1
|
Tae H, Park S, Tan LY, Yang C, Lee YA, Choe Y, Wüstefeld T, Jung S, Cho NJ. Elucidating Structural Configuration of Lipid Assemblies for mRNA Delivery Systems. ACS NANO 2024; 18:11284-11299. [PMID: 38639114 DOI: 10.1021/acsnano.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The development of mRNA delivery systems utilizing lipid-based assemblies holds immense potential for precise control of gene expression and targeted therapeutic interventions. Despite advancements in lipid-based gene delivery systems, a critical knowledge gap remains in understanding how the biophysical characteristics of lipid assemblies and mRNA complexes influence these systems. Herein, we investigate the biophysical properties of cationic liposomes and their role in shaping mRNA lipoplexes by comparing various fabrication methods. Notably, an innovative fabrication technique called the liposome under cryo-assembly (LUCA) cycle, involving a precisely controlled freeze-thaw-vortex process, produces distinctive onion-like concentric multilamellar structures in cationic DOTAP/DOPE liposomes, in contrast to a conventional extrusion method that yields unilamellar liposomes. The inclusion of short-chain DHPC lipids further modulates the structure of cationic liposomes, transforming them from multilamellar to unilamellar structures during the LUCA cycle. Furthermore, the biophysical and biological evaluations of mRNA lipoplexes unveil that the optimal N/P charge ratio in the lipoplex can vary depending on the structure of initial cationic liposomes. Cryo-EM structural analysis demonstrates that multilamellar cationic liposomes induce two distinct interlamellar spacings in cationic lipoplexes, emphasizing the significant impact of the liposome structures on the final structure of mRNA lipoplexes. Taken together, our results provide an intriguing insight into the relationship between lipid assembly structures and the biophysical characteristics of the resulting lipoplexes. These relationships may open the door for advancing lipid-based mRNA delivery systems through more streamlined manufacturing processes.
Collapse
Affiliation(s)
- Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Li Yang Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Chungmo Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yong-An Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - Younghwan Choe
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Torsten Wüstefeld
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
2
|
Hu D, Fumoto S, Yoshikawa N, Peng J, Miyamoto H, Tanaka M, Nishida K. Diffusion coefficient of cationic liposomes during lipoplex formation determines transfection efficiency in HepG2 cells. Int J Pharm 2023; 637:122881. [PMID: 36963641 DOI: 10.1016/j.ijpharm.2023.122881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Cationic lipid-based lipoplexes are well-known for gene delivery. To determine the relationship between physicochemical characteristics and transfection efficiency, cationic liposomes of different sizes were prepared and incubated with plasmid DNA at different temperatures to form lipoplexes. We found that the liposome diffusion coefficient during lipoplex formation strongly correlated with the physicochemical characteristics of lipoplexes, accessibility of plasmid DNA in lipoplexes, and logarithm of gene expression per metabolic activity. Clathrin-mediated endocytosis was the major route for lipoplexes comprising 100 nm-liposomes, as reported previously. As liposome size increased, the major route shifted to lipid raft-mediated endocytosis. In addition, macropinocytosis was observed for all liposome sizes. The role of reactive oxygen species might depend on liposome size and endocytosis. Information from this study would be useful for understanding cationic lipoplex-mediated transfection.
Collapse
Affiliation(s)
- Die Hu
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-Cho, Miyazaki 889-1692, Japan
| | - Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
3
|
Sufian MA, Ilies MA. Lipid-based nucleic acid therapeutics with in vivo efficacy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1856. [PMID: 36180107 PMCID: PMC10023279 DOI: 10.1002/wnan.1856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 03/09/2023]
Abstract
Synthetic vectors for therapeutic nucleic acid delivery are currently competing significantly with their viral counter parts due to their reduced immunogenicity, large payload capacity, and ease of manufacture under GMP-compliant norms. The approval of Onpattro, a lipid-based siRNA therapeutic, and the proven clinical success of two lipid-based COVID-19 vaccines from Pfizer-BioNTech, and Moderna heralded the specific advantages of lipid-based systems among all other synthetic nucleic acid carriers. Lipid-based systems with diverse payloads-plasmid DNA (pDNA), antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA), small activating RNA (saRNA), and messenger RNA (mRNA)-are now becoming a mature technology, with growing impact in the clinic. Research over four decades identified the key factors determining the therapeutic success of these multi-component systems. Here, we discuss the main nucleic acid-based technologies, presenting their mechanism of action, delivery barriers facing them, the structural properties of the payload as well as the component lipids that regulate physicochemical properties, pharmacokinetics and biodistribution, efficacy, and toxicity of the resultant nanoparticles. We further detail on the formulation parameters, evolution of the manufacturing techniques that generate reproducible and scalable outputs, and key manufacturing aspects that enable control over physicochemical properties of the resultant particles. Preclinical applications of some of these formulations that were successfully translated from in vitro studies to animal models are subsequently discussed. Finally, clinical success and failure of these systems starting from 1993 to present are highlighted, in a holistic literature review focused on lipid-based nucleic acid delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Md Abu Sufian
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
4
|
Son S, Lee K. Development of mRNA Vaccines/Therapeutics and Their Delivery System. Mol Cells 2023; 46:41-47. [PMID: 36697236 PMCID: PMC9880606 DOI: 10.14348/molcells.2023.2165] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 01/27/2023] Open
Abstract
The rapid development of mRNA vaccines has contributed to the management of the current coronavirus disease 2019 (COVID-19) pandemic, suggesting that this technology may be used to manage future outbreaks of infectious diseases. Because the antigens targeted by mRNA vaccines can be easily altered by simply changing the sequence present in the coding region of mRNA structures, it is more appropriate to develop vaccines, especially during rapidly developing outbreaks of infectious diseases. In addition to allowing rapid development, mRNA vaccines have great potential in inducing successful antigen-specific immunity by expressing target antigens in cells and simultaneously triggering immune responses. Indeed, the two COVID-19 mRNA vaccines approved by the U.S. Food and Drug Administration have shown significant efficacy in preventing infections. The ability of mRNAs to produce target proteins that are defective in specific diseases has enabled the development of options to treat intractable diseases. Clinical applications of mRNA vaccines/therapeutics require strategies to safely deliver the RNA molecules into targeted cells. The present review summarizes current knowledge about mRNA vaccines/ therapeutics, their clinical applications, and their delivery strategies.
