1
|
Crilly NP, Zita MD, Beaver AK, Sysa-Shah P, Bhalodia A, Gabrielson K, Adamo L, Mugnier MR. A murine model of Trypanosoma brucei-induced myocarditis and cardiac dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.560950. [PMID: 37873308 PMCID: PMC10592974 DOI: 10.1101/2023.10.05.560950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of T. brucei infection. Despite the importance of T. brucei as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of T. brucei-associated cardiomyopathy. We present the first clinically relevant, reproducible murine model of cardiac dysfunction in chronic T. brucei infection. Similar to humans, mice showed histological evidence of myocarditis and elevation of serum NT-proBNP with electrocardiographic abnormalities. Serum NT-proBNP levels were elevated prior to the development of severe ventricular dysfunction. On flow cytometry, myocarditis was associated with an increase of most myocardial immune cell populations, including multiple T cell and macrophage subsets, corroborating the notion that T. brucei-associated cardiac damage is an immune-mediated event. This novel mouse model represents a powerful and practical tool to investigate the pathogenesis of T. brucei-mediated heart damage and supports the development of therapeutic options for T. brucei-associated cardiac disease.
Collapse
Affiliation(s)
- Nathan P. Crilly
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcelle Dina Zita
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander K. Beaver
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Molecular Imaging Service Center and Cancer Functional Imaging Core, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aashik Bhalodia
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathy Gabrielson
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Monica R. Mugnier
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Wang L, Sun T, Liu X, Wang Y, Qiao X, Chen N, Liu F, Zhou X, Wang H, Shen H. Myocarditis: A multi-omics approach. Clin Chim Acta 2024; 554:117752. [PMID: 38184138 DOI: 10.1016/j.cca.2023.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Myocarditis, an inflammatory condition of weakened heart muscles often triggered by a variety of causes, that can result in heart failure and sudden death. Novel ways to enhance our understanding of myocarditis pathogenesis is available through newer modalities (omics). In this review, we examine the roles of various biomolecules and associated functional pathways across genomics, transcriptomics, proteomics, and metabolomics in the pathogenesis of myocarditis. Our analysis further explores the reproducibility and variability intrinsic to omics studies, underscoring the necessity and significance of employing a multi-omics approach to gain profound insights into myocarditis pathogenesis. This integrated strategy not only enhances our understanding of the disease, but also confirms the critical importance of a holistic multi-omics approach in disease analysis.
Collapse
Affiliation(s)
- Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tao Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Nuo Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fangqian Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaoxiang Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Jin U, Park SJ, Lee BG, Kim JB, Kim SJ, Joe EH, Woo HG, Park SM. Critical roles of parkin and PINK1 in coxsackievirus B3-induced viral myocarditis. Microbes Infect 2023; 25:105211. [PMID: 37574181 DOI: 10.1016/j.micinf.2023.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Viral myocarditis is an inflammatory disease of the myocardium, often leads to cardiac dysfunction and death. PARKIN (PRKN) and PINK1, well known as Parkinson's disease-associated genes, have been reported to be involved in innate immunity and mitochondrial damage control. Therefore, we investigated the role of parkin and PINK1 in coxsackievirus B3 (CVB3)-induced viral myocarditis because the etiology of myocarditis is related to abnormal immune response to viral infection and mitochondrial damage. After viral infection, the survival was significantly lower and myocardial damage was more severe in parkin knockout (KO) and PINK1 KO mice compared to wild-type (WT) mice. Parkin KO and PINK1 KO showed defective immune cell recruitment and impaired production of antiviral cytokines such as interferon-gamma, allowing increased viral replication. In addition, parkin KO and PINK1 KO mice were more susceptible to CVB3-induced mitochondrial damage than WT mice, resulting in susceptibility to viral-induced cardiac damage. Finally, using publicly available RNA-seq data, we found that pathogenic mutants of the PRKN gene are more common in patients with dilated cardiomyopathy and myocarditis than in controls or the general population. This study will help elucidate the molecular mechanism of CVB3-induced viral myocarditis.
Collapse
Affiliation(s)
- Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Cardiology, Ajou University School of Medicine, Suwon, South Korea
| | - Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Byoung Gil Lee
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Jae-Bong Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Soo Jeong Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Hyun Goo Woo
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
4
|
He W, Zhou L, Xu K, Li H, Wang JJ, Chen C, Wang D. Immunopathogenesis and immunomodulatory therapy for myocarditis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2112-2137. [PMID: 37002488 PMCID: PMC10066028 DOI: 10.1007/s11427-022-2273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 04/03/2023]
Abstract
Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - James Jiqi Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - DaoWen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
5
|
Mirna M, Paar V, Topf A, Kraus T, Sotlar K, Aigner A, Ewe A, Watzinger S, Podesser BK, Hackl M, Pistulli R, Hoppe UC, Kiss A, Lichtenauer M. A new player in the game: treatment with antagomiR-21a-5p significantly attenuates histological and echocardiographic effects of experimental autoimmune myocarditis. Cardiovasc Res 2022; 118:556-572. [PMID: 33483746 DOI: 10.1093/cvr/cvab015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Myocarditis is associated with formidable symptoms and increased risk of adverse outcomes. Current approaches mostly rely on symptomatic treatments, warranting novel concepts for clinical practice. The aim of this study was to investigate the microRNA (miRNA) expression profile of Balb/c mice with experimental autoimmune myocarditis (EAM), choose a representative miRNA to antagonize after review of available literature and test its effects on myocardial inflammation in vitro and in vivo. METHODS AND RESULTS Phase 1: EAM was induced in 12 male Balb/c mice, 10 animals served as controls. After sacrifice, next-generation sequencing (NGS) of the miRNA expression profile was performed. Based on these results, H9C2 cells and human ventricular cardiac fibroblasts exposed to lipopolysaccharide (LPS) were treated with the selected candidate antagomiR-21a-5p. Phase 2: EAM was induced in 48 animals. Thereof, 24 animals were either treated with antagomiR-21a-5p or negative control oligonucleotide in a nanoparticle formulation. Transthoracic echocardiography (TTE) was performed on Days 0, 7, 14, and 21. Histopathological examination was performed after sacrifice. Phase 1: EAM resulted in a significant up-regulation of 27 miRNAs, including miR-21a-5p (log2FC: 2.23, adj. P = 0.0026). Transfection with antagomiR-21a-5p resulted in a significant reduction of TNFα, IL-6, and collagen I in vitro. Phase 2: Treatment with antagomiR-21a-5p, formulated in polymeric nanoparticles for systemic injection, significantly attenuated myocardial inflammation (P = 0.001) and fibrosis (P = 0.013), as well as myocardial 'hypertrophy' on TTE. CONCLUSIONS Silencing of miR-21a-5p results in a significant reduction of the expression of pro-inflammatory cytokines in vitro, as well as a significant attenuation of inflammation, fibrosis and echocardiographic effects of EAM in vivo.
