1
|
Zhu M, Fang Y, Sun Y, Li S, Yu J, Xiong B, Wen C, Zhou B, Huang B, Yin H, Xu H. Sonogenetics in the Treatment of Chronic Diseases: A New Method for Cell Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407373. [PMID: 39488795 DOI: 10.1002/advs.202407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Sonogenetics is an innovative technology that integrates ultrasound with genetic editing to precisely modulate cellular activities in a non-invasive manner. This method entails introducing and activating mechanosensitive channels on the cell membrane of specific cells using gene delivery vectors. When exposed to ultrasound, these channels can be manipulated to open or close, thereby impacting cellular functions. Sonogenetics is currently being used extensively in the treatment of various chronic diseases, including Parkinson's disease, vision restoration, and cancer therapy. This paper provides a comprehensive review of key components of sonogenetics and focuses on evaluating its prospects and potential challenges in the treatment of chronic disease.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yan Fang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yikang Sun
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shaoyue Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jifeng Yu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Bing Xiong
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Congjian Wen
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Boyang Zhou
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Bin Huang
- Zhejiang Hospital, Hangzhou, 310013, P. R. China
| | - Haohao Yin
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Huixiong Xu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
2
|
Greitens C, Leroux JC, Burger M. The intracellular visualization of exogenous DNA in fluorescence microscopy. Drug Deliv Transl Res 2024; 14:2242-2261. [PMID: 38526634 PMCID: PMC11208204 DOI: 10.1007/s13346-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
In the development of non-viral gene delivery vectors, it is essential to reliably localize and quantify transfected DNA inside the cell. To track DNA, fluorescence microscopy methods are commonly applied. These mostly rely on fluorescently labeled DNA, DNA binding proteins fused to a fluorescent protein, or fluorescence in situ hybridization (FISH). In addition, co-stainings are often used to determine the colocalization of the DNA in specific cellular compartments, such as the endolysosomes or the nucleus. We provide an overview of these DNA tracking methods, advice on how they should be combined, and indicate which co-stainings or additional methods are required to draw precise conclusions from a DNA tracking experiment. Some emphasis is given to the localization of exogenous DNA inside the nucleus, which is the last step of DNA delivery. We argue that suitable tools which allow for the nuclear detection of faint signals are still missing, hampering the rational development of more efficient non-viral transfection systems.
Collapse
Affiliation(s)
- Christina Greitens
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
3
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
El-Zahaby SA, Kaur L, Sharma A, Prasad AG, Wani AK, Singh R, Zakaria MY. Lipoplexes' Structure, Preparation, and Role in Managing Different Diseases. AAPS PharmSciTech 2024; 25:131. [PMID: 38849687 DOI: 10.1208/s12249-024-02850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Lipid-based vectors are becoming promising alternatives to traditional therapies over the last 2 decades specially for managing life-threatening diseases like cancer. Cationic lipids are the most prevalent non-viral vectors utilized in gene delivery. The increasing number of clinical trials about lipoplex-based gene therapy demonstrates their potential as well-established technology that can provide robust gene transfection. In this regard, this review will summarize this important point. These vectors however have a modest transfection efficiency. This limitation can be partly addressed by using functional lipids that provide a plethora of options for investigating nucleic acid-lipid interactions as well as in vitro and in vivo nucleic acid delivery for biomedical applications. Despite their lower gene transfer efficiency, lipid-based vectors such as lipoplexes have several advantages over viral ones: they are less toxic and immunogenic, can be targeted, and are simple to produce on a large scale. Researchers are actively investigating the parameters that are essential for an effective lipoplex delivery method. These include factors that influence the structure, stability, internalization, and transfection of the lipoplex. Thorough understanding of the design principles will enable synthesis of customized lipoplex formulations for life-saving therapy.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Lovepreet Kaur
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Rattandeep Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr, 46612, South Sinai, Egypt
| |
Collapse
|
5
|
Chu R, Wang Y, Kong J, Pan T, Yang Y, He J. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J Mater Chem B 2024; 12:4759-4784. [PMID: 38682294 DOI: 10.1039/d3tb02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The liver, a complex and vital organ in the human body, is susceptible to various diseases, including metabolic disorders, acute hepatitis, cirrhosis, and hepatocellular carcinoma. In recent decades, these diseases have significantly contributed to global morbidity and mortality. Currently, liver transplantation remains the most effective treatment for hepatic disorders. Nucleic acid therapeutics offer a selective approach to disease treatment through diverse mechanisms, enabling the regulation of relevant genes and providing a novel therapeutic avenue for hepatic disorders. It is expected that nucleic acid drugs will emerge as the third generation of pharmaceuticals, succeeding small molecule drugs and antibody drugs. Lipid nanoparticles (LNPs) represent a crucial technology in the field of drug delivery and constitute a significant advancement in gene therapies. Nucleic acids encapsulated in LNPs are shielded from the degradation of enzymes and effectively delivered to cells, where they are released and regulate specific genes. This paper provides a comprehensive review of the structure, composition, and applications of LNPs in the treatment of hepatic disorders and offers insights into prospects and challenges in the future development of LNPs.
Collapse
Affiliation(s)
- Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Yi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Jianglong Kong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| |
Collapse
|
6
|
Wang Y, Fu Q, Park SY, Lee YS, Park SY, Lee DY, Yoon S. Decoding cellular mechanism of recombinant adeno-associated virus (rAAV) and engineering host-cell factories toward intensified viral vector manufacturing. Biotechnol Adv 2024; 71:108322. [PMID: 38336188 DOI: 10.1016/j.biotechadv.2024.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is one of the prominent gene delivery vehicles that has opened promising opportunities for novel gene therapeutic approaches. However, the current major viral vector production platform, triple transfection in mammalian cells, may not meet the increasing demand. Thus, it is highly required to understand production bottlenecks from the host cell perspective and engineer the cells to be more favorable and tolerant to viral vector production, thereby effectively enhancing rAAV manufacturing. In this review, we provided a comprehensive exploration of the intricate cellular process involved in rAAV production, encompassing various stages such as plasmid entry to the cytoplasm, plasmid trafficking and nuclear delivery, rAAV structural/non-structural protein expression, viral capsid assembly, genome replication, genome packaging, and rAAV release/secretion. The knowledge in the fundamental biology of host cells supporting viral replication as manufacturing factories or exhibiting defending behaviors against viral production is summarized for each stage. The control strategies from the perspectives of host cell and materials (e.g., AAV plasmids) are proposed as our insights based on the characterization of molecular features and our existing knowledge of the AAV viral life cycle, rAAV and other viral vector production in the Human embryonic kidney (HEK) cells.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - So Young Park
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America.
| |
Collapse
|
7
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
8
|
Kim D, Kim SM, Lee J, Kim J, Lee JS. Knockout of the lysosomal membrane protein, LAMP2C, improves transient gene expression in HEK293 cells via increased intracellular plasmid availability. Biotechnol J 2024; 19:e2300017. [PMID: 37953689 DOI: 10.1002/biot.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Plasmid-based transfection can be used in many applications such as transient gene expression (TGE)-based therapeutic protein production. These applications preferentially require maximization of intracellular plasmid availability. Here, we applied a lysosome engineering approach to alleviate lysosome-mediated nucleic acid degradation and enhance the TGE in mammalian cells. By knocking out the lysosomal membrane protein LAMP2C, which is known to be the main player in RNautophagy/DNautophagy (RDA), we significantly improved transient fluorescent protein expression in HEK293 cells by improving the retention rate of transfected plasmids; however, this effect was not observed in CHO cells. Additional knockout of a lysosomal membrane transporter and another RDA player, SIDT2, was ineffective, regardless of the presence of LAMP2C. LAMP2C knockout enhanced TGE-based mAb production in HEK293 cells by up to 2.82-fold increase in specific mAb productivity. Taken together, these results demonstrate that HEK293 cells can be engineered to improve the usage of the transfected plasmid via knockout of the lysosomal membrane protein LAMP2C and provide efficient host cells in TGE systems for therapeutic protein production.
Collapse
Affiliation(s)
- Dongwoo Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Seul Mi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jaejin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jiwon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
9
|
Chastagnier L, Marquette C, Petiot E. In situ transient transfection of 3D cell cultures and tissues, a promising tool for tissue engineering and gene therapy. Biotechnol Adv 2023; 68:108211. [PMID: 37463610 DOI: 10.1016/j.biotechadv.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/26/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
Various research fields use the transfection of mammalian cells with genetic material to induce the expression of a target transgene or gene silencing. It is a tool widely used in biological research, bioproduction, and therapy. Current transfection protocols are usually performed on 2D adherent cells or suspension cultures. The important rise of new gene therapies and regenerative medicine in the last decade raises the need for new tools to empower the in situ transfection of tissues and 3D cell cultures. This review will present novel in situ transfection methods based on a chemical or physical non-viral transfection of cells in tissues and 3D cultures, discuss the advantages and remaining gaps, and propose future developments and applications.
