1
|
Mascareno E, Gupta R, Martello LA, Dhar-Mascareno M, Salciccioli L, Beckles D, Walsh MG, Machado FS, Tanowitz HB, Haseeb M. Rapidly progressive course of Trypanosoma cruzi infection in mice heterozygous for hexamethylene bis-acetamide inducible 1 (Hexim1) gene. Microbes Infect 2018; 20:25-36. [DOI: 10.1016/j.micinf.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023]
|
2
|
Gunter SM, Jones KM, Zhan B, Essigmann HT, Murray KO, Garcia MN, Gorchakov R, Bottazzi ME, Hotez PJ, Brown EL. Identification and Characterization of the Trypanosoma cruzi B-cell Superantigen Tc24. Am J Trop Med Hyg 2015; 94:114-121. [PMID: 26598565 PMCID: PMC4710414 DOI: 10.4269/ajtmh.15-0438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi causes life-long disease after infection and leads to cardiac disease in 30% of infected individuals. After infection, the parasites are readily detectable in the blood during the first few days before disseminating to infect numerous cell types. Preliminary data suggested that the Tc24 protein that localizes to the T. cruzi membrane during all life stages possesses B-cell superantigenic properties. These antigens facilitate immune escape by interfering with antibody-mediated responses, particularly the avoidance of catalytic antibodies. These antibodies are an innate host defense mechanism present in the naive repertoire, and catalytic antibody–antigen binding results in hydrolysis of the target. We tested the B-cell superantigenic properties of Tc24 by comparing the degree of Tc24 hydrolysis by IgM purified from either Tc24 unexposed or exposed mice and humans. Respective samples were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, silver stained, and the degree of hydrolysis was measured. Data presented in this report suggest that the T. cruzi Tc24 is a B-cell superantigen based on the observations that 1) Tc24 was hydrolyzed by IgM present in serum of unexposed mice and humans and 2) exposure to Tc24 eliminated catalytic activity as early as 4 days after T. cruzi infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eric L. Brown
- *Address correspondence to Eric L. Brown, Center for Infectious Diseases, University of Texas School of Public Health, 1200 Pressler St. Houston, TX 77030. E-mail:
| |
Collapse
|
3
|
Trypanosoma cruzi infection in genetically selected mouse lines: genetic linkage with quantitative trait locus controlling antibody response. Mediators Inflamm 2014; 2014:952857. [PMID: 25197170 PMCID: PMC4146349 DOI: 10.1155/2014/952857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/21/2023] Open
Abstract
Trypanosoma cruzi infection was studied in mouse lines selected for maximal (AIRmax) or minimal (AIRmin) acute inflammatory reaction and for high (HIII) or low (LIII) antibody (Ab) responses to complex antigens. Resistance was associated with gender (females) and strain—the high responder lines AIRmax and HIII were resistant. The higher resistance of HIII as compared to LIII mice extended to higher infective doses and was correlated with enhanced production of IFN-γ and nitric oxide production by peritoneal and lymph node cells, in HIII males and females. We also analyzed the involvement of previously mapped Ab and T. cruzi response QTL with the survival of Selection III mice to T. cruzi infections in a segregating backcross [F1(HIII×LIII) ×LIII] population. An Ab production QTL marker mapping to mouse chromosome 1 (34.8 cM) significantly cosegregated with survival after acute T. cruzi infections, indicating that this region also harbors genes whose alleles modulate resistance to acute T. cruzi infection.
