1
|
Chawla V, Roy S, Raju J, Bundel P, Pal D, Singh Y. Proangiogenic Cyclic Peptide Nanotubes for Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:2787-2799. [PMID: 40107871 DOI: 10.1021/acsabm.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
An intricate biochemical system of coordinated cellular reactions is involved in restoring damaged tissue after wounds. In chronic wounds, such as diabetic foot ulcers, poor angiogenesis is a common stumbling block due to elevated glucose levels, increased proteolytic enzyme activity, and decreased production of growth factors. While various strategies, including modulation of inflammatory cells, administration of growth factors, and therapies involving stem cells or genes, have been explored to promote angiogenesis, they often suffer from limitations such as poor biodistribution, immunological rejection, administration/dosing, and proteolytic instability. Glycosaminoglycans, such as heparan sulfate, facilitate growth factor interactions with their receptors to induce angiogenic signaling, but their exogenous administration is hindered by poor stability, low serum half-life, and immunogenicity. Cyclic peptides, known for their structural stability and specificity, offer a promising alternative for inducing angiogenesis upon functional modifications. In this work, we developed heparan sulfate (HS)-mimetic cyclic peptide nanotubes (CPNTs) grafted with bioactive groups to enhance angiogenesis without using exogenous growth factors, drugs, or supplements. These CPNTs incorporate glutamic acid, serine, and sulfonated lysine to mimic the functional groups in heparin. The sulfonated cyclic hexapeptide nanotubes developed from DPro-LTrp-DLeu-LSer-DGlu-LLys demonstrated significant proangiogenic activity in HUVECs under hyperglycemic conditions; enhanced endothelial cell motility, invasion, and tube formation; and upregulation of proangiogenic genes and proteins. These HS-mimicking nanotubes have shown a strong potential for promoting impaired angiogenesis, without incorporating exogenous growth factors, and show strong potential in treating diabetic wounds. To the best of our knowledge, this is the first report on the use of HS-mimetic proangiogenic cyclic peptide nanotubes for diabetic wound healing.
Collapse
Affiliation(s)
- Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Soumyajit Roy
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - John Raju
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Pruthviraj Bundel
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| |
Collapse
|
2
|
Mullin JA, Rahmani E, Kiick KL, Sullivan MO. Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 2024; 9:e10642. [PMID: 38818118 PMCID: PMC11135157 DOI: 10.1002/btm2.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.
Collapse
Affiliation(s)
- James A. Mullin
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Erfan Rahmani
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kristi L. Kiick
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
3
|
Zheng Q, Chen C, Liu Y, Gao J, Li L, Yin C, Yuan X. Metal Nanoparticles: Advanced and Promising Technology in Diabetic Wound Therapy. Int J Nanomedicine 2024; 19:965-992. [PMID: 38293611 PMCID: PMC10826594 DOI: 10.2147/ijn.s434693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Diabetic wounds pose a significant challenge to public health, primarily due to insufficient blood vessel supply, bacterial infection, excessive oxidative stress, and impaired antioxidant defenses. The aforementioned condition not only places a significant physical burden on patients' prognosis, but also amplifies the economic strain on the medical system in treating diabetic wounds. Currently, the effectiveness of available treatments for diabetic wounds is limited. However, there is hope in the potential of metal nanoparticles (MNPs) to address these issues. MNPs exhibit excellent anti-inflammatory, antioxidant, antibacterial and pro-angiogenic properties, making them a promising solution for diabetic wounds. In addition, MNPs stimulate the expression of proteins that promote wound healing and serve as drug delivery systems for small-molecule drugs. By combining MNPs with other biomaterials such as hydrogels and chitosan, novel dressings can be developed and revolutionize the treatment of diabetic wounds. The present article provides a comprehensive overview of the research progress on the utilization of MNPs for treating diabetic wounds. Building upon this foundation, we summarize the underlying mechanisms involved in diabetic wound healing and discuss the potential application of MNPs as biomaterials for drug delivery. Furthermore, we provide an extensive analysis and discussion on the clinical implementation of dressings, while also highlighting future prospects for utilizing MNPs in diabetic wound management. In conclusion, MNPs represent a promising strategy for the treatment of diabetic wound healing. Future directions include combining other biological nanomaterials to synthesize new biological dressings or utilizing the other physicochemical properties of MNPs to promote wound healing. Synthetic biomaterials that contain MNPs not only play a role in all stages of diabetic wound healing, but also provide a stable physiological environment for the wound-healing process.