Collapse
Affiliation(s)
- Laura Chastagnier
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France
| | - Christophe Marquette
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France
| | - Emma Petiot
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France.
| |
Collapse
|
10
|
Wang W, Tasset A, Pyatnitskiy I, Lin P, Bellamkonda A, Mehta R, Gabbert C, Yuan F, Mohamed HG, Peppas NA, Wang H. Reversible, Covalent DNA Condensation Approach Using Chemical Linkers for Enhanced Gene Delivery. NANO LETTERS 2023; 23:9310-9318. [PMID: 37843021 DOI: 10.1021/acs.nanolett.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nonviral gene delivery has emerged as a promising technology for gene therapy. Nonetheless, these approaches often face challenges, primarily associated with lower efficiency, which can be attributed to the inefficient transportation of DNA into the nucleus. Here, we report a two-stage condensation approach to achieve efficient nuclear transport of DNA. First, we utilize chemical linkers to cross-link DNA plasmids via a reversible covalent bond to form smaller-sized bundled DNA (b-DNA). Then, we package the b-DNA into cationic vectors to further condense b-DNA and enable efficient gene delivery to the nucleus. We demonstrate clear improvements in the gene transfection efficiency in vitro, including with 11.6 kbp plasmids and in primary cultured neurons. Moreover, we also observed a remarkable improvement in lung-selective gene transfection efficiency in vivo by this two-stage condensation approach following intravenous administration. This reversible covalent assembly strategy demonstrates substantial value of nonviral gene delivery for clinical therapeutic applications.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aaron Tasset
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Peter Lin
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arjun Bellamkonda
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rohan Mehta
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christian Gabbert
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Feng Yuan
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heba Galaa Mohamed
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas A Peppas
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Casper J, Schenk SH, Parhizkar E, Detampel P, Dehshahri A, Huwyler J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J Control Release 2023; 362:667-691. [PMID: 37666302 DOI: 10.1016/j.jconrel.2023.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Polyethlyenimine (PEI) was introduced 1995 as a cationic polymer for nucleic acid delivery. PEI and its derivatives are extensively used in basic research and as reference formulations in the field of polymer-based gene delivery. Despite its widespread use, the number of clinical applications to date is limited. Thus, this review aims to consolidate the past applications of PEI in DNA delivery, elucidate the obstacles that hinder its transition to clinical use, and highlight potential prospects for novel iterations of PEI derivatives. The present review article is divided into three sections. The first section examines the mechanism of action employed by PEI, examining fundamental aspects of cellular delivery including uptake mechanisms, release from endosomes, and transport into the cell nucleus, along with potential strategies for enhancing these delivery phases. Moreover, an in-depth analysis is conducted concerning the mechanism underlying cellular toxicity, accompanied with approaches to overcome this major challenge. The second part is devoted to the in vivo performance of PEI and its application in various therapeutic indications. While systemic administration has proven to be challenging, alternative localized delivery routes hold promise, such as treatment of solid tumors, application as a vaccine, or serving as a therapeutic agent for pulmonary delivery. In the last section, the outcome of completed and ongoing clinical trials is summarized. Finally, an expert opinion is provided on the potential of PEI and its future applications. PEI-based formulations for nucleic acid delivery have a promising potential, it will be an important task for the years to come to introduce innovations that address PEI-associated shortcomings by introducing well-designed PEI formulations in combination with an appropriate route of administration.
Collapse
Affiliation(s)
- Jens Casper
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elahehnaz Parhizkar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
12
|
Cuypers ML, Geukens N, Hollevoet K, Declerck P, Dewilde M. Exploring the Fate of Antibody-Encoding pDNA after Intramuscular Electroporation in Mice. Pharmaceutics 2023; 15:pharmaceutics15041160. [PMID: 37111645 PMCID: PMC10146361 DOI: 10.3390/pharmaceutics15041160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
DNA-based antibody therapy seeks to administer the encoding nucleotide sequence rather than the antibody protein. To further improve the in vivo monoclonal antibody (mAb) expression, a better understanding of what happens after the administration of the encoding plasmid DNA (pDNA) is required. This study reports the quantitative evaluation and localization of the administered pDNA over time and its association with corresponding mRNA levels and systemic protein concentrations. pDNA encoding the murine anti-HER2 4D5 mAb was administered to BALB/c mice via intramuscular injection followed by electroporation. Muscle biopsies and blood samples were taken at different time points (up to 3 months). In muscle, pDNA levels decreased 90% between 24 h and one week post treatment (p < 0.0001). In contrast, mRNA levels remained stable over time. The 4D5 antibody plasma concentrations reached peak levels at week two followed by a slow decrease (50% after 12 weeks, p < 0.0001). Evaluation of pDNA localization revealed that extranuclear pDNA was cleared fast, whereas the nuclear fraction remained relatively stable. This is in line with the observed mRNA and protein levels over time and indicates that only a minor fraction of the administered pDNA is ultimately responsible for the observed systemic mAb levels. In conclusion, this study demonstrates that durable expression is dependent on the nuclear uptake of the pDNA. Therefore, efforts to increase the protein levels upon pDNA-based gene therapy should focus on strategies to increase both cellular entry and migration of the pDNA into the nucleus. The currently applied methodology can be used to guide the design and evaluation of novel plasmid-based vectors or alternative delivery methods in order to achieve a robust and prolonged protein expression.
Collapse
Affiliation(s)
- Marie-Lynn Cuypers
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
| | - Nick Geukens
- PharmAbs-The KU Leuven Antibody Center, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
| | - Kevin Hollevoet
- PharmAbs-The KU Leuven Antibody Center, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
- PharmAbs-The KU Leuven Antibody Center, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
- PharmAbs-The KU Leuven Antibody Center, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Girardin C, Maze D, Gonçalves C, Le Guen YT, Pluchon K, Pichon C, Montier T, Midoux P. Selective attachment of a microtubule interacting peptide to plasmid DNA via a triplex forming oligonucleotide for transfection improvement. Gene Ther 2022; 30:271-277. [PMID: 35794469 DOI: 10.1038/s41434-022-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
In nonviral gene therapy approaches, the linkage of signal molecules to plasmid DNA (pDNA) is of interest for guiding its delivery to the nucleus. Here, we report its linkage to a peptide (P79-98) mediating migration on microtubules by using a triplex-forming oligonucleotide (TFO). pDNA of 5 kbp and 21 kbp containing 6 and 36 oligopurine • oligopyrimidine sites (TH), respectively, inserted outside the luciferase gene sequence were used. TFO with a dibenzocyclooctyl (DBCO) group in 3' end comprising some Bridged Nucleic Acid bases was conjugated by click chemistry with the peptide carrying an azide function in the C-terminal end. We found the formation of 6 and 18 triplex with pDNA of 5 kbp and 21 kbp, respectively. A twofold increase of the transfection efficiency was observed in the hind-limbs upon Hydrodynamic Limb Vein (HLV) injection in mice of naked P79-98 -pDNA of 21 kbp. This work paves the way for the selective equipping of pDNA with intracellular targeting molecules while preserving the full expression of the encoded gene.
Collapse
Affiliation(s)
- Caroline Girardin
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Delphine Maze
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | | | - Kevin Pluchon
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, F-29200, Brest, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, F-29200, Brest, France. .,Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, F-29200, Brest, France.
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France.
| |
Collapse
|
14
|
Mathur D, Rogers KE, Díaz SA, Muroski ME, Klein WP, Nag OK, Lee K, Field LD, Delehanty JB, Medintz IL. Determining the Cytosolic Stability of Small DNA Nanostructures In Cellula. NANO LETTERS 2022; 22:5037-5045. [PMID: 35580267 PMCID: PMC9233082 DOI: 10.1021/acs.nanolett.2c00917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
DNA nanostructures have proven potential in biomedicine. However, their intracellular interactions─especially cytosolic stability─remain mostly unknown and attempts to discern this are confounded by the complexities of endocytic uptake and entrapment. Here, we bypass the endocytic uptake and evaluate the DNA structural stability directly in live cells. Commonly used DNA structures─crosshairs and a tetrahedron─were labeled with a multistep Förster resonance energy transfer dye cascade and microinjected into the cytosol of transformed and primary cells. Energy transfer loss, as monitored by fluorescence microscopy, reported the structure's direct time-resolved breakdown in cellula. The results showed rapid degradation of the DNA crosshair within 20 min, while the tetrahedron remained consistently intact for at least 1 h postinjection. Nuclease assays in conjunction with a current understanding of the tetrahedron's torsional rigidity confirmed its higher stability. Such studies can inform design parameters for future DNA nanostructures where programmable degradation rates may be required.