Collapse
Affiliation(s)
- Sora Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Kyuri Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
5
|
Lipid Nanoparticle Delivery Systems to Enable mRNA-Based Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14020398. [PMID: 35214130 PMCID: PMC8876479 DOI: 10.3390/pharmaceutics14020398] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/13/2022] Open
Abstract
The world raced to develop vaccines to protect against the rapid spread of SARS-CoV-2 infection upon the recognition of COVID-19 as a global pandemic. A broad spectrum of candidates was evaluated, with mRNA-based vaccines emerging as leaders due to how quickly they were available for emergency use while providing a high level of efficacy. As a modular technology, the mRNA-based vaccines benefitted from decades of advancements in both mRNA and delivery technology prior to the current global pandemic. The fundamental lessons of the utility of mRNA as a therapeutic were pioneered by Dr. Katalin Kariko and her colleagues, perhaps most notably in collaboration with Drew Weissman at University of Pennsylvania, and this foundational work paved the way for the development of the first ever mRNA-based therapeutic authorized for human use, COMIRNATY®. In this Special Issue of Pharmaceutics, we will be honoring Dr. Kariko for her great contributions to the mRNA technology to treat diseases with unmet needs. In this review article, we will focus on the delivery platform, the lipid nanoparticle (LNP) carrier, which allowed the potential of mRNA therapeutics to be realized. Similar to the mRNA technology, the development of LNP systems has been ongoing for decades before culminating in the success of the first clinically approved siRNA-LNP product, ONPATTRO®, a treatment for an otherwise fatal genetic disease called transthyretin amyloidosis. Lessons learned from the siRNA-LNP experience enabled the translation into the mRNA platform with the eventual authorization and approval of the mRNA-LNP vaccines against COVID-19. This marks the beginning of mRNA-LNP as a pharmaceutical option to treat genetic diseases.
Collapse
|
6
|
Niosomes-based gene delivery systems for effective transfection of human mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112307. [PMID: 34474858 DOI: 10.1016/j.msec.2021.112307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Gene transfer to mesenchymal stem cells (MSCs) has arisen as a powerful approach to increase the therapeutic potential of this effective cell population. Over recent years, niosomes have emerged as self-assembled carriers with promising performance for gene delivery. The aim of our work was to develop effective niosomes-based DNA delivery platforms for targeting MSCs. Niosomes based on 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA; 0, 7 or 15%) as cationic lipid, cholesterol as helper lipid, and polysorbate 60 as non-ionic surfactant, were prepared using a reverse phase evaporation technique. Niosomes dispersions (filtered or not) and their corresponding nioplexes with a lacZ plasmid were characterized in terms of size, charge, protection, and complexation abilities. DOTMA concentration had a large influence on the physicochemical properties of resulting nioplexes. Transfection efficiency and cytotoxic profiles were assessed in two immortalized cell lines of MSCs. Niosomes formulated with 15% DOTMA provided the highest values of β-galactosidase activity, being similar to those achieved with Lipofectamine®, but showed less cytotoxicity. Filtration of niosomes dispersions before adding to the cells resulted in a loss of their biological activities. Storage of niosomes formulations (for 30 days at room temperature) caused minor modification of their physicochemical properties but also attenuated the transfection capability of the nioplexes. Differently, addition of the lysosomotropic agent sucrose into the culture medium during transfection or to the formulation itself improved the transfection performance of non-filtered niosomes. Indeed, steam heat-sterilized niosomes prepared in sucrose medium demonstrated transfection capability.
Collapse
|
7
|
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 170:113-141. [PMID: 33422546 PMCID: PMC7789827 DOI: 10.1016/j.addr.2021.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 01/07/2023]
Abstract
The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine development. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical trials, including their antigenic targets, delivery vehicles, and route of administration. Important features of previous gene-based vaccine developments against other infectious diseases are discussed in guiding the design and development of effective vaccines against COVID-19 and future derivatives.
Collapse
Affiliation(s)
- Deborah Pushparajah
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Hibah Alattas
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada.
| |
Collapse
|
8
|
Controlling Nanoparticle Formulation: A Low-Budget Prototype for the Automation of a Microfluidic Platform. Processes (Basel) 2021. [DOI: 10.3390/pr9010129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Active pharmaceutical ingredients (API) with suboptimal pharmacokinetic properties may require formulation into nanoparticles. In addition to the quality of the excipients, production parameters are crucial for producing nanoparticles which reliably deliver APIs to their target. Microfluidic platforms promise increased control over the formulation process due to the decreased degrees of freedom at the micro- and nanoscale. Publications about these platforms usually provide only limited information about the soft- and hardware required to integrate the microfluidic chip seamlessly into an experimental set-up. We describe a modular, low-budget prototype for microfluidic mixing in detail. The prototype consists of four modules. The control module is a raspberry pi executing customizable python scripts to control the syringe pumps and the fraction collector. The feeding module consists of up to three commercially available, programable syringe pumps. The formulation module can be any macro- or microfluidic chip connectable to syringe pumps. The collection module is a custom-built fraction collector. We describe each feature of the working prototype and demonstrate its power with polyplexes formulated from siRNA and two different oligomers that are fed to the chip at two different stages during the assembly of the nanoparticles.
Collapse
|
9
|
Hu H, Yang C, Li M, Shao D, Mao HQ, Leong KW. Flash Technology-Based Self-Assembly in Nanoformulation: From Fabrication to Biomedical Applications. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 42:99-116. [PMID: 34421329 PMCID: PMC8375602 DOI: 10.1016/j.mattod.2020.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Advances in nanoformulation have driven progress in biomedicine by producing nanoscale tools for biosensing, imaging, and drug delivery. Flash-based technology, the combination of rapid mixing technique with the self-assembly of macromolecules, is a new engine for the translational nanomedicine. Here, we review the state-of-the-art in flash-based self-assembly including theoretical and experimental principles, mixing device design, and applications. We highlight the fields of flash nanocomplexation (FNC) and flash nanoprecipitation (FNP), with an emphasis on biomedical applications of FNC, and discuss challenges and future directions for flash-based nanoformulation in biomedicine.
Collapse
Affiliation(s)
- Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Chao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510630, China
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
10
|
Soliman OY, Alameh MG, De Cresenzo G, Buschmann MD, Lavertu M. Efficiency of Chitosan/Hyaluronan-Based mRNA Delivery Systems In Vitro: Influence of Composition and Structure. J Pharm Sci 2019; 109:1581-1593. [PMID: 31891675 DOI: 10.1016/j.xphs.2019.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
Messenger RNA (mRNA)-containing nanoparticles were produced by electrostatic complexation with a library of pharmaceutical grade chitosans with different degrees of deacetylation and hyaluronic acids (HAs) (native vs. sulfated). Polymer length (Mn), HA degree of sulfation (DS), and amine to phosphate to carboxyl + sulfate (from HA) ratio (N:P:C) were controlled. In vitro transfections were performed in the presence/absence of trehalose and at different pH. Particle size and ζ-potential were correlated with transfection efficiency. Polymer length and charge densities (degree of deacetylation, degree of sulfation) of both HA and chitosan had a direct influence on transfection efficiency through modulation of avidity to mRNA. N:P:C ratio, trehalose, mixing concentration, and nucleic acid dose influenced transfection efficiency with optimized formulations reaching ∼60%-65% transfection efficiency relative to commercially available lipid control with no apparent toxicity for transfection at slightly acidic pH 6.5.
