1
|
Lee J, Bao X. Comparative Review on Cancer Pathology from Aberrant Histone Chaperone Activity. Int J Mol Sci 2024; 25:6403. [PMID: 38928110 PMCID: PMC11203986 DOI: 10.3390/ijms25126403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Histone chaperones are integral to chromatin dynamics, facilitating the assembly and disassembly of nucleosomes, thereby playing a crucial role in regulating gene expression and maintaining genomic stability. Moreover, they prevent aberrant histone interactions prior to chromatin assembly. Disruption in histone chaperone function may result in genomic instability, which is implicated in pathogenesis. This review aims to elucidate the role of histone chaperones in cancer pathologies and explore their potential as therapeutic targets. Histone chaperones have been found to be dysregulated in various cancers, with alterations in expression levels, mutations, or aberrant interactions leading to tumorigenesis and cancer progression. In addition, this review intends to highlight the molecular mechanisms of interactions between histone chaperones and oncogenic factors, underscoring their roles in cancer cell survival and proliferation. The dysregulation of histone chaperones is significantly correlated with cancer development, establishing them as active contributors to cancer pathology and viable targets for therapeutic intervention. This review advocates for continued research into histone chaperone-targeted therapies, which hold potential for precision medicine in oncology. Future advancements in understanding chaperone functions and interactions are anticipated to lead to novel cancer treatments, enhancing patient care and outcomes.
Collapse
Affiliation(s)
| | - Xiucong Bao
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
2
|
Bardani E, Kallemi P, Tselika M, Katsarou K, Kalantidis K. Spotlight on Plant Bromodomain Proteins. BIOLOGY 2023; 12:1076. [PMID: 37626962 PMCID: PMC10451976 DOI: 10.3390/biology12081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
Bromodomain-containing proteins (BRD-proteins) are the "readers" of histone lysine acetylation, translating chromatin state into gene expression. They act alone or as components of larger complexes and exhibit diverse functions to regulate gene expression; they participate in chromatin remodeling complexes, mediate histone modifications, serve as scaffolds to recruit transcriptional regulators or act themselves as transcriptional co-activators or repressors. Human BRD-proteins have been extensively studied and have gained interest as potential drug targets for various diseases, whereas in plants, this group of proteins is still not well investigated. In this review, we aimed to concentrate scientific knowledge on these chromatin "readers" with a focus on Arabidopsis. We organized plant BRD-proteins into groups based on their functions and domain architecture and summarized the published work regarding their interactions, activity and diverse functions. Overall, it seems that plant BRD-proteins are indispensable components and fine-tuners of the complex network plants have built to regulate development, flowering, hormone signaling and response to various biotic or abiotic stresses. This work will facilitate the understanding of their roles in plants and highlight BRD-proteins with yet undiscovered functions.
Collapse
Affiliation(s)
- Eirini Bardani
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Paraskevi Kallemi
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Martha Tselika
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Konstantina Katsarou
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| |
Collapse
|
3
|
Kehrberg RJ, Bhyravbhatla N, Batra SK, Kumar S. Epigenetic regulation of cancer-associated fibroblast heterogeneity. Biochim Biophys Acta Rev Cancer 2023; 1878:188901. [PMID: 37120098 PMCID: PMC10375465 DOI: 10.1016/j.bbcan.2023.188901] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Cancer-associated fibroblasts (CAFs), a significant component of the tumor microenvironment (TME), contribute to cancer progression through the secretion of extracellular matrix (ECM), growth factors, and metabolites. It is now well recognized that CAFs are a heterogenous population with ablation experiments leading to reduced tumor growth and single-cell RNA sequencing demonstrating CAF subgroups. CAFs lack genetic mutations yet substantially differ from their normal stromal precursors. Here, we review epigenetic changes in CAF maturation, focusing on DNA methylation and histone modifications. DNA methylation changes in CAFs have been demonstrated globally, while roles of methylation at specific genes affect tumor growth. Further, loss of CAF histone methylation and gain of histone acetylation has been shown to promote CAF activation and tumor promotion. Many CAF activating factors, such as transforming growth factor β (TGFβ), lead to these epigenetic changes. MicroRNAs (miRNAs) serve as targets and orchestrators of epigenetic modifications that influence gene expression. Bromodomain and extra-terminal domain (BET), an epigenetic reader, recognizes histone acetylation and activates the transcription of genes leading to the pro-tumor phenotype of CAFs.
Collapse
Affiliation(s)
- Rachel J Kehrberg
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Namita Bhyravbhatla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Abiraami TV, Sanyal RP, Misra HS, Saini A. Genome-wide analysis of bromodomain gene family in Arabidopsis and rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1120012. [PMID: 36968369 PMCID: PMC10030601 DOI: 10.3389/fpls.2023.1120012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The bromodomain-containing proteins (BRD-proteins) belongs to family of 'epigenetic mark readers', integral to epigenetic regulation. The BRD-members contain a conserved 'bromodomain' (BRD/BRD-fold: interacts with acetylated-lysine in histones), and several additional domains, making them structurally/functionally diverse. Like animals, plants also contain multiple Brd-homologs, however the extent of their diversity and impact of molecular events (genomic duplications, alternative splicing, AS) therein, is relatively less explored. The present genome-wide analysis of Brd-gene families of Arabidopsis thaliana and Oryza sativa showed extensive diversity in structure of genes/proteins, regulatory elements, expression pattern, domains/motifs, and the bromodomain (w.r.t. length, sequence, location) among the Brd-members. Orthology analysis identified thirteen ortholog groups (OGs), three paralog groups (PGs) and four singleton members (STs). While more than 40% Brd-genes were affected by genomic duplication events in both plants, AS-events affected 60% A. thaliana and 41% O. sativa genes. These molecular events affected various regions (promoters, untranslated regions, exons) of different Brd-members with potential impact on expression and/or structure-function characteristics. RNA-Seq data analysis indicated differences in tissue-specificity and stress response of Brd-members. Analysis by RT-qPCR revealed differential abundance and salt stress response of duplicate A. thaliana and O. sativa Brd-genes. Further analysis of AtBrd gene, AtBrdPG1b showed salinity-induced modulation of splicing pattern. Bromodomain (BRD)-region based phylogenetic analysis placed the A. thaliana and O. sativa homologs into clusters/sub-clusters, mostly consistent with ortholog/paralog groups. The bromodomain-region displayed several conserved signatures in key BRD-fold elements (α-helices, loops), along with variations (1-20 sites) and indels among the BRD-duplicates. Homology modeling and superposition identified structural variations in BRD-folds of divergent and duplicate BRD-members, which might affect their interaction with the chromatin histones, and associated functions. The study also showed contribution of various duplication events in Brd-gene family expansion among diverse plants, including several monocot and dicot plant species.
Collapse
Affiliation(s)
- T. V. Abiraami
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Ravi Prakash Sanyal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ajay Saini
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, Boroń D, Zarghooni M, Wiechec E, Mokarram P. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166512. [PMID: 35931405 DOI: 10.1016/j.bbadis.2022.166512] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland.