Collapse
Affiliation(s)
- Divita Mathur
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Katherine E Rogers
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Megan E Muroski
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- American Society of Engineering Education, Washington, DC 20036, United States
| | - William P Klein
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- National Research Council, Washington, DC 20001, United States
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Kwahun Lee
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- American Society of Engineering Education, Washington, DC 20036, United States
| | - Lauren D Field
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- National Research Council, Washington, DC 20001, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
15
|
Heinemann D, Zabic M, Terakawa M, Boch J. Laser-based molecular delivery and its applications in plant science. PLANT METHODS 2022; 18:82. [PMID: 35690858 PMCID: PMC9188231 DOI: 10.1186/s13007-022-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
Lasers enable modification of living and non-living matter with submicron precision in a contact-free manner which has raised the interest of researchers for decades. Accordingly, laser technologies have drawn interest across disciplines. They have been established as a valuable tool to permeabilize cellular membranes for molecular delivery in a process termed photoinjection. Laser-based molecular delivery was first reported in 1984, when normal kidney cells were successfully transfected with a frequency-multiplied Nd:YAG laser. Due to the rapid development of optical technologies, far more sophisticated laser platforms have become available. In particular, near infrared femtosecond (NIR fs) laser sources enable an increasing progress of laser-based molecular delivery procedures and opened up multiple variations and applications of this technique.This review is intended to provide a plant science audience with the physical principles as well as the application potentials of laser-based molecular delivery. The historical origins and technical development of laser-based molecular delivery are summarized and the principle physical processes involved in these approaches and their implications for practical use are introduced. Successful cases of laser-based molecular delivery in plant science will be reviewed in detail, and the specific hurdles that plant materials pose will be discussed. Finally, we will give an outlook on current limitations and possible future applications of laser-based molecular delivery in the field of plant science.
Collapse
Affiliation(s)
- Dag Heinemann
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167, Hannover, Germany.
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany.
| | - Miroslav Zabic
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167, Hannover, Germany
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Mitsuhiro Terakawa
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Jens Boch
- Institute of Plant Genetics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
16
|
Bianca C, Sidhartha E, Tiribelli C, El-Khobar KE, Sukowati CHC. Role of hepatitis B virus in development of hepatocellular carcinoma: Focus on covalently closed circular DNA. World J Hepatol 2022; 14:866-884. [PMID: 35721287 PMCID: PMC9157711 DOI: 10.4254/wjh.v14.i5.866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains a major global health problem, especially in developing countries. It may lead to prolonged liver damage, fibrosis, cirrhosis, and hepatocellular carcinoma. Persistent chronic HBV infection is related to host immune response and the stability of the covalently closed circular DNA (cccDNA) in human hepatocytes. In addition to being essential for viral transcription and replication, cccDNA is also suspected to play a role in persistent HBV infections or hepatitis relapses since cccDNA is very stable in non-dividing human hepatocytes. Understanding the pathogenicity and oncogenicity of HBV components would be essential in the development of new diagnostic tools and treatment strategies. This review summarizes the role and molecular mechanisms of HBV cccDNA in hepatocyte transformation and hepatocarcinogenesis and current efforts to its detection and targeting.
Collapse
Affiliation(s)
- Claryssa Bianca
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Elizabeth Sidhartha
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| | - Korri Elvanita El-Khobar
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Caecilia H C Sukowati
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| |
Collapse
|
17
|
Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144:107994. [PMID: 34930678 DOI: 10.1016/j.bioelechem.2021.107994] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.
Collapse
Affiliation(s)
- Shaurya Sachdev
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
18
|
Mahmoud LM, Kaur P, Stanton D, Grosser JW, Dutt M. A cationic lipid mediated CRISPR/Cas9 technique for the production of stable genome edited citrus plants. PLANT METHODS 2022; 18:33. [PMID: 35303912 PMCID: PMC8932238 DOI: 10.1186/s13007-022-00870-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/05/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND The genetic engineering of crops has enhanced productivity in the face of climate change and a growing global population by conferring desirable genetic traits, including the enhancement of biotic and abiotic stress tolerance, to improve agriculture. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system has been found to be a promising technology for genomic editing. Protoplasts are often utilized for the development of genetically modified plants through in vitro integration of a recombinant DNA fragment into the plant genome. We targeted the citrus Nonexpressor of Pathogenesis-Related 3 (CsNPR3) gene, a negative regulator of systemic acquired resistance (SAR) that governs the proteasome-mediated degradation of NPR1 and developed a genome editing technique targeting citrus protoplast DNA to produce stable genome-edited citrus plants. RESULTS Here, we determined the best cationic lipid nanoparticles to deliver donor DNA and described a protocol using Lipofectamine™ LTX Reagent with PLUS Reagent to mediate DNA delivery into citrus protoplasts. A Cas9 construct containing a gRNA targeting the CsNPR3 gene was transfected into citrus protoplasts using the cationic lipid transfection agent Lipofectamine with or without polyethylene glycol (PEG, MW 6000). The optimal transfection efficiency for the encapsulation was 30% in Lipofectamine, 51% in Lipofectamine with PEG, and 2% with PEG only. Additionally, plasmid encapsulation in Lipofectamine resulted in the highest cell viability percentage (45%) compared with PEG. Nine edited plants were obtained and identified based on the T7EI assay and Sanger sequencing. The developed edited lines exhibited downregulation of CsNPR3 expression and upregulation of CsPR1. CONCLUSIONS Our results demonstrate that utilization of the cationic lipid-based transfection agent Lipofectamine is a viable option for the successful delivery of donor DNA and subsequent successful genome editing in citrus.
Collapse
Affiliation(s)
- Lamiaa M Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
- Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Prabhjot Kaur
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Daniel Stanton
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
19
|
Kejnovsky E, Jedlicka P. Nucleic acids movement and its relation to genome dynamics of repetitive DNA: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components?: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components? Bioessays 2022; 44:e2100242. [PMID: 35112737 DOI: 10.1002/bies.202100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/07/2022]
Abstract
There is growing evidence of evolutionary genome plasticity. The evolution of repetitive DNA elements, the major components of most eukaryotic genomes, involves the amplification of various classes of mobile genetic elements, the expansion of satellite DNA, the transfer of fragments or entire organellar genomes and may have connections with viruses. In addition to various repetitive DNA elements, a plethora of large and small RNAs migrate within and between cells during individual development as well as during evolution and contribute to changes of genome structure and function. Such migration of DNA and RNA molecules often results in horizontal gene transfer, thus shaping the whole genomic network of interconnected species. Here, we propose that a high evolutionary dynamism of repetitive genome components is often related to the migration/movement of DNA or RNA molecules. We speculate that the cytoplasm is probably an ideal compartment for such evolutionary experiments.
Collapse
Affiliation(s)
- Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
20
|
Egorova A, Shtykalova S, Maretina M, Selutin A, Shved N, Deviatkin D, Selkov S, Baranov V, Kiselev A. Polycondensed Peptide Carriers Modified with Cyclic RGD Ligand for Targeted Suicide Gene Delivery to Uterine Fibroid Cells. Int J Mol Sci 2022; 23:1164. [PMID: 35163086 PMCID: PMC8835468 DOI: 10.3390/ijms23031164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Suicide gene therapy was suggested as a possible strategy for the treatment of uterine fibroids (UFs), which are the most common benign tumors inwomen of reproductive age. For successful suicide gene therapy, DNAtherapeutics should be specifically delivered to UF cells. Peptide carriers are promising non-viral gene delivery systems that can be easily modified with ligands and other biomolecules to overcome DNA transfer barriers. Here we designed polycondensed peptide carriers modified with a cyclic RGD moiety for targeted DNA delivery to UF cells. Molecular weights of the resultant polymers were determined, and inclusion of the ligand was confirmed by MALDI-TOF. The physicochemical properties of the polyplexes, as well as cellular DNA transport, toxicity, and transfection efficiency were studied, and the specificity of αvβ3 integrin-expressing cell transfection was proved. The modification with the ligand resulted in a three-fold increase of transfection efficiency. Modeling of the suicide gene therapy by transferring the HSV-TK suicide gene to primary cells obtained from myomatous nodes of uterine leiomyoma patients was carried out. We observed up to a 2.3-fold decrease in proliferative activity after ganciclovir treatment of the transfected cells. Pro- and anti-apoptotic gene expression analysis confirmed our findings that the developed polyplexes stimulate UF cell death in a suicide-specific manner.