Collapse
Affiliation(s)
- Qinzhou Zheng
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yong Liu
- Center for Comparative Medicine, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| |
Collapse
|
4
|
Chawla V, Sharma S, Singh Y. Yttrium Oxide Nanoparticle-Loaded, Self-Assembled Peptide Gel with Antibacterial, Anti-Inflammatory, and Proangiogenic Properties for Wound Healing. ACS Biomater Sci Eng 2023; 9:2647-2662. [PMID: 37097124 DOI: 10.1021/acsbiomaterials.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Chronic wounds are a major healthcare challenge owing to their complex healing mechanism and number of impediments to the healing process, like infections, unregulated inflammation, impaired cellular functions, poor angiogenesis, and enhanced protease activity. Current topical care strategies, such as surgical debridement, absorption of exudates, drug-loaded hydrogels for infection and inflammation management, and exogenous supply of growth factors for angiogenesis and cell proliferation, slow the progression of wounds and reduce patient suffering but suffer from low overall cure rates. Therefore, we have developed a proteolytically stable, multifunctional nanoparticle loaded-peptide gel with inherent anti-inflammatory, antibacterial, and pro-angiogenic properties to provide a favorable wound healing milieu by restoring impaired cellular functions. We have fabricated a self-assembled, lauric acid-peptide conjugate gel, LA-LLys-DPhe-LLys-NH2, loaded with yttrium oxide (Y2O3) nanoparticles (NLG). Gel formed a nanofibrous structure, and nanoparticles were passively entrapped within the network. The surface morphology, stability, viscoelastic, and self-healing characteristics of gels were characterized. It showed a high stability against degradation by proteolytic enzymes and highly potent antibacterial activities against E. coli and S. aureus due to the presence of positively charged side chains of lysine in the peptide chain. It also exhibited an excellent antioxidant activity as well as ability to stimulate cell proliferation in murine fibroblast (L929) cells and human umbilical vein endothelial cells (HUVECs). The incorporation of nanoparticles promoted angiogenesis by upregulating pro-angiogenic genes, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF2), and epidermal growth factor (EGFR), and the gel caused complete wound closure in cells. In summary, the Y2O3 nanoparticle-loaded lauric acid-peptide conjugate gel is able to elicit the desired tissue regeneration responses and, therefore, has a strong potential as a matrix for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sakshi Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
5
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
6
|
Pan P, Li J, Liu X, Hu C, Wang M, Zhang W, Li M, Liu Y. Plasmid containing VEGF-165 and ANG-1 dual genes packaged with fibroin-modified PEI to promote the regeneration of vascular network and dermal tissue. Colloids Surf B Biointerfaces 2023; 224:113210. [PMID: 36841206 DOI: 10.1016/j.colsurfb.2023.113210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Reducing the cytotoxicity of cationic polymers is the major issue to their use as a gene delivery carrier. In this study, plasmids containing encoding vascular endothelial cell growth factor 165 and angiopoietin-1 were packaged with the conjugates of cationic fibroin (CSF) and polyethylenimine (PEI), instead of packaging pDNA with PEI alone, to prepare nanocomplexes (CSF+PEI)/pDNA. The complexes were loaded into a silk fibroin scaffold to enhance its function to induce microvascular network generation and dermal tissue regeneration. The results of transfecting EA.hy926 cells with the complexes in vitro showed that (CSF+PEI)/pDNA had a stronger transfection ability than PEI/pDNA. Importantly, compared with PEI as the gene carrier alone, the cell viability was significantly increased and the cytotoxicity was effectively reduced after the conjugate of CSF and PEI was used as the gene carrier. The results of angiogenesis in chick embryo chorioallantoic membranes showed that compared with scaffolds loaded with PEI/pDNA, the neovascularization ratio in scaffolds loaded with (CSF+PEI)/pDNA was significantly increased. In vivo experimental results of scaffolds implantation for full-thickness skin defects in SD rats showed that, compared with loading PEI/pDNA complex, loading (CSF+PEI)/pDNA complex in the scaffold more effectively promoted the formation of vascular network in the scaffold and accelerated the regeneration of dermal tissue. The gene delivery system established in this study has application potential not only in the regeneration of vascular-containing tissues, but also in tumor gene therapy.
