1
|
David JK, Maden SK, Wood MA, Thompson RF, Nellore A. Retained introns in long RNA-seq reads are not reliably detected in sample-matched short reads. Genome Biol 2022; 23:240. [PMID: 36369064 PMCID: PMC9652823 DOI: 10.1186/s13059-022-02789-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is growing interest in retained introns in a variety of disease contexts including cancer and aging. Many software tools have been developed to detect retained introns from short RNA-seq reads, but reliable detection is complicated by overlapping genes and transcripts as well as the presence of unprocessed or partially processed RNAs. RESULTS We compared introns detected by 8 tools using short RNA-seq reads with introns observed in long RNA-seq reads from the same biological specimens. We found significant disagreement among tools (Fleiss' [Formula: see text]) such that 47.7% of all detected intron retentions were not called by more than one tool. We also observed poor performance of all tools, with none achieving an F1-score greater than 0.26, and qualitatively different behaviors between general-purpose alternative splicing detection tools and tools confined to retained intron detection. CONCLUSIONS Short-read tools detect intron retention with poor recall and precision, calling into question the completeness and validity of a large percentage of putatively retained introns called by commonly used methods.
Collapse
Affiliation(s)
- Julianne K. David
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,Present Address: Base5 Genomics, Inc., Mountain View, CA USA
| | - Sean K. Maden
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.21107.350000 0001 2171 9311Present Address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Mary A. Wood
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.429936.30000 0004 5914 210XPortland VA Research Foundation, Portland, OR USA ,Present Address: Phase Genomics, Inc., Seattle, WA USA
| | - Reid F. Thompson
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.484322.bDivision of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Radiation Medicine, Oregon Health & Science University, Portland, OR USA
| | - Abhinav Nellore
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Surgery, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
2
|
Hernandez VA, Carvajal-Moreno J, Wang X, Pietrzak M, Yalowich JC, Elton TS. Use of CRISPR/Cas9 with homology-directed repair to silence the human topoisomerase IIα intron-19 5’ splice site: Generation of etoposide resistance in human leukemia K562 cells. PLoS One 2022; 17:e0265794. [PMID: 35617303 PMCID: PMC9135202 DOI: 10.1371/journal.pone.0265794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
DNA Topoisomerase IIα (TOP2α/170) is an enzyme essential for proliferating cells. For rapidly multiplying malignancies, this has made TOP2α/170 an important target for etoposide and other clinically active anticancer drugs. Efficacy of these agents is often limited by chemoresistance related to alterations in TOP2α/170 expression levels. Our laboratory recently demonstrated reduced levels of TOP2α/170 and overexpression of a C-terminal truncated 90-kDa isoform, TOP2α/90, due to intronic polyadenylation (IPA; within intron 19) in an acquired etoposide-resistant K562 clonal cell line, K/VP.5. We previously reported that this isoform heterodimerized with TOP2α/170 and was a determinant of acquired resistance to etoposide. Optimization of the weak TOP2α exon 19/intron 19 5′ splice site in drug-resistant K/VP.5 cells by gene-editing restored TOP2α/170 levels, diminished TOP2α/90 expression, and circumvented drug resistance. Conversely, in the present study, silencing of the exon 19/intron 19 5′ splice site in parental K562 cells by CRISPR/Cas9 with homology-directed repair (HDR), and thereby forcing intron 19 retention, was used to induce resistance by disrupting normal RNA processing (i.e., gene knockout), and to further evaluate the role of TOP2α/170 and TOP2α/90 isoforms as resistance determinants. Gene-edited clones were identified by quantitative polymerase chain reaction (qPCR) and verified by Sanger sequencing. TOP2α/170 mRNA/protein expression levels were attenuated in the TOP2α gene-edited clones which resulted in resistance to etoposide as assessed by reduced etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition. RNA-seq and qPCR studies suggested that intron 19 retention leads to decreased TOP2α/170 expression by degradation of the TOP2α edited mRNA transcripts. Forced expression of TOP2α/90 in the gene-edited K562 cells further decreased etoposide-induced DNA damage in support of a dominant negative role for this truncated isoform. Together results support the important role of both TOP2α/170 and TOP2α/90 as determinants of sensitivity/resistance to TOP2α-targeting agents.
Collapse
Affiliation(s)
- Victor A. Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Xinyi Wang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Maciej Pietrzak
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jack C. Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (JCY); (TSE)
| | - Terry S. Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (JCY); (TSE)
| |
Collapse
|
3
|
Wu J, Li A, Cai H, Zhang C, Lei C, Lan X, Chen H. Intron retention as an alternative splice variant of the cattle ANGPTL6 gene. Gene 2019; 709:17-24. [PMID: 31102716 DOI: 10.1016/j.gene.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/22/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Angiopoietin-like protein 6, which is encoded by ANGPTL6 gene (also known as angiopoietin growth factor, AGF), has been extensively characterized with regard to its proposed functions as angiogenesis and energy metabolism. The present results showed the occurrence of alternative splicing by intron retention (IR) event in the bovine ANGPTL6 gene (bANGPTL6). By means of RT-PCR, TA clone and sequencing, we have shown that the bANGPTL6 gene has a splice variant generated by the retention of its partial intron 3. The computational analysis of the bANGPTL6 genomic sequence showed that its intron 3 has a high percentage of GC (62.31%) and a length of 199 nt, characteristics that have been associated with an IR event. The IR event does not interfere with the coding region as the bANGPTL6 prepropeptide is entirely coded in the third exon. Additionally, both the intronless (namely, bANGPTL6α) and intron-retaining (namely, bANGPTL6β) ANGPTL6 transcripts are constitutively co-expressed in the bovine liver. Further, the relative expression level of different variants in liver was tested by both semi-RT-PCR and RT-qPCR methods. The results suggested bANGPTL6β are significantly higher than bANGPTL6α. Overall, our findings will be helpful for studies on the molecular mechanism of IR events and the functions of ANGPTL6 gene. Specially, bANGPTL6β gene probably contributes to a new target for treatment of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Jiyao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Aimin Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Hanfang Cai
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Chenge Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China.