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Kim HJ, Lee J, Chung MY, Park SH, Park JH, Choi HK, Hwang JT. Tamarixetin Abrogates Adipogenesis Through Inhibiting p300/CBP-Associated Factor Acetyltransferase Activity in 3T3-L1 Preadipocyte Cells. J Med Food 2022; 25:272-280. [PMID: 35320012 DOI: 10.1089/jmf.2021.k.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tamarixetin (TX) is an O-methylated flavonoid naturally derived from quercetin. TX has bioactive properties; however, whether it shows antilipogenic activity remains unknown. Therefore, in the present study, we aimed to determine the antilipogenic effects of TX using 3T3-L1 adipocytes. The 3T3-L1 adipocytes were cultured in a differentiation medium with or without TX. Lipid accumulation was diminished and the mRNA expression of lipogenesis-related genes was decreased following TX treatment. We found that TX exhibited antilipogenic effects by inhibiting the expression of p300/CBP-associated factor (pCAF), a histone acetyltransferase, as confirmed by pCAF knockdown. Furthermore, TX inhibited both pCAF expression and its activity, thereby reducing the total acetylation level of nonhistone and histone proteins. Finally, TX decreased the expression of CCAAT/enhancer-binding protein alpha and beta (CEBPα and CEBPβ), and peroxisome proliferator-activated receptor γ along with pCAF expression during adipogenesis of 3T3-L1 cells in a time-dependent manner. Collectively, our findings suggest that TX is a potent antilipogenic agent derived from natural products and may be used as a pCAF inhibitor.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Korea Food Research Institute, Jeollabuk-do, Korea.,Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | - Jangho Lee
- Korea Food Research Institute, Jeollabuk-do, Korea
| | - Min-Yu Chung
- Korea Food Research Institute, Jeollabuk-do, Korea
| | | | - Jae Ho Park
- Korea Food Research Institute, Jeollabuk-do, Korea
| | | | - Jin-Taek Hwang
- Korea Food Research Institute, Jeollabuk-do, Korea.,Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| |
Collapse
|
7
|
Meanor JN, Keung AJ, Rao BM. Modified Histone Peptides Linked to Magnetic Beads Reduce Binding Specificity. Int J Mol Sci 2022; 23:ijms23031691. [PMID: 35163614 PMCID: PMC8836101 DOI: 10.3390/ijms23031691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 12/03/2022] Open
Abstract
Histone post-translational modifications are small chemical changes to the histone protein structure that have cascading effects on diverse cellular functions. Detecting histone modifications and characterizing their binding partners are critical steps in understanding chromatin biochemistry and have been accessed using common reagents such as antibodies, recombinant assays, and FRET-based systems. High-throughput platforms could accelerate work in this field, and also could be used to engineer de novo histone affinity reagents; yet, published studies on their use with histones have been noticeably sparse. Here, we describe specific experimental conditions that affect binding specificities of post-translationally modified histones in classic protein engineering platforms and likely explain the relative difficulty with histone targets in these platforms. We also show that manipulating avidity of binding interactions may improve specificity of binding.
Collapse
Affiliation(s)
- Jenna N. Meanor
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27606, USA;
| | - Albert J. Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27606, USA;
- Correspondence: (A.J.K.); (B.M.R.)
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27606, USA;
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, USA
- Correspondence: (A.J.K.); (B.M.R.)
| |
Collapse
|
8
|
Park IG, Jeon M, Kim H, Lee JM. Coordinated methyl readers: Functional communications in cancer. Semin Cancer Biol 2021; 83:88-99. [PMID: 33753223 DOI: 10.1016/j.semcancer.2021.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 01/28/2023]
Abstract
Methylation is a major post-translational modification (PTM) generated by methyltransferase on target proteins; it is recognized by the epigenetic reader to expand the functional diversity of proteins. Methylation can occur on specific lysine or arginine residues localized within regulatory domains in both histone and nonhistone proteins, thereby allowing distinguished properties of the targeted protein. Methylated residues are recognized by chromodomain, malignant brain tumor (MBT), Tudor, plant homeodomain (PHD), PWWP, WD-40, ADD, and ankyrin repeats by an induced-fit mechanism. Methylation-dependent activities regulate distinct aspects of target protein function and are largely reliant on methyl readers of histone and nonhistone proteins in various diseases. Methylation of nonhistone proteins that are recognized by methyl readers facilitates the degradation of unwanted proteins, as well as the stabilization of necessary proteins. Unlike nonhistone substrates, which are mainly monomethylated by methyltransferase, histones are di- or trimethylated by the same methyltransferases and then connected to other critical regulators by methyl readers. These fine-tuned controls by methyl readers are significant for the progression or inhibition of diseases, including cancers. Here, current knowledge and our perspectives about regulating protein function by methyl readers are summarized. We also propose that expanded research on the strong crosstalk mechanisms between methylation and other PTMs via methyl readers would augment therapeutic research in cancer.
Collapse
Affiliation(s)
- Il-Geun Park
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minsol Jeon
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
9
|
Histone Lysine-to-Methionine Mutation as Anticancer Drug Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:85-96. [PMID: 33155140 DOI: 10.1007/978-981-15-8104-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone modification stands for a vital genetic information form, which shows tight correlation with the modulation of normal physiological activities by genes. Abnormal regulation of histone methylation due to histone modification enzyme changes and histone mutations plays an important role in the development of cancer. Histone mutations, especially H3K27M and H3K36M, have been identified in various cancers such as pediatric DIPG (diffuse intrinsic pontine glioma) and chondroblastoma respectively. "K to M" mutation results overall downregulation of methylation on these lysine residues. Also, "K to M" mutant histones can inhibit the enzymatic activity of the responsible HMT (histone methyltransferase); for instance, SETD2 indicates H3K36 methylation, and Ezh2 represents H3K27 methylation. In-depth analysis of the mechanism of tumor formation triggered by the K to M mutation results in possible targeted therapies. This chapter is going to briefly introduce the mechanism of histone lysine-to-methionine mutation and review the recently identified targeted therapeutic strategies.
Collapse
|
10
|
Miura K, Renhu N, Suzaki T. The PHD finger of Arabidopsis SIZ1 recognizes trimethylated histone H3K4 mediating SIZ1 function and abiotic stress response. Commun Biol 2020; 3:23. [PMID: 31925312 PMCID: PMC6954211 DOI: 10.1038/s42003-019-0746-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022] Open
Abstract
Arabidopsis SIZ1 encodes a SUMO E3 ligase to regulate abiotic and biotic stress responses. Among SIZ1 or mammalian PIAS orthologs, plant SIZ1 proteins contain the plant homeodomain (PHD) finger, a C4HC3 zinc finger. Here, we investigated the importance of PHD of Arabidopsis SIZ1. The ProSIZ1::SIZ1(ΔPHD):GFP was unable to complement growth retardation, ABA hypersensitivity, and the cold-sensitive phenotype of the siz1 mutant, but ProSIZ1::SIZ1:GFP could. Substitution of C162S in the PHD finger was unable to complement the siz1 mutation. Tri-methylated histone H3K4 (H3K4me3) was recognized by PHD, not by PHD(C162S). WRKY70 was up-regulated in the siz1-2 mutant and H3K4me3 accumulated at high levels in the WRKY70 promoter. PHD interacts with ATX, which mediates methylation of histone, probably leading to suppression of ATX’s function. These results suggest that the PHD finger of SIZ1 is important for recognition of the histone code and is required for SIZ1 function and transcriptional suppression. Kenji Miura et al. investigate the role of the plant homeodomain (PHD) finger of the Arabidopsis SIZ1 protein. They show that the PHD finger is involved in hormone response and temperature sensitivity, and plays an important role in H3K4 methylation, thereby affecting recognition of histone code and transcriptional suppression.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan. .,Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, 305-8572, Japan.