Collapse
Affiliation(s)
- Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Marianna Maretina
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Alexander Selutin
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.S.); (S.S.)
| | - Natalia Shved
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Sergey Selkov
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.S.); (S.S.)
| | - Vladislav Baranov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| |
Collapse
|
21
|
Liu J, Dean DA. Gene Therapy for Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:786255. [PMID: 35111077 PMCID: PMC8801611 DOI: 10.3389/fphys.2021.786255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - David A. Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
22
|
Zarrintaj P, Ghorbani S, Barani M, Singh Chauhan NP, Khodadadi Yazdi M, Saeb MR, Ramsey JD, Hamblin MR, Mozafari M, Mostafavi E. Polylysine for skin regeneration: A review of recent advances and future perspectives. Bioeng Transl Med 2022; 7:e10261. [PMID: 35111953 PMCID: PMC8780928 DOI: 10.1002/btm2.10261] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022] Open
Abstract
There have been several attempts to find promising biomaterials for skin regeneration, among which polylysine (a homopolypeptide) has shown benefits in the regeneration and treatment of skin disorders. This class of biomaterials has shown exceptional abilities due to their macromolecular structure. Polylysine-based biomaterials can be used as tissue engineering scaffolds for skin regeneration, and as drug carriers or even gene delivery vectors for the treatment of skin diseases. In addition, polylysine can play a preservative role in extending the lifetime of skin tissue by minimizing the appearance of photodamaged skin. Research on polylysine is growing today, opening new scenarios that expand the potential of these biomaterials from traditional treatments to a new era of tissue regeneration. This review aims to address the basic concepts, recent trends, and prospects of polylysine-based biomaterials for skin regeneration. Undoubtedly, this class of biomaterials needs further evaluations and explorations, and many critical questions have yet to be answered.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | | | | | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Joshua D. Ramsey
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health ScienceUniversity of JohannesburgSouth Africa
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoTorontoONCanada.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
23
|
Mollé LM, Smyth CH, Yuen D, Johnston APR. Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1809. [PMID: 36416028 PMCID: PMC9786906 DOI: 10.1002/wnan.1809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
Nucleic acid therapeutics can be used to control virtually every aspect of cell behavior and therefore have significant potential to treat genetic disorders, infectious diseases, and cancer. However, while clinically approved to treat a small number of diseases, the full potential of nucleic acid therapeutics is hampered by inefficient delivery. Nucleic acids are large, highly charged biomolecules that are sensitive to degradation and so the approaches to deliver these molecules differ significantly from traditional small molecule drugs. Current studies suggest less than 1% of the injected nucleic acid dose is delivered to the target cell in an active form. This inefficient delivery increases costs and limits their use to applications where a small amount of nucleic acid is sufficient. In this review, we focus on two of the major barriers to efficient nucleic acid delivery: (1) delivery to the target cell and (2) transport to the subcellular compartment where the nucleic acids are therapeutically active. We explore how nanoparticles can be modified with targeting ligands to increase accumulation in specific cells, and how the composition of the nanoparticle can be engineered to manipulate or disrupt cellular membranes and facilitate delivery to the optimal subcellular compartments. Finally, we highlight how with intelligent material design, nanoparticle delivery systems have been developed to deliver nucleic acids that silence aberrant genes, correct genetic mutations, and act as both therapeutic and prophylactic vaccines. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Lara M. Mollé
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Cameron H. Smyth
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Angus P. R. Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
24
|
Kavaliauskaitė J, Kazlauskaitė A, Lazutka JR, Mozolevskis G, Stirkė A. Pulsed Electric Fields Alter Expression of NF-κB Promoter-Controlled Gene. Int J Mol Sci 2021; 23:ijms23010451. [PMID: 35008875 PMCID: PMC8745616 DOI: 10.3390/ijms23010451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
The possibility to artificially adjust and fine-tune gene expression is one of the key milestones in bioengineering, synthetic biology, and advanced medicine. Since the effects of proteins or other transgene products depend on the dosage, controlled gene expression is required for any applications, where even slight fluctuations of the transgene product impact its function or other critical cell parameters. In this context, physical techniques demonstrate optimistic perspectives, and pulsed electric field technology is a potential candidate for a noninvasive, biophysical gene regulator, exploiting an easily adjustable pulse generating device. We exposed mammalian cells, transfected with a NF-κB pathway-controlled transcription system, to a range of microsecond-duration pulsed electric field parameters. To prevent toxicity, we used protocols that would generate relatively mild physical stimulation. The present study, for the first time, proves the principle that microsecond-duration pulsed electric fields can alter single-gene expression in plasmid context in mammalian cells without significant damage to cell integrity or viability. Gene expression might be upregulated or downregulated depending on the cell line and parameters applied. This noninvasive, ligand-, cofactor-, nanoparticle-free approach enables easily controlled direct electrostimulation of the construct carrying the gene of interest; the discovery may contribute towards the path of simplification of the complexity of physical systems in gene regulation and create further synergies between electronics, synthetic biology, and medicine.
Collapse
Affiliation(s)
- Justina Kavaliauskaitė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Auksė Kazlauskaitė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Juozas Rimantas Lazutka
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Gatis Mozolevskis
- Laboratory of Prototyping of Electronic and Photonic Devices, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia;
| | - Arūnas Stirkė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Laboratory of Prototyping of Electronic and Photonic Devices, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia;
- Correspondence:
| |
Collapse
|
25
|
Hasan T, Kawanishi R, Akita H, Nishikawa Y. Toxoplasma gondii GRA15 DNA Vaccine with a Liposomal Nanocarrier Composed of an SS-Cleavable and pH-Activated Lipid-like Material Induces Protective Immunity against Toxoplasmosis in Mice. Vaccines (Basel) 2021; 10:vaccines10010021. [PMID: 35062682 PMCID: PMC8781839 DOI: 10.3390/vaccines10010021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
Toxoplasma gondii affects the health of humans and livestock and causes severe illness in the fetus and immunocompromised individuals. Because of the high incidence and severe consequences of T. gondii infection, a safe and suitable vaccine is needed. We found that lipid nanoparticles (LNPs) consisting of a series of functional materials prepared with vitamin E, such as SS-cleavable and pH-activated lipid-like materials (ssPalmE), were a safe and efficient way to develop next-generation DNA vaccines. In this study, we prepared ssPalmE-LNP to encapsulate pCpG-free-T. gondii dense granule protein 15 DNA (ssPalmE-LNPTgGRA15). Following a challenge infection with avirulent PLK strain of T. gondii, the mice immunized with ssPalmE-LNPTgGRA15 had a significantly higher survival rate and lower clinical scores compared with unimmunized and ssPalmE-LNPnon-coding-immunized mice. Immunization of mice with the ssPalmE-LNPTgGRA15 led to a significantly higher production of specific IgG1 and IG2c antibodies compared with unimmunized and ssPalmE-LNPnon-coding-immunized mice, while there was no statistically significant difference in the concentration of serum interferon-gamma at the acute stage of the infection. These findings indicate that ssPalmE-LNP is an effective cargo for the transportation of DNA vaccines for protozoan infections. To explore the mechanism of protective immunity induced by ssPalmE-LNPTgGRA15, further immunological study is needed in the future.
Collapse
Affiliation(s)
- Tanjila Hasan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan; (T.H.); (R.K.)
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Ryo Kawanishi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan; (T.H.); (R.K.)
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba City 260-0856, Chiba, Japan;
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan; (T.H.); (R.K.)
- Correspondence:
| |
Collapse
|
26
|
Abbas G, Tang S, Noble J, Lane RP. Olfactory receptor coding sequences cause silencing of episomal constructs in multiple cell lines. Mol Cell Neurosci 2021; 117:103681. [PMID: 34742908 PMCID: PMC8669572 DOI: 10.1016/j.mcn.2021.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022] Open
Abstract
The mammalian olfactory system consists of sensory neurons with specialized odorant-binding capability accomplished by mutually exclusive odorant receptor (OR) expression. Mutually exclusive OR expression is a complex multi-step process regulated by a number of cis and trans factors, including pan-silencing of all OR genes preceding the robust and stable expression of the one OR selected in each sensory neuron. We transfected two olfactory-placode-derived cell lines modeling immature odorant sensory neurons, as well as the GD25 fibroblast cell line, with episomes containing CMV-driven GFP and TK-driven hygromycin reporter genes. We inserted various coding sequences, along with an IRES, immediately upstream of the GFP gene to produce bicistronic mRNAs driven from the local CMV promoter. We found that the presence of several OR coding sequences resulted in significantly diminished episomal expression of GFP in all three cell lines. These findings suggest that OR coding sequences have intrinsic self-silencing capability that might facilitate mutually exclusive OR expression in olfactory sensory neurons by making it less likely that multiple ORs acquire an above-threshold level of expression at once.