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China.
| |
Collapse
|
4
|
Kanagasabai R, Serdar L, Karmahapatra S, Kientz CA, Ellis J, Ritke MK, Elton TS, Yalowich JC. Alternative RNA Processing of Topoisomerase IIα in Etoposide-Resistant Human Leukemia K562 Cells: Intron Retention Results in a Novel C-Terminal Truncated 90-kDa Isoform. J Pharmacol Exp Ther 2016; 360:152-163. [PMID: 27974648 DOI: 10.1124/jpet.116.237107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/04/2016] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerase IIα (TOP2α) is a prominent target for anticancer drugs whose clinical efficacy is often limited by chemoresistance. Using antibody specific for the N-terminal of TOP2α, immunoassays indicated the existence of two TOP2α isoforms, 170 and 90 kDa, present in K562 leukemia cells and in an acquired etoposide (VP-16)-resistant clone (K/VP.5). TOP2α/90 expression was dramatically increased in etoposide-resistant K/VP.5 compared with parental K562 cells. We hypothesized that TOP2α/90 was the translation product of novel alternatively processed pre-mRNA, confirmed by 3'-rapid amplification of cDNA ends, polymerase chain reaction, and sequencing. TOP2α/90 mRNA includes retained intron 19, which harbors an in-frame stop codon, and two consensus poly(A) sites. The processed transcript is polyadenylated. TOP2α/90 mRNA encodes a 90,076-Da translation product missing the C-terminal 770 amino acids of TOP2α/170, replaced by 25 unique amino acids through translation of the exon 19/intron 19 read-through. Immunoassays, utilizing antisera raised against these unique amino acids, confirmed that TOP2α/90 is expressed in both cell types, with overexpression in K/VP.5 cells. Immunodetection of complex of enzyme-to-DNA and single-cell gel electrophoresis (Comet) assays demonstrated that K562 cells transfected with a TOP2α/90 expression plasmid exhibited reduced etoposide-mediated TOP2α-DNA covalent complexes and decreased etoposide-induced DNA damage, respectively, compared with similarly treated K562 cells transfected with empty vector. Because TOP2α/90 lacks the active site tyrosine (Tyr805) of full-length TOP2α, these results strongly suggest that TOP2α/90 exhibits dominant-negative properties. Further studies are underway to characterize the mechanism(s) by which TOP2α/90 plays a role in acquired resistance to etoposide and other TOP2α targeting agents.
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Lucas Serdar
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Soumendrakrishna Karmahapatra
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Corey A Kientz
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Justin Ellis
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Mary K Ritke
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Terry S Elton
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| |
Collapse
|
5
|
Genome-wide analysis of alternative splicing during human heart development. Sci Rep 2016; 6:35520. [PMID: 27752099 PMCID: PMC5067579 DOI: 10.1038/srep35520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 09/27/2016] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development.
Collapse
|
6
|
Abstract
A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization.
Collapse
|
7
|
Lunghi M, Galizi R, Magini A, Carruthers VB, Di Cristina M. Expression of the glycolytic enzymes enolase and lactate dehydrogenase during the early phase ofToxoplasmadifferentiation is regulated by an intron retention mechanism. Mol Microbiol 2015; 96:1159-75. [DOI: 10.1111/mmi.12999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Matteo Lunghi
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Perugia Italy
| | - Roberto Galizi
- Department of Experimental Medicine; University of Perugia; Perugia Italy
| | - Alessandro Magini
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Perugia Italy
| | - Vern B. Carruthers
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI USA
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Perugia Italy
| |
Collapse
|
8
|
Buckley PT, Khaladkar M, Kim J, Eberwine J. Cytoplasmic intron retention, function, splicing, and the sentinel RNA hypothesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:223-30. [PMID: 24190870 DOI: 10.1002/wrna.1203] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/11/2013] [Accepted: 10/04/2013] [Indexed: 01/07/2023]
Abstract
Cytoplasmic splicing represents a newly emerging level of transcriptional regulation adding to the molecular diversity of mammalian cells. As examples of this noncanonical form of transcript processing are discovered, the evidence of its importance to normal cellular function grows. Work from a number of groups using a variety of cell types is steadily identifying a large number of transcripts (and soon to be even larger as genome-wide analyses of retained introns across a number of cellular phenotypes are currently underway) that undergo some level of regulated endogenous extranuclear splicing as part of their normal biosynthetic pathway. Here, we review the existing data covering cytoplasmic retained intron sequences and suggest that such sequences may be a component of 'sentinel RNA' that serves to generate transcript variants within the cytoplasm as well as a source for RNA-based secondary messages.
Collapse
Affiliation(s)
- Peter T Buckley
- Department of Pharmacology, Perelman School of Medicine and the School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
9
|
Khaladkar M, Buckley PT, Lee MT, Francis C, Eghbal MM, Chuong T, Suresh S, Kuhn B, Eberwine J, Kim J. Subcellular RNA sequencing reveals broad presence of cytoplasmic intron-sequence retaining transcripts in mouse and rat neurons. PLoS One 2013; 8:e76194. [PMID: 24098440 PMCID: PMC3789819 DOI: 10.1371/journal.pone.0076194] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/20/2013] [Indexed: 12/03/2022] Open
Abstract
Recent findings have revealed the complexity of the transcriptional landscape in mammalian cells. One recently described class of novel transcripts are the Cytoplasmic Intron-sequence Retaining Transcripts (CIRTs), hypothesized to confer post-transcriptional regulatory function. For instance, the neuronal CIRT KCNMA1i16 contributes to the firing properties of hippocampal neurons. Intronic sub-sequence retention within IL1-β mRNA in anucleate platelets has been implicated in activity-dependent splicing and translation. In a recent study, we showed CIRTs harbor functional SINE ID elements which are hypothesized to mediate dendritic localization in neurons. Based on these studies and others, we hypothesized that CIRTs may be present in a broad set of transcripts and comprise novel signals for post-transcriptional regulation. We carried out a transcriptome-wide survey of CIRTs by sequencing micro-dissected subcellular RNA fractions. We sequenced two batches of 150-300 individually dissected dendrites from primary cultures of hippocampal neurons in rat and three batches from mouse hippocampal neurons. After statistical processing to minimize artifacts, we found a broad prevalence of CIRTs in the neurons in both species (44-60% of the expressed transcripts). The sequence patterns, including stereotypical length, biased inclusion of specific introns, and intron-intron junctions, suggested CIRT-specific nuclear processing. Our analysis also suggested that these cytoplasmic intron-sequence retaining transcripts may serve as a primary transcript for ncRNAs. Our results show that retaining intronic sequences is not isolated to a few loci but may be a genome-wide phenomenon for embedding functional signals within certain mRNA. The results hypothesize a novel source of cis-sequences for post-transcriptional regulation. Our results hypothesize two potentially novel splicing pathways: one, within the nucleus for CIRT biogenesis; and another, within the cytoplasm for removing CIRT sequences before translation. We also speculate that release of CIRT sequences prior to translation may form RNA-based signals within the cell potentially comprising a novel class of signaling pathways.