| | - Na Renhu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, 305-8572, Japan
| |
Collapse
|
11
|
González-Medina A, Hidalgo E, Ayté J. Gcn5-mediated acetylation at MBF-regulated promoters induces the G1/S transcriptional wave. Nucleic Acids Res 2019; 47:8439-8451. [PMID: 31260531 PMCID: PMC6895280 DOI: 10.1093/nar/gkz561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/26/2022] Open
Abstract
In fission yeast, MBF-dependent transcription is inactivated at the end of S phase through a negative feedback loop that involves the co-repressors, Yox1 and Nrm1. Although this repression system is well known, the molecular mechanisms involved in MBF activation remain largely unknown. Compacted chromatin constitutes a barrier to activators accessing promoters. Here, we show that chromatin regulation plays a key role in activating MBF-dependent transcription. Gcn5, a part of the SAGA complex, binds to MBF-regulated promoters through the MBF co-activator Rep2 in a cell cycle-dependent manner and in a reverse correlation to the binding of the MBF co-repressors, Nrm1 or Yox1. We propose that the co-repressors function as physical barriers to SAGA recruitment onto MBF promoters. We also show that Gcn5 acetylates specific lysine residues on histone H3 in a cell cycle-regulated manner. Furthermore, either in a gcn5 mutant or in a strain in which histone H3 is kept in an unacetylated form, MBF-dependent transcription is downregulated. In summary, Gcn5 is required for the full activation and correct timing of MBF-regulated gene transcription.
Collapse
Affiliation(s)
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| |
Collapse
|
12
|
Bhat J, Kouakanou L, Peters C, Yin Z, Kabelitz D. Immunotherapy With Human Gamma Delta T Cells-Synergistic Potential of Epigenetic Drugs? Front Immunol 2018; 9:512. [PMID: 29593742 PMCID: PMC5859364 DOI: 10.3389/fimmu.2018.00512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/27/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jaydeep Bhat
- Institute of Immunology, University of Kiel, Kiel, Germany
| | | | | | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | | |
Collapse
|
13
|
Herrera-Solorio AM, Armas-López L, Arrieta O, Zúñiga J, Piña-Sánchez P, Ávila-Moreno F. Histone code and long non-coding RNAs (lncRNAs) aberrations in lung cancer: implications in the therapy response. Clin Epigenetics 2017; 9:98. [PMID: 28904641 PMCID: PMC5591558 DOI: 10.1186/s13148-017-0398-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/29/2017] [Indexed: 01/14/2023] Open
Abstract
Respiratory diseases hold several genome, epigenome, and transcriptional aberrations as a cause of the accumulated damage promoted by, among others, environmental risk factors. Such aberrations can also come about as an adaptive response when faced with therapeutic oncological drugs. In epigenetic terms, aberrations in DNA methylation patterns, histone code marks balance, and/or chromatin-remodeling complexes recruitment, among Polycomb Repressive Complex-2 (PRC2) versus Trithorax (TRX) Activator Complex, have been proposed to be affected by several previously characterized functional long non-coding RNAs (lncRNAs). Such molecules are involved in modulating and/or controlling lung cancer epigenome and genome expression, as well as in malignancy and clinical progression in lung cancer. Several recent reports have described diverse epigenetic modifications in lung cancer cells and solid tumors, among others genomic DNA methylation and post-translational modifications (PTMs) on histone tails, as well as lncRNAs patterns and levels of expression. However, few systematic approaches have attempted to demonstrate a biological function and clinical association, aiming to improve therapeutic decisions in basic research and lung clinical oncology. A widely used example is the lncRNA HOTAIR and its functional histone mark H3K27me3, which is directly associated to the PRC2; however, few systematic pieces of solid evidence have been experimentally performed, conducted and/or validated to predict lung oncological therapeutic efficacy. Recent evidence suggests that chromatin-remodeling complexes accompanied by lncRNAs profiles are involved in several comprehensive lung carcinoma clinical parameters, including histopathology progression, prognosis, and/or responsiveness to unique or combined oncological therapies. The present manuscript offers a systematic revision of the current knowledge about the major epigenetic aberrations represented by changes in histone PTMs and lncRNAs expression levels and patterns in human lung carcinomas in cancer drug-based treatments, as an important comprehensive knowledge focusing on better oncological therapies. In addition, a new future direction must be refocusing on several gene target therapies, mainly on pharmaceutical EGFR-TKIs compounds, widely applied in lung cancer, currently the leading cause of death by malignant diseases.
Collapse
Affiliation(s)
- Abril Marcela Herrera-Solorio
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
| | - Leonel Armas-López
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Joaquín Zúñiga
- Research Unit, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Mexico City, Mexico
| | - Patricia Piña-Sánchez
- Molecular Oncology Laboratory, Unidad de Investigación Médica en Enfermedades Oncológicas (UIMEO), CMN., SXXI., IMSS, Mexico City, Mexico
| | - Federico Ávila-Moreno
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
- Research Unit, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
14
|
Socco S, Bovee RC, Palczewski MB, Hickok JR, Thomas DD. Epigenetics: The third pillar of nitric oxide signaling. Pharmacol Res 2017; 121:52-58. [PMID: 28428114 DOI: 10.1016/j.phrs.2017.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO), the endogenously produced free radical signaling molecule, is generally thought to function via its interactions with heme-containing proteins, such as soluble guanylyl cyclase (sGC), or by the formation of protein adducts containing nitrogen oxide functional groups (such as S-nitrosothiols, 3-nitrotyrosine, and dinitrosyliron complexes). These two types of interactions result in a multitude of down-stream effects that regulate numerous functions in physiology and disease. Of the numerous purported NO signaling mechanisms, epigenetic regulation has gained considerable interest in recent years. There is now abundant experimental evidence to establish NO as an endogenous epigenetic regulator of gene expression and cell phenotype. Nitric oxide has been shown to influence key aspects of epigenetic regulation that include histone posttranslational modifications, DNA methylation, and microRNA levels. Studies across disease states have observed NO-mediated regulation of epigenetic protein expression and enzymatic activity resulting in remodeling of the epigenetic landscape to ultimately influence gene expression. In addition to the well-established pathways of NO signaling, epigenetic mechanisms may provide much-needed explanations for poorly understood context-specific effects of NO. These findings provide more insight into the molecular mechanisms of NO signaling and increase our ability to dissect its functional role(s) in specific micro-environments in health and disease. This review will summarize the current state of NO signaling via epigenetic mechanisms (the "third pillar" of NO signaling).