Collapse
Affiliation(s)
- Moritz Mirna
- Department of Cardiology, University Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Vera Paar
- Department of Cardiology, University Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Albert Topf
- Department of Cardiology, University Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Theo Kraus
- University Institute of Pathology, Paracelsus Medical University of Salzburg, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Karl Sotlar
- University Institute of Pathology, Paracelsus Medical University of Salzburg, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Achim Aigner
- Rudolf-Boehm-Institut for Pharmacology und Toxicology, Clinical Pharmacology, University of Leipzig, Faculty of Medicine, Haertelstraße 16-18, 04107 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institut for Pharmacology und Toxicology, Clinical Pharmacology, University of Leipzig, Faculty of Medicine, Haertelstraße 16-18, 04107 Leipzig, Germany
| | - Simon Watzinger
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna, Austria
| | | | - Rudin Pistulli
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, Albert-Schweitzer-Strasse 33, 48149 Muenster, Germany
| | - Uta C Hoppe
- Department of Cardiology, University Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna, Austria
| | - Michael Lichtenauer
- Department of Cardiology, University Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Muellner Hauptstrasse 48, 5020 Salzburg, Austria
| |
Collapse
|
6
|
The protective effect of interfering TLR9-IRF5 signaling pathway on the development of CVB3-induced myocarditis. Clin Immunol 2019; 207:24-35. [DOI: 10.1016/j.clim.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
|
7
|
Yang F, Jiang Y, Yang L, Qin J, Guo M, Lu Y, Chen H, Zhuang Y, Zhang J, Zhang H, Dai Z, Li M, Yang C, Chen M, Zhang Y, Zhao H. Molecular and Conventional Analysis of Acute Diarrheal Isolates Identifies Epidemiological Trends, Antibiotic Resistance and Virulence Profiles of Common Enteropathogens in Shanghai. Front Microbiol 2018; 9:164. [PMID: 29556217 PMCID: PMC5845389 DOI: 10.3389/fmicb.2018.00164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: To investigate prevalence of acute diarrhea in Shanghai and analyze virulence associated-genes and antibiotic resistance of major enteropathogens using combination of conventional and molecular epidemiology methods. Method: The 412 stool specimens were obtained by systematic sampling from diarrhea patients throughout entire year 2016. Bacterial and viral pathogens were identified and bacterial isolates were cultured and screened for antibiotic resistance profiles. Two most prevalent bacteria, Vibrio parahaemolyticus and Salmonella were further typed by multi-locus sequence typing (MLST) and analyzed for presence of virulence-associated genes. The association between virulence genes, resistance phenotypes and genetic diversities was analyzed. Results: Among stool specimens testing positive for pathogens (23.1%), 59 bacterial and 36 viral pathogens were identified. V. parahaemolyticus (27/412, 6.6%), Salmonella (23/412, 5.6%) and norovirus GII (21/412, 5.1%) were three most-commonly found. Most bacterial isolates exhibited high levels of antibiotic resistance with high percentage of MDR. The drug resistance rates of V. parahaemolyticus and Salmonella isolates to cephalosporins were high, such as 100.0 and 34.8% to CFX, 55.6 and 43.4% to CTX, 92.6 and 95.7% to CXM, respectively. The most common resistance combination of V. parahaemolyticus and Salmonella was cephalosporins and quinolone. The dominant sequence types (STs) of V. parahaemolyticus and Salmonella were ST3 (70.4%) and ST11 (43.5%), respectively. The detection rates of virulence genes in V. parahaemolyticus were tlh (100%) and tdh (92.6%), without trh and ureR. Most of the Salmonella isolates were positive for the Salmonella pathogenicity islands (SPIs) genes (87-100%), and some for Salmonella plasmid virulence (SPV) genes (34.8% for spvA and spvB, 43.5% for spvC). In addition, just like the drug resistance, virulence genes exhibited wide-spread distribution among the different STs albeit with some detectable frequency linkage among Salmonella STs. Conclusion: Bacterial infections are still the major cause of severe diarrheas in Shanghai. The most common bacteria V. parahaemolyticus and Salmonella show molecular characteristics consistent with preselection of highly virulent types with exceedingly high level of antibiotic resistance.
