1
|
Joseph JP, Kumar T, Ramteke NS, Chatterjee K, Nandi D. High intracellular calcium amounts inhibit activation-induced proliferation of mouse T cells: Tert-butyl hydroquinone as an additive enhancer of intracellular calcium. Int Immunopharmacol 2024; 143:113501. [PMID: 39488036 DOI: 10.1016/j.intimp.2024.113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Optimal T cell activation is critical to orchestrate adaptive immune responses. Calcium is critical for T cell activation and integrates signaling pathways necessary to activate key transcription factors. In fact, patients with calcium channelopathies are immunodeficient. Here, we investigated the effects of different concentrations of intracellular calcium on activation of mouse T cells. High intracellular calcium amounts inhibited in vitro T cell proliferation as evidenced by a decreased cell cycling-to-hypodiploidy ratio in two models of activation: the combination of phorbol 12-myristate 13-acetate (PMA) and Ionomycin (an ionophore)/Thapsigargin (a SERCA inhibitor) or plate bound anti-CD3 and anti-CD28. High intracellular calcium amounts increased the production of reactive oxygen species (ROS) in T cells activated with PMA and Ionomycin and scavenging excess ROS using N-acetyl cysteine (NAC) rescued the decrease in cycling-to-hypodiploidy ratio. To test the universality of our observations, we studied the effects of tert-Butylhydroquinone (tBHQ), a SERCA inhibitor and Nrf2 activator. tBHQ alone did not increase intracellular calcium amounts but the intracellular calcium amounts increased when tBHQ was used in combination with PMA. Also, tBHQ inhibited T cell activation in a dose-dependent manner in both in vitro models of T cell activation. Importantly, intraperitoneal injection of tBHQ ameliorated Dextran Sodium Sulfate (DSS)-induced colitis in mice as evidenced by rescue of colon length shortening and lower disease activity index. Overall, this study identifies high calcium amounts as a potential target to lower T cell activation. The implications of these observations are discussed in the context of calcium modulating drugs that are used to treat various diseases.
Collapse
Affiliation(s)
- Joel P Joseph
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | - Tanisha Kumar
- Undergraduate Program, Indian Institute of Science, Bengaluru, India
| | - Nikita S Ramteke
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India; Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
2
|
Khan A, Roy P, Ley K. Breaking tolerance: the autoimmune aspect of atherosclerosis. Nat Rev Immunol 2024; 24:670-679. [PMID: 38472321 DOI: 10.1038/s41577-024-01010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a chronic inflammatory disease of the arterial walls and is characterized by the accumulation of lipoproteins that are insufficiently cleared by phagocytes. Following the initiation of atherosclerosis, the pathological progression is accelerated by engagement of the adaptive immune system. Atherosclerosis triggers the breakdown of tolerance to self-components. This loss of tolerance is reflected in defective expression of immune checkpoint molecules, dysfunctional antigen presentation, and aberrations in T cell populations - most notably in regulatory T (Treg) cells - and in the production of autoantibodies. The breakdown of tolerance to self-proteins that is observed in ASCVD may be linked to the conversion of Treg cells to 'exTreg' cells because many Treg cells in ASCVD express T cell receptors that are specific for self-epitopes. Alternatively, or in addition, breakdown of tolerance may trigger the activation of naive T cells, resulting in the clonal expansion of T cell populations with pro-inflammatory and cytotoxic effector phenotypes. In this Perspective, we review the evidence that atherosclerosis is associated with a breakdown of tolerance to self-antigens, discuss possible immunological mechanisms and identify knowledge gaps to map out future research. Rational approaches aimed at re-establishing immune tolerance may become game changers in treating ASCVD and in preventing its downstream sequelae, which include heart attacks and strokes.
Collapse
Affiliation(s)
- Amir Khan
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Payel Roy
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Klaus Ley
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
3
|
Yang Q, Patrick M, Lu J, Chen J, Zhang Y, Hemani H, Lehrmann E, De S, Weng NP. Homeodomain-only protein suppresses proliferation and contributes to differentiation- and age-related reduced CD8 + T cell expansion. Front Immunol 2024; 15:1360229. [PMID: 38410516 PMCID: PMC10895957 DOI: 10.3389/fimmu.2024.1360229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
T cell activation is a tightly controlled process involving both positive and negative regulators. The precise mechanisms governing the negative regulators in T cell proliferation remain incompletely understood. Here, we report that homeodomain-only protein (HOPX), a homeodomain-containing protein, and its most abundant isoform HOPXb, negatively regulate activation-induced proliferation of human T cells. We found that HOPX expression progressively increased from naïve (TN) to central memory (TCM) to effector memory (TEM) cells, with a notable upregulation following in vitro stimulation. Overexpression of HOPXb leads to a reduction in TN cell proliferation while HOPX knockdown promotes proliferation of TN and TEM cells. Furthermore, we demonstrated that HOPX binds to promoters and exerts repressive effects on the expression of MYC and NR4A1, two positive regulators known to promote T cell proliferation. Importantly, our findings suggest aging is associated with increased HOPX expression, and that knockdown of HOPX enhances the proliferation of CD8+ T cells in older adults. Our findings provide compelling evidence that HOPX serves as a negative regulator of T cell activation and plays a pivotal role in T cell differentiation and in age-related-reduction in T cell proliferation.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michael Patrick
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jian Lu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Joseph Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Humza Hemani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
4
|
Giordano Attianese GMP, Ash S, Irving M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol Rev 2023; 320:166-198. [PMID: 37548063 DOI: 10.1111/imr.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Adoptive T-cell transfer (ACT) therapies, including of tumor infiltrating lymphocytes (TILs) and T cells gene-modified to express either a T cell receptor (TCR) or a chimeric antigen receptor (CAR), have demonstrated clinical efficacy for a proportion of patients and cancer-types. The field of ACT has been driven forward by the clinical success of CD19-CAR therapy against various advanced B-cell malignancies, including curative responses for some leukemia patients. However, relapse remains problematic, in particular for lymphoma. Moreover, for a variety of reasons, relative limited efficacy has been demonstrated for ACT of non-hematological solid tumors. Indeed, in addition to pre-infusion challenges including lymphocyte collection and manufacturing, ACT failure can be attributed to several biological processes post-transfer including, (i) inefficient tumor trafficking, infiltration, expansion and retention, (ii) chronic antigen exposure coupled with insufficient costimulation resulting in T-cell exhaustion, (iii) a range of barriers in the tumor microenvironment (TME) mediated by both tumor cells and suppressive immune infiltrate, (iv) tumor antigen heterogeneity and loss, or down-regulation of antigen presentation machinery, (v) gain of tumor intrinsic mechanisms of resistance such as to apoptosis, and (vi) various forms of toxicity and other adverse events in patients. Affinity-optimized TCRs can improve T-cell function and innovative CAR designs as well as gene-modification strategies can be used to coengineer specificity, safety, and function into T cells. Coengineering strategies can be designed not only to directly support the transferred T cells, but also to block suppressive barriers in the TME and harness endogenous innate and adaptive immunity. Here, we review a selection of the remarkable T-cell coengineering strategies, including of tools, receptors, and gene-cargo, that have been developed in recent years to augment tumor control by ACT, more and more of which are advancing to the clinic.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Ren J, Zhuo Y, He F, Lv L, Xing M, Guo Y, Zhang Y, Liu J, Li Y, Bai T, Chen Y, Li G, Qin Z, Zhou D. Longitudinal Immune Profiling Highlights CD4+ T Cell Exhaustion Correlated with Liver Fibrosis in Schistosoma japonicum Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:82-95. [PMID: 36445332 DOI: 10.4049/jimmunol.2200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Schistosomiasis remains an important public health concern. The eggs deposited in livers invoke a Th2-dominant response, which mediates the fibrotic granulomatous response. However, the mechanisms involved in this immunopathological process are still not perfectly clear. Here, we report a single-cell transcriptional landscape of longitudinally collected BALB/c mouse splenocytes at different time points after Schistosoma japonicum infection. We found that exhausted CD4+ T cells were enriched after infection, changing from coproducing multiple cytokines to predominantly producing the Th2 cytokine IL-4. Regulatory B cells had high expression of Fcrl5, Ptpn22, and Lgals1, potentially regulating exhausted CD4+ T cells via direct PD-1-PD-L2 and PD-1-PD-L1 interactions. Within the myeloid compartment, the number of precursor and immature neutrophils sharply increased after infection. Moreover, dendritic cells, macrophages, and basophils showed inhibitory interactions with exhausted CD4+ T cells. Besides, in mouse livers, we found that exhausted CD4+ T cells were distributed around egg granuloma, promoting collagen expression in primary mouse hepatic stellate cells via IL-4 secretion, resulting in liver fibrosis. Our study provides comprehensive characterization of the composition and cellular states of immune cells with disease progression, which will facilitate better understanding of the mechanism underlying liver fibrotic granulomatous response in schistosomiasis.