Collapse
Affiliation(s)
- Samantha Socco
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 60612, USA
| | - Rhea C Bovee
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 60612, USA
| | - Marianne B Palczewski
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 60612, USA
| | - Jason R Hickok
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 60612, USA
| | - Douglas D Thomas
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 60612, USA.
| |
Collapse
|
15
|
Shanle EK, Shinsky SA, Bridgers JB, Bae N, Sagum C, Krajewski K, Rothbart SB, Bedford MT, Strahl BD. Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Epigenetics Chromatin 2017; 10:12. [PMID: 28293301 PMCID: PMC5348760 DOI: 10.1186/s13072-017-0117-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Histone posttranslational modifications (PTMs) function to regulate chromatin structure and function in part through the recruitment of effector proteins that harbor specialized "reader" domains. Despite efforts to elucidate reader domain-PTM interactions, the influence of neighboring PTMs and the target specificity of many reader domains is still unclear. The aim of this study was to use a high-throughput histone peptide microarray platform to interrogate 83 known and putative histone reader domains from the chromo and Tudor domain families to identify their interactions and characterize the influence of neighboring PTMs on these interactions. RESULTS Nearly a quarter of the chromo and Tudor domains screened showed interactions with histone PTMs by peptide microarray, revealing known and several novel methyllysine interactions. Specifically, we found that the CBX/HP1 chromodomains that recognize H3K9me also recognize H3K23me2/3-a poorly understood histone PTM. We also observed that, in addition to their interaction with H3K4me3, Tudor domains of the Spindlin family also recognized H4K20me3-a previously uncharacterized interaction. Several Tudor domains also showed novel interactions with H3K4me as well. CONCLUSIONS These results provide an important resource for the epigenetics and chromatin community on the interactions of many human chromo and Tudor domains. They also provide the basis for additional studies into the functional significance of the novel interactions that were discovered.
Collapse
Affiliation(s)
- Erin K Shanle
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909 USA
| | - Stephen A Shinsky
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA.,Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA USA
| | - Joseph B Bridgers
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Narkhyun Bae
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| |
Collapse
|
16
|
Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med 2017; 49:e281. [PMID: 28082740 PMCID: PMC5291841 DOI: 10.1038/emm.2016.140] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 01/12/2023] Open
Abstract
Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.
Collapse
|
17
|
Role of PRDM16 and its PR domain in the epigenetic regulation of myogenic and adipogenic genes during transdifferentiation of C2C12 cells. Gene 2015; 570:191-8. [DOI: 10.1016/j.gene.2015.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022]
|
18
|
Díaz-Quintana A, García-Mauriño SM, Díaz-Moreno I. Dimerization model of the C-terminal RNA Recognition Motif of HuR. FEBS Lett 2015; 589:1059-66. [PMID: 25841336 DOI: 10.1016/j.febslet.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 02/08/2023]
Abstract
Human antigen R (HuR) is a ubiquitous 32 kDa protein comprising three RNA Recognition Motifs (RRMs), whose main function is to bind Adenylate and uridylate Rich Elements (AREs) in 3' UnTranslated Regions (UTRs) of mRNAs. In addition to binding RNA molecules, the third domain (RRM3) is involved in HuR oligomerization and apoptotic signaling. The RRM3 monomer is able to dimerize, with its self-binding affinity being dependent on ionic strength. Here we provide a deeper structural insight into the nature of the encounter complexes leading to the formation of RRM3 dimers by using Brownian Dynamics and Molecular Dynamics. Our computational data show that the initial unspecific encounter follows a downhill pathway until reaching an optimum conformation stabilized by hydrophobic interactions.
Collapse
Affiliation(s)
- Antonio Díaz-Quintana
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain.
| | - Sofía M García-Mauriño
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
19
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Pattabiraman S, Baumann C, Guisado D, Eppig JJ, Schimenti JC, De La Fuente R. Mouse BRWD1 is critical for spermatid postmeiotic transcription and female meiotic chromosome stability. ACTA ACUST UNITED AC 2014; 208:53-69. [PMID: 25547156 PMCID: PMC4284233 DOI: 10.1083/jcb.201404109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exhibiting sexually dimorphic roles in mice, BRWD1 is essential for proper meiotic chromosome condensation and telomere structure during oogenesis and for haploid-specific gene transcription during postmeiotic sperm differentiation. Postmeiotic gene expression is essential for development and maturation of sperm and eggs. We report that the dual bromodomain-containing protein BRWD1, which is essential for both male and female fertility, promotes haploid spermatid–specific transcription but has distinct roles in oocyte meiotic progression. Brwd1 deficiency caused down-regulation of ∼300 mostly spermatid-specific transcripts in testis, including nearly complete elimination of those encoding the protamines and transition proteins, but was not associated with global epigenetic changes in chromatin, which suggests that BRWD1 acts selectively. In females, Brwd1 ablation caused severe chromosome condensation and structural defects associated with abnormal telomere structure but only minor changes in gene expression at the germinal vesicle stage, including more than twofold overexpression of the histone methyltransferase MLL5 and LINE-1 elements transposons. Thus, loss of BRWD1 function interferes with the completion of oogenesis and spermatogenesis through sexually dimorphic mechanisms: it is essential in females for epigenetic control of meiotic chromosome stability and in males for haploid gene transcription during postmeiotic sperm differentiation.
Collapse
Affiliation(s)
- Shrivatsav Pattabiraman
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853 Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853
| | - Claudia Baumann
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA 30602
| | - Daniela Guisado
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853 Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853
| | | | - John C Schimenti
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853 Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA 30602
| |
Collapse
|
21
|
Spain MM, Govind CK. A role for phosphorylated Pol II CTD in modulating transcription coupled histone dynamics. Transcription 2014; 2:78-81. [PMID: 21468233 DOI: 10.4161/trns.2.2.14638] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/22/2010] [Accepted: 12/27/2010] [Indexed: 11/19/2022] Open
Abstract
Histone acetylation modulates histone occupancy both at promoters and in coding sequences. Based on our recent observation that HDACs in the budding yeast, Saccharomyces cerevisiae, are co-transcriptionally recruited to coding regions by elongating polymerases, we propose a model in which Pol II facilitates recruitment of chromatin remodeling complexes as well as other factors required for productive elongation.
