proteins from Aplysia californica (Ac-AChBP) are homologous to the ligand-binding domains of nAChRs and pharmacologically similar. X-ray structures of the α-conotoxin in complex with Ac-AChBP in addition to computer modeling have helped to determine the binding site of the important residues of α-conotoxin and its affinity for nAChR subtypes. Here, we present the various α-conotoxin residues that are selective for Ac-AChBP or nAChRs by comparing the structures of α-conotoxins in complex with Ac-AChBP and by modeling α-conotoxins in complex with nAChRs. The knowledge of these binding sites will assist in the discovery and design of more potent and selective α-conotoxins as drug leads.
Collapse
|
40
|
Abraham N, Paul B, Ragnarsson L, Lewis RJ. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs). PLoS One 2016; 11:e0157363. [PMID: 27304486 PMCID: PMC4909209 DOI: 10.1371/journal.pone.0157363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/27/2016] [Indexed: 01/22/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli) expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.
Collapse
Affiliation(s)
- Nikita Abraham
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Blessy Paul
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Lotten Ragnarsson
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
41
|
Banerjee J, Yongye AB, Chang YP, Gyanda R, Medina-Franco JL, Armishaw CJ. Design and synthesis of α-conotoxin GID analogues as selective α4β2 nicotinic acetylcholine receptor antagonists. Biopolymers 2016; 102:78-87. [PMID: 24122487 DOI: 10.1002/bip.22413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 01/01/2023]
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) is an important target for currently approved smoking cessation therapeutics. However, the development of highly selective α4β2 nAChR antagonists remains a significant challenge. α-Conotoxin GID is an antagonist of α4β2 nAChRs, though it is significantly more potent toward the α3β2 and α7 subtypes. With the goal of obtaining further insights into α-conotoxin GID/nAChR interactions that could lead to the design of GID analogues with improved affinity for α4β2 nAChRs, we built a homology model of the GID/α4β2 complex using an X-ray co-crystal structure of an α-conotoxin/acetylcholine binding protein (AChBP) complex. Several additional interactions that could potentially enhance the affinity of GID for α4β2 nAChRs were observed in our model, which led to the design and synthesis of 22 GID analogues. Seven analogues displayed inhibitory activity toward α4β2 nAChRs that was comparable to GID. Significantly, both GID[A10S] and GID[V13I] demonstrated moderately improved selectivity toward α4β2 over α3β2 when compared with GID, while GID[V18N] exhibited no measurable inhibitory activity for the α3β2 subtype, yet retained inhibitory activity for α4β2. In this regard, GID[V18N] is the most α4β2 nAChR selective α-conotoxin analogue identified to date.
Collapse
Affiliation(s)
- Jayati Banerjee
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, 34987
| | | | | | | | | | | |
Collapse
|
42
|
From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR. Sci Rep 2016; 6:22349. [PMID: 26925840 PMCID: PMC4772116 DOI: 10.1038/srep22349] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/11/2016] [Indexed: 01/21/2023] Open
Abstract
Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes.
Collapse
|
43
|
Prashanth JR, Dutertre S, Jin AH, Lavergne V, Hamilton B, Cardoso FC, Griffin J, Venter DJ, Alewood PF, Lewis RJ. The role of defensive ecological interactions in the evolution of conotoxins. Mol Ecol 2016; 25:598-615. [PMID: 26614983 DOI: 10.1111/mec.13504] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
Venoms comprise of complex mixtures of peptides evolved for predation and defensive purposes. Remarkably, some carnivorous cone snails can inject two distinct venoms in response to predatory or defensive stimuli, providing a unique opportunity to study separately how different ecological pressures contribute to toxin diversification. Here, we report the extraordinary defensive strategy of the Rhizoconus subgenus of cone snails. The defensive venom from this worm-hunting subgenus is unusually simple, almost exclusively composed of αD-conotoxins instead of the ubiquitous αA-conotoxins found in the more complex defensive venom of mollusc- and fish-hunting cone snails. A similarly compartmentalized venom gland as those observed in the other dietary groups facilitates the deployment of this defensive venom. Transcriptomic analysis of a Conus vexillum venom gland revealed the αD-conotoxins as the major transcripts, with lower amounts of 15 known and four new conotoxin superfamilies also detected with likely roles in prey capture. Our phylogenetic and molecular evolution analysis of the αD-conotoxins from five subgenera of cone snails suggests they evolved episodically as part of a defensive strategy in the Rhizoconus subgenus. Thus, our results demonstrate an important role for defence in the evolution of conotoxins.