Collapse
Affiliation(s)
- Feng Yang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Yonggen Jiang
- Songjiang Center for Disease Control and Prevention, Shanghai, China
| | - Lihua Yang
- Songjiang Center for Disease Control and Prevention, Shanghai, China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuxia Lu
- Department of Gastroenterology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Hongyou Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jinghao Zhang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Laboratory Medicine, Children’s Hospital of Shanghai, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyun Dai
- Department of Infectious Diseases, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changqing Yang
- Department of Gastroenterology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Cleavage of osmosensitive transcriptional factor NFAT5 by Coxsackieviral protease 2A promotes viral replication. PLoS Pathog 2017; 13:e1006744. [PMID: 29220410 PMCID: PMC5738146 DOI: 10.1371/journal.ppat.1006744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/20/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5)/Tonicity enhancer binding protein (TonEBP) is a transcription factor induced by hypertonic stress in the kidney. However, the function of NFAT5 in other organs has rarely been studied, even though it is ubiquitously expressed. Indeed, although NFAT5 was reported to be critical for heart development and function, its role in infectious heart diseases has remained obscure. In this study, we aimed to understand the mechanism by which NFAT5 interferes with infection of Coxsackievirus B3 (CVB3), a major cause of viral myocarditis. Our initial results demonstrated that although the mRNA level of NFAT5 remained constant during CVB3 infection, NFAT5 protein level decreased because the protein was cleaved. Bioinformatic prediction and verification of the predicted site by site-directed mutagenesis experiments determined that the NFAT5 protein was cleaved by CVB3 protease 2A at Glycine 503. Such cleavage led to the inactivation of NFAT5, and the 70-kDa N-terminal cleavage product (p70-NFAT5) exerted a dominant negative effect on the full-length NFAT5 protein. We further showed that elevated expression of NFAT5 to counteract viral protease cleavage, especially overexpression of a non-cleavable mutant of NFAT5, significantly inhibited CVB3 replication. Ectopic expression of NFAT5 resulted in elevated expression of inducible nitric oxide synthase (iNOS), a factor reported to inhibit CVB3 replication. The necessity of iNOS for the anti-CVB3 effect of NFAT5 was supported by the observation that inhibition of iNOS blocked the anti-CVB3 effect of NFAT5. In a murine model of viral myocarditis, we observed that treatment with hypertonic saline or mannitol solution upregulated NFAT5 and iNOS expression, inhibited CVB3 replication and reduced tissue damage in the heart. Taken together, our data demonstrate that the anti-CVB3 activity of NFAT5 is impaired during CVB3 infection due to 2A-mediated cleavage of NFAT5. Thus induction of NFAT5 by hypertonic agents may be a promising strategy for the development of anti-CVB3 therapeutics.
Collapse
|
9
|
Bracamonte-Baran W, Čiháková D. Cardiac Autoimmunity: Myocarditis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:187-221. [PMID: 28667560 DOI: 10.1007/978-3-319-57613-8_10] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myocarditis is the inflammation of the muscle tissues of the heart (myocardium). After a pathologic cardiac-specific inflammatory process, it may progress to chronic damage and dilated cardiomyopathy. The latter is characterized by systolic dysfunction, whose clinical correlate is heart failure. Nevertheless, other acute complications may arise as consequence of tissue damage and electrophysiologic disturbances. Different etiologies are involved in triggering myocarditis. In some cases, such as giant cell myocarditis or eosinophilic necrotizing myocarditis, it is an autoimmune process. Several factors predispose the development of autoimmune myocarditis such as systemic/local primary autoimmunity, viral infection, HLA and gender bias, exposure of cryptic antigens, mimicry, and deficient thymic training/Treg induction. Once the anti-myocardium autoimmune process is triggered, several components of the immune response orchestrate a sustained attack toward myocardial tissues with particular timing and immunopathogenic features. Innate response mediated by monocytes/macrophages, neutrophils, and eosinophils parallels the adaptive response, playing a final effector role and not only a priming function. Stromal cells like fibroblast are also involved in the process through specific cytokines. Furthermore, adaptive T cell responses have anti-paradigmatic features, as Th17 response is dispensable for acute myocarditis but is the main driver of the process leading to dilated cardiomyopathy. Humoral response, thought to be a bystander, is important in the appearance of late-stage hemodynamic complications. The complexity of that process, as well as the unspecific and variable clinical presentation, had generated difficulties for diagnosis and treatment, which remain suboptimal. In this chapter, we will discuss the most relevant immunopathogenic findings from a basic science and clinical perspective.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Pathology, Division of Immunology, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Daniela Čiháková
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD, 21205, USA. .,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Marton J, Albert D, Wiltshire SA, Park R, Bergen A, Qureshi S, Malo D, Burelle Y, Vidal SM. Cyclosporine A Treatment Inhibits Abcc6-Dependent Cardiac Necrosis and Calcification following Coxsackievirus B3 Infection in Mice. PLoS One 2015; 10:e0138222. [PMID: 26375467 PMCID: PMC4574283 DOI: 10.1371/journal.pone.0138222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
Coxsackievirus type B3 (CVB3) is a cardiotropic enterovirus. Infection causes cardiomyocyte necrosis and myocardial inflammation. The damaged tissue that results is replaced with fibrotic or calcified tissue, which can lead to permanently altered cardiac function. The extent of pathogenesis among individuals exposed to CVB3 is dictated by a combination of host genetics, viral virulence, and the environment. Here, we aimed to identify genes that modulate cardiopathology following CVB3 infection. 129S1 mice infected with CVB3 developed increased cardiac pathology compared to 129X1 substrain mice despite no difference in viral burden. Linkage analysis identified a major locus on chromosome 7 (LOD: 8.307, P<0.0001) that controlled the severity of cardiac calcification and necrosis following infection. Sub-phenotyping and genetic complementation assays identified Abcc6 as the underlying gene. Microarray expression profiling identified genotype-dependent regulation of genes associated with mitochondria. Electron microscopy examination showed elevated deposition of hydroxyapatite-like material in the mitochondrial matrices of infected Abcc6 knockout (Abcc6-/-) mice but not in wildtype littermates. Cyclosporine A (CsA) inhibits mitochondrial permeability transition pore opening by inhibiting cyclophilin D (CypD). Treatment of Abcc6 -/- mice with CsA reduced cardiac necrosis and calcification by more than half. Furthermore, CsA had no effect on the CVB3-induced phenotype of doubly deficient CypD-/-Abcc6-/- mice. Altogether, our work demonstrates that mutations in Abcc6 render mice more susceptible to cardiac calcification following CVB3 infection. Moreover, we implicate CypD in the control of cardiac necrosis and calcification in Abcc6-deficient mice, whereby CypD inhibition is required for cardioprotection.