Collapse
Affiliation(s)
- Ghazia Abbas
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Spencer Tang
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Joyce Noble
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| |
Collapse
|
27
|
Marschall ALJ. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs 2021; 35:643-671. [PMID: 34705260 PMCID: PMC8548996 DOI: 10.1007/s40259-021-00500-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Delivering macromolecules into the cytosol or nucleus is possible in vitro for DNA, RNA and proteins, but translation for clinical use has been limited. Therapeutic delivery of macromolecules into cells requires overcoming substantially higher barriers compared to the use of small molecule drugs or proteins in the extracellular space. Breakthroughs like DNA delivery for approved gene therapies and RNA delivery for silencing of genes (patisiran, ONPATTRO®, Alnylam Pharmaceuticals, Cambridge, MA, USA) or for vaccination such as the RNA-based coronavirus disease 2019 (COVID-19) vaccines demonstrated the feasibility of using macromolecules inside cells for therapy. Chemical carriers are part of the reason why these novel RNA-based therapeutics possess sufficient efficacy for their clinical application. A clear advantage of synthetic chemicals as carriers for macromolecule delivery is their favourable properties with respect to production and storage compared to more bioinspired vehicles like viral vectors or more complex drugs like cellular therapies. If biologicals can be applied to intracellular targets, the druggable space is substantially broadened by circumventing the limited utility of small molecules for blocking protein–protein interactions and the limitation of protein-based drugs to the extracellular space. An in depth understanding of the macromolecular cargo types, carrier types and the cell biology of delivery is crucial for optimal application and further development of biologicals inside cells. Basic mechanistic principles of the molecular and cell biological aspects of cytosolic/nuclear delivery of macromolecules, with particular consideration of protein delivery, are reviewed here. The efficiency of macromolecule delivery and applications in research and therapy are highlighted.
Collapse
Affiliation(s)
- Andrea L J Marschall
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Brunswick, Germany.
| |
Collapse
|
28
|
Arora S, Sharma D, Layek B, Singh J. A Review of Brain-Targeted Nonviral Gene-Based Therapies for the Treatment of Alzheimer's Disease. Mol Pharm 2021; 18:4237-4255. [PMID: 34705472 DOI: 10.1021/acs.molpharmaceut.1c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diseases of the central nervous system (CNS) are difficult to treat owing to the complexity of the brain and the presence of a natural blood-brain-barrier (BBB). Alzheimer's disease (AD) is one of the major progressive and currently incurable neurodegenerative disorders of the CNS, which accounts for 60-80% of cases of dementia. The pathophysiology of AD involves the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. Additionally, synaptic loss and imbalance of neuronal signaling molecules are characterized as important markers of AD. Existing treatments of AD help in the management of its symptoms and aim toward the maintenance of cognitive functions, behavior, and attenuation of gradual memory loss. Over the past decade, nonviral gene therapy has attracted increasing interest due to its various advantages over its viral counterparts. Moreover, advancements in nonviral gene technology have led to their increasing contributions in clinical trials. However, brain-targeted nonviral gene delivery vectors come across various extracellular and intracellular barriers, limiting their ability to transfer the therapeutic gene into the target cells. Chief barriers to nonviral gene therapy have been discussed briefly in this review. We have also highlighted the rapid advancement of several nonviral gene therapies for AD, which are broadly categorized into physical and chemical methods. These methods aim to modulate Aβ, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), apolipoprotein E, or neurotrophic factors' expression in the CNS. Overall, this review discusses challenges and recent advancements of nonviral gene therapy for AD.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
29
|
Bylino OV, Ibragimov AN, Pravednikova AE, Shidlovskii YV. Investigation of the Basic Steps in the Chromosome Conformation Capture Procedure. Front Genet 2021; 12:733937. [PMID: 34616432 PMCID: PMC8488379 DOI: 10.3389/fgene.2021.733937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 12/05/2022] Open
Abstract
A constellation of chromosome conformation capture methods (С-methods) are an important tool for biochemical analysis of the spatial interactions between DNA regions that are separated in the primary sequence. All these methods are based on the long sequence of basic steps of treating cells, nuclei, chromatin, and finally DNA, thus representing a significant technical challenge. Here, we present an in-depth study of the basic steps in the chromatin conformation capture procedure (3С), which was performed using Drosophila Schneider 2 cells as a model. We investigated the steps of cell lysis, nuclei washing, nucleoplasm extraction, chromatin treatment with SDS/Triton X-100, restriction enzyme digestion, chromatin ligation, reversion of cross-links, DNA extraction, treatment of a 3C library with RNases, and purification of the 3C library. Several options were studied, and optimal conditions were found. Our work contributes to the understanding of the 3C basic steps and provides a useful guide to the 3C procedure.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Airat N. Ibragimov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna E. Pravednikova
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
30
|
Hur J, Chung AJ. Microfluidic and Nanofluidic Intracellular Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004595. [PMID: 34096197 PMCID: PMC8336510 DOI: 10.1002/advs.202004595] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Indexed: 05/05/2023]
Abstract
Innate cell function can be artificially engineered and reprogrammed by introducing biomolecules, such as DNAs, RNAs, plasmid DNAs, proteins, or nanomaterials, into the cytosol or nucleus. This process of delivering exogenous cargos into living cells is referred to as intracellular delivery. For instance, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing begins with internalizing Cas9 protein and guide RNA into cells, and chimeric antigen receptor-T (CAR-T) cells are prepared by delivering CAR genes into T lymphocytes for cancer immunotherapies. To deliver external biomolecules into cells, tools, including viral vectors, and electroporation have been traditionally used; however, they are suboptimal for achieving high levels of intracellular delivery while preserving cell viability, phenotype, and function. Notably, as emerging solutions, microfluidic and nanofluidic approaches have shown remarkable potential for addressing this open challenge. This review provides an overview of recent advances in microfluidic and nanofluidic intracellular delivery strategies and discusses new opportunities and challenges for clinical applications. Furthermore, key considerations for future efforts to develop microfluidics- and nanofluidics-enabled next-generation intracellular delivery platforms are outlined.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Aram J. Chung
- School of Biomedical EngineeringInterdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
31
|
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183:2055-2073. [PMID: 34087309 PMCID: PMC8266766 DOI: 10.1016/j.ijbiomac.2021.05.192] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Gene therapy encompasses the transfer of exogenous genetic materials into the patient's target cells to treat or prevent diseases. Nevertheless, the transfer of genetic material into desired cells is challenging and often requires specialized tools or delivery systems. For the past 40 years, scientists are mainly pursuing various viruses as gene delivery vectors, and the overall progress has been slow and far from the expectation. As an alternative, nonviral vectors have gained substantial attention due to their several advantages, including superior safety profile, enhanced payload capacity, and stealth abilities. Since nonviral vectors encounter multiple extra- and intra-cellular barriers limiting the transfer of genetic payload into the target cell nucleus, we have discussed these barriers in detail for this review. A direct approach, utilizing physical methods like electroporation, sonoporation, gene gun, eliminate the requirement for a specific carrier for gene delivery. In contrast, chemical methods of gene transfer exploit natural or synthetic compounds as carriers to increase cellular targeting and gene therapy effectiveness. We have also emphasized the recent advancements aimed at enhancing the current nonviral approaches. Therefore, in this review, we have focused on discussing the current evolving state of nonviral gene delivery systems and their future perspectives.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
32
|
Lee YN, Wu YJ, Lee HI, Wang HH, Chang CY, Tien TY, Lin CF, Su CH, Yeh HI. Ultrasonic microbubble VEGF gene delivery improves angiogenesis of senescent endothelial progenitor cells. Sci Rep 2021; 11:13449. [PMID: 34188086 PMCID: PMC8242093 DOI: 10.1038/s41598-021-92754-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
The therapeutic effects of ultrasonic microbubble transfection (UMT)-based vascular endothelial growth factor 165 (VEGF165) gene delivery on young and senescent endothelial progenitor cells (EPCs) were investigated. By UMT, plasmid DNA (pDNA) can be delivered into both young EPCs and senescent EPCs. In the UMT groups, higher pDNA-derived protein expression was found in senescent EPCs than in young EPCs. Consistent with this finding, a higher intracellular level of pDNA copy number was detected in senescent EPCs, with a peak at the 2-h time point post UMT. Ultrasonic microbubble delivery with or without VEGF improved the angiogenic properties, including the proliferation and/or migration activities, of senescent EPCs. Supernatants from young and senescent EPCs subjected to UMT-mediated VEGF transfection enhanced the proliferation and migration of human aortic endothelial cells (HAECs), and the supernatant of senescent EPCs enhanced proliferation more strongly than the supernatant from young EPCs. In the UMT groups, the stronger enhancing effect of the supernatant from senescent cells on HAEC proliferation was consistent with the higher intracellular VEGF pDNA copy number and level of protein production per cell in the supernatant from senescent cells in comparison to the supernatant from young EPCs. Given that limitations for cell therapies are the inadequate number of transplanted cells and/or insufficient cell angiogenesis, these findings provide a foundation for enhancing the therapeutic angiogenic effect of cell therapy with senescent EPCs in ischaemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yi-Nan Lee
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Yih-Jer Wu
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan.,Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan
| | - Hsin-I Lee
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Hsueh-Hsiao Wang
- Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan
| | - Chiung-Yin Chang
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Ting-Yi Tien
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Chao-Feng Lin
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan
| | - Cheng-Huang Su
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan. .,Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan.