Collapse
Affiliation(s)
- J R Prashanth
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - S Dutertre
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia.,Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier-CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - A H Jin
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - V Lavergne
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - B Hamilton
- Pathology, Mater Health Services, Raymond Terrace, South Brisbane, Qld, 4101, Australia.,Mater Research Institute, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - F C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - J Griffin
- ACRF Microscopy Facility, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - D J Venter
- Pathology, Mater Health Services, Raymond Terrace, South Brisbane, Qld, 4101, Australia.,Mater Research Institute, The University of Queensland, St. Lucia, Qld, 4072, Australia.,School of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - P F Alewood
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - R J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
44
|
Shahsavar A, Gajhede M, Kastrup JS, Balle T. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate. Basic Clin Pharmacol Toxicol 2016; 118:399-407. [DOI: 10.1111/bcpt.12528] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/02/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Azadeh Shahsavar
- Department of Molecular Biology and Genetics; Danish Research Institute of Translational Neuroscience - DANDRITE; Aarhus University; Aarhus Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jette S. Kastrup
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Thomas Balle
- Faculty of Pharmacy; The University of Sydney; Sydney NSW Australia
| |
Collapse
|
45
|
Zhu X, Bi J, Yu J, Li X, Zhang Y, Zhangsun D, Luo S. Recombinant Expression and Characterization of α-Conotoxin LvIA in Escherichia coli. Mar Drugs 2016; 14:11. [PMID: 26742048 PMCID: PMC4728508 DOI: 10.3390/md14010011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/11/2015] [Accepted: 12/28/2015] [Indexed: 01/17/2023] Open
Abstract
α-Conotoxin LvIA is derived from Conus lividus, native to Hainan, and is the most selective inhibitor of α3β2 nicotinic acetylcholine receptors (nAChRs) known to date. In this study, an efficient approach for the production of recombinant α-Conotoxin LvIA is described. Tandem repeats of a LvIA gene fragment were constructed and fused with a KSI gene and a His6 tag in a Escherichia coli (E. coli) expression vector pET-31b(+). The recombinant plasmids were transformed into E. coli and were found to express well. The KSI-(LvIA)n-His6 fusion protein was purified by metal affinity chromatography and then cleaved with CNBr to release recombinant LvIA (rLvIA). High yields of fusion protein ranging from 100 to 500 mg/L culture were obtained. The pharmacological profile of rLvIA was determined by two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing rat nAChR subtypes. The rLvIA antagonized the α3β2 nAChR subtype selectively with a nano-molar IC50. The rLvIA was analgesic in a mouse hot-plate test model of pain. Overall, this study provides an effective method to synthesize α-conotoxin LvIA in an E. coli recombinant expression system, and this approach could be useful to obtain active conopeptides in large quantity and at low cost.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
- College of Horticulture and Landscapes, Hainan University, Haikou 570228, China.
- College of Marine Science, Hainan University, Haikou 570228, China.
| | - Jianpeng Bi
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Jinpeng Yu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Xiaodan Li
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Yaning Zhang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
- College of Marine Science, Hainan University, Haikou 570228, China.
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
- College of Marine Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
46
|
King MD, Phillips P, Turner MW, Katz M, Lew S, Bradburn S, Andersen T, Mcdougal OM. Computational exploration of a protein receptor binding space with student proposed peptide ligands. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 44:63-67. [PMID: 26537635 PMCID: PMC5367464 DOI: 10.1002/bmb.20925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results.
Collapse
Affiliation(s)
- Matthew D. King
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725
| | - Paul Phillips
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725
| | - Matthew W. Turner
- Biomolecular Sciences PhD Program, Boise State University, Boise, Idaho 83725
| | - Michael Katz
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725
| | - Sarah Lew
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725
| | - Sarah Bradburn
- Department of Computer Science and Engineering, Boise State University, Boise, Idaho 83725
| | - Tim Andersen
- Department of Computer Science and Engineering, Boise State University, Boise, Idaho 83725
| | - Owen M. Mcdougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725
| |
Collapse
|
47
|
An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation. Toxicon 2015; 107:282-9. [DOI: 10.1016/j.toxicon.2015.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/26/2015] [Accepted: 09/10/2015] [Indexed: 01/04/2023]
|
48
|
Li L, Liu N, Ding R, Wang S, Liu Z, Li H, Zheng X, Dai Q. A novel 4/6-type alpha-conotoxin ViIA selectively inhibits nAchR α3β2 subtype. Acta Biochim Biophys Sin (Shanghai) 2015; 47:1023-8. [PMID: 26511093 DOI: 10.1093/abbs/gmv105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023] Open
Abstract
Conotoxins (CTxs) are typically small peptides composed of 12-50 amino acid residues with 2-5 disulfide bridges. Most of them potently and selectively target a wide variety of ion channels and membrane receptors. They are highly valued as neuropharmacological probes and in pharmaceutical development. In this work, a novel α4/6-CTx named ViIA (RDCCSNPPCAHNNPDC-NH2) was identified from a cDNA library of the venom ducts of Conus virgo (C. virgo). ViIA was then synthesized chemically and its disulfide connectivity was identified as 'C(1)-C(3), C(2)-C(4)'. Its molecular targets were further assessed using two-electrode voltage clamping. The results indicated that ViIA selectively inhibited nicotinic acetylcholine receptor (nAChR) α3β2 subtype with an IC50 of 845.5 nM, but did not target dorsal root ganglion sodium (Na(+))-, potassium (K(+))- or calcium (Ca(2+))-ion channels. Further structure-activity relationship analysis demonstrated that Arg(1) and His(11) but not Asp(2) were the functional residues. To the best of our knowledge, ViIA is the first 4/6 α-CTx that selectively inhibits nAChR α3β2 subtype. This finding expands the knowledge of targets of α4/6-family CTxs.