Collapse
Affiliation(s)
- Mugdha Khaladkar
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Peter T. Buckley
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Miler T. Lee
- Department of Genetics, Yale University, New Haven, Connecticut, United States of America
| | - Chantal Francis
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mitra M. Eghbal
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tina Chuong
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sangita Suresh
- Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Bernhard Kuhn
- Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - James Eberwine
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Zhao S, Lu X, Zhang Y, Zhao X, Zhong M, Li S, Lun J. Identification of a novel alternative splicing variant of hemocyanin from shrimp Litopenaeus vannamei. Immunol Lett 2013; 154:1-6. [PMID: 23954808 DOI: 10.1016/j.imlet.2013.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/28/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Recent evidences suggest that invertebrates express families of immune molecules with high levels of sequence diversity. Hemocyanin is an important non-specific immune molecule present in the hemolymph of both mollusks and arthropods. In the present study, we characterized a novel alternative splicing variant of hemocyanin (cHE1) from Litopenaeus vannamei that produced mRNA transcript of 2579 bp in length. The isoform contained two additional sequences of 296 and 267 bp in the 5'- and 3'-terminus respectively, in comparison to that of wild type hemocyanin (cHE). Sequence of cHE1 shows 100% identity to that of hemocyanin genomic DNA (HE, which does not form an open reading frame), suggesting that cHE1 might be an alternative splicing variant due to intron retention. Moreover, cHE1 could be detected by RT-PCR from five tissues (heart, gill, stomach, intestine and brain), and from shrimps at stages from nauplius to mysis larva. Further, cHE1 mRNA transcripts were significantly increased in hearts after 12h of infection with Vibrio parahemolyticus or poly I: C, while no significant difference in the transcript levels of hepatopancreas cHE was detected in the pathogen-treated shrimps during the period. In summary, these studies suggested a novel splicing variant of hemocyanin in shrimp, which might be involved in shrimp resistance to pathogenic infection.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Gonzàlez-Porta M, Frankish A, Rung J, Harrow J, Brazma A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol 2013; 14:R70. [PMID: 23815980 PMCID: PMC4053754 DOI: 10.1186/gb-2013-14-7-r70] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND RNA sequencing has opened new avenues for the study of transcriptome composition. Significant evidence has accumulated showing that the human transcriptome contains in excess of a hundred thousand different transcripts. However, it is still not clear to what extent this diversity prevails when considering the relative abundances of different transcripts from the same gene. RESULTS Here we show that, in a given condition, most protein coding genes have one major transcript expressed at significantly higher level than others, that in human tissues the major transcripts contribute almost 85 percent to the total mRNA from protein coding loci, and that often the same major transcript is expressed in many tissues. We detect a high degree of overlap between the set of major transcripts and a recently published set of alternatively spliced transcripts that are predicted to be translated utilizing proteomic data. Thus, we hypothesize that although some minor transcripts may play a functional role, the major ones are likely to be the main contributors to the proteome. However, we still detect a non-negligible fraction of protein coding genes for which the major transcript does not code a protein. CONCLUSIONS Overall, our findings suggest that the transcriptome from protein coding loci is dominated by one transcript per gene and that not all the transcripts that contribute to transcriptome diversity are equally likely to contribute to protein diversity. This observation can help to prioritize candidate targets in proteomics research and to predict the functional impact of the detected changes in variation studies.
Collapse
|
12
|
Martínez-Campos E, Hernández-SanMiguel E, López-Sánchez C, De Pablo F, Hernández-Sánchez C. Alternative splicing variants of proinsulin mRNA and the effects of excess proinsulin on cardiac morphogenesis. FEBS Lett 2013; 587:2272-7. [DOI: 10.1016/j.febslet.2013.05.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
|
13
|
Boothby TC, Zipper RS, van der Weele CM, Wolniak SM. Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. Dev Cell 2013; 24:517-29. [PMID: 23434411 DOI: 10.1016/j.devcel.2013.01.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/20/2012] [Accepted: 01/19/2013] [Indexed: 01/12/2023]
Abstract
The utilization of stored RNA is a driving force in rapid development. Here, we show that retention and subsequent removal of introns from pre-mRNAs regulate temporal patterns of translation during rapid and posttranscriptionally controlled spermatogenesis of the fern Marsilea vestita. Analysis of RNAseq-derived transcriptomes revealed a large subset of intron-retaining transcripts (IRTs) that encode proteins essential for gamete development. Genomic and IRT sequence comparisons show that other introns have been previously removed from the IRT pre-mRNAs. Fully spliced isoforms appear at distinct times during development in a spliceosome-dependent and transcription-independent manner. RNA interference knockdowns of 17/17 IRTs produced anomalies after the time points when those transcripts would normally be spliced. Intron retention is a functional mechanism for forestalling precocious translation of transcripts in the male gametophyte of M. vestita. These results have broad implications for plant gene regulation, where intron retention is widespread.
Collapse
Affiliation(s)
- Thomas C Boothby
- University of Maryland at College Park, Department of Cell Biology and Molecular Genetics, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
14
|
Stringer JM, Suzuki S, Pask AJ, Shaw G, Renfree MB. Selected imprinting of INS in the marsupial. Epigenetics Chromatin 2012; 5:14. [PMID: 22929229 PMCID: PMC3502105 DOI: 10.1186/1756-8935-5-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/25/2012] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED BACKGROUND In marsupials, growth and development of the young occur postnatally, regulated by milk that changes in composition throughout the long lactation. To initiate lactation in mammals, there is an absolute requirement for insulin (INS), a gene known to be imprinted in the placenta. We therefore examined whether INS is imprinted in the mammary gland of the marsupial tammar wallaby (Macropus eugenii) and compared its expression with that of insulin-like growth factor 2 (IGF2). RESULTS INS was expressed in the mammary gland and significantly increased, while IGF2 decreased, during established milk production. Insulin and IGF2 were both detected in the mammary gland macrophage cells during early lactation and in the alveolar cells later in lactation. Surprisingly, INS, which was thought only to be imprinted in the therian yolk sac, was imprinted and paternally expressed in the liver of the developing young, monoallelically expressed in the tammar mammary gland and biallelic in the stomach and intestine. The INS transcription start site used in the liver and mammary gland was differentially methylated. CONCLUSIONS This is the first study to identify tissue-specific INS imprinting outside the yolk sac. These data suggest that there may be an advantage of selective monoallelic expression in the mammary gland and that this may influence the growth of the postnatal young. These results are not consistent with the parental conflict hypothesis, but instead provide support for the maternal-infant co-adaptation hypothesis. Thus, imprinting in the mammary gland maybe as critical for postnatal growth and development in mammals as genomic imprinting in the placenta is prenatally.