Collapse
Affiliation(s)
- Jiling Ren
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yue Zhuo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lihui Lv
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuchao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Fudan University, Shanghai, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tinghui Bai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanan Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Guangru Li
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Takahashi D, Yonezawa K, Okizaki Y, Caaveiro JMM, Ueda T, Shimada A, Sakane F, Shimizu N. Ca 2+ -induced structural changes and intramolecular interactions in N-terminal region of diacylglycerol kinase alpha. Protein Sci 2022; 31:e4365. [PMID: 35762720 PMCID: PMC9202544 DOI: 10.1002/pro.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022]
Abstract
Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that modulate the levels of lipid messengers, diacylglycerol, and phosphatidic acid. Recently, increasing attention has been paid to its α isozyme (DGKα) as a potential target for cancer immunotherapy. However, little progress has been made on the structural biology of DGKs, and a detailed understanding of the Ca2+ -triggered activation of DGKα, for which the N-terminal domains likely play a critical role, remains unclear. We have recently shown that Ca2+ binding to DGKα-EF induces conformational changes from a protease-susceptible "open" conformation in the apo state to a well-folded one in its holo state. Here, we further studied the structural properties of DGKα N-terminal (RVH and EF) domains using a series of biophysical techniques. We first revealed that the N-terminal RVH domain is a novel Ca2+ -binding domain, but the Ca2+ -induced conformational changes mainly occur in the EF domain. This was corroborated by NMR experiments showing that the EF domain adopts a molten-globule like structure in the apo state. Further analyses using SEC-SAXS and NMR indicate that the partially unfolded EF domain interacts with RVH domain, likely via hydrophobic interactions in the absence of Ca2+ , and this interaction is modified in the presence of Ca2+ . Taken together, these results present novel insights into the structural rearrangement of DGKα N-terminal domains upon binding to Ca2+ , which is essential for the activation of the enzyme.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
- Center for Digital Green‐Innovation (CDG)Nara Institute of Science and Technology (NAIST)IkomaJapan
| | - Yuki Okizaki
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Jose M. M. Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Tadashi Ueda
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of ScienceChiba UniversityChibaJapan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
| |
Collapse
|
7
|
Hiwa R, Brooks JF, Mueller JL, Nielsen HV, Zikherman J. NR4A nuclear receptors in T and B lymphocytes: Gatekeepers of immune tolerance . Immunol Rev 2022; 307:116-133. [PMID: 35174510 DOI: 10.1111/imr.13072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
Abstract
Random VDJ recombination early in T and B cell development enables the adaptive immune system to recognize a vast array of evolving pathogens via antigen receptors. However, the potential of such randomly generated TCRs and BCRs to recognize and respond to self-antigens requires layers of tolerance mechanisms to mitigate the risk of life-threatening autoimmunity. Since they were originally cloned more than three decades ago, the NR4A family of nuclear hormone receptors have been implicated in many critical aspects of immune tolerance, including negative selection of thymocytes, peripheral T cell tolerance, regulatory T cells (Treg), and most recently in peripheral B cell tolerance. In this review, we discuss important insights from many laboratories as well as our own group into the function and mechanisms by which this small class of primary response genes promotes self-tolerance and immune homeostasis to balance the need for host defense against the inherent risks posed by the adaptive immune system.
Collapse
Affiliation(s)
- Ryosuke Hiwa
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, University of California, San Francisco, California, USA.,Department of Rheumatology and Clinical Immunology, Kyoto University Hospital, Kyoto, Japan
| | - Jeremy F Brooks
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, University of California, San Francisco, California, USA
| | - James L Mueller
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, University of California, San Francisco, California, USA
| | - Hailyn V Nielsen
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, University of California, San Francisco, California, USA
| | - Julie Zikherman
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, University of California, San Francisco, California, USA
| |
Collapse
|
8
|
Lewis EL, Xu R, Beltra JC, Ngiow SF, Cohen J, Telange R, Crane A, Sawinski D, Wherry EJ, Porrett PM. NFAT-dependent and -independent exhaustion circuits program maternal CD8 T cell hypofunction in pregnancy. J Exp Med 2022; 219:e20201599. [PMID: 34882194 PMCID: PMC8666877 DOI: 10.1084/jem.20201599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/09/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Pregnancy is a common immunization event, but the molecular mechanisms and immunological consequences provoked by pregnancy remain largely unknown. We used mouse models and human transplant registry data to reveal that pregnancy induced exhausted CD8 T cells (Preg-TEX), which associated with prolonged allograft survival. Maternal CD8 T cells shared features of exhaustion with CD8 T cells from cancer and chronic infection, including transcriptional down-regulation of ribosomal proteins and up-regulation of TOX and inhibitory receptors. Similar to other models of T cell exhaustion, NFAT-dependent elements of the exhaustion program were induced by fetal antigen in pregnancy, whereas NFAT-independent elements did not require fetal antigen. Despite using conserved molecular circuitry, Preg-TEX cells differed from TEX cells in chronic viral infection with respect to magnitude and dependency of T cell hypofunction on NFAT-independent signals. Altogether, these data reveal the molecular mechanisms and clinical consequences of maternal CD8 T cell hypofunction and identify pregnancy as a previously unappreciated context in which T cell exhaustion may occur.
Collapse
Affiliation(s)
- Emma L. Lewis
- Department of Obstetrics and Gynecology, The University of Pennsylvania, Philadelphia, PA
| | - Rong Xu
- Department of Surgery, The University of Pennsylvania, Philadelphia, PA
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Jordana Cohen
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - Rahul Telange
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL
| | - Alexander Crane
- Department of Surgery, The University of Pennsylvania, Philadelphia, PA
| | - Deirdre Sawinski
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Paige M. Porrett
- Department of Surgery, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Transplant Institute, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
9
|
Hiwa R, Nielsen HV, Mueller JL, Mandla R, Zikherman J. NR4A family members regulate T cell tolerance to preserve immune homeostasis and suppress autoimmunity. JCI Insight 2021; 6:e151005. [PMID: 34343134 PMCID: PMC8492309 DOI: 10.1172/jci.insight.151005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
The NR4A family of orphan nuclear receptors (Nr4a1–3) plays redundant roles to establish and maintain Treg identity; deletion of multiple family members in the thymus results in Treg deficiency and a severe inflammatory disease. Consequently, it has been challenging to unmask redundant functions of the NR4A family in other immune cells. Here we use a competitive bone marrow chimera strategy, coupled with conditional genetic tools, to rescue Treg homeostasis and unmask such functions. Unexpectedly, chimeras harboring Nr4a1–/– Nr4a3–/– (double-knockout, DKO) bone marrow developed autoantibodies and a systemic inflammatory disease despite a replete Treg compartment of largely WT origin. This disease differs qualitatively from that seen with Treg deficiency and is B cell extrinsic. Negative selection of DKO thymocytes is profoundly impaired in a cell-intrinsic manner. Consistent with escape of self-reactive T cells into the periphery, DKO T cells with functional, phenotypic, and transcriptional features of anergy accumulated in chimeric mice. Nevertheless, we observed upregulation of genes encoding inflammatory mediators in anergic DKO T cells, and DKO T cells exhibited enhanced capacity for IL-2 production. These studies reveal cell-intrinsic roles for the NR4A family in both central and peripheral T cell tolerance and demonstrate that each is essential to preserve immune homeostasis.
Collapse
Affiliation(s)
- Ryosuke Hiwa
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - Hailyn V Nielsen
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - James L Mueller
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - Ravi Mandla
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - Julie Zikherman
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| |
Collapse
|
10
|
This S, Valbon SF, Lebel MÈ, Melichar HJ. Strength and Numbers: The Role of Affinity and Avidity in the 'Quality' of T Cell Tolerance. Cells 2021; 10:1530. [PMID: 34204485 PMCID: PMC8234061 DOI: 10.3390/cells10061530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of T cells to identify foreign antigens and mount an efficient immune response while limiting activation upon recognition of self and self-associated peptides is critical. Multiple tolerance mechanisms work in concert to prevent the generation and activation of self-reactive T cells. T cell tolerance is tightly regulated, as defects in these processes can lead to devastating disease; a wide variety of autoimmune diseases and, more recently, adverse immune-related events associated with checkpoint blockade immunotherapy have been linked to a breakdown in T cell tolerance. The quantity and quality of antigen receptor signaling depend on a variety of parameters that include T cell receptor affinity and avidity for peptide. Autoreactive T cell fate choices (e.g., deletion, anergy, regulatory T cell development) are highly dependent on the strength of T cell receptor interactions with self-peptide. However, less is known about how differences in the strength of T cell receptor signaling during differentiation influences the 'function' and persistence of anergic and regulatory T cell populations. Here, we review the literature on this subject and discuss the clinical implications of how T cell receptor signal strength influences the 'quality' of anergic and regulatory T cell populations.
Collapse
Affiliation(s)
- Sébastien This
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Stefanie F. Valbon
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marie-Ève Lebel
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
| | - Heather J. Melichar
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
11
|
|
12
|
Angenendt A, Steiner R, Knörck A, Schwär G, Konrad M, Krause E, Lis A. Orai, STIM, and PMCA contribute to reduced calcium signal generation in CD8 + T cells of elderly mice. Aging (Albany NY) 2020; 12:3266-3286. [PMID: 32062611 PMCID: PMC7066920 DOI: 10.18632/aging.102809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022]
Abstract
Ca2+ is a crucial second messenger for proper T cell function. Considering the relevance of Ca2+ signals for T cell functionality it is surprising that no mechanistic insights into T cell Ca2+ signals from elderly individuals are reported. The main Ca2+ entry mechanism in T cells are STIM-activated Orai channels. Their role during lymphocyte aging is completely unknown. Here, we report not only reduced Ca2+ signals in untouched and stimulated, but also in central and effector memory CD8+ T cells from elderly (18-24 months) compared to adult (3-6 months) mice. Two mechanisms contribute to the overall reduction in Ca2+ signals of CD8+ T cells of elderly mice: 1) Reduced Ca2+ currents through Orai channels due to decreased expressions of STIMs and Orais. 2) A faster extrusion of Ca2+ owing to an increased expression of PMCA4. The reduced Ca2+ signals correlated with a resistance of the cytotoxic efficiency of CD8+ T cells to varying free [Ca2+]ext with age. In summary, reduced STIM/Orai expression and increased Ca2+ clearing rates following enhanced PMCA4 expression contribute to reduced Ca2+ signals in CD8+ T cells of elderly mice. These changes are apparently relevant to immune function as they reduce the Ca2+ dependency of CTL cytotoxicity.