Collapse
Affiliation(s)
| | - Mohamad Gabriel Alameh
- Infectious Disease Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gregory De Cresenzo
- Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada; Department of Chemical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Michael D Buschmann
- Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030
| | - Marc Lavertu
- Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada; Department of Chemical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Baoutina A, Bhat S, Partis L, Emslie KR. Storage Stability of Solutions of DNA Standards. Anal Chem 2019; 91:12268-12274. [DOI: 10.1021/acs.analchem.9b02334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anna Baoutina
- National Measurement Institute (NMI), Lindfield, Sydney, New South Wales 2070, Australia
| | - Somanath Bhat
- National Measurement Institute (NMI), Lindfield, Sydney, New South Wales 2070, Australia
| | - Lina Partis
- National Measurement Institute (NMI), Lindfield, Sydney, New South Wales 2070, Australia
| | - Kerry R. Emslie
- National Measurement Institute (NMI), Lindfield, Sydney, New South Wales 2070, Australia
| |
Collapse
|
12
|
Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery. ACS NANO 2019; 13:3754-3782. [PMID: 30908008 DOI: 10.1021/acsnano.8b07858] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gene therapy is a promising strategy for the treatment of monogenic disorders. Non-viral gene delivery systems including lipid-based DNA therapeutics offer the opportunity to deliver an encoding gene sequence specifically to the target tissue and thus enable the expression of therapeutic proteins in diseased cells. Currently, available gene delivery approaches based on DNA are inefficient and require improvements to achieve clinical utility. In this Review, we discuss state-of-the-art lipid-based DNA delivery systems that have been investigated in a preclinical setting. We emphasize factors influencing the delivery and subsequent gene expression in vitro, ex vivo, and in vivo. In addition, we cover aspects of nanoparticle engineering and optimization for DNA therapeutics. Finally, we highlight achievements of lipid-based DNA therapies in clinical trials.
Collapse
Affiliation(s)
- Jonas Buck
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
- Department of Biochemistry and Molecular Biology , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| |
Collapse
|
13
|
Clarke D, Idris A, McMillan NAJ. Development of novel lipidic particles for siRNA delivery that are highly effective after 12 months storage. PLoS One 2019; 14:e0211954. [PMID: 30735545 PMCID: PMC6368384 DOI: 10.1371/journal.pone.0211954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/24/2019] [Indexed: 01/30/2023] Open
Abstract
Liposomes are versatile and well-proven as a means to deliver nucleic acids into cells. Most of the formulation procedures used are labour intensive and result in unstable end products. We have previously reported on the development of a simple, yet efficient, hydration-of-freeze-dried-matrix (HFDM) method to entrap siRNA within lipid particles. Here we show that the particles are stable up to 12 months after storage at room temperature (RT), 4°C or -20°C. While RT storage results in changes in particle size and polydispersity, gene silencing of all particles was similar to freshly prepared particles following storage for 3, 6, 9 or 12 months at all temperatures. This is the first report of such long-term stability in siRNA-loaded liposomes.
Collapse
Affiliation(s)
- Daniel Clarke
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Australia
- * E-mail:
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Australia
| |
Collapse
|
14
|
Saher O, Rocha CSJ, Zaghloul EM, Wiklander OPB, Zamolo S, Heitz M, Ezzat K, Gupta D, Reymond JL, Zain R, Hollfelder F, Darbre T, Lundin KE, El Andaloussi S, Smith CIE. Novel peptide-dendrimer/lipid/oligonucleotide ternary complexes for efficient cellular uptake and improved splice-switching activity. Eur J Pharm Biopharm 2018; 132:29-40. [PMID: 30193928 DOI: 10.1016/j.ejpb.2018.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022]
Abstract
Despite the advances in gene therapy and in oligonucleotide (ON) chemistry, efficient cellular delivery remains an obstacle. Most current transfection reagents suffer from low efficacy or high cytotoxicity. In this report, we describe the synergism between lipid and dendrimer delivery vectors to enhance the transfection efficiency, while avoiding high toxicity. We screened a library of 20 peptide dendrimers representing three different generations and evaluated their capability to deliver a single-stranded splice-switching ON after formulating with lipids (DOTMA/DOPE). The transfection efficiency was analyzed in 5 reporter cell lines, in serum-free and serum conditions, and with 5 different formulation protocols. All formulations displayed low cytotoxicity to the majority of the tested cell lines. The complex sizes were < 200 nm; particle size distributions of effective mixtures were < 80 nm; and, the zeta potential was dependent on the formulation buffer used. The best dendrimer enhanced transfection in a HeLa reporter cell line by 30-fold compared to untreated cells under serum-free conditions. Interestingly, addition of sucrose to the formulation enabled - for the first time - peptide dendrimers/lipid complexes to efficiently deliver splice-switching ON in the presence of serum, reaching 40-fold increase in splice switching. Finally, in vivo studies highlighted the potential of these formulae to change the biodistribution pattern to be more towards the liver (90% of injected dose) compared to the kidneys (5% of injected dose) or to unformulated ON. This success encourages further development of peptide dendrimer complexes active in serum and future investigation of mechanisms behind the influence of additives on transfection efficacy.
Collapse
Affiliation(s)
- Osama Saher
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden; Department Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Cristina S J Rocha
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Eman M Zaghloul
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Susanna Zamolo
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Marc Heitz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Dhanu Gupta
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden; Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| |
Collapse
|
15
|
İzgü F, Bayram G, Tosun K, İzgü D. Stratum corneum lipid liposome-encapsulated panomycocin: preparation, characterization, and the determination of antimycotic efficacy against Candida spp. isolated from patients with vulvovaginitis in an in vitro human vaginal epithelium tissue model. Int J Nanomedicine 2017; 12:5601-5611. [PMID: 28831255 PMCID: PMC5548276 DOI: 10.2147/ijn.s141949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, a liposomal lyophilized powder formulation of panomycocin was developed for therapeutic purposes against vulvovaginal candidiasis which affects 80% of women worldwide. Panomycocin is a potent antimycotic protein secreted by the yeast Wickerhamomyces anomalus NCYC 434. This study involved the preparation of panomycocin-loaded stratum corneum lipid liposomes (SCLLs), characterization of the SCLLs, and determination of antimycotic efficacy of the formulation against Candida albicans and Candida glabrata clinical vaginal isolates in a human vaginal epithelium tissue model. The encapsulation and loading efficiencies of SCLLs were 73% and 76.8%, respectively. In transmission electron microscopy images, the SCLLs appeared in the submicron size range. Dynamic light scattering analyses showed that the SCLLs had uniform size distribution. Zeta potential measurements revealed stable and positively charged SCLLs. In Fourier transform infrared spectroscopy analyses, no irreversible interactions between the encapsulated panomycocin and the SCLLs were detected. The SCLLs retained >98% of encapsulated panomycocin in aqueous solution up to 12 hours. The formulation was fungicidal at the same minimum fungicidal concentration values for non-formulated pure panomycocin when tested on an in vitro model of vaginal candidiasis. This is the first study in which SCLLs and a protein as an active ingredient have been utilized together in a formulation. The results obtained in this study led us to conduct further preclinical trials of this formulation for the development of an effective topical anti-candidal drug with improved safety.