Collapse
|
4
|
Sanches TLM, Cunha LD, Silva GK, Guedes PMM, Silva JS, Zamboni DS. The use of a heterogeneously controlled mouse population reveals a significant correlation of acute phase parasitemia with mortality in Chagas disease. PLoS One 2014; 9:e91640. [PMID: 24651711 PMCID: PMC3961278 DOI: 10.1371/journal.pone.0091640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
Chagas disease develops upon infection with the protozoan parasite Trypanosoma cruzi and undergoes an acute phase characterized by massive parasite replication and the presence of parasites in the blood. This condition is known as acute phase parasitemia. This initial stage may result in a cure, in the development of the chronic stages of the disease or in the death of the infected host. Despite intensive investigation related to the characterization of the acute and chronic phases of the disease, the cause-effect relationship of acute phase parasitemia to the outcome of the disease is still poorly understood. In this study, we artificially generated a heterogeneously controlled mouse population by intercrossing F1 mice obtained from a parental breeding of highly susceptible A/J with highly resistant C57BL/6 mouse strains. This F2 population was infected and used to assess the correlation of acute phase parasitemia with the longevity of the animals. We used nonparametric statistical analyses and found a significant association between parasitemia and mortality. If males and females were evaluated separately, we found that the former were more susceptible to death, although parasitemia was similar in males and females. In females, we found a strong negative correlation between parasitemia and longevity. In males, however, additional factors independent of parasitemia may favor mouse mortality during the development of the disease. The correlations of acute phase parasitemia with mortality reported in this study may facilitate an appropriate prognostic approach to the disease in humans. Moreover, these results illustrate the complexity of the mammalian genetic traits that regulate host resistance during Chagas disease.
Collapse
Affiliation(s)
- Tiago L. M. Sanches
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Larissa D. Cunha
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Grace K. Silva
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Paulo M. M. Guedes
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
5
|
Šíma M, Havelková H, Quan L, Svobodová M, Jarošíková T, Vojtíšková J, Stassen APM, Demant P, Lipoldová M. Genetic control of resistance to Trypanosoma brucei brucei infection in mice. PLoS Negl Trop Dis 2011; 5:e1173. [PMID: 21666791 PMCID: PMC3110168 DOI: 10.1371/journal.pntd.0001173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/04/2011] [Indexed: 11/29/2022] Open
Abstract
Background Trypanosoma brucei brucei infects livestock, with severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to this parasite. However, no genes controlling these differences were mapped. Methods We studied the genetic control of survival after T. b. brucei infection using recombinant congenic (RC) strains, which have a high mapping power. Each RC strain of BALB/c-c-STS/A (CcS/Dem) series contains a different random subset of 12.5% genes from the parental “donor” strain STS/A and 87.5% genes from the “background” strain BALB/c. Although BALB/c and STS/A mice are similarly susceptible to T. b. brucei, the RC strain CcS-11 is more susceptible than either of them. We analyzed genetics of survival in T. b. brucei-infected F2 hybrids between BALB/c and CcS-11. CcS-11 strain carries STS-derived segments on eight chromosomes. They were genotyped in the F2 hybrid mice and their linkage with survival was tested by analysis of variance. Results We mapped four Tbbr (Trypanosoma brucei brucei response) loci that influence survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have effects on survival independent of inter-genic interactions (main effects). Tbbr3 (chromosome 7) influences survival in interaction with Tbbr4 (chromosome 19). Tbbr2 is located on a segment 2.15 Mb short that contains only 26 genes. Conclusion This study presents the first identification of chromosomal loci controlling susceptibility to T. b. brucei infection. While mapping in F2 hybrids of inbred strains usually has a precision of 40–80 Mb, in RC strains we mapped Tbbr2 to a 2.15 Mb segment containing only 26 genes, which will enable an effective search for the candidate gene. Definition of susceptibility genes will improve the understanding of pathways and genetic diversity underlying the disease and may result in new strategies to overcome the active subversion of the immune system by T. b. brucei. Trypanosoma brucei are extracellular protozoa transmitted to mammalian host by the tsetse fly. They developed several mechanisms that subvert host's immune defenses. Therefore analysis of genes affecting host's resistance to infection can reveal critical aspects of host-parasite interactions. Trypanosoma brucei brucei infects many animal species including livestock, with particularly severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to T. b. brucei. However, genes controlling susceptibility to this parasite have not been mapped. We analyzed the genetic control of survival after T. b. brucei infection using CcS/Dem recombinant congenic (RC) strains, each of which contains a different random set of 12.5% genes of their donor parental strain STS/A on the BALB/c genetic background. The RC strain CcS-11 is even more susceptible to parasites than BALB/c or STS/A. In F2 hybrids between BALB/c and CcS-11 we detected and mapped four loci, Tbbr1-4 (Trypanosoma brucei brucei response 1–4), that control survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have independent effects, Tbbr3 (chromosome 7) and Tbbr4 (chromosome 19) were detected by their mutual inter-genic interaction. Tbbr2 was precision mapped to a segment of 2.15 Mb that contains 26 genes.