Collapse
Affiliation(s)
- Adrian Angenendt
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Romy Steiner
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany.,Present address: Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna 1090, Austria
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Maik Konrad
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Annette Lis
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| |
Collapse
|
13
|
Blaser N, Backert S, Pachathundikandi SK. Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:77-106. [PMID: 31049845 DOI: 10.1007/5584_2019_360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori represents a highly successful colonizer of the human stomach. Infections with this Gram-negative bacterium can persist lifelong, and although in the majority of cases colonization is asymptomatic, it can trigger pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The interaction of the bacteria with the human host modulates immune responses in different ways to enable bacterial survival and persistence. H. pylori uses various pathogenicity-associated factors such as VacA, NapA, CGT, GGT, lipopolysaccharide, peptidoglycan, heptose 1,7-bisphosphate, ADP-heptose, cholesterol glucosides, urease and a type IV secretion system for controlling immune signaling and cellular functions. It appears that H. pylori manipulates multiple extracellular immune receptors such as integrin-β2 (CD18), EGFR, CD74, CD300E, DC-SIGN, MINCLE, TRPM2, T-cell and Toll-like receptors as well as a number of intracellular receptors including NLRP3, NOD1, NOD2, TIFA and ALPK1. Consequently, downstream signaling pathways are hijacked, inducing tolerogenic dendritic cells, inhibiting effector T cell responses and changing the gastrointestinal microbiota. Here, we discuss in detail the interplay of bacterial factors with multiple immuno-regulatory cells and summarize the main immune evasion and persistence strategies employed by H. pylori.
Collapse
Affiliation(s)
- Nicole Blaser
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
14
|
CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun 2019; 10:4355. [PMID: 31554797 PMCID: PMC6761190 DOI: 10.1038/s41467-019-12321-3] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Genetically engineered T cells expressing a chimeric antigen receptor (CAR) are rapidly emerging a promising new treatment for haematological and non-haematological malignancies. CAR-T therapy can induce rapid and durable clinical responses but is associated with unique acute toxicities. Moreover, CAR-T cells are vulnerable to immunosuppressive mechanisms. Here, we report that CAR-T cells release extracellular vesicles, mostly in the form of exosomes that carry CAR on their surface. The CAR-containing exosomes express a high level of cytotoxic molecules and inhibit tumour growth. Compared with CAR-T cells, CAR exosomes do not express Programmed cell Death protein 1 (PD1), and their antitumour effect cannot be weakened by recombinant PD-L1 treatment. In a preclinical in vivo model of cytokine release syndrome, the administration of CAR exosomes is relatively safe compared with CAR-T therapy. This study supports the use of exosomes as biomimetic nanovesicles that may be useful in future therapeutic approaches against tumours. Genetically engineered T cells expressing a chimeric antigen receptor (CAR-T cells) are a promising new treatment for cancer, but are associated with unique toxicities. Here, the authors test CAR-T-cell-derived exosomes as a surrogate for CAR-T cells and show that they can elicit a potent antitumour immune response in preclinical models of breast cancer with reduced signs of cytokine release syndrome compared with CAR-T therapy.
Collapse
|
15
|
Klampatsa A, O'Brien SM, Thompson JC, Rao AS, Stadanlick JE, Martinez MC, Liousia M, Cantu E, Cengel K, Moon EK, Singhal S, Eruslanov EB, Albelda SM. Phenotypic and functional analysis of malignant mesothelioma tumor-infiltrating lymphocytes. Oncoimmunology 2019; 8:e1638211. [PMID: 31428531 DOI: 10.1080/2162402x.2019.1638211] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Given the growing interest and promising preliminary results of immunotherapy in malignant pleural mesothelioma (MPM), it has become important to more fully understand the immune landscape in this tumor. This may be especially relevant in deciding who might benefit most from checkpoint blockade or agonist antibody therapy. Since the phenotype of tumor infiltrating lymphocytes (TILs) in MPM has not been fully described and their function has not been carefully assessed, we collected fresh tumor and blood from 22 patients undergoing surgical resection and analysed single cell suspensions by flow cytometry. The functionality of TILs was assessed by measurement of cytokine expression (IFN-γ) following overnight stimulation ex vivo. Results showed low numbers of CD8+ TILs whose function was either moderately or severely suppressed. The degree of TIL hypofunction did not correlate with the presence of co-existing macrophages or neutrophils, nor with expression of the inhibitory receptors PD-1, CD39 and CTLA-4. Hypofunction was associated with higher numbers of CD4 regulatory T cells (Tregs) and with expression of the inhibitory receptor TIGIT. On the other hand, presence of tissue-resident memory (Trm) cells and expression of TIM-3 on CD8+ cells were positively associated with cytokine production. However, Trm function was partially suppressed when the transcription factor Eomesodermin (Eomes) was co-expressed. Understanding the function of TILs in malignant mesothelioma may have clinical implications for immunotherapy, especially in choosing the best immunotherapy targets. Our data suggests that Treg cell blocking agents or TIGIT inhibitor antibodies might be especially valuable in these patients.
Collapse
Affiliation(s)
- Astero Klampatsa
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Shaun M O'Brien
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Thompson
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Abhishek S Rao
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jason E Stadanlick
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marina C Martinez
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Liousia
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Division of Cardiovascular Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Keith Cengel
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 2019; 567:525-529. [PMID: 30814730 DOI: 10.1038/s41586-019-0979-8] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/14/2019] [Indexed: 01/28/2023]
Abstract
T cells become dysfunctional when they encounter self antigens or are exposed to chronic infection or to the tumour microenvironment1. The function of T cells is tightly regulated by a combinational co-stimulatory signal, and dominance of negative co-stimulation results in T cell dysfunction2. However, the molecular mechanisms that underlie this dysfunction remain unclear. Here, using an in vitro T cell tolerance induction system in mice, we characterize genome-wide epigenetic and gene expression features in tolerant T cells, and show that they are distinct from effector and regulatory T cells. Notably, the transcription factor NR4A1 is stably expressed at high levels in tolerant T cells. Overexpression of NR4A1 inhibits effector T cell differentiation, whereas deletion of NR4A1 overcomes T cell tolerance and exaggerates effector function, as well as enhancing immunity against tumour and chronic virus. Mechanistically, NR4A1 is preferentially recruited to binding sites of the transcription factor AP-1, where it represses effector-gene expression by inhibiting AP-1 function. NR4A1 binding also promotes acetylation of histone 3 at lysine 27 (H3K27ac), leading to activation of tolerance-related genes. This study thus identifies NR4A1 as a key general regulator in the induction of T cell dysfunction, and a potential target for tumour immunotherapy.
Collapse
|
17
|
Perturbation in cellular redox homeostasis: Decisive regulator of T cell mediated immune responses. Int Immunopharmacol 2019; 67:449-457. [DOI: 10.1016/j.intimp.2018.12.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
|
18
|
Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. Mucosal Immunol 2018; 11:1591-1605. [PMID: 30115998 PMCID: PMC6279574 DOI: 10.1038/s41385-018-0072-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 02/04/2023]
Abstract
Human mucosal-associated invariant T (MAIT) cell receptors (TCRs) recognize bacterial riboflavin pathway metabolites through the MHC class 1-related molecule MR1. However, it is unclear whether MAIT cells discriminate between many species of the human microbiota. To address this, we developed an in vitro functional assay through human T cells engineered for MAIT-TCRs (eMAIT-TCRs) stimulated by MR1-expressing antigen-presenting cells (APCs). We then screened 47 microbiota-associated bacterial species from different phyla for their eMAIT-TCR stimulatory capacities. Only bacterial species that encoded the riboflavin pathway were stimulatory for MAIT-TCRs. Most species that were high stimulators belonged to Bacteroidetes and Proteobacteria phyla, whereas low/non-stimulator species were primarily Actinobacteria or Firmicutes. Activation of MAIT cells by high- vs low-stimulating bacteria also correlated with the level of riboflavin they secreted or after bacterial infection of macrophages. Remarkably, we found that human T-cell subsets can also present riboflavin metabolites to MAIT cells in a MR1-restricted fashion. This T-T cell-mediated signaling also induced IFNγ, TNF and granzyme B from MAIT cells, albeit at lower level than professional APC. These findings suggest that MAIT cells can discriminate and categorize complex human microbiota through computation of TCR signals depending on antigen load and presenting cells, and fine-tune their functional responses.
Collapse
|
19
|
Perales-Puchalt A, Svoronos N, Villarreal DO, Zankharia U, Reuschel E, Wojtak K, Payne KK, Duperret EK, Muthumani K, Conejo-Garcia JR, Weiner DB. IL-33 delays metastatic peritoneal cancer progression inducing an allergic microenvironment. Oncoimmunology 2018; 8:e1515058. [PMID: 30546956 PMCID: PMC6287802 DOI: 10.1080/2162402x.2018.1515058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is frequently diagnosed as peritoneal carcinomatosis. Unlike other tumor locations, the peritoneal cavity is commonly exposed to gut-breaching and ascending genital microorganisms and has a unique immune environment. IL-33 is a local cytokine that can activate innate and adaptive immunity. We studied the effectiveness of local IL-33 delivery in the treatment of cancer that has metastasized to the peritoneal cavity. Direct peritoneal administration of IL-33 delayed the progression of metastatic peritoneal cancer. Prolongation in survival was not associated with a direct effect of IL-33 on tumor cells, but with major changes in the immune microenvironment of the tumor. IL-33 promoted a significant increase in the leukocyte compartment of the tumor immunoenvironment and an allergic cytokine profile. We observed a substantial increase in the number of activated CD4+ T-cells accompanied by peritoneal eosinophil infiltration, B-cell activation and activation of peritoneal macrophages which displayed tumoricidal capacity. Depletion of CD4+ cells, eosinophils or macrophages reduced the anti-tumor effects of IL-33 but none of these alone were sufficient to completely abrogate its positive benefit. In conclusion, local administration of IL-33 generates an allergic tumor environment resulting in a novel approach for treatment of metastatic peritoneal malignancies, such as advanced ovarian cancer.