Collapse
Affiliation(s)
- Fatih İzgü
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Günce Bayram
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | - Kübra Tosun
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | - Demet İzgü
- Biology Department, TED Ankara College, Ankara, Turkey
| |
Collapse
|
16
|
Automated in-line mixing system for large scale production of chitosan-based polyplexes. J Colloid Interface Sci 2017; 500:253-263. [PMID: 28411432 DOI: 10.1016/j.jcis.2017.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023]
Abstract
Chitosan (CS)-based polyplexes are efficient non-viral gene delivery systems that are most commonly prepared by manual mixing. However, manual mixing is not only poorly controlled but also restricted to relatively small preparation volumes, limiting clinical applications. In order to overcome these drawbacks and to produce clinical quantities of CS-based polyplexes, a fully automated in-line mixing platform was developed for production of large batches of small-size and homogeneous CS-based polyplexes. Operational conditions to produce small-sized homogeneous polyplexes were identified. Increasing mixing concentrations of CS and nucleic acid was directly associated with an increase in size and polydispersity of both CS/pDNA and CS/siRNA polyplexes. We also found that although the speed of mixing has a negligible impact on the properties of CS/pDNA polyplexes, the size and polydispersity of CS/siRNA polyplexes are strongly influenced by the mixing speed: the higher the speed, the smaller the size and polydispersity. While in-line and manual CS/pDNA polyplexes had similar size and PDI, CS/siRNA polyplexes were smaller and more homogenous when prepared in-line in the non-laminar flow regime compared to manual method. Finally, we found that in-line mixed CS/siRNA polyplexes have equivalent or higher silencing efficiency of ApoB in HepG2 cells, compared to manually prepared polyplexes.
Collapse
|
17
|
TB trifusion antigen adsorbed on calcium phosphate nanoparticles stimulates strong cellular immunity in mice. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0326-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
19
|
Song SJ, Lee S, Lee Y, Choi JS. Enzyme-responsive destabilization of stabilized plasmid-lipid nanoparticles as an efficient gene delivery. Eur J Pharm Sci 2016; 91:20-30. [PMID: 27240779 DOI: 10.1016/j.ejps.2016.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
Abstract
Stabilized plasmid-lipid particles (SPLPs) have been developed to overcome the low stability issue of cationic liposomes, however, SPLPs that are too stable result in unsatisfactory transfection efficiency. In this article, we prepared enzyme-responsive SPLPs (eSPLPs) composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and mPEG-GLFG-K-(C16)2, a PEG lipid with an enzymatically-cleavable linker (glycine-phenylalanine-leucine-glycine, GFLG). eSPLPs were successfully prepared with plasmid DNA (pDNA) encapsulation efficiency of over 80%, using the detergent dialysis method. The PEG shell stabilized eSPLPs and maintained a hydrodynamic diameter of around 200nm. Although typical SPLPs were relatively intact in endosomal condition, the PEG shell of eSPLPs was cleaved following the degradation of the GFLG linker by cathepsin B in the endosome. Then, eSPLPs collapsed and induced endosomal disruption triggering the controlled release of the encapsulated pDNA into cytoplasm. Owing to the enzyme-responsive destabilization, eSPLPs showed a 10 to 100-fold higher transfection efficiency than control SPLPs, which was confirmed using luciferase assay. These results suggest that eSPLPs might be promising candidates for practical use as gene delivery systems, with both stability and high transfection efficiency for future in vivo applications.
Collapse
Affiliation(s)
- Su Jeong Song
- Department of Biochemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Seulgi Lee
- Department of Biochemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 157-742, Republic of Korea.
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
20
|
Exploring physical stability characteristics of positively charged catanionic vesicle/DNA complexes. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3608-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Tagalakis AD, Castellaro S, Zhou H, Bienemann A, Munye MM, McCarthy D, White EA, Hart SL. A method for concentrating lipid peptide DNA and siRNA nanocomplexes that retains their structure and transfection efficiency. Int J Nanomedicine 2015; 10:2673-83. [PMID: 25878500 PMCID: PMC4388080 DOI: 10.2147/ijn.s78935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nonviral gene and small interfering RNA (siRNA) delivery formulations are extensively used for biological and therapeutic research in cell culture experiments, but less so in in vivo and clinical research. Difficulties with formulating the nanoparticles for uniformity and stability at concentrations required for in vivo and clinical use are limiting their progression in these areas. Here, we report a simple but effective method of formulating monodisperse nanocomplexes from a ternary formulation of lipids, targeting peptides, and nucleic acids at a low starting concentration of 0.2 mg/mL of DNA, and we then increase their concentration up to 4.5 mg/mL by reverse dialysis against a concentrated polymer solution at room temperature. The nanocomplexes did not aggregate and they had maintained their biophysical properties, but, importantly, they also mediated DNA transfection and siRNA silencing in cultured cells. Moreover, concentrated anionic nanocomplexes administered by convection-enhanced delivery in the striatum showed efficient silencing of the β-secretase gene BACE1. This method of preparing nanocomplexes could probably be used to concentrate other nonviral formulations and may enable more widespread use of nanoparticles in vivo.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| | - Sara Castellaro
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK ; Department of Pharmacy, University of Genova, Genova, Italy
| | - Haiyan Zhou
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| | - Alison Bienemann
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, UK
| | - Mustafa M Munye
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| | | | - Edward A White
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, UK
| | - Stephen L Hart
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| |
Collapse
|
22
|
Piña MJ, Alex SM, Arias FJ, Santos M, Rodriguez-Cabello JC, Ramesan RM, Sharma CP. Elastin-like recombinamers with acquired functionalities for gene-delivery applications. J Biomed Mater Res A 2015; 103:3166-78. [DOI: 10.1002/jbm.a.35455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Maria J. Piña
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | - Susan M. Alex
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| | - Francisco J. Arias
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | - Mercedes Santos
- Bioforge Research Group, University of Valladolid, CIBER-BBN; Valladolid 47011 Spain
| | | | - Rekha M. Ramesan
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| | - Chandra P. Sharma
- Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura; Thiruvananthapuram Kerala 695 012 India
| |
Collapse
|
23
|
Quaternary ammonium salt containing soybean oil: An efficient nanosize gene delivery carrier for halophile green microalgal transformation. Chem Biol Interact 2015; 225:80-9. [DOI: 10.1016/j.cbi.2014.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 02/02/2023]
|
24
|
Enhancing physical stability of positively charged catanionic vesicles in the presence of calcium chloride via cholesterol-induced fluidic bilayer characteristic. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3285-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Jin L, Zeng X, Liu M, Deng Y, He N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Am J Cancer Res 2014; 4:240-55. [PMID: 24505233 PMCID: PMC3915088 DOI: 10.7150/thno.6914] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/16/2013] [Indexed: 12/21/2022] Open
Abstract
Gene transfer methods are promising in the field of gene therapy. Current methods for gene transfer include three major groups: viral, physical and chemical methods. This review mainly summarizes development of several types of chemical methods for gene transfer in vitro and in vivo by means of nano-carriers like; calcium phosphates, lipids, and cationic polymers including chitosan, polyethylenimine, polyamidoamine dendrimers, and poly(lactide-co-glycolide). This review also briefly introduces applications of these chemical methods for gene delivery.