Collapse
Affiliation(s)
- Marla M Spain
- Department of Biological Sciences; Oakland University; Rochester, MI USA
| | | |
Collapse
|
22
|
Yang C, Ngo L, Zheng YG. Rational design of substrate-based multivalent inhibitors of the histone acetyltransferase Tip60. ChemMedChem 2014; 9:537-41. [PMID: 24446345 DOI: 10.1002/cmdc.201300478] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Indexed: 01/07/2023]
Abstract
Tip60, the 60 kDa HIV-1 Tat-interactive protein, is a key member of the MYST family of histone acetyltransferases (HATs) and plays critical roles in apoptosis and DNA repair. Potent and selective inhibitors of Tip60 are valuable tools for studying the functions of this potential drug target. In this work, we designed, synthesized and evaluated a new set of substrate-based inhibitors containing multiple binding modalities. In addition to the coenzyme A (CoA) moiety and the histone H3 peptide backbone, mono- and tri-methyl marks were incorporated at Lys 4 and/or Lys 9 sites in the H3 peptide substrate. The biochemical assay results showed that the presence of methyl group(s) on the substrate resulted in more potent inhibitors of Tip60, relative to the parent H3-CoA bisubstrate inhibitor. Importantly, by comparing the inhibitory properties of the ligands against full-length Tip60 and the HAT domain, we determined that the K4me1 and K9me3 marks contributed to the potency augmentation by interacting with the catalytic region of the enzyme.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, 240 W Green St., Athens, GA 30602 (USA)
| | | | | |
Collapse
|
23
|
Chung HH, Sze SK, Woo ARE, Sun Y, Sim KH, Dong XM, Lin VCL. Lysine methylation of progesterone receptor at activation function 1 regulates both ligand-independent activity and ligand sensitivity of the receptor. J Biol Chem 2014; 289:5704-22. [PMID: 24415758 DOI: 10.1074/jbc.m113.522839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progesterone receptor (PR) exists in two isoforms, PRA and PRB, and both contain activation functions AF-1 and AF-2. It is believed that AF-1 is primarily responsible for the ligand-independent activity, whereas AF-2 mediates ligand-dependent PR activation. Although more than a dozen post-translational modifications of PR have been reported, no post-translational modification on AF-1 or AF-2 has been reported. Using LC-MS/MS-based proteomic analysis, this study revealed AF-1 monomethylation at Lys-464. Mutational analysis revealed the remarkable importance of Lys-464 in regulating PR activity. Single point mutation K464Q or K464A led to ligand-independent PR gel upshift similar to the ligand-induced gel upshift. This upshift was associated with increases in both ligand-dependent and ligand-independent PR phosphorylation and PR activity due to the hyperactivation of AF-1. In contrast, mutation of Lys-464 to the bulkier phenylalanine to mimic the effect of methylation caused a drastic decrease in PR activity. Importantly, PR-K464Q also showed heightened ligand sensitivity, and this was associated with increases in its functional interaction with transcription co-regulators NCoR1 and SRC-1. These results suggest that monomethylation of PR at Lys-464 probably has a repressive effect on AF-1 activity and ligand sensitivity.
Collapse
Affiliation(s)
- Hwa Hwa Chung
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | | | | | |
Collapse
|
24
|
Morris SA, Baek S, Sung MH, John S, Wiench M, Johnson TA, Schiltz RL, Hager GL. Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat Struct Mol Biol 2013; 21:73-81. [PMID: 24317492 PMCID: PMC3947387 DOI: 10.1038/nsmb.2718] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 10/17/2013] [Indexed: 12/24/2022]
Abstract
ATP-dependent chromatin remodeling is an essential process required for the dynamic organization of chromatin structure. Here we describe the genome-wide location and activity of three remodeler proteins with diverse physiological functions in the mouse genome: Brg1, Chd4, and Snf2h. The localization patterns of all three proteins significantly overlap with one another and with regions of accessible chromatin. Furthermore, using inducible mutant variants, we demonstrate that the catalytic activity of these proteins contributes to the remodeling of chromatin genome-wide, and that each of these remodelers can independently regulate chromatin reorganization at distinct sites. Many regions require the activity of more than one remodeler to regulate accessibility. These findings provide a dynamic view of chromatin organization, and highlight the differential contributions of remodelers to chromatin maintenance in higher eukaryotes.
Collapse
Affiliation(s)
- Stephanie A Morris
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sam John
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Malgorzata Wiench
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
A systematic framework for molecular dynamics simulations of protein post-translational modifications. PLoS Comput Biol 2013; 9:e1003154. [PMID: 23874192 PMCID: PMC3715417 DOI: 10.1371/journal.pcbi.1003154] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/07/2013] [Indexed: 12/03/2022] Open
Abstract
By directly affecting structure, dynamics and interaction networks of their targets, post-translational modifications (PTMs) of proteins play a key role in different cellular processes ranging from enzymatic activation to regulation of signal transduction to cell-cycle control. Despite the great importance of understanding how PTMs affect proteins at the atomistic level, a systematic framework for treating post-translationally modified amino acids by molecular dynamics (MD) simulations, a premier high-resolution computational biology tool, has never been developed. Here, we report and validate force field parameters (GROMOS 45a3 and 54a7) required to run and analyze MD simulations of more than 250 different types of enzymatic and non-enzymatic PTMs. The newly developed GROMOS 54a7 parameters in particular exhibit near chemical accuracy in matching experimentally measured hydration free energies (RMSE = 4.2 kJ/mol over the validation set). Using this tool, we quantitatively show that the majority of PTMs greatly alter the hydrophobicity and other physico-chemical properties of target amino acids, with the extent of change in many cases being comparable to the complete range spanned by native amino acids. Post-translational modifications, i.e. chemical changes of protein amino acids, play a key role in different cellular processes, ranging from enzymatic activation to transcription and translation regulation to disease development and aging. However, our understanding of their effects on protein structure, dynamics and interaction networks at the atomistic level is still largely incomplete. In particular, molecular dynamics simulations, despite their power to provide a high-resolution insight into biomolecular function and underlying mechanisms, have been limited to unmodified, native proteins due to a surprising deficiency of suitable tools and systematically developed parameters for treating modified proteins. To fill this gap, we develop and validate force field parameters, an essential part of the molecular dynamics method, for more than 250 different types of enzymatic and non-enzymatic post-translational modifications. Additionally, using this tool, we quantitatively show that microscopic properties of target amino acids, such as hydrophobicity, are greatly affected by the majority of modifications. The parameters presented in this study greatly expand the range of applicability of computational methods, and in particular molecular dynamics simulations, to a large set of new systems with utmost biological and biomedical importance.
Collapse
|
26
|
Nuclear morphology and c-Jun N-terminal kinase 1 expression differentiate serum-starved oxidative stress signalling from hydrogen peroxide-induced apoptosis in retinal neuronal cell line. Cell Biol Int 2013; 36:1021-7. [PMID: 22775755 DOI: 10.1042/cbi20110555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oxidative stress induced by serum starvation and H2O2 exposure, both triggers apoptosis in retinal neuronal cell line RGC-5 (retinal ganglion cell-5). We have examined whether, despite excess generation of ROS (reactive oxygen species) and apoptosis induction, there is any dissimilarity in nuclear morphology and apoptotic signalling pathway in RGC-5 under these conditions. Sub-confluent cells were treated either with H2O2 or maintained in SFM (serum-free medium). ROS level was detected along with nuclear morphology and ultrastructural analysis. Generation of excess intracellular ROS, nuclear localization of Bax and caspase 3 activation along with decrease of cellular viability, confirmed apoptosis induction in RGC-5 by 72 h serum starvation and 500 M H2O2 exposure for 1 h. Nuclear swelling as supported by nuclear cytoplasmic ratio and conspicuous black spots with nuclear remodelling were observed only upon SFM, but not with H2O2 treatment. Serum starvation did not alter JNK1 (c-Jun N-terminal kinase 1) expression, although nuclear translocation and higher level of pJNK (phospho-JNK) was evident. Conversely, H2O2 exposure blocked the expression and activation of JNK1 to phospho-JNK as a negligible level of pJNK was present in the cytoplasm. Despite similar ROS generation in both the conditions, difference in nuclear morphology and JNK1 expression leads to the hypothesis that RGC-5 cells may follow different signalling pathways when challenged with serum starvation and H2O2.