| | - Hung-I Yeh
- Cardiovascular Center, Departments of Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan.,Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd. Sanzhi Dist. 252, New Taipei City, Taiwan
| |
Collapse
|
33
|
Jin CR, Kim JY, Kim DH, Jeon MS, Choi YE. In Vivo Monitoring of Intracellular Metabolite in a Microalgal Cell Using an Aptamer/Graphene Oxide Nanosheet Complex. ACS APPLIED BIO MATERIALS 2021; 4:5080-5089. [PMID: 35007056 DOI: 10.1021/acsabm.1c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Real-time sensing and imaging of intracellular metabolites in living cells are crucial tools for the characterization of complex biological processes, including the dynamic fluctuation of metabolites. Therefore, additional efforts are required to develop in vivo detection strategies for the visualization and quantification of specific target metabolites, particularly in microalgae. In this study, we developed a strategy to monitor a specific microalgal metabolite in living cells using an aptamer/graphene oxide nanosheet (GOnS) complex. As a proof-of-concept, β-carotene, an antioxidant pigment that accumulates in most microalgal species, was chosen as a target metabolite. To achieve this, a β-carotene-specific aptamer was selected through graphene oxide-assisted systematic evolution of ligands by exponential enrichment (GO-SELEX) and characterized thereafter. The aptamer could sensitively sense the changes in the concentration of β-carotene (i.e., the target metabolite) and more specifically bind to β-carotene than to nontargets. The selected aptamer was labeled with a fluorophore (fluorescein; FAM) and allowed to form an aptamer/GOnS complex that protected the aptamer from nucleic cleavages. The aptamer/GOnS complex was delivered into the cells via electroporation, thus enabling the sensitive monitoring of β-carotene in the cell by quantifying the aptamer fluorescence intensity. The results suggest that our biocompatible strategy could be employed to visualize and semiquantify intracellular microalgae metabolites in vivo, which holds a great potential in diverse fields such as metabolite analysis and mutant screening.
Collapse
Affiliation(s)
- Cho Rok Jin
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Jee Young Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Da Hee Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Min Seo Jeon
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
34
|
Nguyen TN, Sha S, Hong MS, Maloney AJ, Barone PW, Neufeld C, Wolfrum J, Springs SL, Sinskey AJ, Braatz RD. Mechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cells. Mol Ther Methods Clin Dev 2021; 21:642-655. [PMID: 34095346 PMCID: PMC8143981 DOI: 10.1016/j.omtm.2021.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Manufacturing of recombinant adeno-associated virus (rAAV) viral vectors remains challenging, with low yields and low full:empty capsid ratios in the harvest. To elucidate the dynamics of recombinant viral production, we develop a mechanistic model for the synthesis of rAAV viral vectors by triple plasmid transfection based on the underlying biological processes derived from wild-type AAV. The model covers major steps starting from exogenous DNA delivery to the reaction cascade that forms viral proteins and DNA, which subsequently result in filled capsids, and the complex functions of the Rep protein as a regulator of the packaging plasmid gene expression and a catalyst for viral DNA packaging. We estimate kinetic parameters using dynamic data from literature and in-house triple transient transfection experiments. Model predictions of productivity changes as a result of the varied input plasmid ratio are benchmarked against transfection data from the literature. Sensitivity analysis suggests that (1) the poorly coordinated timeline of capsid synthesis and viral DNA replication results in a low ratio of full virions in harvest, and (2) repressive function of the Rep protein could be impeding capsid production at a later phase. The analyses from the mathematical model provide testable hypotheses for evaluation and reveal potential process bottlenecks that can be investigated.
Collapse
Affiliation(s)
- Tam N.T. Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sha Sha
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Moo Sun Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew J. Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul W. Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L. Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J. Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
35
|
Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnol Adv 2021; 49:107764. [PMID: 33957276 DOI: 10.1016/j.biotechadv.2021.107764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are among the most important vectors for in vivo gene therapies. With the rapid development of gene therapy, current rAAV manufacturing capacity faces a challenge to meet the emerging demand for these therapies in the future. To examine the bottlenecks in rAAV production during cell culture, we focus here on an analysis of cellular pathways of rAAV production, based on an overview of assembly mechanisms first in the wild-type (wt) AAV replication and then in the common methods of rAAV production. The differences analyzed between the wild-type and recombinant systems provide insights into the mechanistic differences that may correlate with viral productivity. Based on these analyses, we identify potential barriers to high productivity of rAAV and discuss future directions for improvement to meet the emerging needs set by the growth of rAAV-based therapy and the needs of patients.
Collapse
|
36
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
38
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
39
|
Blokpoel Ferreras LA, Chan SY, Vazquez Reina S, Dixon JE. Rapidly Transducing and Spatially Localized Magnetofection Using Peptide-Mediated Non-Viral Gene Delivery Based on Iron Oxide Nanoparticles. ACS APPLIED NANO MATERIALS 2021; 4:167-181. [PMID: 33763629 PMCID: PMC7978400 DOI: 10.1021/acsanm.0c02465] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/06/2020] [Indexed: 05/03/2023]
Abstract
Non-viral delivery systems are generally of low efficiency, which limits their use in gene therapy and editing applications. We previously developed a technology termed glycosaminoglycan (GAG)-binding enhanced transduction (GET) to efficiently deliver a variety of cargos intracellularly; our system employs GAG-binding peptides, which promote cell targeting, and cell penetrating peptides (CPPs), which enhance endocytotic cell internalization. Herein, we describe a further modification by combining gene delivery and magnetic targeting with the GET technology. We associated GET peptides, plasmid (p)DNA, and iron oxide superparamagnetic nanoparticles (MNPs), allowing rapid and targeted GET-mediated uptake by application of static magnetic fields in NIH3T3 cells. This produced effective transfection levels (significantly higher than the control) with seconds to minutes of exposure and localized gene delivery two orders of magnitude higher in targeted over non-targeted cell monolayers using magnetic fields (in 15 min exposure delivering GFP reporter pDNA). More importantly, high cell membrane targeting by GET-DNA and MNP co-complexes and magnetic fields allowed further enhancement to endocytotic uptake, meaning that the nucleic acid cargo was rapidly internalized beyond that of GET complexes alone (GET-DNA). Magnetofection by MNPs combined with GET-mediated delivery allows magnetic field-guided local transfection in vitro and could facilitate focused gene delivery for future regenerative and disease-targeted therapies in vivo.
Collapse
Affiliation(s)
- Lia A. Blokpoel Ferreras
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Sze Yan Chan
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Saul Vazquez Reina
- School
of Veterinary Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - James E. Dixon
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
40
|
Ebrahimi M, Mara L, Chessa B, Chessa F, Parham A, Dattena M. Optimizing injection time of GFP plasmid into sheep zygote. Reprod Domest Anim 2021; 56:467-475. [PMID: 33368650 DOI: 10.1111/rda.13885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
Microinjection of exogenous DNA into the cytoplasm of matured oocytes or zygotes is a promising technique to generate transgenic animals. However, the data about the microinjection time and procedure in sheep are limited and have not treated in detail. To obtain more in-depth information, the Sarda sheep oocytes from abattoir-derived ovaries were subjected to IVM and IVF. Then, the GFP plasmid as a reporter gene was injected into the cytoplasm of MII oocytes (n: 95) and zygotes at different post-insemination intervals (6-8 hpi, n: 120; 8-10 hpi, n: 122; 10-12 hpi, n: 110 and 12-14 hpi, n: 96). There were no significant differences in the cleavage rates between the groups. However, blastocyst rate of injected zygotes at all-time intervals was significantly lower than injected MII oocytes and control group (p < 0.05). Interestingly, the proportion of GFP-positive embryos was higher at 8-10 hpi compared with other injected groups (4 % versus 0 %, p < 0.01). Among these, the proportion of mosaic embryos was high and two of those embryos developed to the blastocyst stage. In conclusion, we settled on the cytoplasmic microinjection of GFP plasmid at 8-10 hpi as an optimized time point for the production of transgenic sheep and subsequent experiments.