Collapse
|
26
|
van der Heijden I, Beijnen JH, Nuijen B. Long term stability of lyophilized plasmid DNA pDERMATT. Int J Pharm 2013; 453:648-50. [PMID: 23792100 DOI: 10.1016/j.ijpharm.2013.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
In this short note we report on the shelf-life stability of pDERMATT (plasmid DNA encoding recombinant MART-1 and tetanus toxin fragment-c) 2mg lyophilized powder for reconstitution for intradermal administration, used in an in-house, investigator-initiated clinical phase I study. pDERMATT was stored at 25°C/60% relative humidity (6 months), 2-8°C (24 months), and -20°C (66 months) in the dark and analyzed at several timepoints during the conduct of the clinical study for appearance, identity, purity (plasmid topology), content and residual water content. pDERMATT appeared stable at all storage conditions for the periods tested which, although patient inclusion in the study was significantly delayed, ensured the clinical supply needs. This study shows that lyophilization is an useful tool to preserve the quality of the pDNA and can prevent the need for costly and time-consuming additional manufacture of drug product in case of study delays, not uncommon at the early stage of drug development. To our knowledge, this is the first study reporting shelf life stability of a pDNA formulation for more than 5 years.
Collapse
Affiliation(s)
- Iris van der Heijden
- Department of Pharmacy and Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
27
|
Angelov B, Angelova A, Filippov SK, Narayanan T, Drechsler M, Štěpánek P, Couvreur P, Lesieur S. DNA/Fusogenic Lipid Nanocarrier Assembly: Millisecond Structural Dynamics. J Phys Chem Lett 2013; 4:1959-1964. [PMID: 26283134 DOI: 10.1021/jz400857z] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structural changes occurring on a millisecond time scale during uptake of DNA by cationic lipid nanocarriers are monitored by time-resolved small-angle X-ray scattering (SAXS) coupled to a rapid-mixing stopped-flow technique. Nanoparticles (NPs) of nanochannel organization are formed by PEGylation, hydration, and dispersion of a lipid film of the fusogenic lipid monoolein in a mixture with positively charged (DOMA) and PEGylated (DOPE-PEG2000) amphiphiles and are characterized by the inner cubic structure of very large nanochannels favorable for DNA upload. Ultrafast structural dynamics of complexation and assembly of these cubosome particles with neurotrophic plasmid DNA (pDNA) is revealed thanks to the high brightness of the employed synchrotron X-ray beam. The rate constant of the pDNA/lipid NP complexation is estimated from dynamic roentgenograms recorded at 4 ms time resolution. pDNA upload into the vastly hydrated channels of the cubosome carriers leads to a fast nanoparticle-nanoparticle structural transition and lipoplex formation involving tightly packed pDNA.
Collapse
Affiliation(s)
- Borislav Angelov
- †Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, CZ-16206 Prague, Czech Republic
| | - Angelina Angelova
- ‡CNRS UMR8612 Institut Galien Paris-Sud, Univ Paris Sud 11, F-92296 Châtenay-Malabry, France
| | - Sergey K Filippov
- †Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, CZ-16206 Prague, Czech Republic
| | - Theyencheri Narayanan
- §European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, F-38043 Grenoble, France
| | - Markus Drechsler
- ⊥Laboratory for Soft Matter Electron Microscopy, Bayreuth Institute of Macromolecular Research, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Petr Štěpánek
- †Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, CZ-16206 Prague, Czech Republic
| | - Patrick Couvreur
- ‡CNRS UMR8612 Institut Galien Paris-Sud, Univ Paris Sud 11, F-92296 Châtenay-Malabry, France
| | - Sylviane Lesieur
- ‡CNRS UMR8612 Institut Galien Paris-Sud, Univ Paris Sud 11, F-92296 Châtenay-Malabry, France
| |
Collapse
|
28
|
Kasper JC, Pikal MJ, Friess W. Investigations on Polyplex Stability During the Freezing Step of Lyophilization Using Controlled Ice Nucleation—The Importance of Residence Time in the Low-Viscosity Fluid State. J Pharm Sci 2013; 102:929-46. [DOI: 10.1002/jps.23419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 02/01/2023]
|
29
|
Schlenk F, Grund S, Fischer D. Recent developments and perspectives on gene therapy using synthetic vectors. Ther Deliv 2013; 4:95-113. [PMID: 23323783 DOI: 10.4155/tde.12.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Nonviral vector technology is attracting increasing importance in the biomedical community owing to unique advantages and prospects for the treatment of severe diseases by gene therapy. In this review, synthetic vectors that allow the controlled design of efficient and biocompatible carriers are highlighted. The current benefits, potentials, problems and unmet needs of synthetic gene delivery systems, as well as the strategies to overcome the obstacles are also discussed. Common design principles and structure-activity trends have been established that are important for stable and targeted transport to regions of interest in the body, efficient uptake into cells as well as controlled release of drugs inside the cells, for example, in specialized compartments. The status quo of the use of these systems in preclinical and clinical trials is also considered.
Collapse
Affiliation(s)
- Florian Schlenk
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | |
Collapse
|
30
|
Debus H, Beck-Broichsitter M, Kissel T. Optimized preparation of pDNA/poly(ethylene imine) polyplexes using a microfluidic system. LAB ON A CHIP 2012; 12:2498-2506. [PMID: 22552347 DOI: 10.1039/c2lc40176b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Poly(ethylene imine) (PEI) is an established non-viral vector system for the delivery of various nucleic acids in gene therapy applications. Polyelectrolyte complexes between both compounds, so called polyplexes, are formed by electrostatic interactions of oppositely charged macromolecules and are thought to facilitate uptake into cells. Such complexes form spontaneously and on lab scale they are usually prepared by mixing solutions through pipetting. Hence, an optimized preparation procedure allowing the scale-up of well-defined polyplexes would be of general interest. We developed a new method for microfluidic polyplex preparation on a chip. The mixing behaviour within the microfluidic channels was evaluated. Polyplexes with PEI and plasmid DNA were prepared using this method, in comparison to the standard pipetting procedure. Sizes and polydispersity indices of these complexes were examined. The influence of various parameters on the polyplex characteristics and the suitability of this production procedure for other PEI-based complexes were also evaluated. It was shown that polyplexes could easily be prepared by microfluidics. The ratio of PEI to DNA was most important for the formation of small polyplexes, whereas other parameters had minor influence. The size of polyplexes prepared with this new method was observed to be relatively constant between 140 nm and 160 nm over a wide range of complex concentrations. In comparison, the size of polyplexes prepared by pipetting (approximately 90 nm to 160 nm) varied considerably. The versatility of this system was demonstrated with different (targeted) PEI-based vectors for the formation of complexes with pDNA and siRNA. In conclusion, polyplex preparation using microfluidics could be a promising alternative to the standard pipetting method due to its suitability for preparation of well-defined complexes with different compositions over a wide range of concentrations.