Collapse
Affiliation(s)
- Peng Pan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jing Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Xueping Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Cheng Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Mengmeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Wenjing Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| | - Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
7
|
Li L, Ma Q, Mou J, Wang M, Ye J, Sun G. Basic fibroblast growth factor gel preparation induces angiogenesis during wound healing. Int J Artif Organs 2023; 46:171-181. [PMID: 36625364 DOI: 10.1177/03913988221145525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE This study aimed to observe the effect of basic fibroblast growth factor (bFGF) gel preparation on wound repair in a full-thickness skin defect rat model and to further explore its mechanism. METHODS The full-thickness skin defect model of Wistar rats was created with circular wounds of 20 mm or 10 mm in diameter on both sides of the spine. The animals were divided into the normal, model, control gel, and bFGF gel groups (300 IU/cm2). The effects of the bFGF gel on wound healing were evaluated and compared. Optical coherence tomography (OCT)-based angiography (OCTA) was used to investigate the effects of bFGF on angiogenesis during wound healing. Western blotting, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) kits were used to detect the effect of the gel preparation on the levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP2 and MMP9) on the wound surface to explore the mechanism. RESULTS The bFGF gel significantly reduced wound area, promoted the formation of wound granulation tissue, and accelerated wound healing in the bFGF gel group on days 7 and 14, compared with the control gel group. OCTA results showed that bFGF significantly improved wound vascular density, diameter, and circumference. Western blot, PCR, and ELISA results showed that the gel preparation could promote the expression levels of MMP2, MMP9, and VEGF on the wound surface 7 and 14 days after injury. CONCLUSION bFGF promotes angiogenesis in wound areas. Topical gel preparations of bFGF can be developed for use in wound repair.
Collapse
Affiliation(s)
- Lanfang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junyu Mou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Harbin University of Commerce, Harbin, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Deka Dey A, Yousefiasl S, Kumar A, Dabbagh Moghaddam F, Rahimmanesh I, Samandari M, Jamwal S, Maleki A, Mohammadi A, Rabiee N, Cláudia Paiva‐Santos A, Tamayol A, Sharifi E, Makvandi P. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med 2023; 8:e10343. [PMID: 36684081 PMCID: PMC9842058 DOI: 10.1002/btm2.10343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) as therapeutic agents have attracted increasing interest in the past decade owing to their significant effectiveness in treating a wide array of ailments. These polymerases II-derived noncoding RNAs act through post-transcriptional controlling of different proteins and their allied pathways. Like other areas of medicine, researchers have utilized miRNAs for managing acute and chronic wounds. The increase in the number of patients suffering from either under-healing or over-healing wound demonstrates the limited efficacy of the current wound healing strategies and dictates the demands for simpler approaches with greater efficacy. Various miRNA can be designed to induce pathway beneficial for wound healing. However, the proper design of miRNA and its delivery system for wound healing applications are still challenging due to their limited stability and intracellular delivery. Therefore, new miRNAs are required to be identified and their delivery strategy needs to be optimized. In this review, we discuss the diverse roles of miRNAs in various stages of wound healing and provide an insight on the most recent findings in the nanotechnology and biomaterials field, which might offer opportunities for the development of new strategies for this chronic condition. We also highlight the advances in biomaterials and delivery systems, emphasizing their challenges and resolutions for miRNA-based wound healing. We further review various biovectors (e.g., adenovirus and lentivirus) and abiotic materials such as organic and inorganic nanomaterials, along with dendrimers and scaffolds, as the delivery systems for miRNA-based wound healing. Finally, challenges and opportunities for translation of miRNA-based strategies into clinical applications are discussed.