Collapse
Affiliation(s)
| | - Nikolaos Svoronos
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA
| | - Daniel O Villarreal
- Department of Pathology, University of Pennsylvania, Philadelphia, PA USA.,Oncology Discovery, Janssen R&D, Spring House, PA, USA
| | - Urvi Zankharia
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadlephia, PA, USA
| | - Emma Reuschel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadlephia, PA, USA
| | - Krzysztof Wojtak
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadlephia, PA, USA
| | - Kyle K Payne
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | | | - Kar Muthumani
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadlephia, PA, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadlephia, PA, USA
| |
Collapse
|
20
|
Agosto LM, Henderson AJ. CD4 + T Cell Subsets and Pathways to HIV Latency. AIDS Res Hum Retroviruses 2018; 34:780-789. [PMID: 29869531 DOI: 10.1089/aid.2018.0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Latent infection of CD4+ T cells is the main barrier to eradicating HIV-1 infection from infected patients. The cellular and molecular mechanisms involved in the establishment and maintenance of latent infection are directly linked to the transcriptional program of the different CD4+ T cell subsets targeted by the virus. In this review, we provide an overview of how T cell activation, T cell differentiation into functional subsets, and the mode of initial viral infection influence HIV proviral transcription and entry into latency.
Collapse
Affiliation(s)
- Luis M. Agosto
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Andrew J. Henderson
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
21
|
Jeong JS, Kim HY, Shin BS, Lee AR, Yoon JH, Hahm TS, Lee JE. Increased expression of the Cbl family of E3 ubiquitin ligases decreases Interleukin-2 production in a rat model of peripheral neuropathy. BMC Anesthesiol 2018; 18:87. [PMID: 30021515 PMCID: PMC6052554 DOI: 10.1186/s12871-018-0555-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/27/2018] [Indexed: 11/25/2022] Open
Abstract
Background Interleukin 2 (IL-2) influences the development and severity of pain due to its antinociceptive and immunomodulatory effects. Its production is influenced by the increased expression of c-Cbl (Casitas B-lineage lymphoma proto-oncogene) and Cbl-b E3 ubiquitin ligases. We evaluated the effects on IL-2-mediated changes in c-Cbl and Cbl-b expression in a rat model of chronic neuropathic pain. Methods Peripheral neuropathy was induced in adult male Sprague-Dawley rats weighing 250–300 g by chronic spinal nerve ligation. Half of the spinal cord ipsilateral to the nerve injury was harvested at 1, 3, and 6 weeks, and the expression levels of IL-2, c-Cbl, Cbl-b, phospholipase C-γ1 (PLC-γ1), ZAP70, and protein kinase Cθ (PKCθ), as well as ubiquitin conjugation, were evaluated. Results Total IL-2 mRNA levels were significantly decreased at 3 and 6 weeks after nerve injury compared to those in sham-operated rats. The mRNA levels of c-Cbl and Cbl-b, as well as the level of ubiquitin conjugation, were significantly increased at 3 and 6 weeks. In contrast, the levels of phosphorylated ZAP70 and PLC-γ1 were decreased at 3 and 6 weeks after spinal nerve ligation. Ubiquitination of PLC-γ1 and PKCθ was increased at 3 and 6 weeks. Conclusions Our results suggest that ubiquitin and the E3 ubiquitin ligases c-Cbl and Cbl-b function as neuroimmune modulators in the subacute phase of neuropathic pain after nerve injury.
Collapse
Affiliation(s)
- Ji Seon Jeong
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Ha Yeon Kim
- Department of Anesthesiology and Pain Medicine, Ajou University Medical Center, Ajou University, School of Medicine, Seoul, South Korea
| | - Byung Seop Shin
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Ae Ryoung Lee
- Department of Anesthesiology and Pain Medicine, Cheju National University Hospital, Jeju National University, School of Medicine, Jeju, South Korea
| | - Ji Hyun Yoon
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, South Korea
| | - Tae Soo Hahm
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Ja Eun Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| |
Collapse
|
22
|
Abstract
Chimeric antigen receptor (CAR) T-cells are redirected T-cells that can recognize cancer antigens in a major histocompatibility complex (MHC)-independent fashion. A typical CAR is comprised of two main functional domains: an extracellular antigen recognition domain, called a single-chain variable fragment (scFv), and an intracellular signaling domain. Based on the number of intracellular signaling molecules, CARs are categorized into four generations. CAR T-cell therapy has become a promising treatment for hematologic malignancies. However, results of its clinical trials on solid tumors have not been encouraging. Here, we described the structure of CARs and summarized the clinical trials of CD19-targeted CAR T-cells. The side effects, safety management, challenges, and future prospects of CAR T-cells for the treatment of cancer, particularly for solid tumors, were also discussed.
Collapse
Affiliation(s)
- Niaz Muhammad
- a Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences , Shaanxi Normal University , Xi'an , P.R. China
| | - Qinwen Mao
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Haibin Xia
- a Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences , Shaanxi Normal University , Xi'an , P.R. China
| |
Collapse
|
23
|
Dar AA, Bhat SA, Gogoi D, Gokhale A, Chiplunkar SV. Inhibition of Notch signalling has ability to alter the proximal and distal TCR signalling events in human CD3 + αβ T-cells. Mol Immunol 2017; 92:116-124. [PMID: 29078088 DOI: 10.1016/j.molimm.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023]
Abstract
The Notch signalling pathway is an important regulator of T cell function and is known to regulate the effector functions of T cells driven by T cell receptor (TCR). However, the mechanism integrating these pathways in human CD3+ αβ T cells is not well understood. The present study was carried out to investigate how Notch and TCR driven signalling are synchronized in human αβ T cells. Differential expression of Notch receptors, ligands, and target genes is observed on human αβ T cells which are upregulated on stimulation with α-CD3/CD28 mAb. Inhibition of Notch signalling by GSI-X inhibited the activation of T cells and affected proximal T cell signalling by regulating CD3-ζ chain expression. Inhibition of Notch signalling decreased the protein expression of CD3-ζ chain and induced expression of E3 ubiquitin ligase (GRAIL) in human αβ T cells. Apart from affecting proximal TCR signalling, Notch signalling also regulated the distal TCR signalling events. In the absence of Notch signalling, α-CD3/CD28 mAb induced activation and IFN-γ production by αβ T cells was down-modulated. The absence of Notch signalling in human αβ T cells inhibited proliferative responses despite strong signalling through TCR and IL-2 receptor. This study shows how Notch signalling cooperates with TCR signalling by regulating CD3-ζ chain expression to support proliferation and activation of human αβ T cells.
Collapse
Affiliation(s)
- Asif A Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Sajad A Bhat
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Dimpu Gogoi
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Abhiram Gokhale
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Shubhada V Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India.
| |
Collapse
|
24
|
Gautron AS, Juillerat A, Guyot V, Filhol JM, Dessez E, Duclert A, Duchateau P, Poirot L. Fine and Predictable Tuning of TALEN Gene Editing Targeting for Improved T Cell Adoptive Immunotherapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:312-321. [PMID: 29246309 PMCID: PMC5684446 DOI: 10.1016/j.omtn.2017.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022]
Abstract
Using a TALEN-mediated gene-editing approach, we have previously described a process for the large-scale manufacturing of “off-the-shelf” CAR T cells from third-party donor T cells by disrupting the gene encoding TCRα constant chain (TRAC). Taking advantage of a previously described strategy to control TALEN targeting based on the exclusion capacities of non-conventional RVDs, we have developed highly efficient and specific nucleases targeting a key T cell immune checkpoint, PD-1, to improve engineered CAR T cells’ functionalities. Here, we demonstrate that this approach allows combined TRAC and PDCD1 TALEN processing at the desired locus while eliminating low-frequency off-site processing. Thus, by replacing few RVDs, we provide here an easy and rapid redesign of optimal TALEN combinations. We anticipate that this method can greatly benefit multiplex editing, which is of key importance especially for therapeutic applications where high editing efficiencies need to be associated with maximal specificity and safety.
Collapse
Affiliation(s)
| | | | - Valérie Guyot
- Cellectis SA, 8 Rue de la Croix Jarry, 75013 Paris, France
| | | | - Emilie Dessez
- Cellectis SA, 8 Rue de la Croix Jarry, 75013 Paris, France
| | | | | | - Laurent Poirot
- Cellectis SA, 8 Rue de la Croix Jarry, 75013 Paris, France
| |
Collapse
|
25
|
Goldmann O, Medina E. Staphylococcus aureus strategies to evade the host acquired immune response. Int J Med Microbiol 2017; 308:625-630. [PMID: 28939437 DOI: 10.1016/j.ijmm.2017.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus poses a significant public-health problem. Infection caused by S. aureus can manifest as acute or long-lasting persistent diseases that are often refractory to antibiotic and are associated with significant morbidity and mortality. To develop more effective strategies for preventing or treating these infections, it is crucial to understand why the immune response is incapable to eradicate the bacterium. When S. aureus first infect the host, there is a robust activation of the host innate immune responses. Generally, S. aureus can survive this initial interaction due to the expression of a wide array of virulence factors that interfere with the host innate immune defenses. After this initial interaction the acquired immune response is the arm of the host defenses that will try to clear the pathogen. However, S. aureus is capable of maintaining infection in the host even in the presence of a robust antigen-specific immune response. Thus, understanding the mechanisms underlying the ability of S. aureus to escape immune surveillance by the acquired immune response will help uncover potentially important targets for the development of immune-based adjunctive therapies and more efficient vaccines. There are several lines of evidence that lead us to believe that S. aureus can directly or indirectly disable the acquired immune response. This review will discuss the different immune evasion strategies used by S. aureus to modulate the different components of the acquired immune defenses.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
26
|
Kim TD, Jung HR, Seo SH, Oh SC, Ban Y, Tan X, Min Kim J, Hyun Lee S, Koh DS, Jung H, Park YJ, Ran Yoon S, Doh J, Ha SJ, Choi I, Greenberg PD. MicroRNA-150 modulates intracellular Ca 2+ levels in naïve CD8 + T cells by targeting TMEM20. Sci Rep 2017; 7:2623. [PMID: 28572627 PMCID: PMC5453935 DOI: 10.1038/s41598-017-02697-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/19/2017] [Indexed: 11/09/2022] Open
Abstract
Regulation of intracellular Ca2+ signaling is a major determinant of CD8+ T cell responsiveness, but the mechanisms underlying this regulation of Ca2+ levels, especially in naïve CD8+ T cells, are not fully defined. Here, we showed that microRNA-150 (miR-150) controls intracellular Ca2+ levels in naïve CD8+ T cells required for activation by suppressing TMEM20, a negative regulator of Ca2+ extrusion. miR-150 deficiency increased TMEM20 expression, which resulted in increased intracellular Ca2+ levels in naïve CD8+ T cells. The subsequent increase in Ca2+ levels induced expression of anergy-inducing genes, such as Cbl-b, Egr2, and p27, through activation of NFAT1, as well as reduced cell proliferation, cytokine production, and the antitumor activity of CD8+ T cells upon antigenic stimulation. The anergy-promoting molecular milieu and function induced by miR-150 deficiency were rescued by reinstatement of miR-150. Additionally, knockdown of TMEM20 in miR-150-deficient naïve CD8+ T cells reduced intracellular Ca2+ levels. Our findings revealed that miR-150 play essential roles in controlling intracellular Ca2+ level and activation in naïve CD8+ T cells, which suggest a mechanism to overcome anergy induction by the regulation of intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea.