Collapse
Affiliation(s)
- Heiko Debus
- Philipps-Universität Marburg, Department of Pharmaceutics and Biopharmacy, Ketzerbach 63, 35032, Marburg, Germany
| | | | | |
Collapse
|
31
|
Optimising the self-assembly of siRNA loaded PEG-PCL-lPEI nano-carriers employing different preparation techniques. J Control Release 2012; 160:583-91. [DOI: 10.1016/j.jconrel.2012.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/17/2022]
|
32
|
Kushibiki T, Tomoshige R, Iwanaga K, Kakemi M, Tabata Y. In vitro transfection of plasmid DNA by cationized gelatin prepared from different amine compounds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:645-58. [PMID: 16892726 DOI: 10.1163/156856206777346278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this paper is to compare the in vitro transfection efficiency of a luciferase plasmid DNA using cationized gelatin prepared from different amine compounds. The compounds used here were ethylenediamine, putrescine, spermidine and spermine, chemically introduced to the carboxyl group of gelatin for the cationization. Complexation of the cationized gelatin with the plasmid DNA was performed by simply mixing the two materials at various N+/P- mixing ratios (the molar number ratio of amino groups of gelatin to the phosphate groups of DNA) in aqueous solution. Gel retardation studies revealed that the formation of cationized-gelatin-plasmid DNA complexes depended on the N+/P- mixing ratio. The stronger interaction of plasmid DNA with the cationized gelatin of spermine compared to the other cationized gelatins was observed by an ethidium bromide intercalation assay and Scatchard binding analysis. When the transfection efficiency of plasmid DNA complexed with the various cationized gelatins at different N+/P- mixing ratios was evaluated for mouse L929 fibroblasts, the highest transfection efficiency was observed for the complex prepared from the cationized gelatin of spermine at a N+/P- mixing ratio of 2. The present study indicates that there is an optimal N+/P- mixing ratio and a type of amine compound or cationization extent of cationized gelatin to enhance the transfection efficiency of plasmid DNA.
Collapse
Affiliation(s)
- Toshihiro Kushibiki
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
33
|
Mohajel N, Najafabadi AR, Azadmanesh K, Vatanara A, Moazeni E, Rahimi A, Gilani K. Optimization of a spray drying process to prepare dry powder microparticles containing plasmid nanocomplex. Int J Pharm 2012; 423:577-85. [DOI: 10.1016/j.ijpharm.2011.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 11/01/2011] [Accepted: 11/06/2011] [Indexed: 12/12/2022]
|
34
|
Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 2011; 161:554-65. [PMID: 22123560 DOI: 10.1016/j.jconrel.2011.11.014] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 01/22/2023]
Abstract
Gene therapy offers great opportunities for the treatment of severe diseases including cancer. In recent years the design of synthetic carriers for nucleic acid delivery has become a research field of increasing interest. Studies on the delivery of plasmid DNA (pDNA) have brought up a variety of gene delivery vehicles. The more recently emerged gene silencing strategy by the intracellular delivery of small interfering RNA (siRNA) takes benefit from existing expertise in pDNA transfer. Despite common properties however, delivery of siRNA also faces distinct challenges due to apparent differences in size, stability of the formed nucleic acid complexes, the location and mechanism of action. This review emphasizes the common aspects and main differences between pDNA and siRNA delivery, taking into consideration a wide spectrum of polymer-based, lipidic and peptide carriers. Challenges and opportunities which result from these differences as well as the recent progress made in the optimization of carrier design are presented.
Collapse
Affiliation(s)
- Claudia Scholz
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany
| | | |
Collapse
|
35
|
Fluorescence methods for lipoplex characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2694-705. [DOI: 10.1016/j.bbamem.2011.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 07/15/2011] [Indexed: 11/24/2022]
|
36
|
Kasper JC, Schaffert D, Ogris M, Wagner E, Friess W. Development of a lyophilized plasmid/LPEI polyplex formulation with long-term stability--A step closer from promising technology to application. J Control Release 2011; 151:246-55. [PMID: 21223985 DOI: 10.1016/j.jconrel.2011.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/22/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Cationic polymer/DNA complexes are limited by their instability in aqueous suspensions and usually have to be freshly prepared prior to administration. Thus, the development of isotonic lyophilized polyplex formulations with long-term stability is a desirable goal. Polyplexes based on 22kDa linear polyethylenimine were prepared using a micro-mixer method. Freeze-thawing and lyophilization were performed on a pilot scale freeze-drier. Several excipients (trehalose, sucrose, lactosucrose, dextran, hydroxypropylbetadex or povidone and combinations thereof) at varying concentrations were evaluated for their stabilizing potential against freezing and dehydration induced stresses. For stability testing the lyophilized samples were stored for 6 weeks at 2-8°C, 20°C and 40°C, respectively. Polyplex samples were characterized for particle size, zeta potential, their in vitro transfection efficiency and metabolic activity in Neuro2A cells. In addition, liquid samples were investigated for turbidity and number of sub-visible particles and solid samples were analyzed for residual moisture content, glass transition temperature and sample morphology. L-histidine buffer pH 6.0 was selected as effective buffer. In isotonic formulations with 14% lactosucrose, 10% hydroxypropylbetadex/6.5% sucrose or 10% povidone/6.3% sucrose, particle size was <170nm for all formulations and did not change after storage for 6weeks at 40°C. Polyplexes formulated with lactosucrose or hydroxypropylbetadex/sucrose showed high transfection efficiencies and cellular metabolic activities. Absence of large aggregates was indicated by turbidity and subvisible particle number measurements. The current standard limits for particulate contamination for small volume parenterals were met for all formulations. All samples were amorphous with low residual moisture levels (<1.3%) and high glass transition temperatures (>90°C).
Collapse
Affiliation(s)
- Julia Christina Kasper
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5, 81377 Munich, Germany.
| | | | | | | | | |
Collapse
|
37
|
Behera T, Swain P. Antigen adsorbed calcium phosphate nanoparticles stimulate both innate and adaptive immune response in fish, Labeo rohita H. Cell Immunol 2011; 271:350-9. [DOI: 10.1016/j.cellimm.2011.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/18/2011] [Accepted: 07/29/2011] [Indexed: 01/30/2023]
|
38
|
Kasper JC, Schaffert D, Ogris M, Wagner E, Friess W. The establishment of an up-scaled micro-mixer method allows the standardized and reproducible preparation of well-defined plasmid/LPEI polyplexes. Eur J Pharm Biopharm 2010; 77:182-5. [PMID: 21094683 DOI: 10.1016/j.ejpb.2010.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Polyplexes based on linear polyethylenimine (LPEI) and plasmid DNA are known as efficient non-viral gene delivery systems. However, the requirement for freshly prepared complexes prior to administration due to their instability in aqueous suspension poses the risk of batch-to-batch variations. Therefore, the aim of the study was the establishment of a reproducible and up-scalable method for the preparation of well-defined polyplexes. Polyplexes consisting of pCMVLuc plasmid and 22 kDa linear polyethylenimine (LPEI) were prepared by classical pipetting or with a micro-mixer method using different mixing speeds and plasmid DNA concentrations (20-400 μg/mL). The z-average diameter of the polyplexes was measured by dynamic light scattering. Metabolic activity and transfection efficiency was evaluated on murine neuroblastoma cells after transfection with polyplexes. When varying mixing speeds of the micro-mixer, polyplex size (59-197 nm) and polydispersity index (0.05-0.19) could be directly controlled. The z-average diameter (65-170 nm) and polydispersity index (0.05-0.22) of the polyplexes increased with increasing plasmid DNA concentration (20-400 μg/mL). The established up-scaled micro-mixer method allows the standardized and reproducible preparation of well-defined, transfection-competent plasmid/LPEI polyplexes with high reproducibility.