Collapse
Affiliation(s)
- Jessica M Stringer
- ARC Centre of Excellence in Kangaroo Genomics, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | | | | | | | | |
Collapse
|
15
|
Yap K, Lim ZQ, Khandelia P, Friedman B, Makeyev EV. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention. Genes Dev 2012; 26:1209-23. [PMID: 22661231 DOI: 10.1101/gad.188037.112] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differentiated cells acquire unique structural and functional traits through coordinated expression of lineage-specific genes. An extensive battery of genes encoding components of the synaptic transmission machinery and specialized cytoskeletal proteins is activated during neurogenesis, but the underlying regulation is not well understood. Here we show that genes encoding critical presynaptic proteins are transcribed at a detectable level in both neurons and nonneuronal cells. However, in nonneuronal cells, the splicing of 3'-terminal introns within these genes is repressed by the polypyrimidine tract-binding protein (Ptbp1). This inhibits the export of incompletely spliced mRNAs to the cytoplasm and triggers their nuclear degradation. Clearance of these intron-containing transcripts occurs independently of the nonsense-mediated decay (NMD) pathway but requires components of the nuclear RNA surveillance machinery, including the nuclear pore-associated protein Tpr and the exosome complex. When Ptbp1 expression decreases during neuronal differentiation, the regulated introns are spliced out, thus allowing the accumulation of translation-competent mRNAs in the cytoplasm. We propose that this mechanism counters ectopic and precocious expression of functionally linked neuron-specific genes and ensures their coherent activation in the appropriate developmental context.
Collapse
Affiliation(s)
- Karen Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
16
|
de la Rosa EJ, de Pablo F. Proinsulin: from hormonal precursor to neuroprotective factor. Front Mol Neurosci 2011; 4:20. [PMID: 21949502 PMCID: PMC3171928 DOI: 10.3389/fnmol.2011.00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/22/2011] [Indexed: 11/13/2022] Open
Abstract
In the last decade, non-canonical functions have been described for several molecules with hormone-like activities in different stages of vertebrate development. Since its purification in the 1960s, proinsulin has been one of the best described hormonal precursors, though it has been overwhelmingly studied in the context of insulin, the mature protein secreted by the pancreas. Beginning with our discovery of the presence and precise regulation of proinsulin mRNA in early neurulation and neurogenesis, we uncovered a role for proinsulin in cell survival in the developing nervous system. We subsequently demonstrated the ability of proinsulin to prevent pathological cell death and delay photoreceptor degeneration in a mouse model of retinitis pigmentosa. In this review, we focus on the evolution of proinsulin/insulin, beginning with insulin-like peptides expressed in mainly the neurosecretory cells of some invertebrates. We summarize findings related to the regulation of proinsulin expression during development and discuss the possible effects of proinsulin in neural cells or tissue, and its potential as a neuroprotective molecule.
Collapse
Affiliation(s)
- Enrique J de la Rosa
- 3D Lab (Development, Differentiation and Degeneration), Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | |
Collapse
|
17
|
Seabra AR, Vieira CP, Cullimore JV, Carvalho HG. Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds. BMC PLANT BIOLOGY 2010; 10:183. [PMID: 20723225 PMCID: PMC3095313 DOI: 10.1186/1471-2229-10-183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/19/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. RESULTS This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2) in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. CONCLUSIONS This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate that this gene duplication represents a functional innovation of plastid located GS related to storage protein accumulation exclusive to legume seed metabolism.
Collapse
Affiliation(s)
- Ana R Seabra
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Julie V Cullimore
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique - Centre National de la Recherche Scientifique, Boite Postale 52627, 31326 Castanet-Tolosan Cedex, France
| | - Helena G Carvalho
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| |
Collapse
|
18
|
Allele-specific recognition of the 3' splice site of INS intron 1. Hum Genet 2010; 128:383-400. [PMID: 20628762 PMCID: PMC2939332 DOI: 10.1007/s00439-010-0860-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/30/2010] [Indexed: 10/27/2022]
Abstract
Genetic predisposition to type 1 diabetes (T1D) has been associated with a chromosome 11 locus centered on the proinsulin gene (INS) and with differential steady-state levels of INS RNA from T1D-predisposing and -protective haplotypes. Here, we show that the haplotype-specific expression is determined by INS variants that control the splicing efficiency of intron 1. The adenine allele at IVS1-6 (rs689), which rapidly expanded in modern humans, renders the 3' splice site of this intron more dependent on the auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF). This interaction required both zinc fingers of the 35-kD U2AF subunit (U2AF35) and was associated with repression of a competing 3' splice site in INS exon 2. Systematic mutagenesis of reporter constructs showed that intron 1 removal was facilitated by conserved guanosine-rich enhancers and identified additional splicing regulatory motifs in exon 2. Sequencing of intron 1 in primates revealed that relaxation of its 3' splice site in Hominidae coevolved with the introduction of a short upstream open reading frame, providing a more efficient coupled splicing and translation control. Depletion of SR proteins 9G8 and transformer-2 by RNA interference was associated with exon 2 skipping whereas depletion of SRp20 with increased representation of transcripts containing a cryptic 3' splice site in the last exon. Together, these findings reveal critical interactions underlying the allele-dependent INS expression and INS-mediated risk of T1D and suggest that the increased requirement for U2AF35 in higher primates may hinder thymic presentation of autoantigens encoded by transcripts with weak 3' splice sites.
Collapse
|
19
|
Mollet IG, Ben-Dov C, Felício-Silva D, Grosso AR, Eleutério P, Alves R, Staller R, Silva TS, Carmo-Fonseca M. Unconstrained mining of transcript data reveals increased alternative splicing complexity in the human transcriptome. Nucleic Acids Res 2010; 38:4740-54. [PMID: 20385588 PMCID: PMC2919708 DOI: 10.1093/nar/gkq197] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mining massive amounts of transcript data for alternative splicing information is paramount to help understand how the maturation of RNA regulates gene expression. We developed an algorithm to cluster transcript data to annotated genes to detect unannotated splice variants. A higher number of alternatively spliced genes and isoforms were found compared to other alternative splicing databases. Comparison of human and mouse data revealed a marked increase, in human, of splice variants incorporating novel exons and retained introns. Previously unannotated exons were validated by tiling array expression data and shown to correspond preferentially to novel first exons. Retained introns were validated by tiling array and deep sequencing data. The majority of retained introns were shorter than 500 nt and had weak polypyrimidine tracts. A subset of retained introns matching small RNAs and displaying a high GC content suggests a possible coordination between splicing regulation and production of noncoding RNAs. Conservation of unannotated exons and retained introns was higher in horse, dog and cow than in rodents, and 64% of exon sequences were only found in primates. This analysis highlights previously bypassed alternative splice variants, which may be crucial to deciphering more complex pathways of gene regulation in human.