Collapse
Affiliation(s)
- Jennifer Marton
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Danica Albert
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Sean A. Wiltshire
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Robin Park
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Arthur Bergen
- Department of Ophthalmogenetics, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Salman Qureshi
- The Center for Host Resistance and the Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Danielle Malo
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| | - Yan Burelle
- Faculty of Pharmacy, University of Montreal, Montreal, Canada
| | - Silvia M. Vidal
- Department of Human Genetics and Complex Traits Group, McGill University, Montreal, Canada
| |
Collapse
|
11
|
Clinical severity of viral myocarditis is not associated with a mutation of dystrophin gene cleavage sites. Int J Cardiol 2015; 194:21-2. [PMID: 26011260 DOI: 10.1016/j.ijcard.2015.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/07/2015] [Indexed: 11/20/2022]
|
12
|
Aly M, Al Khairy A, Al Johani S, Balkhy H. Unusual rotavirus genotypes among children with acute diarrhea in Saudi Arabia. BMC Infect Dis 2015; 15:192. [PMID: 25884670 PMCID: PMC4407833 DOI: 10.1186/s12879-015-0923-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/01/2015] [Indexed: 02/08/2023] Open
Abstract
Background Human rotavirus A (human RV-A) is the most common cause of viral gastroenteritis in infants. The objective of the study was to characterize the G and P genotypes among clinical rotavirus isolates from children with acute diarrhea admitted to a tertiary care hospital in Riyadh, Saudi Arabia. Methods From 2011 to 2012, 541 pediatric patients with acute diarrhea were tested for rotavirus infection. RNA extractions from the fecal specimens were done by commercial kit. RT-PCR and sequencing techniques were used to detect the prevalent genotypes. Phylogenetic analysis by Maximum Likelihood method was used to study the clustering of the circulating genotypes. Results The data showed that 171/541 (31.6%) faecal samples were positive for human RVA and majority were children aged below 2 years. From the G and P [types] detected it was seen that (a) 171 minus 43 ie. 128 rotavirus positives were G typed successfully (b) 171 minus 20 ie. 151 rotavirus positives were P typed successfully; (c) overall G [P] nature was determined for 113 rotavirus positives out of 171. VP4 genotyping showed that majority of the positives 146/151 (96.7%) were P [8]; 4/151 (2.6%) were P [4]; 1/151 (0.66%) was P [6]. The dominant strains included G1P [8] 70/113 (61.9%); G9P [8] 19/113 (16.8%); G12P [8] 7/113 (6.2%) and G3P [8] 5/113 (4.4%) while the uncommon strains detected from Saudi Arabia during the study were G1P [4] 1/113 (0.88%) and G12P [6] 1/113 (0.88%). Phylogenetic tree, based on VP4/VP7 sequence analysis, revealed that G1P [8] was distinctly related to homologous strains included in human RV-A vaccine strains. Nevertheless, the uncommon genotypes G1P [4] and G12P [6] were clustered with isolates from other countries such as Bangladesh, China, Japan, Thailand and Philippines. Conclusions More studies will be required to further focus on newly emerging genotypes in our region together with the seasonality of rotavirus infection in the region, especially after January 2013 when the rotavirus vaccination has become part of routine childhood immunizations.
Collapse
Affiliation(s)
- Mahmoud Aly
- King Abdullah International Medical Research Centre, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia. .,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Aisha Al Khairy
- King Abdullah International Medical Research Centre, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.
| | - Sameera Al Johani
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia. .,Department of Microbiology, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Hanan Balkhy
- King Abdullah International Medical Research Centre, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia. .,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia. .,Department of Infection Prevention and Control, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
13
|
Wiltshire SA, Marton J, Leiva-Torres GA, Vidal SM. Mapping of a quantitative trait locus controlling susceptibility to Coxsackievirus B3-induced viral hepatitis. Genes Immun 2015; 16:261-7. [PMID: 25790079 DOI: 10.1038/gene.2015.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 11/09/2022]
Abstract
The pathogenesis of coxsackieviral infection is a multifactorial process involving host genetics, viral genetics and the environment in which they interact. We have used a mouse model of Coxsackievirus B3 infection to characterize the contribution of host genetics to infection survival and to viral hepatitis. Twenty-five AcB/BcA recombinant congenic mouse strains were screened. One, BcA86, was found to be particularly susceptible to early mortality; 100% of BcA86 mice died by day 6 compared with 0% of B6 mice (P=0.0012). This increased mortality was accompanied by an increased hepatic necrosis as measured by serum alanine aminotransferase (ALT) levels (19547±10556 vs 769±109, P=0.0055). This occurred despite a predominantly resistant (C57BL/6) genetic background. Linkage analysis in a cohort (n=210) of (BcA86x C56Bl/10)F2 animals revealed a new locus on chromosome 13 (peak linkage 101.2 Mbp, lod 4.50 and P=0.003). This locus controlled serum ALT levels as early as 48 h following the infection, and led to an elevated expression of type I interferon. Another locus on chromosome 17 (peak linkage 57.2 Mbp) was significantly linked to heart viral titer (lod 3.4 and P=0.046). These results provide new evidence for the presence of genetic loci contributing to the susceptibility of mice to viral hepatitis.