Collapse
Affiliation(s)
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityPunjabIndia
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100RomeItaly
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterCardiovascular Research Institute, Isfahan University of Medical SciencesIsfahanIran
| | | | - Sumit Jamwal
- Department of Psychiatry, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjanIran
- Cancer Research CentreShahid Beheshti University of Medical SciencesTehranIran
| | | | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Ana Cláudia Paiva‐Santos
- Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
- LAQV, REQUIMTE, Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
| | - Ali Tamayol
- Department of Biomedical EngineeringUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials InterfacesPontederaItaly
- School of Chemistry, Damghan UniversityDamghanIran
| |
Collapse
|
9
|
Sharma P, Kumar A, Dey AD. Cellular Therapeutics for Chronic Wound Healing: Future for Regenerative Medicine. Curr Drug Targets 2022; 23:1489-1504. [PMID: 35748548 DOI: 10.2174/138945012309220623144620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 01/25/2023]
Abstract
Chronic wounds are associated with significant morbidity and mortality, which demand long-term effective treatment and represent a tremendous financial strain on the global healthcare systems. Regenerative medicines using stem cells have recently become apparent as a promising approach and are an active zone of investigation. They hold the potential to differentiate into specific types of cells and thus possess self-renewable, regenerative, and immune-modulatory effects. Furthermore, with the rise of technology, various cell therapies and cell types such as Bone Marrow and Adipose-derived Mesenchymal Cell (ADMSC), Endothelial Progenitor Cells (EPCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cell (MSCs), and Pluripotent Stem Cells (PSCs) are studied for their therapeutic impact on reparative processes and tissue regeneration. Cell therapy has proven to have substantial control over enhancing the quality and rate of skin regeneration and wound restoration. The literature review brings to light the mechanics of wound healing, abnormalities resulting in chronic wounds, and the obstacles wound care researchers face, thus exploring the multitude of opportunities for potential improvement. Also, the review is focused on providing particulars on the possible cell-derived therapeutic choices and their associated challenges in healing, in the context of clinical trials, as solutions to these challenges will provide fresh and better future opportunities for improved study design and therefore yield a substantial amount of data for the development of more specialized treatments.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.,Government Pharmacy College Kangra, Nagrota Bhagwan, Himachal Pradesh, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
10
|
Liu R, Dong R, Chang M, Liang X, Wang HC. Adipose-Derived Stem Cells for the Treatment of Diabetic Wound: From Basic Study to Clinical Application. Front Endocrinol (Lausanne) 2022; 13:882469. [PMID: 35898452 PMCID: PMC9309392 DOI: 10.3389/fendo.2022.882469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/19/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic wounds significantly affect the life quality of patients and may cause amputation and mortality if poorly managed. Recently, a wide range of cell-based methods has emerged as novel therapeutic methods in treating diabetic wounds. Adipose-derived stem cells (ASCs) are considered to have the potential for widespread clinical application of diabetic wounds treatment in the future. This review summarized the mechanisms of ASCs to promote diabetic wound healing, including the promotion of immunomodulation, neovascularization, and fibro synthesis. We also review the current progress and limitations of clinical studies using ASCs to intervene in diabetic wound healing. New methods of ASC delivery have been raised in recent years to provide a standardized and convenient use of ASCs.
Collapse
Affiliation(s)
- Runzhu Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruijia Dong
- Department of Plastic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Mengling Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hayson Chenyu Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wiśniewska J, Słyszewska M, Kopcewicz M, Walendzik K, Machcińska S, Stałanowska K, Gawrońska-Kozak B. Comparative studies on the effect of pig adipose-derived stem cells (pASCs) preconditioned with hypoxia or normoxia on skin wound healing in mice. Exp Cell Res 2022; 418:113263. [PMID: 35718003 DOI: 10.1016/j.yexcr.2022.113263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
Adipose-derived stem cells (ASCs) from human and animal fat have emerged as therapeutic alternatives for damaged tissues. Pre-conditioning of ASCs with hypoxia results in their functional enhancement, which might facilitate the process of healing. However, there is still a critical need for large-scale preclinical studies to reinforce the translation of these findings into clinical practice for humans and in veterinary medicine. Here, we adapted a full-thickness excisional skin wound mouse model to evaluate and compare the effect of pig adipose-derived stem cells (pASCs) cultured under normoxia (pASCs-Nor) or hypoxia (pASCs-Hyp) on the healing process. We show that pASCs-Hyp accelerated re-epithelialization, increased hyaluronic acid (HA) content, and decreased scar elevation index (SEI) during the late stage of healing (day 21). Transplantation of pASCs-Hyp also promoted expression of angiogenic marker VegfA and decreased levels of pro-scarring Tgfβ1. Mice tolerated xenotransplantation of the pASCs with no impact on macrophage (CD68 -positive cell) content. However, wounds treated with pASCs-Hyp exhibited decreased elasticity at the early stage of healing and increased expression of Wnt signaling members including Wnt10a, Wnt11, and β-catenin, which are associated with scar-forming wound repair. In conclusion, pASCs treatment may provide a critical step toward the evaluation of pASCs as therapeutically relevant cells in the context of wound healing.