Collapse
Affiliation(s)
- Matyáš Šíma
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lei Quan
- Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | | | - Taťána Jarošíková
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Jarmila Vojtíšková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Alphons P. M. Stassen
- Department of Genetics and Cell Biology/Clinical Genetics, Maastricht University, Maastricht, The Netherlands
| | - Peter Demant
- Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
6
|
Jann OC, King A, Corrales NL, Anderson SI, Jensen K, Ait-ali T, Tang H, Wu C, Cockett NE, Archibald AL, Glass EJ. Comparative genomics of Toll-like receptor signalling in five species. BMC Genomics 2009; 10:216. [PMID: 19432955 PMCID: PMC2689273 DOI: 10.1186/1471-2164-10-216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 05/11/2009] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Over the last decade, several studies have identified quantitative trait loci (QTL) affecting variation of immune related traits in mammals. Recent studies in humans and mice suggest that part of this variation may be caused by polymorphisms in genes involved in Toll-like receptor (TLR) signalling. In this project, we used a comparative approach to investigate the importance of TLR-related genes in comparison with other immunologically relevant genes for resistance traits in five species by associating their genomic location with previously published immune-related QTL regions. RESULTS We report the genomic localisation of TLR1-10 and ten associated signalling molecules in sheep and pig using in-silico and/or radiation hybrid (RH) mapping techniques and compare their positions with their annotated homologues in the human, cattle and mouse whole genome sequences. We also report medium-density RH maps for porcine chromosomes 8 and 13. A comparative analysis of the positions of previously published relevant QTLs allowed the identification of homologous regions that are associated with similar health traits in several species and which contain TLR related and other immunologically relevant genes. Additional evidence was gathered by examining relevant gene expression and association studies. CONCLUSION This comparative genomic approach identified eight genes as potentially causative genes for variations of health related traits. These include susceptibility to clinical mastitis in dairy cattle, general disease resistance in sheep, cattle, humans and mice, and tolerance to protozoan infection in cattle and mice. Four TLR-related genes (TLR1, 6, MyD88, IRF3) appear to be the most likely candidate genes underlying QTL regions which control the resistance to the same or similar pathogens in several species. Further studies are required to investigate the potential role of polymorphisms within these genes.
Collapse
Affiliation(s)
- Oliver C Jann
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, Edinburgh, EH25 9PS, UK
| | - Annemarie King
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, Edinburgh, EH25 9PS, UK
| | | | - Susan I Anderson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, Edinburgh, EH25 9PS, UK
| | - Kirsty Jensen
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, Edinburgh, EH25 9PS, UK
| | - Tahar Ait-ali
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, Edinburgh, EH25 9PS, UK
| | - Haizhou Tang
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, Edinburgh, EH25 9PS, UK
| | - Chunhua Wu
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 844322-4700 USA
| | - Noelle E Cockett
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 844322-4700 USA
| | - Alan L Archibald
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, Edinburgh, EH25 9PS, UK
| | - Elizabeth J Glass
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, Edinburgh, EH25 9PS, UK
| |
Collapse
|
7
|
Freitas JM, Andrade LO, Pires SF, Lima R, Chiari E, Santos RR, Soares M, Machado CR, Franco GR, Pena SDJ, Macedo AM. The MHC gene region of murine hosts influences the differential tissue tropism of infecting Trypanosoma cruzi strains. PLoS One 2009; 4:e5113. [PMID: 19337367 PMCID: PMC2659742 DOI: 10.1371/journal.pone.0005113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/04/2009] [Indexed: 11/25/2022] Open
Abstract
We have previously demonstrated that both parasite genetic variability and host genetic background were important in determining the differential tissue distribution of the Col1.7G2 and JG T. cruzi monoclonal strains after artificial infections in mice. We observed that the JG strain was most prevalent in hearts of mouse lineages with the MHC haplotype H-2d (BALB/c and DBA2), while Col1.7G2 was predominant in hearts from C57BL/6 mice, which have the H-2b haplotype. To assess whether the MHC gene region indeed influenced tissue tropism of T. cruzi, we used the same two parasite strains to infect C57BL/6 (H-2b) and C57BLKS/J (H-2d) mice; the latter strain results from the introgression of DBA2 MHC region into the C57BL/6 background. We also performed ex vivo infections of cardiac explants from four congenic mice lineages with the H-2b and H-2d haplotypes arranged in two different genetic backgrounds: C57BLKS/J (H-2d) versus C57BL/6 (H-2b) and BALB/c (H-2d) versus BALB/B10-H2b (H-2b). In agreement with our former observations, Col1.7G2 was predominant in hearts from C57BL/6 mice (H-2b), but we observed a clear predominance of the JG strain in hearts from C57BLKS/J animals (H-2d). In the ex vivo experiments Col1.7G2 also prevailed in explants from H-2b animals while no predominance of any of the strains was observed in H-2d mice explants, regardless of the genetic background. These observations clearly demonstrate that the MHC region influences the differential tissue distribution pattern of infecting T. cruzi strains, which by its turn may be in a human infection the determinant for the clinical forms of the Chagas disease.