Collapse
Affiliation(s)
- S A Wiltshire
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - J Marton
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - G A Leiva-Torres
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - S M Vidal
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Reduced MCMV Δm157 viral clearance in the absence of TSAd. Sci Rep 2015; 5:9219. [PMID: 25783199 PMCID: PMC4363830 DOI: 10.1038/srep09219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/19/2015] [Indexed: 12/14/2022] Open
Abstract
The T cell specific adapter protein (TSAd) is expressed in activated T cells and NK cells. While TSAd is beginning to emerge as a critical regulator of Lck and Itk activity in T cells, its role in NK cells has not yet been explored. Here we have examined susceptibility to virus infections in a murine model using various viral infection models. We report that TSAd-deficient mice display reduced clearance of murine cytomegalovirus (MCMV) that lack the viral MHC class I homologue m157, which is critical for Ly49H-mediated NK cell recognition of infected cells. In this infection model, NK cells contribute in the early stages of the disease, whereas CD8+ T cells are critical for viral clearance. We found that mice infected with MCMV Δm157 displayed reduced viral clearance in the spleen as well as reduced proliferation in spleen NK cells and CD8+ T cells in the absence of TSAd. Though no other immunophenotype was detected in the infection models tested, these data suggests that in the absence of the Ly49H ligand activation, NK cell and CD8+ T cell responses may be compromised in TSAd-deficient mice.
Collapse
|
15
|
Milano A, Lodder EM, Bezzina CR. TNNI3K in cardiovascular disease and prospects for therapy. J Mol Cell Cardiol 2015; 82:167-73. [PMID: 25787061 DOI: 10.1016/j.yjmcc.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/23/2015] [Accepted: 03/09/2015] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases are an important cause of morbidity and mortality worldwide and the global burden of these diseases continues to grow. Therefore new therapies are urgently needed. The role of protein kinases in disease, including cardiac disease, is long recognized, making kinases important therapeutic targets. We here review the knowledge gathered in the last decade about troponin I-interacting kinase (TNNI3K), a kinase with cardiac-restricted expression that has been implicated in various cardiac phenotypes and diseases including heart failure, cardiomyopathy, ischemia/reperfusion injury and conduction of the cardiac electrical impulse.
Collapse
Affiliation(s)
- Annalisa Milano
- Department of Clinical and Experimental Cardiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Elisabeth M Lodder
- Department of Clinical and Experimental Cardiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Academic Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Lafferty EI, Wiltshire SA, Angers I, Vidal SM, Qureshi ST. Unc93b1 -Dependent Endosomal Toll-Like Receptor Signaling Regulates Inflammation and Mortality during Coxsackievirus B3 Infection. J Innate Immun 2015; 7:315-30. [PMID: 25675947 DOI: 10.1159/000369342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/26/2014] [Indexed: 12/24/2022] Open
Abstract
Coxsackievirus strain B serotype 3 (CVB3)-induced myocarditis is an important human disease that causes permanent tissue damage and can lead to death from acute infection or long-term morbidity caused by chronic inflammation. The timing and magnitude of immune activation following CVB3 infection can mediate a positive host outcome or increase tissue pathology. To better elucidate the role of endosomal Toll-like receptor (TLR) signaling in acute CVB3 infection, we studied mice with a loss-of-function mutation, known as Letr for 'loss of endosomal TLR response', in Unc93b1, which is a chaperone protein for TLR3, TLR7 and TLR9. Using Unc93b1(Letr/)(Letr) mice, we determined that Unc93b1-dependent TLR activation was essential for the survival of acute CVB3-induced myocarditis. We also determined that a lack of endosomal TLR signaling was associated with a higher viral load in target organs and that it increased inflammation, necrosis and fibrosis in cardiac tissue. Loss of Unc93b1 function was also associated with increased cardiac expression of Ifn-b and markers of tissue injury and fibrosis including Lcn2 and Serpina3n early after CVB3 infection. These observations establish a significant role for Unc93b1 in the regulation of the host inflammatory response to CVB3 infection and also reveal potential mediators of host tissue damage that merit further investigation in acute viral myocarditis.
Collapse
Affiliation(s)
- Erin I Lafferty
- Meakins-Christie Laboratories, McGill University, Montréal, Qué., Canada
| | | | | | | | | |
Collapse
|
17
|
Sinnecker D, Laugwitz KL, Moretti A. Extending human induced pluripotent stem cell technology to infectious diseases: new model for viral myocarditis. Circ Res 2014; 115:537-9. [PMID: 25170088 DOI: 10.1161/circresaha.114.304786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Daniel Sinnecker
- From the I. Medical Department, Cardiology, Klinikum rechts der Isar-Technische Universität München, Munich, Germany (D.S., K.-L.L., A.M.); and DZHK (German Centre for Cardiovascular Research)-Partner Site Munich Heart Alliance, Munich, Germany (K.-L.L., A.M.)