Collapse
Affiliation(s)
- Joanna Wiśniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Magda Słyszewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Sylwia Machcińska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Barbara Gawrońska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
12
|
Zhu H, Luo H, Lin M, Li Y, Chen A, He H, Sheng F, Wu J. Methacrylated gelatin shape-memorable cryogel subcutaneously delivers EPCs and aFGF for improved pressure ulcer repair in diabetic rat model. Int J Biol Macromol 2022; 199:69-76. [PMID: 34973992 DOI: 10.1016/j.ijbiomac.2021.12.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022]
Abstract
Pressure ulcer (PU) in patients with diabetes mellitus (DM) is still a clinical intractable issue due to the complicated physiological characteristics by the prolonged high glucose level and impaired angiogenesis. The PU treatment includes surgical debridement, stem cell therapy and growth factors, leading to high cost and repeated professional involvement. Developing effective wound dressing combining the therapeutic cells and growth factors has become highly demanded. Herein, we reported the direct subcutaneous administration of endothelial progenitor cells (EPCs) and acid fibroblast growth factor (aFGF) with a shape-memorable methacrylated gelatin cryogel (EPCs/aFGF@GelMA) for the therapy of PU in rats with DM. This EPCs/aFGF@GelMA cryogel system presented microporous structure, elastic mechanical strength and enhanced cell migration property with controlled release of aFGF. Moreover, compared with EPCs/aFGF and GelMA alone, in vivo results showed that this EPCs/aFGF@GelMA system exhibited accelerated wound closure rate, enhanced granulation formation, collagen deposition as well as re-epithelization. Importantly, we found that the excellent positive performance of EPCs/aFGF@GelMA is due to its up-regulation of HIF-ɑ upon the wound site, modulating the microenvironment of wound site to initiate the impaired local angiogenesis. Collectively, this hybrid gelatin cryogels show great promise for biomedical applications, especially in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Hangqi Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Minjie Lin
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Yuan Li
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Anqi Chen
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, PR China.
| | - Feixia Sheng
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Jiang Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
13
|
Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2144-2194. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polymeric scaffolds can be used for tissue engineering applications such as cell delivery and cell-free supporting of native tissues. This is because of their desirable properties such as; high biocompatibility, tunable mechanical strength and conductivity, large surface area, porous- and extracellular matrix (ECM)-mimicked structures. Specifically, their less toxicity and biocompatibility makes them suitable for several tissue engineering applications. For these reasons, several biopolymeric scaffolds are currently being explored for numerous tissue engineering applications. To date, research on the nature, chemistry, and properties of nanocomposite biopolymers are been reported, while the need for a comprehensive research note on more tissue engineering application of these biopolymers remains. As a result, this present study comprehensively reviews the development of common natural biopolymers as scaffolds for tissue engineering applications such as cartilage tissue engineering, cornea repairs, osteochondral defect repairs, and nerve regeneration. More so, the implications of research findings for further studies are presented, while the impact of research advances on future research and other specific recommendations are added as well.