| | - Hong-Ryul Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering (I-Bio), POSTECH, Pohang, 37673, Republic of Korea
| | - Sang-Hwan Seo
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Youngho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Xiaoxia Tan
- Departments of Immunology and Medicine, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jung Min Kim
- NAR Center, Inc., Daejeon Oriental Hospital of Daejeon University, 22-5 Daeheung-dong, Jung-gu, Daejeon, 34929, Republic of Korea
| | - Sang Hyun Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Junsang Doh
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), POSTECH, Pohang, 37673, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea.
| | - Philip D Greenberg
- Departments of Immunology and Medicine, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|
27
|
Hung JT, Huang JR, Yu AL. Tailored design of NKT-stimulatory glycolipids for polarization of immune responses. J Biomed Sci 2017; 24:22. [PMID: 28335781 PMCID: PMC5364570 DOI: 10.1186/s12929-017-0325-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d–glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vβ as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan. .,Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
28
|
Noessner E. DGK-α: A Checkpoint in Cancer-Mediated Immuno-Inhibition and Target for Immunotherapy. Front Cell Dev Biol 2017; 5:16. [PMID: 28316970 PMCID: PMC5335622 DOI: 10.3389/fcell.2017.00016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is moving to the forefront of cancer treatments owing to impressive durable responses achieved with checkpoint blockade antibodies and adoptive T-cell therapy. Still, improvements are necessary since, overall, only a small percentage of patients benefit from current therapies. Here, I summarize evidence that DGK-α may represent an immunological checkpoint suppressing the activity of cytotoxic immunocytes in the tumor microenvironment. DGK-inhibitors can restore the antitumor function of tumor-suppressed adaptive and innate cytotoxic immunocytes. The activity of DGK-inhibitors lays downstream of current checkpoint blockade antibodies. Thus, synergistic effects are expected from combination strategies. Moreover, DGK-inhibitors may permit a double-strike attack on tumor cells as DGK-inhibition may not only re-instate immunological tumor attack but also may harm tumor cells directly by interfering with oncogenic survival pathways. Together, DGK-inhibitors have very promising characteristics and may be beneficially included into the armamentarium of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Elfriede Noessner
- Immunoanalytics Core Facility and Research Group Tissue Control of Immunocytes, Helmholtz Zentrum München München, Germany
| |
Collapse
|
29
|
Chloroquine inhibits human CD4 + T-cell activation by AP-1 signaling modulation. Sci Rep 2017; 7:42191. [PMID: 28169350 PMCID: PMC5294581 DOI: 10.1038/srep42191] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022] Open
Abstract
Chloroquine (CQ) is widely used as an anti-inflammatory therapeutic for rheumatic diseases. Although its modes of action on the innate immune system are well described, there is still insufficient knowledge about its direct effects on the adaptive immune system. Thus, we evaluated the influence of CQ on activation parameters of human CD4+ T-cells. CQ directly suppressed proliferation, metabolic activity and cytokine secretion of T-cells following anti-CD3/anti-CD28 activation. In contrast, CQ showed no effect on up-regulation of T-cell activation markers. CQ inhibited activation of all T helper cell subsets, although IL-4 and IL-13 secretion by Th2 cells were less influenced compared to other Th-specific cytokines. Up to 10 μM, CQ did not reduce cell viability, suggesting specific suppressive effects on T-cells. These properties of CQ were fully reversible in re-stimulation experiments. Analyses of intracellular signaling showed that CQ specifically inhibited autophagic flux and additionally activation of AP-1 by reducing phosphorylation of c-JUN. This effect was mediated by inhibition of JNK catalytic activity. In summary, we characterized selective and reversible immunomodulatory effects of CQ on human CD4+ T-cells. These findings provide new insights into the biological actions of JNK/AP-1 signaling in T-cells and may help to expand the therapeutic spectrum of CQ.
Collapse
|
30
|
Zeng P, Ma J, Yang R, Liu YC. Immune Regulation by Ubiquitin Tagging as Checkpoint Code. Curr Top Microbiol Immunol 2017; 410:215-248. [PMID: 28929193 DOI: 10.1007/82_2017_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is equipped with effective machinery to mobilize its activation to defend invading microorganisms, and at the same time, to refrain from attacking its own tissues to maintain immune tolerance. The balance of activation and tolerance is tightly controlled by diverse mechanisms, since breakdown of tolerance could result in disastrous consequences such as the development of autoimmune diseases. One of the mechanisms is by the means of protein ubiquitination, which involves the process of tagging a small peptide ubiquitin to protein substrates. E3 ubiquitin ligases are responsible for catalyzing the final step of ubiquitin-substrate conjugation by specifically recognizing substrates to determine their fates of degradation or functional modification. The ubiquitination process is reversible, which is carried out by deubiquitinating enzymes to release the ubiquitin molecule from the conjugated substrates. Protein ubiquitination and deubiquitination serve as checkpoint codes in many key steps of lymphocyte regulation including the development, activation, differentiation, and tolerance induction. In this chapter, we will discuss a few E3 ligases and deubiquitinating enzymes that are important in controlling immune responses, with emphasis on their roles in T cells.
Collapse
Affiliation(s)
- Peng Zeng
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jieyu Ma
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Runqing Yang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.
| |
Collapse
|
31
|
Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S. Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:19-31. [PMID: 29275462 PMCID: PMC6693322 DOI: 10.1007/978-3-319-67577-0_2] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Most cancers express tumor antigens that can be recognized by T cells of the host. The fact that cancers become clinically evident nonetheless implies that immune escape must occur. Two major subsets of human melanoma metastases have been identified based on gene expression profiling. One subgroup has a T cell-inflamed phenotype that includes expression of chemokines, T cell markers, and a type I IFN signature. In contrast, the other major subset lacks this phenotype and has been designated as non-T cell-inflamed. The mechanisms of immune escape are likely distinct in these two phenotypes, and therefore the optimal immunotherapeutic interventions necessary to promote clinical responses may be different. The T cell-inflamed tumor microenvironment subset shows the highest expression of negative regulatory factors, including PD-L1, IDO, FoxP3+ Tregs, and evidence for T cell-intrinsic anergy. Therapeutic strategies to overcome these inhibitory mechanisms are being pursued, and anti-PD-1 mAbs have been FDA approved. The presence of multiple inhibitory mechanisms in the same tumor microenvironment argues that combination therapies may be advantageous, several of which are in clinical testing. A new paradigm may be needed to promote de novo inflammation in cases of the non-T cell-infiltrated tumor microenvironment. Natural innate immune sensing of tumors appears to occur via the host STING pathway, type I IFN production, and cross-priming of T cells via CD8α+ DCs. New strategies are being developed to engage this pathway therapeutically, such as through STING agonists. The molecular mechanisms that mediate the presence or absence of the T cell-inflamed tumor microenvironment are being elucidated using parallel genomics platforms. The first oncogene pathway identified that mediates immune exclusion is the Wnt/β-catenin pathway, suggesting that new pharmacologic strategies to target this pathway should be developed to restore immune access to the tumor microenvironment.
Collapse
|
32
|
Young JS, Daniels MD, Miller ML, Wang T, Zhong R, Yin D, Alegre ML, Chong AS. Erosion of Transplantation Tolerance After Infection. Am J Transplant 2017; 17:81-90. [PMID: 27273890 PMCID: PMC5938732 DOI: 10.1111/ajt.13910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 01/25/2023]
Abstract
Recent clinical studies suggest that operational allograft tolerance can be persistent, but long-term surviving allografts can be rejected in a subset of patients, sometimes after episodes of infection. In this study, we examined the impact of Listeria monocytogenes (Lm) infection on the quality of tolerance in a mouse model of heart allograft transplantation. Lm infection induced full rejection in 40% of tolerant recipients, with the remaining experiencing a rejection crisis or no palpable change in their allografts. In the surviving allografts on day 8 postinfection, graft-infiltrating cell numbers increased and exhibited a loss in the tolerance gene signature. By day 30 postinfection, the tolerance signature was broadly restored, but with a discernible reduction in the expression of a subset of 234 genes that marked tolerance and was down-regulated at day 8 post-Lm infection. We further demonstrated that the tolerant state after Lm infection was functionally eroded, as rejection of the long-term surviving graft was induced with anti-PD-L1 whereas the same treatment had no effect in noninfected tolerant mice. Collectively, these observations demonstrate that tolerance, even if initially robust, exists as a continuum that can be eroded following bystander immune responses that accompany certain infections.