| | - Karl-Ludwig Laugwitz
- From the I. Medical Department, Cardiology, Klinikum rechts der Isar-Technische Universität München, Munich, Germany (D.S., K.-L.L., A.M.); and DZHK (German Centre for Cardiovascular Research)-Partner Site Munich Heart Alliance, Munich, Germany (K.-L.L., A.M.)
| | - Alessandra Moretti
- From the I. Medical Department, Cardiology, Klinikum rechts der Isar-Technische Universität München, Munich, Germany (D.S., K.-L.L., A.M.); and DZHK (German Centre for Cardiovascular Research)-Partner Site Munich Heart Alliance, Munich, Germany (K.-L.L., A.M.).
| |
Collapse
|
18
|
New findings and the role of cardiac imaging in myocarditis and related induced cardiomyopathy. J Cardiovasc Echogr 2012. [DOI: 10.1016/j.jcecho.2012.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Wiltshire SA, Leiva-Torres GA, Vidal SM. Quantitative trait locus analysis, pathway analysis, and consomic mapping show genetic variants of Tnni3k, Fpgt, or H28 control susceptibility to viral myocarditis. THE JOURNAL OF IMMUNOLOGY 2011; 186:6398-405. [PMID: 21525387 DOI: 10.4049/jimmunol.1100159] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Coxsackievirus B3 (CVB3) infection is the most common cause of viral myocarditis. The pathogenesis of viral myocarditis is strongly controlled by host genetic factors. Although certain indispensable components of immunity have been identified, the genes and pathways underlying natural variation between individuals remain unclear. Previously, we isolated the viral myocarditis susceptibility 1 (Vms1) locus on chromosome 3, which influences pathogenesis. We hypothesized that confirmation and further study of Vms1 controlling CVB3-mediated pathology, combined with pathway analysis and consomic mapping approaches, would elucidate both pathological and protective mechanisms accounting for natural variation in response to CVB3 infection. Vms1 was originally mapped to chromosome 3 using a segregating cross between susceptible A/J and resistant B10.A mice. To validate Vms1, C57BL/6J-Chr 3(A)/NaJ (a chromosome substitution strain that carries a diploid A/J chromosome 3) were used to replicate susceptibility compared with resistant C57BL/6J (B6). A second segregating F2 cross was generated between these, confirming both the localization and effects of Vms1. Microarray analysis of the four strains (A/J, B10.A, C57BL/6J, and C57BL/6J-Chr 3(A)/NaJ) illuminated a core program of response to CVB3 in all strains that is comprised mainly of IFN-stimulated genes. Microarray analysis also revealed strain-specific differential expression programs and genes that may be prognostic or diagnostic of susceptibility to CVB3 infection. A combination of analyses revealed very strong evidence for the existence and location of Vms1. Differentially expressed pathways were identified by microarray, and candidate gene analysis revealed Fpgt, H28, and Tnni3k as likely candidates for Vms1.
Collapse
Affiliation(s)
- Sean A Wiltshire
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | |
Collapse
|
20
|
Poffenberger MC, Shanina I, Aw C, El Wharry N, Straka N, Fang D, Baskin-Hill AE, Spiezio SH, Nadeau JH, Horwitz MS. Novel Nonmajor Histocompatibility Complex–Linked Loci From Mouse Chromosome 17 Confer Susceptibility to Viral-Mediated Chronic Autoimmune Myocarditis. ACTA ACUST UNITED AC 2010; 3:399-408. [DOI: 10.1161/circgenetics.110.936955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Development of viral-induced chronic myocarditis is thought to involve both environmental and genetic factors. However, to date, no susceptibility genes have been identified.
Methods and Results—
We sought to identify loci that confer susceptibility to viral-induced chronic myocarditis with the use of chromosome substitution strain mice that are composed of 1 chromosome from the disease susceptible A/J strain on an otherwise resistant C57BL/6 background. By this method, we identified chromosome 17 to confer susceptibility. To further isolate the region of susceptibility, 8 strains of mice congenic for different portions of chromosome 17 were generated. Characterization of these strains identified at least 4 susceptibility loci on the chromosome. Three of these loci are located in the proximal 22.8 cM, whereas the fourth locus is located in the portion of the chromosome distal to 34.3 cM.
Conclusions—
We have identified 4 loci that confer susceptibility of viral-induced chronic myocarditis. Of these loci, 3 were distinct from the major histocompatibility complex locus and thus represent novel susceptibility loci. The close proximately of the 2 novel loci with susceptibility loci for other autoimmune diseases such as type 1 diabetes and chronic experimental autoimmune thyroiditis suggests the presence of global autoimmune susceptibility genes.