Collapse
|
27
|
Van de Vijver P, Scheer L, van Beijnum J, Griffioen A, Hackeng TM. Application of an omonasteine ligation strategy for the total chemical synthesis of the BRD7 bromodomain. Chem Commun (Camb) 2012; 48:9403-5. [PMID: 22889936 DOI: 10.1039/c2cc34956f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of omonasteine (Omo) in sequential peptide ligation strategies extends the scope of homocysteine (Hcy) ligation to longer, methionine-rich proteins. Hcy-to-Omo conversion can be performed on-resin, while the Omo-to-Hcy deprotection can be performed in situ after peptide ligation. This strategy was successfully applied in the synthesis of the BRD7 bromodomain.
Collapse
Affiliation(s)
- Pieter Van de Vijver
- Laboratory for Chemical Protein Synthesis, Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Berr A, Ménard R, Heitz T, Shen WH. Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cell Microbiol 2012; 14:829-39. [DOI: 10.1111/j.1462-5822.2012.01785.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Canonne J, Rivas S. Bacterial effectors target the plant cell nucleus to subvert host transcription. PLANT SIGNALING & BEHAVIOR 2012; 7:217-21. [PMID: 22353865 PMCID: PMC3405691 DOI: 10.4161/psb.18885] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.
Collapse
Affiliation(s)
- Joanne Canonne
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); Castanet-Tolosan, France
- CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); Castanet-Tolosan, France
| | - Susana Rivas
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); Castanet-Tolosan, France
- CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); Castanet-Tolosan, France
- Correspondence to: Susana Rivas,
| |
Collapse
|
30
|
Modulation of antigen-presenting cells by HDAC inhibitors: implications in autoimmunity and cancer. Immunol Cell Biol 2011; 90:55-65. [PMID: 22105512 DOI: 10.1038/icb.2011.96] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a growing body of evidence to support the use of histone deacetylase inhibitors (HDACi) in the treatment of diverse conditions from autoimmunity to cancer. In this context, HDACi have been ascribed many immunomodulatory effects, assigning novel and promising roles to these compounds. This review summarizes the current observations arising from both pre-clinical and clinical studies in these pathological conditions. However, it is left to be explained how a single agent can have both pro- and anti-inflammatory effects in either physiological or pathological conditions. This question is explored in greater detail by focusing on the effects of HDACi on antigen-presenting cells (APCs), key regulators of immune activation. In particular, HDACi modulation of molecules involved in antigen processing and presentation, as well as co-stimulatory and adhesion molecules, and cytokines will be discussed in the context of both professional and non-professional APCs. Professional APCs encompass classic immune cells; however, it is increasingly evident that other somatic cells, including cancer cells, are not immunologically inert and can display functions similar to professional APCs, a challenging feature that needs to be explored as a potential therapeutic target. In this way, professional and non-professional APCs can regulate their particular micro-environmental niche, affecting either a pro- or anti-inflammatory milieu.
Collapse
|
31
|
Abstract
Although discovered long ago, posttranslational phosphorylation of histones has been in the spotlight only recently. Information is accumulating almost daily on phosphorylation of histones and their roles in cellular physiology and human diseases. An extensive cross talk exists between phosphorylation and other posttranslational modifications, which together regulate various biological processes, including gene transcription, DNA repair, and cell cycle progression. Recent research on histone phosphorylation has demonstrated that nearly all histone types are phosphorylated at specific residues and that these modifications act as a critical intermediate step in chromosome condensation during cell division, transcriptional regulation, and DNA damage repair. As with all young fields, apparently conflicting and sometimes controversial observations about histone phosphorylations and their true functions in different species are found in the literature. Accumulating evidence suggests that instead of functioning strictly as part of a general code, histone phosphorylation probably functions by establishing cross talk with other histone modifications and serving as a platform for recruitment or release of effector proteins, leading to a downstream cascade of events. Here we extensively review published information on the complexities of histone phosphorylation, the roles of proteins recognizing these modifications and the resuting physiological outcome, and, importantly, future challenges and opportunities in this fast-moving field.
Collapse
|
32
|
Abstract
INTRODUCTION The revolution of epigenetics has revitalized cancer research, shifting focus away from somatic mutation toward a more holistic perspective involving the dynamic states of chromatin. Disruption of chromatin organization can directly and indirectly precipitate genomic instability and transformation. DISCUSSION One group of epigenetic mediators, the Polycomb group (PcG) proteins, establishes heritable gene repression through methylation of histone tails. Although classically considered regulators of development and cellular differentiation, PcG proteins engage in a variety of neoplastic processes, including cellular proliferation and invasion. Due to their multifaceted potential, PcG proteins rest at the intersection of transcriptional memory and malignancy. Expression levels of PcG proteins hold enormous diagnostic and prognostic value in breast, prostate, and more recently, gastrointestinal cancers. CONCLUSION In this review, we briefly summarize the function of PcG proteins and report the latest developments in understanding their role in pancreatic cancer.
Collapse
|
33
|
Herold JM, Ingerman LA, Gao C, Frye SV. Drug discovery toward antagonists of methyl-lysine binding proteins. CURRENT CHEMICAL GENOMICS 2011; 5:51-61. [PMID: 22145013 PMCID: PMC3229088 DOI: 10.2174/1875397301005010051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/22/2011] [Accepted: 04/25/2011] [Indexed: 12/04/2022]
Abstract
The recognition of methyl-lysine and -arginine residues on both histone and other proteins by specific "reader" elements is important for chromatin regulation, gene expression, and control of cell-cycle progression. Recently the crucial role of these reader proteins in cancer development and dedifferentiation has emerged, owing to the increased interest among the scientific community. The methyl-lysine and -arginine readers are a large and very diverse set of effector proteins and targeting them with small molecule probes in drug discovery will inevitably require a detailed understanding of their structural biology and mechanism of binding. In the following review, the critical elements of methyl-lysine and -arginine recognition will be summarized with respect to each protein family and initial results in assay development, probe design, and drug discovery will be highlighted.
Collapse
Affiliation(s)
| | | | | | - Stephen V Frye
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
34
|
Bhan S, Negi SS, Shao C, Glazer CA, Chuang A, Gaykalova DA, Sun W, Sidransky D, Ha PK, Califano JA. BORIS binding to the promoters of cancer testis antigens, MAGEA2, MAGEA3, and MAGEA4, is associated with their transcriptional activation in lung cancer. Clin Cancer Res 2011; 17:4267-76. [PMID: 21558405 DOI: 10.1158/1078-0432.ccr-11-0653] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE Aim of this study was to determine whether BORIS (Brother of the Regulator of Imprinted Sites) is a regulator of MAGEA2, MAGEA3, and MAGEA4 genes in lung cancer. EXPERIMENTAL DESIGN Changes in expression of MAGEA genes upon BORIS induction/knockdown were studied. Recruitment of BORIS and changes in histone modifications at their promoters upon BORIS induction were analyzed. Luciferase assays were used to study their activation by BORIS. Changes in methylation at these promoters upon BORIS induction were evaluated. RESULTS Alteration of BORIS expression by induction/knockdown directly correlated with expression of MAGEA genes. BORIS was enriched at their promoters in H1299 cells, which show high expression of these cancer testis antigens (CTA), compared with normal human bronchial epithelial (NHBE) cells which show low expression of the target CTAs. BORIS induction in A549 cells resulted in increased amounts of BORIS and activating histone modifications at their promoters along with a corresponding increase in their expression. Similarly, BORIS binding at these promoters in H1299 correlates with enrichment of activating modifications, whereas absence of BORIS binding in NHBE is associated with enrichment of repressive marks. BORIS induction of MAGEA3 was associated with promoter demethylation, but no methylation changes were noted with activation of MAGEA2 and MAGEA4. CONCLUSIONS These data suggest that BORIS positively regulates these CTAs by binding and inducing a shift to a more open chromatin conformation with promoter demethylation for MAGEA3 or independent of promoter demethylation in case of MAGEA2 and MAGEA4 and may be a key effector involved in their derepression in lung cancer.