Collapse
Affiliation(s)
- Liang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China Beijing Institute of Biotechnology, Beijing 100071, China
| | - Na Liu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Rong Ding
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shuo Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Haiying Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
49
|
Himaya SWA, Jin AH, Dutertre S, Giacomotto J, Mohialdeen H, Vetter I, Alewood PF, Lewis RJ. Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus. J Proteome Res 2015; 14:4372-81. [PMID: 26322961 DOI: 10.1021/acs.jproteome.5b00630] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Venomous marine cone snails produce a unique and remarkably diverse range of venom peptides (conotoxins and conopeptides) that have proven to be invaluable as pharmacological probes and leads to new therapies. Conus catus is a hook-and-line fish hunter from clade I, with ∼20 conotoxins identified, including the analgesic ω-conotoxin CVID (AM336). The current study unravels the venom composition of C. catus with tandem mass spectrometry and 454 sequencing data. From the venom gland transcriptome, 104 precursors were recovered from 11 superfamilies, with superfamily A (especially κA-) conotoxins dominating (77%) their venom. Proteomic analysis confirmed that κA-conotoxins dominated the predation-evoked milked venom of each of six C. catus analyzed and revealed remarkable intraspecific variation in both the intensity and type of conotoxins. High-throughput FLIPR assays revealed that the predation-evoked venom contained a range of conotoxins targeting the nAChR, Cav, and Nav ion channels, consistent with α- and ω-conotoxins being used for predation by C. catus. However, the κA-conotoxins did not act at these targets but induced potent and rapid immobilization followed by bursts of activity and finally paralysis when injected intramuscularly in zebrafish. Our venomics approach revealed the complexity of the envenomation strategy used by C. catus, which contains a mix of both excitatory and inhibitory venom peptides.
Collapse
Affiliation(s)
- S W A Himaya
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia.,Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier-CNRS , Place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Jean Giacomotto
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Hoshyar Mohialdeen
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, 4072 Queensland, Australia
| |
Collapse
|
50
|
Chiodo L, Malliavin TE, Maragliano L, Cottone G, Ciccotti G. A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation. PLoS One 2015; 10:e0133011. [PMID: 26208301 PMCID: PMC4514475 DOI: 10.1371/journal.pone.0133011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/22/2015] [Indexed: 11/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAchRs) are ligand-gated ion channels that regulate chemical transmission at the neuromuscular junction. Structural information is available at low resolution from open and closed forms of an eukaryotic receptor, and at high resolution from other members of the same structural family, two prokaryotic orthologs and an eukaryotic GluCl channel. Structures of human channels however are still lacking. Homology modeling and Molecular Dynamics simulations are valuable tools to predict structures of unknown proteins, however, for the case of human nAchRs, they have been unsuccessful in providing a stable open structure so far. This is due to different problems with the template structures: on one side the homology with prokaryotic species is too low, while on the other the open eukaryotic GluCl proved itself unstable in several MD studies and collapsed to a dehydrated, non-conductive conformation, even when bound to an agonist. Aim of this work is to obtain, by a mixing of state-of-the-art homology and simulation techniques, a plausible prediction of the structure (still unknown) of the open state of human α7 nAChR complexed with epibatidine, from which it is possible to start structural and functional test studies. To prevent channel closure we employ a restraint that keeps the transmembrane pore open, and obtain in this way a stable, hydrated conformation. To further validate this conformation, we run four long, unbiased simulations starting from configurations chosen at random along the restrained trajectory. The channel remains stable and hydrated over the whole runs. This allows to assess the stability of the putative open conformation over a cumulative time of 1 μs, 800 ns of which are of unbiased simulation. Mostly based on the analysis of pore hydration and size, we suggest that the obtained structure has reasonable chances to be (at least one of the possible) structures of the channel in the open conformation.
Collapse
Affiliation(s)
- Letizia Chiodo
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Thérèse E. Malliavin
- Institut Pasteur and CNRS UMR 3528, Unité de Bioinformatique Structurale, Paris, France
| | - Luca Maragliano
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Grazia Cottone
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
- School of Physics, University College Dublin, Dublin, Ireland
| | - Giovanni Ciccotti
- School of Physics, University College Dublin, Dublin, Ireland
- Department of Physics, University of Roma “La Sapienza”, Rome, Italy
| |
Collapse
|