Collapse
Affiliation(s)
- Maya C. Poffenberger
- From Microbiology and Immunology (M.C.P., I.S., C.A., N.E.W., N.S., D.F., M.S.H.), The University of British Columbia, Vancouver, British Columbia, Canada; and the Department of Genetics (A.E.B.-H., S.H.S., J.H.N.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Iryna Shanina
- From Microbiology and Immunology (M.C.P., I.S., C.A., N.E.W., N.S., D.F., M.S.H.), The University of British Columbia, Vancouver, British Columbia, Canada; and the Department of Genetics (A.E.B.-H., S.H.S., J.H.N.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Connie Aw
- From Microbiology and Immunology (M.C.P., I.S., C.A., N.E.W., N.S., D.F., M.S.H.), The University of British Columbia, Vancouver, British Columbia, Canada; and the Department of Genetics (A.E.B.-H., S.H.S., J.H.N.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Nahida El Wharry
- From Microbiology and Immunology (M.C.P., I.S., C.A., N.E.W., N.S., D.F., M.S.H.), The University of British Columbia, Vancouver, British Columbia, Canada; and the Department of Genetics (A.E.B.-H., S.H.S., J.H.N.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Nadine Straka
- From Microbiology and Immunology (M.C.P., I.S., C.A., N.E.W., N.S., D.F., M.S.H.), The University of British Columbia, Vancouver, British Columbia, Canada; and the Department of Genetics (A.E.B.-H., S.H.S., J.H.N.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Dianne Fang
- From Microbiology and Immunology (M.C.P., I.S., C.A., N.E.W., N.S., D.F., M.S.H.), The University of British Columbia, Vancouver, British Columbia, Canada; and the Department of Genetics (A.E.B.-H., S.H.S., J.H.N.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Annie E. Baskin-Hill
- From Microbiology and Immunology (M.C.P., I.S., C.A., N.E.W., N.S., D.F., M.S.H.), The University of British Columbia, Vancouver, British Columbia, Canada; and the Department of Genetics (A.E.B.-H., S.H.S., J.H.N.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Sabrina H. Spiezio
- From Microbiology and Immunology (M.C.P., I.S., C.A., N.E.W., N.S., D.F., M.S.H.), The University of British Columbia, Vancouver, British Columbia, Canada; and the Department of Genetics (A.E.B.-H., S.H.S., J.H.N.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Joseph H. Nadeau
- From Microbiology and Immunology (M.C.P., I.S., C.A., N.E.W., N.S., D.F., M.S.H.), The University of British Columbia, Vancouver, British Columbia, Canada; and the Department of Genetics (A.E.B.-H., S.H.S., J.H.N.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Marc S. Horwitz
- From Microbiology and Immunology (M.C.P., I.S., C.A., N.E.W., N.S., D.F., M.S.H.), The University of British Columbia, Vancouver, British Columbia, Canada; and the Department of Genetics (A.E.B.-H., S.H.S., J.H.N.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
21
|
Tnni3k modifies disease progression in murine models of cardiomyopathy. PLoS Genet 2009; 5:e1000647. [PMID: 19763165 PMCID: PMC2731170 DOI: 10.1371/journal.pgen.1000647] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/14/2009] [Indexed: 02/07/2023] Open
Abstract
The Calsequestrin (Csq) transgenic mouse model of cardiomyopathy exhibits wide variation in phenotypic progression dependent on genetic background. Seven heart failure modifier (Hrtfm) loci modify disease progression and outcome. Here we report Tnni3k (cardiac Troponin I-interacting kinase) as the gene underlying Hrtfm2. Strains with the more susceptible phenotype exhibit high transcript levels while less susceptible strains show dramatically reduced transcript levels. This decrease is caused by an intronic SNP in low-transcript strains that activates a cryptic splice site leading to a frameshifted transcript, followed by nonsense-mediated decay of message and an absence of detectable protein. A transgenic animal overexpressing human TNNI3K alone exhibits no cardiac phenotype. However, TNNI3K/Csq double transgenics display severely impaired systolic function and reduced survival, indicating that TNNI3K expression modifies disease progression. TNNI3K expression also accelerates disease progression in a pressure-overload model of heart failure. These combined data demonstrate that Tnni3k plays a critical role in the modulation of different forms of heart disease, and this protein may provide a novel target for therapeutic intervention. Heart failure is the common final outcome of many forms of acute and chronic heart disease. The prognosis of heart disease is highly variable between patients, and these differences in the phenotypic expression (symptoms, course, and final outcome) are in part due to genetic factors that have proven difficult to directly identify in the human population. To overcome this limitation, we employed a disease-sensitized mouse model of dilated cardiomyopathy to identify genes that modify the progression and outcome of the phenotype. Here we report the identification of a novel heart disease modifier gene, Tnni3k, that accelerates disease progression in two distinct mouse models of cardiomyopathy. This gene appears to play a critical role in modulating heart disease phenotypes and may provide a novel target for therapeutic intervention.
Collapse
|
22
|
Affiliation(s)
- Toshitaka Yajima
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla
| | - Kirk U. Knowlton
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla
| |
Collapse
|
23
|
Ligons DL, Guler ML, Li HS, Rose NR. A locus on chromosome 1 promotes susceptibility of experimental autoimmune myocarditis and lymphocyte cell death. Clin Immunol 2008; 130:74-82. [PMID: 18951849 DOI: 10.1016/j.clim.2008.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/15/2008] [Indexed: 11/20/2022]
Abstract
We previously identified by linkage analysis a region on chromosome 1 (Eam1) that confers susceptibility to experimental autoimmune myocarditis (EAM). To evaluate the role of Eam1, we created a congenic mouse strain, carrying the susceptible Eam1 locus of A.SW on the resistant B10.S background (B10.A-Eam1 congenic) and analyzed three outcomes: 1) the incidence and severity of EAM, 2) the susceptibility of lymph node cells (LNCs) to Cy-enhanced cell death, and 3) susceptibility of lymphocytes to antigen-induced cell death. Incidence of myocarditis in B10.A-Eam1 congenic mice was comparable to A.SW mice, confirming that Eam1 plays an important role in disease development. Caspase 3, 8 and 9 activation in LNCs following Cy treatment and in CD4(+) T cells after immunization with myosin/CFA was significantly lower in A.SW than B10.S mice whereas B10.A-Eam1 congenic mice exhibited an intermediate phenotype. Our results show that Eam1 reduces lymphocyte apoptosis and increases susceptibility to EAM.