Collapse
Affiliation(s)
- James S Young
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
| | - Melvin D Daniels
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
- Department of Biological Sciences, Chicago State University, Chicago, IL 60628
| | - Michelle L Miller
- Section of Rheumatology, Department of Medicine, Chicago State University, Chicago, IL 60628
| | - Tongmin Wang
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
| | - Rong Zhong
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
| | - Dengping Yin
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, Chicago State University, Chicago, IL 60628
| | - Anita S. Chong
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
| |
Collapse
|
33
|
Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4. Proc Natl Acad Sci U S A 2016; 113:10649-54. [PMID: 27601670 DOI: 10.1073/pnas.1605885113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.
Collapse
|
34
|
Effector, Memory, and Dysfunctional CD8(+) T Cell Fates in the Antitumor Immune Response. J Immunol Res 2016; 2016:8941260. [PMID: 27314056 PMCID: PMC4893440 DOI: 10.1155/2016/8941260] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/28/2016] [Indexed: 12/31/2022] Open
Abstract
The adaptive immune system plays a pivotal role in the host's ability to mount an effective, antigen-specific immune response against tumors. CD8(+) tumor-infiltrating lymphocytes (TILs) mediate tumor rejection through recognition of tumor antigens and direct killing of transformed cells. In growing tumors, TILs are often functionally impaired as a result of interaction with, or signals from, transformed cells and the tumor microenvironment. These interactions and signals can lead to transcriptional, functional, and phenotypic changes in TILs that diminish the host's ability to eradicate the tumor. In addition to effector and memory CD8(+) T cells, populations described as exhausted, anergic, senescent, and regulatory CD8(+) T cells have been observed in clinical and basic studies of antitumor immune responses. In the context of antitumor immunity, these CD8(+) T cell subsets remain poorly characterized in terms of fate-specific biomarkers and transcription factor profiles. Here we discuss the current characterization of CD8(+) T cell fates in antitumor immune responses and discuss recent insights into how signals in the tumor microenvironment influence TIL transcriptional networks to promote CD8(+) T cell dysfunction.
Collapse
|
35
|
Zhang H, Ye ZL, Yuan ZG, Luo ZQ, Jin HJ, Qian QJ. New Strategies for the Treatment of Solid Tumors with CAR-T Cells. Int J Biol Sci 2016; 12:718-29. [PMID: 27194949 PMCID: PMC4870715 DOI: 10.7150/ijbs.14405] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/16/2016] [Indexed: 01/11/2023] Open
Abstract
Recent years, we have witnessed significant progresses in both basic and clinical studies regarding novel therapeutic strategies with genetically engineered T cells. Modification with chimeric antigen receptors (CARs) endows T cells with tumor specific cytotoxicity and thus induce anti-tumor immunity against malignancies. However, targeting solid tumors is more challenging than targeting B-cell malignancies with CAR-T cells because of the histopathological structure features, specific antigens shortage and strong immunosuppressive environment of solid tumors. Meanwhile, the on-target/off-tumor toxicity caused by relative expression of target on normal tissues is another issue that should be reckoned. Optimization of the design of CAR vectors, exploration of new targets, addition of safe switches and combination with other treatments bring new vitality to the CAR-T cell based immunotherapy against solid tumors. In this review, we focus on the major obstacles limiting the application of CAR-T cell therapy toward solid tumors and summarize the measures to refine this new cancer therapeutic modality.
Collapse
Affiliation(s)
- Hao Zhang
- 1. Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Zhen-Long Ye
- 1. Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Zhen-Gang Yuan
- 1. Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Zheng-Qiang Luo
- 2. Xinyuan Institute of Medicine and Biotechnology College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hua-Jun Jin
- 1. Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Qi-Jun Qian
- 1. Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China;; 2. Xinyuan Institute of Medicine and Biotechnology College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China;; 3. Ningbo NO.5 Hospital (Ningbo Cancer Hospital), Ningbo 315201, China
| |
Collapse
|
36
|
Aldridge A, O'Neill SM. Fasciola hepatica tegumental antigens induce anergic-like T cells via dendritic cells in a mannose receptor-dependent manner. Eur J Immunol 2016; 46:1180-92. [PMID: 26931640 DOI: 10.1002/eji.201545905] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 11/11/2022]
Abstract
FoxP3(+) Treg cells and anergic T cells are the two regulatory phenotypes of T-cell responses associated with helminth infection. Here, we examine the T-cell responses in mice during Fasciola hepatica infection, and to its tegumental coat antigens (FhTeg) that are shed from the fluke every 2-3 h. FhTeg comprises a rich source of glycoproteins, mainly oligomannose N-glycans that bind to mannose receptor. This study demonstrated a novel mechanism for the T-cell unresponsiveness observed during F. hepatica infection and after injection with FhTeg. Markers of T-cell anergy, such as GRAIL, EGR2, ICOS, and ITCH, are enhanced amongst CD4(+) T-cell populations during infection and following FhTeg injection. This is characterized by a lack of cytokine responses and reduced proliferative activity, which can be reversed with the addition of IL-2. FhTeg-activated dendritic cells (DCs) suppress T cells in vitro as measured by enhanced GRAIL and CTLA4 by RNA and suppressed cytokine expression in anti-CD3 stimulated CD4(+) T cells. FhTeg-treated DCs have enhanced MR expression, which is critical for DC-CD4(+) T-cell communication. Taken together, this study presents markers of anergy in a mouse model of F. hepatica infection, and improves our understanding of host-pathogen interactions and how helminths modulate host immunity.
Collapse
Affiliation(s)
- Allison Aldridge
- Fundamental and Translational Immunology Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - Sandra M O'Neill
- Fundamental and Translational Immunology Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
37
|
Leonard B, Starrett GJ, Maurer MJ, Oberg AL, Van Bockstal M, Van Dorpe J, De Wever O, Helleman J, Sieuwerts AM, Berns EMJJ, Martens JWM, Anderson BD, Brown WL, Kalli KR, Kaufmann SH, Harris RS. APOBEC3G Expression Correlates with T-Cell Infiltration and Improved Clinical Outcomes in High-grade Serous Ovarian Carcinoma. Clin Cancer Res 2016; 22:4746-55. [PMID: 27016308 PMCID: PMC5026552 DOI: 10.1158/1078-0432.ccr-15-2910] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/09/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE APOBEC3 DNA cytosine deaminase family members normally defend against viruses and transposons. However, deregulated APOBEC3 activity causes mutations in cancer. Because of broad expression profiles and varying mixtures of normal and cancer cells in tumors, including immune cell infiltration, it is difficult to determine where different APOBEC3s are expressed. Here, we ask whether correlations exist between APOBEC3 expression and T-cell infiltration in high-grade serous ovarian cancer (HGSOC), and assess whether these correlations have prognostic value. EXPERIMENTAL DESIGN Transcripts for APOBEC3G, APOBEC3B, and the T-cell markers, CD3D, CD4, CD8A, GZMB, PRF1, and RNF128 were quantified by RT-qPCR for a cohort of 354 HGSOC patients. Expression values were correlated with each other and clinical parameters. Two additional cohorts were used to extend HGSOC clinical results. Immunoimaging was used to colocalize APOBEC3G and the T-cell marker CD3. TCGA data extended expression analyses to additional cancer types. RESULTS A surprising positive correlation was found for expression of APOBEC3G and several T cell genes in HGSOC. Immunohistochemistry and immunofluorescent imaging showed protein colocalization in tumor-infiltrating T lymphocytes. High APOBEC3G expression correlated with improved outcomes in multiple HGSOC cohorts. TCGA data analyses revealed that expression of APOBEC3D and APOBEC3H also correlates with CD3D across multiple cancer types. CONCLUSIONS Our results identify APOBEC3G as a new candidate biomarker for tumor-infiltrating T lymphocytes and favorable prognoses for HGSOC. Our data also highlight the complexity of the tumor environment with respect to differential APOBEC family gene expression in both tumor and surrounding normal cell types. Clin Cancer Res; 22(18); 4746-55. ©2016 AACR.
Collapse
Affiliation(s)
- Brandon Leonard
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Gabriel J Starrett
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Matthew J Maurer
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Jozien Helleman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Els M J J Berns
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Brett D Anderson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - William L Brown
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kimberly R Kalli
- Women's Cancer Program, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota. Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
38
|
Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, Newick K, Lo A, June CH, Zhao Y, Moon EK. A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Res 2016; 76:1578-90. [PMID: 26979791 PMCID: PMC4800826 DOI: 10.1158/0008-5472.can-15-2524] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chimeric antigen receptor (CAR)-modified adoptive T-cell therapy has been successfully applied to the treatment of hematologic malignancies, but faces many challenges in solid tumors. One major obstacle is the immune-suppressive effects induced in both naturally occurring and genetically modified tumor-infiltrating lymphocytes (TIL) by inhibitory receptors (IR), namely PD1. We hypothesized that interfering with PD1 signaling would augment CAR T-cell activity against solid tumors. To address this possibility, we introduced a genetically engineered switch receptor construct, comprising the truncated extracellular domain of PD1 and the transmembrane and cytoplasmic signaling domains of CD28, into CAR T cells. We tested the effect of this supplement, "PD1CD28," on human CAR T cells targeting aggressive models of human solid tumors expressing relevant tumor antigens. Treatment of mice bearing large, established solid tumors with PD1CD28 CAR T cells led to significant regression in tumor volume due to enhanced CAR TIL infiltrate, decreased susceptibility to tumor-induced hypofunction, and attenuation of IR expression compared with treatments with CAR T cells alone or PD1 antibodies. Taken together, our findings suggest that the application of PD1CD28 to boost CAR T-cell activity is efficacious against solid tumors via a variety of mechanisms, prompting clinical investigation of this potentially promising treatment modality.