Collapse
Affiliation(s)
- Jorge M. Freitas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana O. Andrade
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Simone F. Pires
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Lima
- Centro de pesquisas Gonçalo Moniz - CPqGM, Salvador Bahia, Brazil
| | - Egler Chiari
- Departamento de Parasitologia , Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Milena Soares
- Centro de pesquisas Gonçalo Moniz - CPqGM, Salvador Bahia, Brazil
| | - Carlos R. Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gloria R. Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio D. J. Pena
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andrea M. Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
8
|
Råberg L, Graham AL, Read AF. Decomposing health: tolerance and resistance to parasites in animals. Philos Trans R Soc Lond B Biol Sci 2009; 364:37-49. [PMID: 18926971 DOI: 10.1098/rstb.2008.0184] [Citation(s) in RCA: 559] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plant biologists have long recognized that host defence against parasites and pathogens can be divided into two conceptually different components: the ability to limit parasite burden (resistance) and the ability to limit the harm caused by a given burden (tolerance). Together these two components determine how well a host is protected against the effects of parasitism. This distinction is useful because it recognizes that hosts that are best at controlling parasite burdens are not necessarily the healthiest. Moreover, resistance and tolerance can be expected to have different effects on the epidemiology of infectious diseases and host-parasite coevolution. However, studies of defence in animals have to date focused on resistance, whereas the possibility of tolerance and its implications have been largely overlooked. The aim of our review is to (i) describe the statistical framework for analysis of tolerance developed in plant science and how this can be applied to animals, (ii) review evidence of genetic and environmental variation for tolerance in animals, and studies indicating which mechanisms could contribute to this variation, and (iii) outline avenues for future research on this topic.
Collapse
Affiliation(s)
- Lars Råberg
- Department of Animal Ecology, Lund University, Ecology Building, 223 63 Lund, Sweden.
| | | | | |
Collapse
|
9
|
Havelková H, Badalová J, Svobodová M, Vojtíková J, Kurey I, Vladimirov V, Demant P, Lipoldová M. Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun 2007; 7:220-33. [PMID: 16511555 DOI: 10.1038/sj.gene.6364290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Symptoms of human leishmaniasis range from subclinical to extensive systemic disease with splenomegaly, hepatomegaly, skin lesions, anemia and hyperglobulinemia, but the basis of this variation is unknown. Association of progression of the disease with Th2 lymphocyte response was reported in mice but not in humans. As most genetic studies in Leishmania major (L. major)-infected mice were restricted to skin lesions, we analyzed the symptomatology of leishmaniasis in mice by monitoring skin lesions, hepatomegaly, splenomegaly and seven immunological parameters. We detected and mapped 17 Leishmania major response (Lmr) gene loci that control the symptoms of infection. Surprisingly, the individual Lmr loci control 13 different combinations of pathological and immunological symptoms. Seven loci control both pathological and immunological parameters, 10 influence immunological parameters only. Moreover, the genetics of clinical symptoms is also very heterogeneous: loci Lmr13 and Lmr4 determine skin lesions only, Lmr5 and Lmr10 skin lesions and splenomegaly, Lmr14 and Lmr3 splenomegaly and hepatomegaly, Lmr3 (weakly) skin lesions, and Lmr15 hepatomegaly only. Only two immunological parameters, IgE and interferon-gamma serum levels, correlate partly with clinical manifestations. These findings extend the paradigm for the genetics of host response to infection to include numerous genes, each controlling a different set of organ-specific and systemic effects.