Collapse
Affiliation(s)
- Davinna L Ligons
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
24
|
Li HS, Ligons DL, Rose NR, Guler ML. Genetic differences in bone marrow-derived lymphoid lineages control susceptibility to experimental autoimmune myocarditis. THE JOURNAL OF IMMUNOLOGY 2008; 180:7480-4. [PMID: 18490748 DOI: 10.4049/jimmunol.180.11.7480] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone marrow (BM) transplantation has been used to study the cellular basis of genetic control of autoimmune diseases, but conclusions remain elusive due to the contradictory findings in different animal models. In the current study, we found that BM cells from myocarditis-susceptible A.SW mice can render irradiated, myocarditis-resistant B10.S recipient mice susceptible to myosin-induced myocarditis, indicating that hematopoietic cells express the genetic differences controlling susceptibility to autoimmune myocarditis. We then sought to differentiate the role of lymphoid vs nonlymphoid components of BM in the pathogenesis of myocarditis by comparing mixed chimeras receiving BM from A.SW wild-type or RAG(-/-) mice mixed with BM from B10.S wild-type mice. This experiment clearly demonstrated that T and B lymphocytes were indispensable for transferring the susceptible phenotype to disease-resistant recipients. Our findings significantly narrow the cellular expression of genetic polymorphisms controlling the EAM phenotype.
Collapse
Affiliation(s)
- Haiyan S Li
- Department of Pathology, The John Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
25
|
Richer E, Qureshi ST, Vidal SM, Malo D. Chemical mutagenesis: a new strategy against the global threat of infectious diseases. Mamm Genome 2008; 19:309-17. [PMID: 18560940 DOI: 10.1007/s00335-008-9114-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
Abstract
The perpetual evolution of drug-resistant microbes, the overwhelming burden of acquired immune suppression due to HIV, the emergence or re-emergence of various pathogens (West Nile virus, pandemic influenza, Creutzfeld-Jacob disease), and increased fears of bioterrorism has drawn a great deal of new attention to infectious diseases. The pathogenesis of infection is characterized by complex interactions of potentially virulent microorganisms with host genetic and acquired factors. Chemical mutagenesis of the mouse genome provides a robust method to unravel this challenging problem. To deepen our understanding of the natural host response to pathogens, our team and others are interrogating the mouse genome to define genes that are crucial to the defense against infectious diseases (pathogen recognition, viral defense, bacterial defense, prion infection). In this review we highlight the current progress of these efforts and propose a toolbox for other groups that are interested in this endeavor.
Collapse
Affiliation(s)
- Etienne Richer
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
26
|
Abstract
Myocarditis is a disease with a variable clinical presentation, ranging from asymptomatic to a fatal outcome. Among the recognized causes of myocarditis are mutations in multiple genes; infection by bacterial, rickettsial, mycotic, protozoan, and viral agents; and exposure to drugs, toxins, and alcohol. Some subtypes of myocarditis, such as giant cell myocarditis or eosinophilic necrotizing myocarditis, are suspected to be caused by an autoimmune inflammation. Several lines of evidence support the involvement of autoimmunity in myocarditis. These include the production of antibodies against relevant self-antigens, the fact that myocarditis symptoms can be relieved by immunosuppressive therapy in some patients, and a co-occurrence of myocarditis with other autoimmune diseases. Most of the evidence that myocarditis is an autoimmune disease comes from animal models. In this chapter, we discuss coxsackievirus B3-induced myocarditis and myosin-induced myocarditis as models of both viral and autoimmune inflammation in the heart. The latest advances in the study of autoimmunity have been concentrated on T helper cells, particularly the newly discovered subset, Th17 cells. Experimental autoimmune myocarditis (EAM), a mouse model of myocarditis induced by cardiac myosin, is partly an IL-17-driven disease. However, we have shown recently in IL-13 knockout mice that the disease can be driven through other pathways, and that the Th1 helper cells also lead to severe heart inflammation. Most importantly, IL-17A knockout mice are not fully protected against EAM and still develop mild myocarditis. The most abundant cells in heart infiltrate in human giant cell myocarditis or EAM are monocyte/macrophages, and there is now evidence that macrophages play a decisive role in the course of EAM.
Collapse
Affiliation(s)
- Daniela Cihakova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
27
|
Abstract
Autoimmune myocarditis, a chronic stage of myocardial inflammation, occurs in a small subset of patients after acute cardiotropic viral infection and can lead to dilated cardiomyopathy (DCM). This disease can be recapitulated in susceptible mouse strains by infection with coxsackievirus B3, or by immunization with cardiac myosin or cardiac troponin I. The etiologies of myocarditis are multifactorial and genetically complex. Genetic linkage between susceptibility to myocarditis/DCM and the major histocompatibility complex (MHC) genes has been reported in both humans and experimentally induced mouse models. However, unlike other autoimmune diseases, the non-MHC genes seem to have greater impact than MHC genes on disease susceptibility. Several myocarditis-related non-MHC loci have been identified by our laboratory and others in different models. Most of these loci overlap with other autoimmune disease susceptibility loci, suggesting common or shared genetic traits influencing general autoimmunity. For example, we have demonstrated that Eam1 and Eam2 may influence disease susceptibility via regulating T cell apoptosis at different developmental stages. Blockade of signaling through specific genes, such as CTLA4, ICOS and PD-1, can either enhance or prevent the development of experimental autoimmune myocarditis, but it remains unclear whether functional polymorphisms in these genes are involved in predisposition to disease. In humans, mutations/deletions in immunologically important genes such as CD45, and genes encoding cardiac proteins, have been reported in patients with recurrent myocarditis or DCM. Identification of genetic polymorphisms controlling autoimmune myocarditis will help us understand the mechanisms underlying autoimmune diseases in general, thereby improving potential therapies in patients.
Collapse
|