Collapse
Affiliation(s)
- I G Mollet
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Muñoz-Chápuli R, Pérez-Pomares JM. Cardiogenesis: an embryological perspective. J Cardiovasc Transl Res 2009; 3:37-48. [PMID: 20560033 DOI: 10.1007/s12265-009-9146-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/19/2009] [Indexed: 12/12/2022]
Abstract
Cardiogenesis, considered as the formation of new heart tissue from embryonic, postnatal, or adult cardiac progenitors, is a pivotal concept to understand the rationale of advanced therapies to repair the damaged heart. In this review, we focus on the cellular and molecular regulation of cardiogenesis in the developing embryo, and we dissect the complex interactions that control the diversification and maturation of a variety of cardiac cell lineages. Our aim is to show how the sophisticated anatomical structure of the adult four-chambered heart strongly depends on the fine regulation of the differentiation of cardiac progenitor cells. These events are shown to be progressive and dynamic as well as plastic, so that the patterned differentiation of distinct heart domains is highly dependent on signals provided by nonmyocardial heart components and extracardiac tissues. Finally, we present the core of our knowledge on cardiac embryogenesis in a biomedical context to provide a critical analysis on the logic of cell therapies designed to treat the failing heart.
Collapse
Affiliation(s)
- Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga, Spain
| | | |
Collapse
|
21
|
The 5' leader of the mRNA encoding the marek's disease virus serotype 1 pp14 protein contains an intronic internal ribosome entry site with allosteric properties. J Virol 2009; 83:12769-78. [PMID: 19793814 DOI: 10.1128/jvi.01010-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We demonstrate the presence of a functional internal ribosome entry site (IRES) within the 5' leader (designated 5L) from a variant of bicistronic mRNAs that encode the pp14 and RLORF9 proteins from Marek's disease virus (MDV) serotype 1. Transcribed as a 1.8-kb family of immediate-early genes, the mature bicistronic mRNAs have variable 5' leader sequences due to alternative splicing or promoter usage. Consequently, the presence or absence of the 5L IRES in the mRNA dictates the mode of pp14 translation and leads to the production of two pp14 isoforms that differ in their N-terminal sequences. Real-time reverse transcription-quantitative PCR indicates that the mRNA variants with the 5L IRES is two to three times more abundant in MDV-infected and transformed cells than the mRNA variants lacking the 5L IRES. A common feature to all members of the 1.8-kb family of transcripts is the presence of an intercistronic IRES that we have previously shown to control the translation of the second open reading frame (i.e., RLORF9). Investigation of the two IRESs residing in the same bicistronic reporter mRNA revealed functional synergism for translation efficiency. In analogy with allosteric models in proteins, we propose IRES allostery to describe such a novel phenomenon. The functional implications of our findings are discussed in relation to host-virus interactions and translational control.
Collapse
|
22
|
Seelan RS, Lakshmanan J, Casanova MF, Parthasarathy RN. Identification of myo-inositol-3-phosphate synthase isoforms: characterization, expression, and putative role of a 16-kDa gamma(c) isoform. J Biol Chem 2009; 284:9443-57. [PMID: 19188364 PMCID: PMC2666597 DOI: 10.1074/jbc.m900206200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/02/2009] [Indexed: 11/06/2022] Open
Abstract
Myo-inositol is an important constituent of membrane phospholipids and is a precursor for the phosphoinositide signaling pathway. It is synthesized from glucose 6-phosphate by myo-inositol-3-phosphate synthase (IP synthase), a homotrimer composed of a 68-kDa polypeptide in most mammalian tissues. It is a putative target for mood-stabilizing drugs such as lithium and valproate. Here, we show that the rat gene (Isyna1) encoding this enzyme generates a number of alternatively spliced transcripts in addition to the fully spliced form that encodes the 68-kDa subunit (the alpha isoform). Specifically, we identify a small 16-kDa subunit (the gamma(c) isoform) derived by an intron retention mechanism and provide evidence for its existence in rat tissues. The gamma(c) isoform is highly conserved in mammals, but it lacks the catalytic domain while retaining the NAD(+) binding domain. Both alpha and gamma(c) isoforms are predominantly expressed in many rat tissues and display apparent stoichiometry in purified enzyme preparations. An IP synthase polyclonal antibody not only detects the alpha and gamma(c) isoforms but also several other isoforms in pancreas, intestine, and testis suggesting that the holoenzyme is composed of unique subunits in various tissues. Interestingly, the alpha isoform is not expressed in the intestine. IP synthase activity assays using purified alpha and gamma(c) isoforms indicate that the latter negatively modulates alpha isoform activity, possibly by competing for NAD(+) molecules. Our findings have important ramifications for understanding the mood stabilization process and suggest that inositol biosynthesis is a highly regulated and dynamic process.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Psychiatry, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | | | |
Collapse
|
23
|
Intron retention generates ANKRD1 splice variants that are co-regulated with the main transcript in normal and failing myocardium. Gene 2009; 440:28-41. [PMID: 19341785 DOI: 10.1016/j.gene.2009.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 12/28/2022]
Abstract
The cardiac ankyrin repeat domain 1 protein (ANKRD1, also known as CARP) has been extensively characterized with regard to its proposed functions as a cardio-enriched transcriptional co-factor and stress-inducible myofibrillar protein. The present results show the occurrence of alternative splicing by intron retention events in the pig and human ankrd1 gene. In pig heart, ankrd1 is expressed as four alternatively spliced transcripts, three of which have non-excised introns: ankrd1-contained introns 6, 7 and 8 (i.e., ankrd1-i6,7,8), ankrd1-contained introns 7 and 8 (i.e., ankrd1-i7,8), and ankrd1 retained only intron 8 (i.e., ankrd1-i8). In the human heart, two orthologues of porcine intron-retaining ankrd1 variants (i.e., ankrd1-i8 and ankrd1-i7,8) are detected. We demonstrate that these newly-identified intron-retaining ankrd1 transcripts are functionally intact, efficiently translated into protein in vitro and exported to the cytoplasm in cardiomyocytes in vivo. In the piglet heart, both the intronless and intron-retaining ankrd1 mRNAs are co-expressed in a chamber-dependent manner being more abundant in the left as compared to the right myocardium. Our data further indicate co-upregulation of the ankrd1 spliced variants in myocardium in the porcine model of diastolic heart failure. Most significantly, we demonstrate that in vivo forced expression of recombinant intronless ankrd1 markedly increases the levels of intron-retaining ankrd1 variants (but not of the endogenous main transcript) in piglet myocardium, suggesting that ANKRD1 may positively regulate the expression of its own intron-containing RNAs in response to cardiac stress. Overall, our findings demonstrate that in cardiomyocytes ANKRD1 can exist in multiple isoforms which may contribute to the functional diversity of this factor in heart development and disease.