Collapse
|
14
|
Zhao G, Weiner AI, Neupauer KM, de Mello Costa MF, Palashikar G, Adams-Tzivelekidis S, Mangalmurti NS, Vaughan AE. Regeneration of the pulmonary vascular endothelium after viral pneumonia requires COUP-TF2. SCIENCE ADVANCES 2020; 6:eabc4493. [PMID: 33239293 PMCID: PMC7688336 DOI: 10.1126/sciadv.abc4493] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/09/2020] [Indexed: 05/08/2023]
Abstract
Acute respiratory distress syndrome is associated with a robust inflammatory response that damages the vascular endothelium, impairing gas exchange. While restoration of microcapillaries is critical to avoid mortality, therapeutic targeting of this process requires a greater understanding of endothelial repair mechanisms. Here, we demonstrate that lung endothelium possesses substantial regenerative capacity and lineage tracing reveals that native endothelium is the source of vascular repair after influenza injury. Ablation of chicken ovalbumin upstream promoter-transcription factor 2 (COUP-TF2) (Nr2f2), a transcription factor implicated in developmental angiogenesis, reduced endothelial proliferation, exacerbating viral lung injury in vivo. In vitro, COUP-TF2 regulates proliferation and migration through activation of cyclin D1 and neuropilin 1. Upon influenza injury, nuclear factor κB suppresses COUP-TF2, but surviving endothelial cells ultimately reestablish vascular homeostasis dependent on restoration of COUP-TF2. Therefore, stabilization of COUP-TF2 may represent a therapeutic strategy to enhance recovery from pathogens, including H1N1 influenza and SARS-CoV-2.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aaron I Weiner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine M Neupauer
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Fernanda de Mello Costa
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gargi Palashikar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie Adams-Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nilam S Mangalmurti
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Gelatin-based membrane containing usnic acid-loaded liposomes: A new treatment strategy for corneal healing. Biomed Pharmacother 2020; 130:110391. [DOI: 10.1016/j.biopha.2020.110391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
|
16
|
Wise LM, Stuart GS, Jones NC, Fleming SB, Mercer AA. Orf Virus IL-10 and VEGF-E Act Synergistically to Enhance Healing of Cutaneous Wounds in Mice. J Clin Med 2020; 9:jcm9041085. [PMID: 32290480 PMCID: PMC7231296 DOI: 10.3390/jcm9041085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Orf virus (OV) is a zoonotic parapoxvirus that causes highly proliferative skin lesions which resolve with minimal inflammation and scarring. OV encodes two immunomodulators, vascular endothelial growth factor (VEGF)-E and interleukin-10 (ovIL-10), which individually modulate skin repair and inflammation. This study examined the effects of the VEGF-E and ovIL-10 combination on healing processes in a murine wound model. Treatments with viral proteins, individually and in combination, were compared to a mammalian VEGF-A and IL-10 combination. Wound biopsies were harvested to measure re-epithelialisation and scarring (histology), inflammation, fibrosis and angiogenesis (immunofluorescence), and gene expression (quantitative polymerase chain reaction). VEGF-E and ovIL-10 showed additive effects on wound closure and re-epithelialisation, and suppressed M1 macrophage and myofibroblast infiltration, while allowing M2 macrophage recruitment. The viral combination also increased endothelial cell density and pericyte coverage, and improved collagen deposition while reducing the scar area. The mammalian combination showed equivalent effects on wound closure, re-epithelialisation and fibrosis, but did not promote blood vessel stabilisation or collagen remodeling. The combination treatments also differentially altered the expression of transforming growth factor beta isoforms, Tgfβ1 and Tgfβ3. These findings show that the OV proteins synergistically enhance skin repair, and act in a complimentary fashion to improve scar quality.
Collapse
Affiliation(s)
- Lyn M. Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (G.S.S.); (N.C.J.)
- Correspondence: ; Tel.: +64-3-479-7723
| | - Gabriella S. Stuart
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (G.S.S.); (N.C.J.)
| | - Nicola C. Jones
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (G.S.S.); (N.C.J.)
| | - Stephen B. Fleming
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (S.B.F.); (A.A.M.)
| | - Andrew A. Mercer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (S.B.F.); (A.A.M.)