Collapse
Affiliation(s)
- H Havelková
- Department of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Graefe SEB, Streichert T, Budde BS, Nürnberg P, Steeg C, Müller-Myhsok B, Fleischer B. Genes from Chagas susceptibility loci that are differentially expressed in T. cruzi-resistant mice are candidates accounting for impaired immunity. PLoS One 2006; 1:e57. [PMID: 17183687 PMCID: PMC1762350 DOI: 10.1371/journal.pone.0000057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 10/20/2006] [Indexed: 11/19/2022] Open
Abstract
Variation between inbred mice of susceptibility to experimental Trypanosoma cruzi infection has frequently been described, but the immunogenetic background is poorly understood. The outcross of the susceptible parental mouse strains C57BL/6 (B6) and DBA/2 (D2), B6D2F1 (F1) mice, is highly resistant to this parasite. In the present study we show by quantitative PCR that the increase of tissue parasitism during the early phase of infection is comparable up to day 11 between susceptible B6 and resistant F1 mice. A reduction of splenic parasite burdens occurs thereafter in both strains but is comparatively retarded in susceptible mice. Splenic microarchitecture is progressively disrupted with loss of follicles and B lymphocytes in B6 mice, but not in F1 mice. By genotyping of additional backcross offspring we corroborate our earlier findings that susceptibility maps to three loci on Chromosomes 5, 13 and 17. Analysis of gene expression of spleen cells from infected B6 and F1 mice with microarrays identifies about 0.3% of transcripts that are differentially expressed. Assuming that differential susceptibility is mediated by altered gene expression, we propose that the following differentially expressed transcripts from these loci are strong candidates for the observed phenotypic variation: H2-Eα, H2-D1, Ng23, Msh5 and Tubb5 from Chromosome 17; and Cxcl11, Bmp2k and Spp1 from Chromosome 5. Our results indicate that innate mechanisms are not of primary relevance to resistance of F1 mice to T. cruzi infection, and that differential susceptibility to experimental infection with this protozoan pathogen is not paralleled by extensive variation of the transcriptome.
Collapse
Affiliation(s)
- Sebastian E B Graefe
- Institute for Immunology, University Hospital Eppendorf, Hamburg, Germany; Department for Medical Microbiology and Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Graefe SEB, Jacobs T, Wächter U, Bröker BM, Fleischer B. CTLA-4 regulates the murine immune response to Trypanosoma cruzi infection. Parasite Immunol 2004; 26:19-28. [PMID: 15198642 DOI: 10.1111/j.0141-9838.2004.00679.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infection with Trypanosoma cruzi causes a profound suppression of T cell responsiveness to polyclonal or antigenic stimuli. In this study, we quantified expression of the negative T cell regulatory molecule CTLA-4 in T. cruzi infected mice and analysed its influence on the immune suppression. Levels of splenic CTLA-4 expression were highest around day 10 after infection, reaching 5% in resistant B6D2F1 mice, but exceeding 10% of CD4(+) T cells in C57BL/6 mice that were susceptible to mortal disease. The proliferative response of explanted splenocytes to CD3-mediated stimulation was strongly suppressed in both the susceptible and the resistant strains. Blockade of CTLA-4 in vitro with a monoclonal antibody affected neither proliferative response nor cytokine production (IFN-gamma, IL-4 and IL-2) by splenic T cells from infected C57BL/6 mice. Treatment of mice with anti-CTLA-4 antibody on the day of infection decreased IFN-gamma production and reduced mortality by about 50%. We conclude that high CTLA-4 expression is a hallmark of severe disease in murine T. cruzi infection, and that CTLA-4 has a regulative influence at the early stages during priming of the immune reaction to the parasite, augmenting a strong Th1-biased response.