Collapse
Affiliation(s)
- Sheetal Bhan
- Department of Otolaryngology-Head, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:62-71. [DOI: 10.1016/j.mrrev.2011.04.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 12/31/2022]
|
36
|
Interaction of SET domains with histones and nucleic acid structures in active chromatin. Clin Epigenetics 2011; 2:17-25. [PMID: 22704267 PMCID: PMC3365373 DOI: 10.1007/s13148-010-0015-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/16/2010] [Indexed: 12/28/2022] Open
Abstract
Changes in the normal program of gene expression are the basis for a number of human diseases. Epigenetic control of gene expression is programmed by chromatin modifications—the inheritable “histone code”—the major component of which is histone methylation. This chromatin methylation code of gene activity is created upon cell differentiation and is further controlled by the “SET” (methyltransferase) domain proteins which maintain this histone methylation pattern and preserve it through rounds of cell division. The molecular principles of epigenetic gene maintenance are essential for proper treatment and prevention of disorders and their complications. However, the principles of epigenetic gene programming are not resolved. Here we discuss some evidence of how the SET proteins determine the required states of target genes and maintain the required levels of their activity. We suggest that, along with other recognition pathways, SET domains can directly recognize the nucleosome and nucleic acids intermediates that are specific for active chromatin regions.
Collapse
|
37
|
Abstract
Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.
Collapse
|
38
|
Steger K, Cavalcanti MCO, Schuppe HC. Prognostic markers for competent human spermatozoa: fertilizing capacity and contribution to the embryo. ACTA ACUST UNITED AC 2010; 34:513-27. [DOI: 10.1111/j.1365-2605.2010.01129.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Pelzel HR, Schlamp CL, Nickells RW. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci 2010; 11:62. [PMID: 20504333 PMCID: PMC2886060 DOI: 10.1186/1471-2202-11-62] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 05/26/2010] [Indexed: 12/22/2022] Open
Abstract
Background Silencing of normal gene expression occurs early in the apoptosis of neurons, well before the cell is committed to the death pathway, and has been extensively characterized in injured retinal ganglion cells. The causative mechanism of this widespread change in gene expression is unknown. We investigated whether an epigenetic change in active chromatin, specifically histone H4 deacetylation, was an underlying mechanism of gene silencing in apoptotic retinal ganglion cells (RGCs) following an acute injury to the optic nerve. Results Histone deacetylase 3 (HDAC3) translocates to the nuclei of dying cells shortly after lesion of the optic nerve and is associated with an increase in nuclear HDAC activity and widespread histone deacetylation. H4 in promoters of representative genes was rapidly and indiscriminately deacetylated, regardless of the gene examined. As apoptosis progressed, H4 of silenced genes remained deacetylated, while H4 of newly activated genes regained, or even increased, its acetylated state. Inhibition of retinal HDAC activity with trichostatin A (TSA) was able to both preserve the expression of a representative RGC-specific gene and attenuate cell loss in response to optic nerve damage. Conclusions These data indicate that histone deacetylation plays a central role in transcriptional dysregulation in dying RGCs. The data also suggests that HDAC3, in particular, may feature heavily in apoptotic gene silencing.
Collapse
Affiliation(s)
- Heather R Pelzel
- Department of Biomolecular Chemistry, University of Wisconsin, 1300 University Ave, 6671 MSC, Madison, WI 53706, USA
| | | | | |
Collapse
|
40
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
41
|
Lorbeck MT, Singh N, Zervos A, Dhatta M, Lapchenko M, Yang C, Elefant F. The histone demethylase Dmel\Kdm4A controls genes required for life span and male-specific sex determination in Drosophila. Gene 2010; 450:8-17. [PMID: 19786080 DOI: 10.1016/j.gene.2009.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 09/02/2009] [Accepted: 09/15/2009] [Indexed: 01/03/2023]
Abstract
Histone methylation plays an important role in regulating chromatin-mediated gene control and epigenetic-based memory systems that direct cell fate. Enzymes termed histone demethylases directly remove the methyl marks from histones, thus contributing to a dynamically regulated histone methylated genome; however, the biological functions of these newly identified enzymes remain unclear. The JMJD2A-D family belongs to the JmjC domain-containing family of histone demethylases (JHDMs). Here, we report the cloning and functional characterization of the Drosophila HDM gene Dmel\Kdm4A that is a homolog of the human JMJD2 family. We show that homologs for three human JHDM families, JHDM1, JHDM2, and JMJD2, are present in Drosophila and that each is expressed during the Drosophila lifecycle. Disruption of Dmel\Kdm4A results in a reduction of the male life span and a male-specific wing extension/twitching phenotype that occurs in response to other males and is reminiscent of an inter-male courtship phenotype involving the courtship song. Remarkably, certain genes associated with each of these phenotypes are significantly downregulated in response to Dmel\Kdm4A loss, most notably the longevity associated Hsp22 gene and the male sex-determination fruitless gene. Our results have implications for the role of the epigenetic regulator Dmel\Kdm4A in the control of genes involved in life span and male-specific sex determination in the fly.
Collapse
|
42
|
Minard ME, Jain AK, Barton MC. Analysis of epigenetic alterations to chromatin during development. Genesis 2009; 47:559-72. [PMID: 19603511 DOI: 10.1002/dvg.20534] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Each cell within a multicellular organism has distinguishable characteristics established by its unique patterns of gene expression. This individual identity is determined by the expression of genes in a time and place-dependent manner, and it is becoming increasingly clear that chromatin plays a fundamental role in the control of gene transcription in multicellular organisms. Therefore, understanding the regulation of chromatin and how the distinct identity of a cell is passed to daughter cells during development is paramount. Techniques with which to study chromatin have advanced rapidly over the past decade. Development of high throughput techniques and their proper applications has provided us essential tools to understand the regulation of epigenetic phenomena and its effect on gene expression. Understanding the changes that occur in chromatin during the course of development will not only contribute to our knowledge of normal gene expression, but will also add to our knowledge of how gene expression goes awry during disease. This review opens with an introduction to some of the key premises of epigenetic regulation of gene expression. A discussion of experimental techniques with which one can study epigenetic alterations to chromatin during development follows, emphasizing recent breakthroughs in this area. We then present examples of epigenetic mechanisms exploited in the control of developmental cell fate and regulation of tissue-specific gene expression. Finally, we discuss some of the frontiers and challenges in this area of research.