Collapse
Affiliation(s)
- Mohammadreza Ebrahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Laura Mara
- Department of Animal Science, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Bernardo Chessa
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Fabrizio Chessa
- Department of Animal Science, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Abbas Parham
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maria Dattena
- Department of Animal Science, Agricultural Research Agency of Sardinia, Sassari, Italy
| |
Collapse
|
41
|
Shrivastava G, Bakshi HA, Aljabali AA, Mishra V, Hakkim FL, Charbe NB, Kesharwani P, Chellappan DK, Dua K, Tambuwala MM. Nucleic Acid Aptamers as a Potential Nucleus Targeted Drug Delivery System. Curr Drug Deliv 2020; 17:101-111. [PMID: 31906837 DOI: 10.2174/1567201817666200106104332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nucleus targeted drug delivery provides several opportunities for the treatment of fatal diseases such as cancer. However, the complex nucleocytoplasmic barriers pose significant challenges for delivering a drug directly and efficiently into the nucleus. Aptamers representing singlestranded DNA and RNA qualify as next-generation highly advanced and personalized medicinal agents that successfully inhibit the expression of certain proteins; possess extraordinary gene-expression for manoeuvring the diseased cell's fate with negligible toxicity. In addition, the precisely directed aptamers to the site of action present a tremendous potential to reach the nucleus by escaping the ensuing barriers to exhibit a better drug activity and gene expression. OBJECTIVE This review epigrammatically highlights the significance of targeted drug delivery and presents a comprehensive description of the principal barriers faced by the nucleus targeted drug delivery paradigm and ensuing complexities thereof. Eventually, the progress of nucleus targeting with nucleic acid aptamers and success achieved so far have also been reviewed. METHODS Systematic literature search was conducted of research published to date in the field of nucleic acid aptamers. CONCLUSION The review specifically points out the contribution of individual aptamers as the nucleustargeting agent rather than aptamers in conjugated form.
Collapse
Affiliation(s)
- Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Hamid A Bakshi
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry BT52 1SA Northern Ireland, United Kingdom
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara (Punjab), India
| | - Faruck L Hakkim
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Nitin B Charbe
- Departamento de Quimica Organica, Facultad de Quimicay de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuña McKenna 4860, Macul, Santiago 7820436, Chile
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Murtaza M Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry BT52 1SA Northern Ireland, United Kingdom
| |
Collapse
|
42
|
Dandri M, Petersen J. cccDNA Maintenance in Chronic Hepatitis B - Targeting the Matrix of Viral Replication. Infect Drug Resist 2020; 13:3873-3886. [PMID: 33149632 PMCID: PMC7605611 DOI: 10.2147/idr.s240472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B is a numerically important cause of cirrhosis and hepatocellular carcinoma, despite an effective prophylactic vaccine and well-tolerated and effective oral antivirals. Both the incapacity of the immune system to clear hepatitis B virus (HBV) infection and the unique replication strategies adopted by HBV are considered key determinants of HBV chronicity. In this regard, the formation of the HBV DNA minichromosome, the covalently closed circular DNA (cccDNA), in the nucleus of infected hepatocytes, is essential not only for the production of all viral proteins but also for HBV persistence even after long-term antiviral therapy. Licensed polymerase inhibitors target the HBV reverse transcriptase activity, control the disease with long-term therapy but fail to eliminate the cccDNA. Consequently, the production of viral RNAs and proteins, including the hepatitis B surface antigen (HBsAg), is not abolished. Novel therapeutic efforts that are in the pipeline for early clinical trials explore novel targets and molecules. Such therapeutic efforts focus on achieving a functional cure, which is defined by the loss of HBsAg and undetectable HBV DNA levels in serum. Since a true cure of HBV infection requires the elimination of the cccDNA from infected cells, comprehension of the mechanisms implicated in cccDNA biogenesis, regulation and stability appears necessary to achieve HBV eradication. In this review, we will summarize the state of knowledge on cccDNA metabolism, focusing on insights suggesting potential weak points of the cccDNA that may be key for the development of therapeutic approaches and design of clinical trials aiming at lowering cccDNA loads and activity.
Collapse
Affiliation(s)
- Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg - Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Luebeck-Borstel-Riems Site, Germany
| | - Joerg Petersen
- Institute for Interdisciplinary Medicine, Asklepios Klinik St Georg, University of Hamburg, Hamburg, Germany
| |
Collapse
|
43
|
Kim K, Ryu K, Cho H, Shim MS, Cho YY, Lee JY, Lee HS, Kang HC. Effects of Decomplexation Rates on Ternary Gene Complex Transfection with α-Poly(l-Lysine) or ε-Poly(l-Lysine) as a Decomplexation Controller in An Easy-To-Transfect Cell or A Hard-To-Transfect Cell. Pharmaceutics 2020; 12:pharmaceutics12060490. [PMID: 32481637 PMCID: PMC7356167 DOI: 10.3390/pharmaceutics12060490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
The tight binding of pDNA with a cationic polymer is the crucial requirement that prevents DNA degradation from undesired DNase attack to safely deliver the pDNA to its target site. However, cationic polymer-mediated strong gene holding limits pDNA dissociation from the gene complex, resulting in a reduction in transfection efficiency. In this study, to control the decomplexation rate of pDNA from the gene complex in a hard-to-transfect cell or an easy-to-transfect cell, either α-poly(l-lysine) (APL) or ε-poly(l-lysine) (EPL) was incorporated into branched polyethylenimine (bPEI)-based nanocomplexes (NCs). Compared to bPEI/pDNA NCs, the addition of APL or EPL formed smaller bPEI-APL/pDNA NCs with similar zeta potentials or larger bPEI-EPL/pDNA NCs with reduced zeta potentials, respectively, due to the different characteristics of the primary amines in the two poly(l-lysine)s (PLs). Interestingly, although both bPEI-APL/pDNA NCs and bPEI-EPL/pDNA NCs showed similar pDNA compactness to bPEI/pDNA NCs, the addition of APL or EPL resulted in slower or faster pDNA release, respectively, from the bPEI-PL/pDNA NCs than from the bPEI/pDNA NCs. bPEI-EPL/pDNA NCs with a decomplexation enhancer (i.e., EPL) improved the transfection efficiency (TE) in both a hard-to-transfect HepG2 cell and an easy-to-transfect HEK293 cell. However, although a decomplexation inhibitor (i.e., APL) reduced the TE of bPEI-APL/pDNA NCs in both cells, the degree of reduction in the TE could be compensated by PL-mediated enhanced nuclear delivery, particularly in HepG2 cells but not HEK293 cells, because both PLs facilitate nuclear localization of the gene complex per its cellular uptake. In conclusion, a decomplexation rate controller could be a potential factor to establish a high TE and design clinically available gene complex systems.
Collapse
Affiliation(s)
- Kyoungnam Kim
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Kitae Ryu
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea;
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea; (K.K.); (K.R.); (H.C.); (Y.-Y.C.); (J.Y.L.); (H.S.L.)
- Correspondence: ; Tel.: +82-2-2164-6533; Fax: +82-2-2164-4059
| |
Collapse
|
44
|
Gao C, Li Z, Zou J, Cheng J, Jiang K, Liu C, Gu G, Tao W, Song J. Mechanical Effect on Gene Transfection Based on Dielectric Elastomer Actuator. ACS APPLIED BIO MATERIALS 2020; 3:2617-2625. [PMID: 35025395 DOI: 10.1021/acsabm.9b01199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene transfection has been widely applied in genome function and gene therapy. Although many efforts have been focused on designing carrier materials and transfection methods, the influence of mechanical stimulation on gene transfection efficiency has rarely been studied. Herein, dielectric elastomer actuator (DEA)-based stimulation bioreactors are designed to generate tensile and contractile stress on cells simultaneously. With the example of the EGFP transfection, cells with high membrane tension in the stretching stimulation regions had lower transfection efficiency, while the transfection efficiency of cells in the compressing regions tended to increase. Besides, the duty cycle and loading frequency of the applied stress on cells were also important factors that affect gene transfection efficiency. Furthermore, the pathways of cell endocytosis with the effect of mechanical stimulation were explored on the mechanism for the change of EGFP transfection efficiency. This design of the DEA-based bioreactor, as a strategy to study gene transfection efficiency, could be helpful for developing efficient transfection methods.
Collapse
Affiliation(s)
- Chao Gao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhichao Li
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jiang Zou
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Kai Jiang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Changrun Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wei Tao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| |
Collapse
|
45
|
Chen S, Qin J, Du J. Two Principles for Polymersomes with Ultrahigh Biomacromolecular Loading Efficiencies: Acid-Induced Adsorption and Affinity-Enhanced Attraction. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shuai Chen
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, 180 East Wusi Road, Baoding 071002, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
46
|
Richter F, Martin L, Leer K, Moek E, Hausig F, Brendel JC, Traeger A. Tuning of endosomal escape and gene expression by functional groups, molecular weight and transfection medium: a structure-activity relationship study. J Mater Chem B 2020; 8:5026-5041. [PMID: 32319993 DOI: 10.1039/d0tb00340a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of genetic material by non-viral transfer systems is still in its initial stages, but there are high expectations for the development of targeted therapies. However, nucleic acids cannot enter cells without help, they must be well protected to prevent degradation and overcome a variety of biological barriers, the endosomal barrier being one of the greatest cellular challenges. Herein, the structure-property-relationship was investigated in detail, using well-defined polymers. Polyacrylamides were synthesized via RAFT polymerization resulting in a polymer library of (i) different cationic groups as aminoethyl acrylamide (AEAm), dimethylaminoethyl acrylamide (DMAEAm), dimethylaminopropyl acrylamide (DMAPAm) and guanidinopropyl acrylamide (GPAm); (ii) different degree of polymerization; and investigated (iii) in different cell culture settings. The influence of molar mass and cationic moiety on complex formation with pDNA, cytotoxicity and transfection efficiency of the polymers were investigated. The systematic approach identified a pH-independent guanidinium-containing homopolymer (PGPAm89) as the polymer with the highest transfection efficiency and superior endosomal release under optimal conditions. Since PGPAm89 is not further protonated inside endosomes, common escape theories appear unsuitable. Therefore, the interaction with bis(monoacryloylglycerol)phosphate, a lipid specific for endosomal vesicles, was investigated. Our research suggests that the interactions between amines and lipids may be more relevant than anticipated.