Collapse
|
24
|
Yue C, Ponzio TA, Fields RL, Gainer H. Oxytocin and vasopressin gene expression and RNA splicing patterns in the rat supraoptic nucleus. Physiol Genomics 2008; 35:231-42. [PMID: 18765859 PMCID: PMC2585020 DOI: 10.1152/physiolgenomics.90218.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 08/28/2008] [Indexed: 11/22/2022] Open
Abstract
In this study, we test the hypothesis that there are differential splicing patterns between the expressed oxytocin (OT) and vasopressin (VP) genes in the rat supraoptic nucleus (SON). We quantify the low abundance, intron-containing heteronuclear RNAs (hnRNAs) and the higher abundance mRNAs in the SON using two-step, quantitative SYBR Green real-time reverse transcription (RT)-PCR and external standard curves constructed using synthetic 90 nt sense-strand oligonucleotides. The levels of OT and VP mRNA in the SON were found to be similar, approximately 10(8) copies/SON pair, whereas the copy numbers of VP hnRNAs containing intron 1 or 2 and the OT hnRNA containing intron 1 are much lower, i.e., approximately 10(2)-10(3) copies/rat SON pair. However, the estimated copy number of the intron 2-containing OT hnRNA is much larger, approximately 10(6) copies/SON pair. The relative distributions of all the OT and VP RNA species were invariant and independent of the physiological status of the rats (e.g., osmotically stimulated or lactating rats). Using intron-specific riboprobes against hnRNAs, we demonstrate by fluorescence in situ hybridization strong signals of OT hnRNA containing intron 2 predominantly in the cytoplasm, in contrast to the localization of the VP hnRNA found only in the nuclei. Taken together, these data support the view that the splicing patterns between OT and VP gene transcripts are different and show that there is a selective cytoplasmic retention of OT intron 2.
Collapse
Affiliation(s)
- Chunmei Yue
- Molecular Neuroscience Section, Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
25
|
Fundamentals of Structure–Function Analysis of Eukaryotic Protein-Coding Genes. Genomics 2008. [DOI: 10.3109/9781420067064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Kundu P, Ciobotaru A, Foroughi S, Toro L, Stefani E, Eghbali M. Hormonal regulation of cardiac KCNE2 gene expression. Mol Cell Endocrinol 2008; 292:50-62. [PMID: 18611433 PMCID: PMC2893227 DOI: 10.1016/j.mce.2008.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/29/2008] [Accepted: 06/10/2008] [Indexed: 12/11/2022]
Abstract
The KCNE2 gene encodes a single transmembrane domain protein that modulates a variety of K+ channel functions in various tissues. Here we show that cardiac KCNE2 transcript levels are approximately 10-fold upregulated at the end of pregnancy. This upregulation was mimicked by 17-beta estradiol but not by 5alpha-dihydrotestosterone treatments in ovariectomized mice. To investigate the mechanism of KCNE2 transcriptional regulation by estrogen, we experimentally identified KCNE2 transcription start sites, delineated its gene structure and characterized its promoter region. Estrogen treatment stimulated KCNE2 promoter activity in a dose-dependent manner and ICI 182,780 blocked estrogen stimulation. A direct genomic mechanism was demonstrated by (i) the loss of estrogen responsiveness in the presence of a DNA-binding domain mutant estrogen receptor alpha or mutant KCNE2 ERE and (ii) binding of ERalpha to the KCNE2 ERE. These findings show that a genomic mechanism of estrogen action alters KCNE2 expression, which may have important physiological implications.
Collapse
Affiliation(s)
- Pallob Kundu
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778
| | - Andrea Ciobotaru
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778
| | - Sina Foroughi
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778
| | - Ligia Toro
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778
- Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778
| | - Enrico Stefani
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778
- Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778
| |
Collapse
|
27
|
Sanders EJ, Harvey S. Peptide hormones as developmental growth and differentiation factors. Dev Dyn 2008; 237:1537-52. [PMID: 18498096 DOI: 10.1002/dvdy.21573] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peptide hormones, usually considered to be endocrine factors responsible for communication between tissues remotely located from each other, are increasingly being found to be synthesized in developing tissues, where they act locally. Several hormones are now known to be produced in developing tissues that are unrelated to the endocrine gland of origin in the adult. These hormones are synthesized locally, and are active as differentiation and survival factors, before the developing adult endocrine tissue becomes functional. There is increasing evidence for paracrine and/or autocrine actions for these factors during development, thus, placing them among the conventional growth and differentiation factors. We review the evidence for the view that thyroid hormones, growth hormone, prolactin, insulin, and parathyroid hormone-related protein are developmental growth and differentiation factors.
Collapse
Affiliation(s)
- Esmond J Sanders
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
28
|
Bortfeldt R, Schindler S, Szafranski K, Schuster S, Holste D. Comparative analysis of sequence features involved in the recognition of tandem splice sites. BMC Genomics 2008; 9:202. [PMID: 18447903 PMCID: PMC2423196 DOI: 10.1186/1471-2164-9-202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/30/2008] [Indexed: 01/05/2023] Open
Abstract
Background The splicing of pre-mRNAs is conspicuously often variable and produces multiple alternatively spliced (AS) isoforms that encode different messages from one gene locus. Computational studies uncovered a class of highly similar isoforms, which were related to tandem 5'-splice sites (5'ss) and 3'-splice sites (3'ss), yet with very sparse anecdotal evidence in experimental studies. To compare the types and levels of alternative tandem splice site exons occurring in different human organ systems and cell types, and to study known sequence features involved in the recognition and distinction of neighboring splice sites, we performed large-scale, stringent alignments of cDNA sequences and ESTs to the human and mouse genomes, followed by experimental validation. Results We analyzed alternative 5'ss exons (A5Es) and alternative 3'ss exons (A3Es), derived from transcript sequences that were aligned to assembled genome sequences to infer patterns of AS occurring in several thousands of genes. Comparing the levels of overlapping (tandem) and non-overlapping (competitive) A5Es and A3Es, a clear preference of isoforms was seen for tandem acceptors and donors, with four nucleotides and three to six nucleotides long exon extensions, respectively. A subset of inferred A5E tandem exons was selected and experimentally validated. With the focus on A5Es, we investigated their transcript coverage, sequence conservation and base-paring to U1 snRNA, proximal and distal splice site classification, candidate motifs for cis-regulatory activity, and compared A5Es with A3Es, constitutive and pseudo-exons, in H. sapiens and M. musculus. The results reveal a small but authentic enriched set of tandem splice site preference, with specific distances between proximal and distal 5'ss (3'ss), which showed a marked dichotomy between the levels of in- and out-of-frame splicing for A5Es and A3Es, respectively, identified a number of candidate NMD targets, and allowed a rough estimation of a number of undetected tandem donors based on splice site information. Conclusion This comparative study distinguishes tandem 5'ss and 3'ss, with three to six nucleotides long extensions, as having unusually high proportions of AS, experimentally validates tandem donors in a panel of different human tissues, highlights the dichotomy in the types of AS occurring at tandem splice sites, and elucidates that human alternative exons spliced at overlapping 5'ss posses features of typical splice variants that could well be beneficial for the cell.