Collapse
Affiliation(s)
- Meghan E Minard
- Department of Biochemistry and Molecular Biology, Center for Cancer Epigenetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
43
|
Knorre DG, Kudryashova NV, Godovikova TS. Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae 2009; 1:29-51. [PMID: 22649613 PMCID: PMC3347534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper reviews the chemical and functional aspects of the posttranslational modifications of proteins, which are achieved by the addition of various groups to the side chain of the amino acid residue backbone of proteins. It describes the main prosthetic groups and the interaction of these groups and the apoenzyme in the process of catalysis, using pyridoxal catalysis as an example. Much attention is paid to the role of posttranslational modification of proteins in the regulation of biochemical processes in live organisms, and especially to the role of protein kinases and their respective phosphotases. Methylation and acetylation reactions and their role in the "histone code", which regulates genome expression on the transcription level, are also reviewed. This paper also describes the modification of proteins by large hydrophobic residues and their role in the function of membrane-associated proteins. Much attention is paid to the glycosylation of proteins, which leads to the formation of glycoproteins. We also describe the main non-enzymatic protein modifications such as glycation, homocysteination, and desamida-tion of amide residues in dibasic acids.
Collapse
Affiliation(s)
- D G Knorre
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
| | | | | |
Collapse
|
44
|
Abstract
Methylation of DNA, protein, and even RNA species are integral processes in epigenesis. Enzymes that catalyze these reactions using the donor S-adenosylmethionine fall into several structurally distinct classes. The members in each class share sequence similarity that can be used to identify additional methyltransferases. Here, we characterize these classes and in silico approaches to infer protein function. Computational methods such as hidden Markov model profiling and the Multiple Motif Scanning program can be used to analyze known methyltransferases and relay information into the prediction of new ones. In some cases, the substrate of methylation can be inferred from hidden Markov model sequence similarity networks. Functional identification of these candidate species is much more difficult; we discuss one biochemical approach.
Collapse
Affiliation(s)
- Tanya Petrossian
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095-1570
| | | |
Collapse
|
45
|
Lu X, Triezenberg SJ. Chromatin assembly on herpes simplex virus genomes during lytic infection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:217-22. [PMID: 19682614 DOI: 10.1016/j.bbagrm.2009.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/15/2009] [Accepted: 08/01/2009] [Indexed: 01/09/2023]
Abstract
The human herpes simplex viruses HSV-1 and HSV-2 infect a significant portion of the human population. Both viruses can undergo lytic infection in epithelial cells and establish lifelong latency in neuronal cells. The large HSV-1 DNA genomes have long been considered to be devoid of histones both inside the virion particle and inside the cell during lytic infection, but to be packaged in repressive chromatin during latency. However, recent reports indicate that many histone and non-histone chromosomal proteins can associate with viral DNA during lytic infection and may influence important events during the HSV-1 lytic cycle. In this article, we summarize recent developments in this field and their implications.
Collapse
Affiliation(s)
- Xu Lu
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | |
Collapse
|
46
|
Gautier VW, Gu L, O'Donoghue N, Pennington S, Sheehy N, Hall WW. In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology 2009; 6:47. [PMID: 19454010 PMCID: PMC2702331 DOI: 10.1186/1742-4690-6-47] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/19/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.
Collapse
Affiliation(s)
- Virginie W Gautier
- UCD-Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
A pool of immature T cells with a seemingly unrestricted repertoire of antigen specificities is generated life-long in the thymus. Amongst these cells are, however, thymocytes that express a strongly self-reactive antigen receptor and hence hold the potential to trigger autoimmunity. To prevent such an outcome, the thymus employs several independent but functionally related strategies that act in parallel to enforce self-tolerance. The deletion of strongly self-reactive thymocytes and the generation of regulatory T cells constitute the two most efficient mechanisms to induce and maintain immunological tolerance. Thymic epithelial cells of the medulla express for this purpose tissue-restricted self-antigens. This review will focus on the cellular and molecular mechanisms operative in the thymus to shape a repertoire of mature T cells tolerant to self-antigens.
Collapse
Affiliation(s)
- G A Holländer
- Department of Clinical-Biological Sciences, Laboratory of Pediatric Immunology, Center for Biomedicine, University of Basel and The University Children's Hospital, Switzerland.
| | | |
Collapse
|
48
|
Keppler BR, Archer TK. Chromatin-modifying enzymes as therapeutic targets--Part 1. Expert Opin Ther Targets 2008; 12:1301-12. [PMID: 18781828 DOI: 10.1517/14728222.12.10.1301] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Disease pathogenesis may result from genetic alterations and/or a more diverse group of epigenetic changes. While events such as DNA methylation are well established, there is significant interest in nucleosome remodeling, RNA interference and histone modifications, as mechanisms that underlie epigenetic effects. While genetic mutations are permanent, epigenetic changes can be transitory. The potential to reverse epigenetic changes has led to the development of therapeutic strategies targeting chromatin-modifying enzymes. OBJECTIVE To review the roles of chromatin-modifying enzymes in gene regulation and to highlight their potentials as therapeutic targets. METHODS This review is based on recently published literature and online resources. RESULTS/CONCLUSION This paper focuses on enzymes responsible for histone acetylation, deacetylation, methylation and demethylation, and their potential as targets for epigenetic therapies. A subsequent paper will do the same for enzymes responsible for histone phosphorylation, ubiquitylation, SUMOylation and poly-ADP-ribosylation as well as ATP-dependent nucleosome remodeling.
Collapse
Affiliation(s)
- Brian R Keppler
- National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina 27709, USA
| | | |
Collapse
|
49
|
Abstract
Naïve T helper cells differentiate into two subsets, T helper 1 and 2, which either transcribe the Ifng gene and silence the Il4 gene or transcribe the Il4 gene and silence the Ifng gene, respectively. This process is an essential feature of the adaptive immune response to a pathogen and the development of long-lasting immunity. The 'histone code' hypothesis proposes that formation of stable epigenetic histone marks at a gene locus that activate or repress transcription is essential for cell fate determinations, such as T helper 1/T helper 2 cell fate decisions. Activation and silencing of the Ifng gene are achieved through the creation of stable epigenetic histone marks spanning a region of genomic DNA over 20 times greater than the gene itself. Key transcription factors that drive the T helper 1 lineage decision, signal transducer and activator 4 (STAT4) and T-box expressed in T cells (T-bet), play direct roles in the formation of activating histone marks at the Ifng locus. Conversely, STAT6 and GATA binding protein 3, transcription factors essential for the T helper 2 cell lineage decision, establish repressive histone marks at the Ifng locus. Functional studies demonstrate that multiple genomic elements up to 50 kilobases from Ifng play critical roles in its proper transcriptional regulation. Studies of three-dimensional chromatin conformation indicate that these distal regulatory elements may loop towards Ifng to regulate its transcription. We speculate that these complex mechanisms have evolved to tightly control levels of interferon-gamma production, given that too little or too much production would be very deleterious to the host.
Collapse
Affiliation(s)
- Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2068, USA.
| | | | | |
Collapse
|
50
|
Santiveri CM, Lechtenberg BC, Allen MD, Sathyamurthy A, Jaulent AM, Freund SM, Bycroft M. The Malignant Brain Tumor Repeats of Human SCML2 Bind to Peptides Containing Monomethylated Lysine. J Mol Biol 2008; 382:1107-12. [DOI: 10.1016/j.jmb.2008.07.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|