Collapse
Affiliation(s)
- S E B Graefe
- Bernhard-Nocht-Institute, Department of Immunology, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
12
|
Marinho CRF, Bucci DZ, Dagli MLZ, Bastos KRB, Grisotto MG, Sardinha LR, Baptista CRGM, Gonçalves CP, Lima MRD, Alvarez JM. Pathology affects different organs in two mouse strains chronically infected by a Trypanosoma cruzi clone: a model for genetic studies of Chagas' disease. Infect Immun 2004; 72:2350-7. [PMID: 15039360 PMCID: PMC375186 DOI: 10.1128/iai.72.4.2350-2357.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chagas' disease is a chronic infection caused by Trypanosoma cruzi and represents an important public health burden in Latin America. Frequently the disease evolves undetectable for decades, while in a significant fraction of the affected individuals it culminates in death by heart failure. Here, we describe a novel murine model of the chronic infection with T. cruzi using a stable clone isolated from a human patient (Sylvio X10/4). The infection in the C3H/HePAS mouse strain progresses chronically and is mainly characterized by intense cardiac inflammatory lesions that recapitulate the chronic cardiac pathology observed in the human disease. Moderate striated muscle lesions are also present in C3H/HePAS mice. Viable parasites are detected and recovered from the chronic heart lesions of C3H/HePAS mice, supporting the current notion that development of heart pathology in Chagas' disease is related to parasite persistence in the inflamed tissue. By contrast, in infected A/J mice, chronic inflammatory lesions are targeted to the liver and the skeletal muscle, while pathology and parasites are undetectable in the heart. The phenotypic analysis of F(1) (A/J x C3H/HePAS) and F(2) (A/J x C3H/HePAS) mice suggests that the genetic predisposition to develop the inflammatory lesions caused by T. cruzi (Sylvio X10/4 clone) is heterogeneous because the heart and liver pathology segregate in the F(2) generation. These findings raise the hypothesis that the pathology heterogeneity observed in humans with Chagas' disease (absence and presence of cardiac or digestive chronic lesions) may be attributable to host genetic factors.
Collapse
Affiliation(s)
- Claudio R F Marinho
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Graefe SEB, Jacobs T, Gaworski I, Klauenberg U, Steeg C, Fleischer B. Interleukin-12 but not interleukin-18 is required for immunity to Trypanosoma cruzi in mice. Microbes Infect 2003; 5:833-9. [PMID: 12919851 DOI: 10.1016/s1286-4579(03)00176-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protective immunity to the parasite Trypanosoma cruzi in mice depends on a pro-inflammatory T cell response involving the production of interferon-gamma (IFN-gamma). In conjunction with interleukin-12 (IL-12), IL-18 promotes the synthesis of IFN-gamma and a T helper type 1 immune response. We investigated the requirements of IL-12 and IL-18 in murine T. cruzi infection by use of C57BL/6 mice genetically deficient in either cytokine. IL-12p40(-/-) mice succumbed to infection at doses of 100 parasites, whereas IL-18(-/-) and wild-type mice resisted infectious doses up to 1000 parasites to the same extent. Levels of parasitemia were comparable between the latter groups, as were tissue parasite burdens according to quantitative real-time PCR. In contrast, IL-12p40(-/-) mice displayed vastly increased levels of parasites both in blood and in tissue. IFN-gamma concentrations in the serum of infected mice and in supernatants of splenocytes stimulated in vitro were decreased in IL-18(-/-) mice, whereas in IL-12p40(-/-) mice, IFN-gamma was undetectable in the serum and drastically reduced in cell supernatants. Levels of IL-12 production were generally comparable between wild-type and IL-18(-/-) mice, as were levels of IL-4, IL-2 and nitric oxide. Thus, the requirement for endogenous pro-inflammatory cytokines for a protective murine immune response against T. cruzi is satisfied by the expression of IL-12, while IL-18 is dispensable.
Collapse
Affiliation(s)
- Sebastian E B Graefe
- Department for Medical Microbiology and Immunology, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|