Collapse
Affiliation(s)
- Ralf Bortfeldt
- Department of Bioinformatics, Friedrich-Schiller University, Ernst-Abbe-Platz 2, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
29
|
Restricted expression of Epstein-Barr virus latent genes in murine B cells derived from embryonic stem cells. PLoS One 2008; 3:e1996. [PMID: 18414672 PMCID: PMC2289878 DOI: 10.1371/journal.pone.0001996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 03/10/2008] [Indexed: 12/15/2022] Open
Abstract
Background Several human malignancies are associated with Epstein-Barr virus (EBV) and more than 95% of the adult human population carries this virus lifelong. EBV efficiently infects human B cells and persists in this cellular compartment latently. EBV-infected B cells become activated and growth transformed, express a characteristic set of viral latent genes, and acquire the status of proliferating lymphoblastoid cell lines in vitro. Because EBV infects only primate cells, it has not been possible to establish a model of infection in immunocompetent rodents. Such a model would be most desirable in order to study EBV's pathogenesis and latency in a suitable and amenable host. Methodology/Principal Findings We stably introduced recombinant EBV genomes into mouse embryonic stem cells and induced their differentiation to B cells in vitro to develop the desired model. In vitro differentiated murine B cells maintained the EBV genomes but expression of viral genes was restricted to the latent membrane proteins (LMPs). In contrast to human B cells, EBV's nuclear antigens (EBNAs) were not expressed detectably and growth transformed murine B cells did not arise in vitro. Aberrant splicing and premature termination of EBNA mRNAs most likely prevented the expression of EBNA genes required for B-cell transformation. Conclusions/Significance Our findings indicate that fundamental differences in gene regulation between mouse and man might block the route towards a tractable murine model for EBV.
Collapse
|
30
|
Abstract
Neuronal expression of apolipoprotein (apo) E4 may contribute to the pathogenesis of Alzheimer's disease (AD). In studying how apoE expression is regulated in neurons, we identified a splicing variant of apoE mRNA with intron-3 retention (apoE-I3). ApoE-I3 mRNA was detected in neuronal cell lines and primary neurons, but not in astrocytic cell lines or primary astrocytes, from humans and mice by reverse transcription (RT)-PCR. In both wild-type and human apoE knock-in mice, apoE-I3 was found predominantly in cortical and hippocampal neurons by in situ hybridization. Cell fractionation and quantitative RT-PCR revealed that over 98% of the apoE-I3 mRNA was retained in the nucleus without protein translation. In transfected primary neurons, apoE expression increased dramatically when intron-3 was deleted from a genomic DNA construct and decreased markedly when intron-3 was inserted into a cDNA construct, suggesting that intron-3 retention/splicing controls apoE expression in neurons. In response to excitotoxic challenge, the apoE-I3 mRNA was markedly increased in morphologically normal hippocampal neurons but reduced in degenerating hippocampal neurons in mice; apoE mRNA showed the opposite pattern. This apparent precursor-product relationship between apoE-I3 and apoE mRNA was supported by a transcriptional inhibition study. Thus, neuronal expression of apoE is controlled by transcription of apoE-I3 under normal conditions and by processing of apoE-I3 into mature apoE mRNA in response to injury.
Collapse
|
31
|
Ner-Gaon H, Leviatan N, Rubin E, Fluhr R. Comparative cross-species alternative splicing in plants. PLANT PHYSIOLOGY 2007; 144:1632-41. [PMID: 17496110 PMCID: PMC1914131 DOI: 10.1104/pp.107.098640] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 04/30/2007] [Indexed: 05/15/2023]
Abstract
Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS.
Collapse
Affiliation(s)
- Hadas Ner-Gaon
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
32
|
Tan S, Guo J, Huang Q, Chen X, Li-Ling J, Li Q, Ma F. Retained introns increase putative microRNA targets within 3' UTRs of human mRNA. FEBS Lett 2007; 581:1081-6. [PMID: 17320082 DOI: 10.1016/j.febslet.2007.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 01/31/2007] [Accepted: 02/06/2007] [Indexed: 11/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA that post-transcriptionally regulates the expression of target genes by binding to mRNAs. As one form of alternative splicing, intron retention has influence upon mRNA modification and protein encoding. The effect of miRNA on mRNA containing retained intron within 3' UTR, however, has not been systematically elucidated. Here, we examined a total of 2864 human genes which contain at least one retained intron from the MAASE and ASD databases and found 387 genes having contained retained introns within 3' UTR. The effect of retained introns upon miRNA targets was explored with three web-based programs for miRNA prediction including miRanda, TargetScanS and PicTar. The results showed that retained introns can increase putative miRNA targets in human mRNA. Retained introns have higher chances than other regions of 3' UTR in involving the site of miRNAs targets of most genes which contain putative miRNA targets within it. Furthermore, some transcripts contain miRNA targets solely because of the retained introns in 3' UTR. In addition, we examined those 'Ignored' retained introns by miRanda software and the results indicated that miRNAs may contain many more putative targets.
Collapse
Affiliation(s)
- Sheng Tan
- Department of Chemistry, University of Science and Technology of China, Hefei 230031, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Buratti E, Baralle M, Baralle FE. Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res 2006; 34:3494-510. [PMID: 16855287 PMCID: PMC1524908 DOI: 10.1093/nar/gkl498] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 12/25/2022] Open
Abstract
The number of aberrant splicing processes causing human disease is growing exponentially and many recent studies have uncovered some aspects of the unexpectedly complex network of interactions involved in these dysfunctions. As a consequence, our knowledge of the various cis- and trans-acting factors playing a role on both normal and aberrant splicing pathways has been enhanced greatly. However, the resulting information explosion has also uncovered the fact that many splicing systems are not easy to model. In fact we are still unable, with certainty, to predict the outcome of a given genomic variation. Nonetheless, in the midst of all this complexity some hard won lessons have been learned and in this survey we will focus on the importance of the wide sequence context when trying to understand why apparently similar mutations can give rise to different effects. The examples discussed in this summary will highlight the fine 'balance of power' that is often present between all the various regulatory elements that define exon boundaries. In the final part, we shall then discuss possible therapeutic targets and strategies to rescue genetic defects of complex splicing systems.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| | - Marco Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| |
Collapse
|
34
|
Hernández-Sánchez C, Bártulos O, Valenciano AI, Mansilla A, de Pablo F. The regulated expression of chimeric tyrosine hydroxylase-insulin transcripts during early development. Nucleic Acids Res 2006; 34:3455-64. [PMID: 16840532 PMCID: PMC1524912 DOI: 10.1093/nar/gkl436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological complexity does not appear to be simply correlated with gene number but rather other mechanisms contribute to the morphological and functional diversity across phyla. Such mechanisms regulate different transcriptional, translational and post-translational processes and include the recently identified transcription induced chimerism (TIC). We have found two novel chimeric transcripts in the chick and quail that result from the fusion of tyrosine hydroxylase (TH) and insulin into a single mature transcript. The th and insulin genes are located in tandem and they are generally transcribed independently. However, it appears that two chimeric transcripts containing exons from both the genes can also be produced in a regulated manner. The TH–INS1 and TH–INS2 chimeras differ in their insulin gene content, and they encode two novel isoforms of the TH protein with markedly reduced functionality when compared with the canonical TH. In addition, the TH–INS1 chimeric mRNA generates a small amount of insulin. We propose that TIC is an additional mechanism that can be employed to further regulate TH and insulin expression according to the specific needs of developing vertebrates.