Collapse
Affiliation(s)
- Xiaojun Liu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Raghuveer Ranganathan
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Shuguang Jiang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Chongyun Fang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Jing Sun
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Soyeon Kim
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kheng Newick
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Albert Lo
- Department of Biomedical Sciences, School of Veterinary Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Carl H. June
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Yangbing Zhao
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Edmund K. Moon
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
39
|
Sharma B, Upadhyay R, Dua B, Khan NA, Katoch VM, Bajaj B, Joshi B. Mycobacterium tuberculosis secretory proteins downregulate T cell activation by interfering with proximal and downstream T cell signalling events. BMC Immunol 2015; 16:67. [PMID: 26552486 PMCID: PMC4640201 DOI: 10.1186/s12865-015-0128-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/20/2015] [Indexed: 01/18/2023] Open
Abstract
Background Mycobacterium tuberculosis (M. tuberculosis) modulates host immune response, mainly T cell responses for its own survival leading to disease or latent infection. The molecules and mechanisms utilized to accomplish immune subversion by M. tuberculosis are not fully understood. Understanding the molecular mechanism of T cell response to M. tuberculosis is important for development of efficacious vaccine against TB. Methods Here, we investigated effect of M. tuberculosis antigens Ag85A and ESAT-6 on T cell signalling events in CD3/CD28 induced Peripheral blood mononuclear cells (PBMCs) of PPD+ve healthy individuals and pulmonary TB patients. We studied CD3 induced intracellular calcium mobilization in PBMCs of healthy individuals and TB patients by spectrofluorimetry, CD3 and CD28 induced activation of mitogen activated protein kinases (MAPKs) in PBMCs of healthy individuals and TB patients by western blotting and binding of transcription factors NFAT and NFκB by Electrophorectic mobility shift assay (EMSA). Results We observed CD3 triggered modulations in free intracellular calcium concentrations in PPD+ve healthy individuals and pulmonary TB patients after the treatment of M. tuberculosis antigens. As regards the downstream signalling events, phosphorylation of MAPKs, Extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38 was curtailed by M. tuberculosis antigens in TB patients whereas, in PPD+ve healthy individuals only ERK1/2 phosphorylation was inhibited. Besides, the terminal signalling events like binding of transcription factors NFAT and NFκB was also altered by M. tuberculosis antigens. Altogether, our results suggest that M. tuberculosis antigens, specifically ESAT-6, interfere with TCR/CD28-induced upstream as well as downstream signalling events which might be responsible for defective IL-2 production which further contributed in T-cell unresponsiveness, implicated in the progression of disease. Conclusion To the best of our knowledge, this is the first study to investigate effect of Ag85A and ESAT-6 on TCR- and TCR/CD28- induced upstream and downstream signalling events of T-cell activation in TB patients. This study showed the effect of secretory antigens of M. tuberculosis in the modulation of T cell signalling pathways. This inflection is accomplished by altering the proximal and distal events of signalling cascade which could be involved in T-cell dysfunctioning during the progression of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12865-015-0128-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bhawna Sharma
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Dr.M.Miyazaki Marg, Tajganj, Agra, 282001, India.
| | - Rajni Upadhyay
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Dr.M.Miyazaki Marg, Tajganj, Agra, 282001, India.
| | - Bhavyata Dua
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Dr.M.Miyazaki Marg, Tajganj, Agra, 282001, India.
| | - Naim Akhtar Khan
- UPRES EA 4183 Lipides & Signalisation Cellulaire, Faculté des Sciences de la vie, Université de Bourgogne, 6, Boulevard Gabriel, Dijon, 21000, France.
| | - Vishwa Mohan Katoch
- Formerly in Department of Health Research and ICMR, Ansari Nagar, New Delhi-29, India.
| | - Bharat Bajaj
- State TB Training & Demonstration Centre, S.N. Medical College Campus, Agra, 282 002, India.
| | - Beenu Joshi
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Dr.M.Miyazaki Marg, Tajganj, Agra, 282001, India.
| |
Collapse
|
40
|
Xue G, Zippelius A, Wicki A, Mandala M, Tang F, Massi D, Hemmings BA. Integrated Akt/PKB Signaling in Immunomodulation and Its Potential Role in Cancer Immunotherapy. J Natl Cancer Inst 2015; 107:djv171. [DOI: 10.1093/jnci/djv171] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022] Open
|
41
|
Rochman Y, Yukawa M, Kartashov AV, Barski A. Functional characterization of human T cell hyporesponsiveness induced by CTLA4-Ig. PLoS One 2015; 10:e0122198. [PMID: 25860138 PMCID: PMC4393265 DOI: 10.1371/journal.pone.0122198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/08/2015] [Indexed: 01/08/2023] Open
Abstract
During activation, T cells integrate multiple signals from APCs and cytokine milieu. The blockade of these signals can have clinical benefits as exemplified by CTLA4-Ig, which blocks interaction of B7 co-stimulatory molecules on APCs with CD28 on T cells. Variants of CTLA4-Ig, abatacept and belatacept are FDA approved as immunosuppressive agents in arthritis and transplantation, yet murine studies suggested that CTLA4-Ig could be beneficial in a number of other diseases. However, detailed analysis of human CD4 cell hyporesponsivness induced by CTLA4-Ig has not been performed. Herein, we established a model to study the effect of CTLA4-Ig on the activation of human naïve T cells in a human mixed lymphocytes system. Comparison of human CD4 cells activated in the presence or absence of CTLA4-Ig showed that co-stimulation blockade during TCR activation does not affect NFAT signaling but results in decreased activation of NF-κB and AP-1 transcription factors followed by a profound decrease in proliferation and cytokine production. The resulting T cells become hyporesponsive to secondary activation and, although capable of receiving TCR signals, fail to proliferate or produce cytokines, demonstrating properties of anergic cells. However, unlike some models of T cell anergy, these cells did not possess increased levels of the TCR signaling inhibitor CBLB. Rather, the CTLA4-Ig-induced hyporesponsiveness was associated with an elevated level of p27kip1 cyclin-dependent kinase inhibitor.
Collapse
Affiliation(s)
- Yrina Rochman
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Masashi Yukawa
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Andrey V. Kartashov
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
42
|
Posada OM, Tate RJ, Grant MH. Toxicity of cobalt-chromium nanoparticles released from a resurfacing hip implant and cobalt ions on primary human lymphocytesin vitro. J Appl Toxicol 2015; 35:614-22. [DOI: 10.1002/jat.3100] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Olga M. Posada
- Biomedical Engineering Department; University of Strathclyde; Wolfson Centre Glasgow UK
| | - R. J. Tate
- Strathclyde Institute for Pharmacy & Biomedical Sciences; University of Strathclyde; Glasgow G4 0RE UK
| | - M. H. Grant
- Biomedical Engineering Department; University of Strathclyde; Wolfson Centre Glasgow UK
| |
Collapse
|
43
|
Buchan S, Manzo T, Flutter B, Rogel A, Edwards N, Zhang L, Sivakumaran S, Ghorashian S, Carpenter B, Bennett C, Freeman GJ, Sykes M, Croft M, Al-Shamkhani A, Chakraverty R. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:125-133. [PMID: 25404365 PMCID: PMC4272895 DOI: 10.4049/jimmunol.1401644] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exhaustion of chronically stimulated CD8(+) T cells is a significant obstacle to immune control of chronic infections or tumors. Although coinhibitory checkpoint blockade with anti-programmed death ligand 1 (PD-L1) Ab can restore functions to exhausted T cell populations, recovery is often incomplete and dependent upon the pool size of a quiescent T-bet(high) subset that expresses lower levels of PD-1. In a model in which unhelped, HY-specific CD8(+) T cells gradually lose function following transfer to male bone marrow transplantation recipients, we have explored the effect of shifting the balance away from coinhibition and toward costimulation by combining anti-PD-L1 with agonistic Abs to the TNFR superfamily members, OX40 and CD27. Several weeks following T cell transfer, both agonistic Abs, but especially anti-CD27, demonstrated synergy with anti-PD-L1 by enhancing CD8(+) T cell proliferation and effector cytokine generation. Anti-CD27 and anti-PD-L1 synergized by downregulating the expression of multiple quiescence-related genes concomitant with a reduced frequency of T-bet(high) cells within the exhausted population. However, in the presence of persistent Ag, the CD8(+) T cell response was not sustained and the overall size of the effector cytokine-producing pool eventually contracted to levels below that of controls. Thus, CD27-mediated costimulation can synergize with coinhibitory checkpoint blockade to switch off molecular programs for quiescence in exhausted T cell populations, but at the expense of losing precursor cells required to maintain a response.
Collapse
Affiliation(s)
- Sarah Buchan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton
| | - Teresa Manzo
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Barry Flutter
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Anne Rogel
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton
| | - Noha Edwards
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Lei Zhang
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Shivajanani Sivakumaran
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Sara Ghorashian
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Ben Carpenter
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Clare Bennett
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York
| | | | | | - Ronjon Chakraverty
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| |
Collapse
|
44
|
Banica LM, Besliu AN, Pistol GC, Stavaru C, Vlad V, Predeteanu D, Ionescu R, Stefanescu M, Matache C. Dysregulation of anergy-related factors involved in regulatory T cells defects in Systemic Lupus Erythematosus patients: Rapamycin and Vitamin D efficacy in restoring regulatory T cells. Int J Rheum Dis 2014; 19:1294-1303. [PMID: 25351606 DOI: 10.1111/1756-185x.12509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM Systemic Lupus Erythematosus (SLE) patients display dysfunctions in T cell activation and anergy. Therefore the aims of our study were to explore the expression of anergy-related factors in CD4+ T cells in relationship with regulatory T cells (Tregs) frequency in SLE patients and to identify strategies to redress these defects. METHOD Casitas B-cell lymphoma b (Cbl-b) and 'gene related to anergy in lymphocytes' (GRAIL) proteins were analyzed in peripheral blood mononuclear cells (PBMCs) from SLE patients and healthy donors (HD) by immunoblotting. cbl-b, grail, growth response factors (egr)2 and egr3 messenger RNAs (mRNAs) were evaluated by real-time polymerase chain reaction in SLE and HD PBMCs and CD4+ T cells. Phenotypic and functional characterization of CD4+ T cells was performed by flow cytometry. Tregs expansion protocol consisted in culturing CD4+ T cells for 14 or 21 days of experimental activation with anti-CD3 and anti-CD28 monoclonal antibodies, human recombinant interleukin (hrIL)-2, in the absence or presence of rapamycin (Rapa) or 1,25-(OH)2D3 (vitamin D: VitD). RESULTS SLE PBMCs expressed low levels of Cbl-b and GRAIL proteins. Both SLE PBMCs and CD4+ T cells expressed low levels of egr2/3 mRNAs. SLE patients had a reduced number of Tregs with impaired suppressive activity. An association between egr2 mRNA level in CD4+ T cells and Tregs percentage was identified. Experimental activation of CD4+ T cells in the presence of hrIL-2 and Rapa or VitD induced the expansion of SLE Tregs. However, on long-term, only Rapa exposure of SLE CD4+ T cells yielded high numbers of Tregs with sustained suppressive activity. CONCLUSION Our results suggest a new strategy to correct defects in CD4+ T cell tolerance mechanisms that may prove beneficial in SLE.