Collapse
Affiliation(s)
- Julia Christina Kasper
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Many inherited and acquired pulmonary disorders without satisfactory therapies may be amenable to gene therapy. Despite numerous advances, efficient delivery and expression of the therapeutic transgene at physiological levels for phenotypic correction of disease has proved elusive. This article focuses on various strategies aimed at achieving targeted delivery to the lungs. Both physical methods and biological targeting have been successfully applied in various gene delivery systems. Targeting of different cell types has been achieved by pseudotyping of viral vectors with capsids from different serotypes and modification of nonviral vectors with targeting ligands. Both classes of vectors are discussed with respect to their gene delivery and expression efficiencies, longevity of expression and immunogenicity. Moreover, gene therapy clinical trials for different lung diseases are discussed.
Collapse
|
40
|
Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes. Top Curr Chem (Cham) 2010; 296:51-93. [PMID: 21504100 DOI: 10.1007/128_2010_67] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.
Collapse
|
41
|
Wan L, You Y, Zou Y, Oupický D, Mao G. DNA release dynamics from bioreducible poly(amido amine) polyplexes. J Phys Chem B 2009; 113:13735-41. [PMID: 19522487 PMCID: PMC2762488 DOI: 10.1021/jp901835u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA release dynamics of bioreducible poly(amido amine) polyplexes were studied in real time by atomic force microscopy (AFM). DNA release is triggered by a depolymerization of high-molecular-weight polycations into low-molecular-weight oligocations that occurs by means of the thiol and disulfide exchange reaction mechanism. AFM images were captured in a simulated physiological reducing environment that used dithiothreitol. Distinctive stages of disassembly are common among various polyplexes that have different disulfide content, molecular weight, and polymer architecture, while the DNA release rate depends upon the disulfide content. In the first stage, polyplexes evolve from metastable structures into the more stable toroid structure upon the depolymerization. In the second stage, toroids either aggregate or fuse into larger toroids. In the last stage, DNA wormlike chains and loops are held by a central compact core. The results confirm the prospect of bioreducible poly(amido amine)s as controlled DNA delivery vectors. The study offers new physical insights into the DNA release pathway including intermediate structures that have a high degree of structural heterogeneity and disassembly induced particle growth. The study identifies disassembly induced colloidal and morphological instability as an important issue to be addressed.
Collapse
Affiliation(s)
- Lei Wan
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| | - Yezi You
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202
| | - Yi Zou
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| | - David Oupický
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| |
Collapse
|
42
|
Dasgupta S, Bandyopadhyay A, Bose S. Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin. Acta Biomater 2009; 5:3112-21. [PMID: 19435617 PMCID: PMC2825089 DOI: 10.1016/j.actbio.2009.04.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 04/14/2009] [Accepted: 04/24/2009] [Indexed: 11/26/2022]
Abstract
Calcium phosphate (CaP) nanoparticles with a calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse microemulsion. Ca(NO(3))(2).4H(2)O and H(3)PO(4) were used as the aqueous phase, cyclohexane as the organic phase and poly(oxyethylene)(12) nonylphenol ether (NP-12) as the surfactant. Depending on the calcination temperature between 600 and 800 degrees C, CaP nanoparticle showed different phases of calcium-deficient hydroxyapatite (CDHA) and beta-tricalcium phosphate (beta-TCP), particle size between 48 and 69 nm, and a BET specific average surface area between 73 and 57 m(2)g(-1). Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. The adsorptive property of BSA was investigated by the change in BET surface area of these nanoparticles and the pH of the suspension. At pH 7.5, the maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time-dependent increase in pH 4.0 and 6.0 buffer solutions. However, the amount of protein released was significantly smaller at pH 7.2. The BSA release rate also varied depending on the presence of different phases of CaPs in the system, beta-TCP or CDHA. These results suggest that the BSA protein release rate can be controlled by changing the particle size, surface area and phase composition of the CaP nanocarriers.
Collapse
Affiliation(s)
- Sudip Dasgupta
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | | | | |
Collapse
|
43
|
Hsieh ATH, Hori N, Massoudi R, Pan PJH, Sasaki H, Lin YA, Lee AP. Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery. LAB ON A CHIP 2009; 9:2638-2643. [PMID: 19704978 DOI: 10.1039/b823191e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel picolitre incubator based microfluidic system for consistent nonviral gene carrier formulation is presented. A cationic lipid-based carrier is the most attractive nonviral solution for delivering plasmid DNA, shRNA, or drugs for pharmaceutical research and RNAi applications. The size of the cationic lipid and DNA complex (CL-DNA), or the lipoplex, is one of the important variations for consistency of gene transfection. CL-DNA size, in turn, may be controlled by factors such as the cationic lipid and DNA mixing order, mixing rate, and mixture incubation time. The Picolitre Microfluidic Reactor and Incubator (PMRI) system described here is able to control these parameters in order to create homogeneous CL-DNA. Compared with conventional CL-DNA preparation techniques involving hand-shaking or vortexing, the PMRI system demonstrates a greater ability to constantly and uniformly mix cationic lipids and DNA simultaneously. After mixing in the picolitre droplet reactors, the cationic lipid and DNA is incubated within the picolitre incubator to form CL-DNA. The PMRI generates a narrower size distribution band, while also turning the sample loading, mixing and incubation steps into an integrated process enabling the consistent formation of CL-DNA. The coefficient of variation (CV) of transfection efficiency is 0.05 and 0.30 for PMRI-based and conventional methods, respectively. In addition, this paper demonstrates that the gene transfection efficiency of lipoplex created in the PMRI is more reproducible.