Collapse
Affiliation(s)
- Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Chang AY, Liu X, Tian H, Hua L, Yang Z, Wang S. Microfluidic Electroporation Coupling Pulses of Nanoseconds and Milliseconds to Facilitate Rapid Uptake and Enhanced Expression of DNA in Cell Therapy. Sci Rep 2020; 10:6061. [PMID: 32269260 PMCID: PMC7142113 DOI: 10.1038/s41598-020-63172-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
Standard electroporation with pulses in milliseconds has been used as an effective tool to deliver drugs or genetic probes into cells, while irreversible electroporation with nanosecond pulses is explored to alter intracellular activities for pulse-induced apoptosis. A combination treatment, long nanosecond pulses followed by standard millisecond pulses, is adopted in this work to help facilitate DNA plasmids to cross both cell plasma membrane and nuclear membrane quickly to promote the transgene expression level and kinetics in both adherent and suspension cells. Nanosecond pulses with 400–800 ns duration are found effective on disrupting nuclear membrane to advance nuclear delivery of plasmid DNA. The additional microfluidic operation further helps suppress the negative impacts such as Joule heating and gas bubble evolution from common nanosecond pulse treatment that lead to high toxicity and/or ineffective transfection. Having appropriate order and little delay between the two types of treatment with different pulse duration is critical to guarantee the effectiveness: 2 folds or higher transfection efficiency enhancement and rapid transgene expression kinetics of GFP plasmids at no compromise of cell viability. The implementation of this new electroporation approach may benefit many biology studies and clinical practice that needs efficient delivery of exogenous probes.
Collapse
Affiliation(s)
- An-Yi Chang
- Chemical Engineering, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA.,Institute for Micromanufacturing, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA.,Center for Biomedical Engineering and Rehabilitations, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA
| | - Xuan Liu
- Macromolecular and Nanotechnology, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA.,Center for Biomedical Engineering and Rehabilitations, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA
| | - Hong Tian
- Institute for Micromanufacturing, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA
| | - Liping Hua
- Institute for Micromanufacturing, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA.,Center for Biomedical Engineering and Rehabilitations, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shengnian Wang
- Chemical Engineering, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA. .,Institute for Micromanufacturing, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA. .,Macromolecular and Nanotechnology, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA. .,Center for Biomedical Engineering and Rehabilitations, Louisiana Tech University, PO Box 10137, Ruston, LA, 71272, USA.
| |
Collapse
|
48
|
Zhang H, Rombouts K, Raes L, Xiong R, De Smedt SC, Braeckmans K, Remaut K. Fluorescence-Based Quantification of Messenger RNA and Plasmid DNA Decay Kinetics in Extracellular Biological Fluids and Cell Extracts. ACTA ACUST UNITED AC 2020; 4:e2000057. [PMID: 32402121 DOI: 10.1002/adbi.202000057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Extracellular and intracellular degradation of nucleic acids remains an issue in non-viral gene therapy. Understanding biodegradation is critical for the rational design of gene therapeutics in order to maintain stability and functionality at the target site. However, there are only limited methods available that allow determining the stability of genetic materials in biological environments. In this context, the decay kinetics of fluorescently labeled plasmid DNA (pDNA) and messenger RNA (mRNA) in undiluted biological samples (i.e., human serum, human ascites, bovine vitreous) and cell extracts is studied using fluorescence correlation spectroscopy (FCS) and single particle tracking (SPT). It is demonstrated that FCS is suitable to follow mRNA degradation, while SPT is better suited to investigate pDNA integrity. The half-life of mRNA and pDNA is ≈1-2 min and 1-4 h in biological samples, respectively. The resistance against biodegradation drastically improves by complexation with lipid-based carriers. Taken together, FCS and SPT are able to quantify the integrity of mRNA and pDNA, respectively, as a function of time, both in the extracellular biological fluids and cell extracts. This in turn allows to focus on the important but less understood issue of nucleic acids degradation in more detail and to rationally optimize gene delivery system as therapeutics.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Koen Rombouts
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Laurens Raes
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
49
|
Alizadeh S, Esmaeili A, Barzegari A, Rafi MA, Omidi Y. Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours. J Drug Target 2020; 28:700-713. [PMID: 32116051 DOI: 10.1080/1061186x.2020.1737087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite many endeavours for the development of new anticancer drugs, effective therapy of solid tumours remains a challenging issue. The current cancer chemotherapies may associate with two important limitations, including the lack/trivial specificity of treatment modalities towards diseased cells/tissues resulting in undesired side effects, and the emergence of drug-resistance mechanisms by tumour cells causing the failure of the treatment. Much attention, therefore, has currently been paid to develop smart and highly specific anticancer agents with maximal therapeutic impacts and minimal side effects. Among various strategies used to target cancer cells, bacteria-based cancer therapies (BCTs) have been validated as potential gene/drug delivery carriers, which can also be engineered to be used in diagnosis processes. They can be devised to selectively target the tumour microenvironment (TME), within which they may preferentially proliferate in the necrotic and anaerobic parts - often inaccessible to other therapeutics. BCTs are capable to sense and respond to the environmental signals, upon which they are considered as smart microrobots applicable in the controlled delivery of therapeutic agents to the TME. In this review, we aimed to provide comprehensive insights into the potentials of the bioengineered bacteria as smart and targeted bio-carriers and discuss their applications in cancer therapy.
Collapse
Affiliation(s)
- Siamak Alizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Jafari A, Rajabian N, Zhang G, Alaa Mohamed M, Lei P, Andreadis ST, Pfeifer BA, Cheng C. PEGylated Amine-Functionalized Poly(ε-caprolactone) for the Delivery of Plasmid DNA. MATERIALS 2020; 13:ma13040898. [PMID: 32085401 PMCID: PMC7079624 DOI: 10.3390/ma13040898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
As a promising strategy for the treatment of various diseases, gene therapy has attracted increasing attention over the past decade. Among various gene delivery approaches, non-viral vectors made of synthetic biomaterials have shown significant potential. Due to their synthetic nature, non-viral vectors can have tunable structures and properties by using various building units. In particular, they can offer advantages over viral vectors with respect to biosafety and cytotoxicity. In this study, a well-defined poly(ethylene glycol)-block-poly(α-(propylthio-N,N-diethylethanamine hydrochloride)-ε-caprolactone) diblock polymer (PEG-b-CPCL) with one poly(ethylene glycol) (PEG) block and one tertiary amine-functionalized cationic poly(ε-caprolactone) (CPCL) block, as a novel non-viral vector in the delivery of plasmid DNA (pDNA), was synthesized and studied. Despite having a degradable polymeric structure, the polymer showed remarkable hydrolytic stability over multiple weeks. The optimal ratio of the polymer to pDNA for nanocomplex formation, pDNA release from the nanocomplex with the presence of heparin, and serum stability of the nanocomplex were probed through gel electrophoresis. Nanostructure of the nanocomplexes was characterized by DLS and TEM imaging. Relative to CPCL homopolymers, PEG-b-CPCL led to better solubility over a wide range of pH. Overall, this work demonstrates that PEG-b-CPCL possesses a range of valuable properties as a promising synthetic vector for pDNA delivery.
Collapse
Affiliation(s)
- Amin Jafari
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (N.R.); (G.Z.); (M.A.M.); (P.L.); (S.T.A.); (B.A.P.)
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (N.R.); (G.Z.); (M.A.M.); (P.L.); (S.T.A.); (B.A.P.)
| | - Guojian Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (N.R.); (G.Z.); (M.A.M.); (P.L.); (S.T.A.); (B.A.P.)
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (N.R.); (G.Z.); (M.A.M.); (P.L.); (S.T.A.); (B.A.P.)
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (N.R.); (G.Z.); (M.A.M.); (P.L.); (S.T.A.); (B.A.P.)
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (N.R.); (G.Z.); (M.A.M.); (P.L.); (S.T.A.); (B.A.P.)
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (N.R.); (G.Z.); (M.A.M.); (P.L.); (S.T.A.); (B.A.P.)
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (A.J.); (N.R.); (G.Z.); (M.A.M.); (P.L.); (S.T.A.); (B.A.P.)
- Correspondence: ; Tel.: +1-716-645-1193
| |
Collapse
|