Collapse
Affiliation(s)
- Leontina M Banica
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Alina N Besliu
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania
| | - Gina C Pistol
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania
| | - Crina Stavaru
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania
| | - Violeta Vlad
- Department of Rheumatology and Internal Medicine, Sf. Maria Clinical Hospital, Bucharest, Romania
| | - Denisa Predeteanu
- Department of Rheumatology and Internal Medicine, Sf. Maria Clinical Hospital, Bucharest, Romania.,Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ruxandra Ionescu
- Department of Rheumatology and Internal Medicine, Sf. Maria Clinical Hospital, Bucharest, Romania.,Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Maria Stefanescu
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania
| | - Cristiana Matache
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania
| |
Collapse
|
45
|
Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 2014; 124:3725-40. [PMID: 25061873 DOI: 10.1172/jci72308] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/05/2014] [Indexed: 12/11/2022] Open
Abstract
Invariant natural killer T (iNKT) cells rapidly produce copious amounts of multiple cytokines after activation, thereby impacting a wide variety of different immune reactions. However, strong activation of iNKT cells with α-galactosylceramide (αGalCer) reportedly induces a hyporeactive state that resembles anergy. In contrast, we determined here that iNKT cells from mice pretreated with αGalCer retain cytotoxic activity and maintain the ability to respond to TCR-dependent as well as TCR-independent cytokine-mediated stimulation. Additionally, αGalCer-pretreated iNKT cells acquired characteristics of regulatory cells, including production and secretion of the immunomodulatory cytokine IL-10. Through the production of IL-10, αGalCer-pretreated iNKT cells impaired antitumor responses and reduced disease in experimental autoimmune encephalomyelitis, a mouse model of autoimmune disease. Furthermore, a subset of iNKT cells with a similar inhibitory phenotype and function were present in mice not exposed to αGalCer and were enriched in mouse adipose tissue and detectable in human PBMCs. These data demonstrate that IL-10-producing iNKT cells with regulatory potential (NKT10 cells) represent a distinct iNKT cell subset.
Collapse
|
46
|
Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R, Sun J, Kapoor V, Scholler J, Puré E, Milone MC, June CH, Riley JL, Wherry EJ, Albelda SM. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res 2014; 20:4262-73. [PMID: 24919573 DOI: 10.1158/1078-0432.ccr-13-2627] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Immunotherapy using vaccines or adoptively transferred tumor-infiltrating lymphocytes (TIL) is limited by T-cell functional inactivation within the solid tumor microenvironment. The purpose of this study was to determine whether a similar tumor-induced inhibition occurred with genetically modified cytotoxic T cells expressing chimeric antigen receptors (CAR) targeting tumor-associated antigens. EXPERIMENTAL DESIGN Human T cells expressing CAR targeting mesothelin or fibroblast activation protein and containing CD3ζ and 4-1BB cytoplasmic domains were intravenously injected into immunodeficient mice bearing large, established human mesothelin-expressing flank tumors. CAR TILs were isolated from tumors at various time points and evaluated for effector functions and status of inhibitory pathways. RESULTS CAR T cells were able to traffic into tumors with varying efficiency and proliferate. They were able to slow tumor growth, but did not cause regressions or cures. The CAR TILs underwent rapid loss of functional activity that limited their therapeutic efficacy. This hypofunction was reversible when the T cells were isolated away from the tumor. The cause of the hypofunction seemed to be multifactorial and was associated with upregulation of intrinsic T-cell inhibitory enzymes (diacylglycerol kinase and SHP-1) and the expression of surface inhibitory receptors (PD1, LAG3, TIM3, and 2B4). CONCLUSIONS Advanced-generation human CAR T cells are reversibly inactivated within the solid tumor microenvironment of some tumors by multiple mechanisms. The model described here will be an important tool for testing T cell-based strategies or systemic approaches to overcome this tumor-induced inhibition. Our results suggest that PD1 pathway antagonism may augment human CAR T-cell function.
Collapse
MESH Headings
- Animals
- BALB 3T3 Cells
- Cytotoxicity, Immunologic/immunology
- Endopeptidases
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gelatinases/genetics
- Gelatinases/immunology
- Gelatinases/metabolism
- Humans
- Immunotherapy, Adoptive
- Lymphocytes, Tumor-Infiltrating/immunology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mesothelin
- Mesothelioma/immunology
- Mesothelioma/metabolism
- Mesothelioma/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Serine Endopeptidases/genetics
- Serine Endopeptidases/immunology
- Serine Endopeptidases/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine,
| | - Liang-Chuan Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | | | - Caleph B Wilson
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | | | - Jing Sun
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | - Veena Kapoor
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | - John Scholler
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | - Ellen Puré
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | - James L Riley
- Department of Microbiology and Institute for Immunology
| | - E John Wherry
- Department of Microbiology and Institute for Immunology
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| |
Collapse
|
47
|
Peptide based immunotherapy: a pivotal tool for allergy treatment. Int Immunopharmacol 2014; 19:391-8. [PMID: 24530919 DOI: 10.1016/j.intimp.2014.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/25/2014] [Accepted: 01/29/2014] [Indexed: 11/20/2022]
Abstract
Immunotherapies with T-cell epitope peptides have shown a promising impact over allergic diseases as a potential therapeutic tool in in vitro and in vivo conditions. It is recognized as an effective treatment with long lasting clinical effects and subsequent reduction of the allergic inflammatory reactions. In this review, we have summarized the role of peptide based immunotherapy and emphasis has been given to the recent advancement in pollen, cat, hymenoptera venom, and food allergy.
Collapse
|
48
|
Zhou P, Shaffer DR, Alvarez Arias DA, Nakazaki Y, Pos W, Torres AJ, Cremasco V, Dougan SK, Cowley GS, Elpek K, Brogdon J, Lamb J, Turley SJ, Ploegh HL, Root DE, Love JC, Dranoff G, Hacohen N, Cantor H, Wucherpfennig KW. In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 2014; 506:52-7. [PMID: 24476824 DOI: 10.1038/nature12988] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Recent clinical trials showed that targeting of inhibitory receptors on T cells induces durable responses in a subset of cancer patients, despite advanced disease. However, the regulatory switches controlling T-cell function in immunosuppressive tumours are not well understood. Here we show that such inhibitory mechanisms can be systematically discovered in the tumour microenvironment. We devised an in vivo pooled short hairpin RNA (shRNA) screen in which shRNAs targeting negative regulators became highly enriched in murine tumours by releasing a block on T-cell proliferation upon tumour antigen recognition. Such shRNAs were identified by deep sequencing of the shRNA cassette from T cells infiltrating tumour or control tissues. One of the target genes was Ppp2r2d, a regulatory subunit of the PP2A phosphatase family. In tumours, Ppp2r2d knockdown inhibited T-cell apoptosis and enhanced T-cell proliferation as well as cytokine production. Key regulators of immune function can therefore be discovered in relevant tissue microenvironments.
Collapse
Affiliation(s)
- Penghui Zhou
- 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2]
| | - Donald R Shaffer
- 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] [3] Jounce Therapeutics, Cambridge, Massachusetts 02138, USA
| | | | - Yukoh Nakazaki
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Wouter Pos
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Alexis J Torres
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | - Stephanie K Dougan
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Glenn S Cowley
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kutlu Elpek
- 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Jounce Therapeutics, Cambridge, Massachusetts 02138, USA
| | - Jennifer Brogdon
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - John Lamb
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | - Hidde L Ploegh
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - J Christopher Love
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Glenn Dranoff
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Harvey Cantor
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
49
|
Huang JR, Tsai YC, Chang YJ, Wu JC, Hung JT, Lin KH, Wong CH, Yu AL. α-Galactosylceramide but Not Phenyl-Glycolipids Induced NKT Cell Anergy and IL-33–Mediated Myeloid-Derived Suppressor Cell Accumulation via Upregulation of egr2/3. THE JOURNAL OF IMMUNOLOGY 2014; 192:1972-81. [DOI: 10.4049/jimmunol.1302623] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Abstract
T cells are the master regulators of adaptive immune responses and maintenance of their tolerance is critical to prevent autoimmunity. However, in the case of carcinogenesis, the tumor microenvironment aids T-cell tolerance, which contributes to uncontrolled tumor growth. Recently, there has been significant progress in understanding the intrinsic extracellular (positive and negative costimulatory molecules on APCs) and intracellular mechanisms (E3 ubiquitin ligases, transcriptional and epigenetic repressors), as well as extrinsic mechanisms (Tregs and tolerogenic dendritic cells) that are required for the implementation and maintenance of T-cell tolerance. Ultimately, understanding and manipulating T-cell tolerance will help to break the tolerance state in cancer.
Collapse
Affiliation(s)
- Roza Nurieva
- Department of Immunology & Center for Inflammation & Cancer, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junmei Wang
- Department of Immunology & Center for Inflammation & Cancer, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anupama Sahoo
- Department of Immunology & Center for Inflammation & Cancer, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|