Collapse
Affiliation(s)
- Catalina Hernández-Sánchez
- Group of Growth Factors in Vertebrate Development, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|
35
|
van der Heide LP, Ramakers GMJ, Smidt MP. Insulin signaling in the central nervous system: Learning to survive. Prog Neurobiol 2006; 79:205-21. [PMID: 16916571 DOI: 10.1016/j.pneurobio.2006.06.003] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/19/2006] [Accepted: 06/23/2006] [Indexed: 12/23/2022]
Abstract
Insulin is best known for its role in peripheral glucose homeostasis. Less studied, but not less important, is its role in the central nervous system. Insulin and its receptor are located in the central nervous system and are both implicated in neuronal survival and synaptic plasticity. Interestingly, over the past few years it has become evident that the effects of insulin, on neuronal survival and synaptic plasticity, are mediated by a common signal transduction cascade, which has been identified as "the PI3K route". This route has turned out to be a major integrator of insulin signaling in the brain. A pronounced feature of this insulin-activated route is that it promotes survival by directly inactivating the pro-apoptotic machinery. Interestingly, it is this same route that is required for the induction of long-term potentiation and depression, basic processes underlying learning and memory. This leads to the hypothesis that the PI3K route forms a direct link between learning and memory and neuronal survival. The implications of this hypothesis are far reaching, since it provides an explanation why insulin has beneficial effects on learning and memory and how synaptic activity can prevent cellular degeneration. Applying this knowledge may provide novel therapeutic approaches in the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Lars P van der Heide
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
36
|
Hernández-Sánchez C, Mansilla A, de la Rosa EJ, de Pablo F. Proinsulin in development: New roles for an ancient prohormone. Diabetologia 2006; 49:1142-50. [PMID: 16596360 DOI: 10.1007/s00125-006-0232-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 09/27/2005] [Indexed: 10/24/2022]
Abstract
In postnatal organisms, insulin is well known as an essential anabolic hormone responsible for maintaining glucose homeostasis. Its biosynthesis by the pancreatic beta cell has been considered a model of tissue-specific gene expression. However, proinsulin mRNA and protein have been found in embryonic stages before the formation of the pancreatic primordium, and later, in extrapancreatic tissues including the nervous system. Phylogenetic studies have also confirmed that production of insulin-like peptides antecedes the morphogenesis of a pancreas, and that these peptides contribute to normal development. In recent years, other roles for insulin distinct from its metabolic function have emerged also in vertebrates. During embryonic development, insulin acts as a survival factor and is involved in early morphogenesis. These findings are consistent with the observation that, at these stages, the proinsulin gene product remains as the precursor form, proinsulin. Independent of its low metabolic activity, proinsulin stimulates proliferation in developing neuroretina, as well as cell survival and cardiogenesis in early embryos. Insulin/proinsulin levels are finely regulated during development, since an excess of the protein interferes with correct morphogenesis and is deleterious for the embryo. This fine-tuned regulation is achieved by the expression of alternative embryonic proinsulin transcripts that have diminished translational activity.
Collapse
Affiliation(s)
- C Hernández-Sánchez
- Group of Growth Factors in Vertebrate Development, Centre of Biological Investigations (CIB), Spanish Council for Research (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | | | | | | |
Collapse
|
37
|
Ner-Gaon H, Fluhr R. Whole-Genome Microarray in Arabidopsis Facilitates Global Analysis of Retained Introns. DNA Res 2006; 13:111-21. [PMID: 16980712 DOI: 10.1093/dnares/dsl003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative splicing (AS) is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Different types of AS have been observed; these include exon skipping, alternative donor or acceptor site and intron retention. In humans, exon skipping is the most common type while intron retention is rare. In contrast, in Arabidopsis, intron retention is the most prevalent AS type (approximately 40%). Here we show that direct transcript expression analysis using high-density oligonucleotide-based whole-genome microarrays (WGAs) is particularly amenable for assessing global intron retention in Arabidopsis. By applying a novel algorithm retained introns are detected in 8% of the transcripts examined. A sampling of 14 transcripts showed that 86% can be confirmed by RT-PCR. This rate of detection predicts an overall total AS rate of 20% for Arabidopsis compared with 10-22% based on EST/cDNA-based analysis. These findings will facilitate monitoring constitutive and dynamic whole-genome splicing on the next generation WGA slides.
Collapse
Affiliation(s)
- Hadas Ner-Gaon
- Department of Plant Sciences, Weizmann Institute of Science Rehovot 76100, Israel
| | | |
Collapse
|
38
|
Bowman TV, McCooey AJ, Merchant AA, Ramos CA, Fonseca P, Poindexter A, Bradfute SB, Oliveira DM, Green R, Zheng Y, Jackson KA, Chambers SM, McKinney-Freeman SL, Norwood KG, Darlington G, Gunaratne PH, Steffen D, Goodell MA. Differential mRNA processing in hematopoietic stem cells. Stem Cells 2005; 24:662-70. [PMID: 16373690 DOI: 10.1634/stemcells.2005-0552] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hematopoietic stem cells (HSCs) maintain tissue homeostasis by rapidly responding to environmental changes. Although this function is well understood, the molecular mechanisms governing this characteristic are largely unknown. We used a sequenced-based strategy to explore the role of both transcriptional and post-transcriptional regulation in HSC biology. We characterized the gene expression differences between HSCs, both quiescent and proliferating, and their differentiated progeny. This analysis revealed a large fraction of sequence tags aligned to intronic sequences, which we showed were derived from unspliced transcripts. A comparison of the biological properties of the observed spliced versus unspliced transcripts in HSCs showed that the unspliced transcripts were enriched in genes involved in DNA binding and RNA processing. In addition, levels of unspliced message decreased in a transcript-specific fashion after HSC activation in vivo. This change in unspliced transcript level coordinated with increases in gene expression of splicing machinery components. Combined, these results suggest that post-transcriptional regulation is important in HSC activation in vivo.
Collapse
Affiliation(s)
- Teresa V Bowman
- Cell and Gene Therapy Center, Baylor College of Medicine, N1030, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|