Collapse
Affiliation(s)
- Albert Tsung-Hsi Hsieh
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Aneja MK, Geiger JP, Himmel A, Rudolph C. Targeted gene delivery to the lung. Expert Opin Drug Deliv 2009; 6:567-83. [DOI: 10.1517/17425240902927841] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Kim ST, Lee KM, Park HJ, Jin SE, Ahn WS, Kim CK. Topical delivery of interleukin-13 antisense oligonucleotides with cationic elastic liposome for the treatment of atopic dermatitis. J Gene Med 2009; 11:26-37. [PMID: 19006098 DOI: 10.1002/jgm.1268] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Interleukin (IL)-13, overproduced in the skin of atopic dermatitis (AD), has been shown to play an essential role in the pathogenesis of the disease. Thus, inhibition of IL-13 production should provide a key step to alleviate disease conditions of the atopic skin. In the present study, IL-13 antisense oligonucleotide (ASO) was designed and formulated with cationic elastic liposome (cEL) to improve transdermal delivery. METHODS ASOs were generated against murine IL-13 mRNA (+4 to + 23) and complexed with cEL. Physicochemical properties of IL-13 ASO/cEL complex were examined by DNA retardation and DNase I protection assay. An in vitro inhibition study was performed in T-helper 2 (Th2) cells and cytotoxicity was tested by the XTT assay. The in vivo effect of IL-13 ASO/cEL complex was tested in a murine model of AD. RESULTS In vitro, the IL-13 ASO/cEL complex showed dose- and ratio-dependent inhibition of IL-13 secretion in Th2 cells. At the IL-13 ASO/cEL ratio of 6, maximum inhibition of IL-13 secretion was observed. When applied to the ovalbumin-sensitized murine model of AD, topically administered IL-13 ASO/cEL complex dramatically suppressed IL-13 production (by up to 70% of the control) in the affected skin region. In addition, the levels of IL-4 and IL-5 were also significantly reduced. Moreover, IL-13 ASO/cEL-treated AD mice showed reduced infiltration of inflammatory cells into the epidermal and dermal areas, with concomitant reduction of skin thickness. CONCLUSIONS These data suggests that IL-13 ASO/cEL complex can provide a potential therapeutic tool for the treatment of AD and also be applied to other immune diseases associated with the production of Il-13.
Collapse
Affiliation(s)
- Sung Tae Kim
- Laboratory of Excellency for Drug and Gene Delivery, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
Wan L, Manickam DS, Oupický D, Mao G. DNA release dynamics from reducible polyplexes by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:12474-82. [PMID: 18839970 PMCID: PMC2825055 DOI: 10.1021/la802088y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Controlled intracellular disassembly of polyelectrolyte complexes of polycations and DNA (polyplexes) is a crucial step for the success of nonviral gene delivery. Motivated by our previous observation of different gene delivery performances among multiblock reducible copolypeptide vectors ( Manickam, D. S. ; Oupicky, D. Bioconjugate Chem. 2006, 17, 1395- 1403 ), atomic force microscopy is used to visualize plasmid DNA in various decondensed states from reducible polypeptide polyplexes under simulated physiological reducing conditions. DNA decondensation is triggered by reductive degradation of disulfide-containing cationic polypeptides. Striking differences in DNA release dynamics between polyplexes based on polypeptides of histidine-rich peptide (HRP, CKHHHKHHHKC) and nuclear localization signal (NLS, CGAGPKKKRKVC) peptide are presented. The HRP and NLS polyplexes are similar to each other in their initial morphology with a majority of them containing only one DNA plasmid. Upon reductive degradation by dithiothreitol, DNA is released from NLS abruptly regardless of the initial polyplex morphology, while DNA release from HRP polyplexes displays a gradual decondensation that is dependent on the size of polyplexes. The release rate is higher for larger HRP polyplexes. The smaller HRP polyplexes become unstable when they are in contact with expanding chains nearby. The results reveal potentially rich DNA release dynamics that can be controlled by subtle variation in multivalent counterion binding to DNA as well as the cellular matrix.
Collapse
Affiliation(s)
- Lei Wan
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| | - Devika S. Manickam
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202
| | - David Oupický
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| |
Collapse
|
47
|
Li L, Nie Y, Zhu R, Shi S, Luo K, He B, Yang Y, Yang J, Gu Z. Preparation and gene delivery of alkaline amino acids-based cationic liposomes. Arch Pharm Res 2008; 31:924-31. [PMID: 18704337 DOI: 10.1007/s12272-001-1248-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 06/02/2008] [Accepted: 06/11/2008] [Indexed: 11/29/2022]
Abstract
Cationic lipids 1, 2, and 3, based on hydrophobic cholesterol linked to L-lysine, L-histidine or L-arginine, respectively, were designed and tested as gene delivery vectors. Physicochemical and biological properties of all liposomes and lipoplexes were evaluated, including lipid-DNA interactions, size, morphology, zeta potential, acid-base buffering capability, protection of DNA from DNase I digestion, and cytotoxity. The efficiency of luciferase gene transfection of lipoplexes 1-3 was compared with that of commercial dioleoyl-trimethylammonium propane (DOTAP) and polyethyleneimine (PEI) in 293T cells and HepG2 cells with or without poly(ethylene glycol) PEG stabilizer. The complexation and protection of DNA of liposome 3 was the strongest among the three liposomes. The efficiency of gene transfection of liposomes 1-3 was two-to threefold higher than that of PEI and/or DOTAP in 293T cells. Liposomes 1 and 3 in PEG as stabilizer showed sixfold higher transfection efficiency than that of PEI and/or DOTAP, whereas liposome 2 showed very low transfection efficiency. In HepG2 cells, the transfection efficiency of all the cationic liposomes was much lower than that of DOTAP. In conclusion, lipids 1-3 were efficient and non-toxic gene vectors; the headgroup of cationic lipids and the stabilizer of liposome formulation had an important influence on gene transfection.
Collapse
Affiliation(s)
- Li Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu D, Qiao W, Li Z, Chen Y, Cui X, Li K, Yu L, Yan K, Zhu L, Guo Y, Cheng L. Structure-function relationship research of glycerol backbone-based cationic lipids for gene delivery. Chem Biol Drug Des 2008; 71:336-44. [PMID: 18312294 DOI: 10.1111/j.1747-0285.2008.00644.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transfection activities of two series of synthetic glycerol backbone-based cationic lipids were studied as gene delivery carriers. The variable length of hydrocarbon chains, diverse quaternary ammonium heads, different linkage, as well as alternative anion combined with them allowed to find how these factors affect cationic lipids on their gene delivery performance. The structure-function relationship of the synthetic glycerol backbone-based cationic lipids was discussed, and the transfection efficiency of some of the cationic liposomes was superior or parallel to that of two commercial transfection agents.
Collapse
Affiliation(s)
- Dongliang Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin RD. 2999th, Shanghai 201620, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Transferrin-Associated Lipoplexes as Gene Delivery Systems: Relevance of Mode of Preparation and Biophysical Properties. J Membr Biol 2008; 221:141-52. [DOI: 10.1007/s00232-008-9092-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
50
|
Liu D, Qiao W, Li Z, Cui X, Li K, Yu L, Yan K, Zhu L, Cheng L. Carbamate-linked cationic lipids for gene delivery. Bioorg Med Chem 2008; 16:995-1005. [DOI: 10.1016/j.bmc.2007.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/02/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
|