| |
Collapse
|
17
|
Ramadan WS, Zaher DM, Altaie AM, Talaat IM, Elmoselhi A. Potential Therapeutic Strategies for Lung and Breast Cancers through Understanding the Anti-Angiogenesis Resistance Mechanisms. Int J Mol Sci 2020; 21:565. [PMID: 31952335 PMCID: PMC7014257 DOI: 10.3390/ijms21020565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Breast and lung cancers are among the top cancer types in terms of incidence and mortality burden worldwide. One of the challenges in the treatment of breast and lung cancers is their resistance to administered drugs, as observed with angiogenesis inhibitors. Based on clinical and pre-clinical findings, these two types of cancers have gained the ability to resist angiogenesis inhibitors through several mechanisms that rely on cellular and extracellular factors. This resistance is mediated through angiogenesis-independent vascularization, and it is related to cancer cells and their microenvironment. The mechanisms that cancer cells utilize include metabolic symbiosis and invasion, and they also take advantage of neighboring cells like macrophages, endothelial cells, myeloid and adipose cells. Overcoming resistance is of great interest, and researchers are investigating possible strategies to enhance sensitivity towards angiogenesis inhibitors. These strategies involved targeting multiple players in angiogenesis, epigenetics, hypoxia, cellular metabolism and the immune system. This review aims to discuss the mechanisms of resistance to angiogenesis inhibitors and to highlight recently developed approaches to overcome this resistance.
Collapse
Affiliation(s)
- Wafaa S. Ramadan
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Dana M. Zaher
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Alaa M. Altaie
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Pathology Department, Faculty of Medicine, Alexandria University, 21526 Alexandria, Egypt
| | - Adel Elmoselhi
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
18
|
Wilgus TA. Vascular Endothelial Growth Factor and Cutaneous Scarring. Adv Wound Care (New Rochelle) 2019; 8:671-678. [PMID: 31750015 DOI: 10.1089/wound.2018.0796] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 12/24/2022] Open
Abstract
Significance: The proangiogenic mediator vascular endothelial growth factor (VEGF) plays an important role in cutaneous wound repair. Most of the work on VEGF and wound healing has focused on its role in mediating angiogenesis and how this affects wound closure rates. Less is known about how VEGF affects other phases of wound healing, including scar formation. Recent Advances: Over the last 10 years, mounting evidence suggests that VEGF plays an important role in regulating scar tissue production. Multiple studies have linked high VEGF levels with scar formation in normal, hypertrophic, and keloid scars. In addition, there is experimental evidence that VEGF inhibition can reduce scar tissue deposition. Critical Issues: While there is evidence that VEGF can promote scar formation in the skin, there are several unanswered questions that remain. First, the mechanisms by which VEGF promotes scar formation have not been completely characterized. While both indirect and direct mechanisms could be involved, clear evidence for a specific mechanism is lacking. In addition, despite the availability of anti-VEGF drugs, the potential value in targeting VEGF to attenuate scar formation clinically is not yet known. Future Directions: While there are a significant number of studies examining the effects of VEGF on angiogenesis and wound closure, much less attention has been paid to the contribution of VEGF to scar tissue production. Additional studies are required to learn more about how VEGF regulates scar formation and whether VEGF inhibition could be used clinically to manage scars.
Collapse
Affiliation(s)
- Traci A. Wilgus
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
Myung H, Jang H, Myung JK, Lee C, Lee J, Kang J, Jang WS, Lee SJ, Kim H, Kim HY, Park S, Shim S. Platelet-rich plasma improves the therapeutic efficacy of mesenchymal stem cells by enhancing their secretion of angiogenic factors in a combined radiation and wound injury model. Exp Dermatol 2019; 29:158-167. [PMID: 31560791 DOI: 10.1111/exd.14042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Delayed wound healing after radiation exposure can cause serious cutaneous damage, and its treatment is a major clinical challenge. Although mesenchymal stem cells (MSCs) have emerged as a promising therapeutic agent in regenerative medicine, they alone do not produce satisfactory effects in a combined radiation and wound injury (CRWI) model. Here, we investigated the therapeutic effect of combined umbilical cord blood-derived (UCB)-MSCs and platelet-rich plasma (PRP) treatment on wound healing in a CRWI mouse model. First, we assessed the release of cytokines from UCB-MSCs cultured with PRP and observed changes in the expression of angiogenic factors. The angiogenic paracrine factors from UCB-MSCs cultured with PRP were assessed in human umbilical vein endothelial cells (HUVECs). To assess therapeutic efficacy, UCB-MSCs and PRP were topically implanted into a CRWT mouse model. Vascular endothelial growth factor (VEGF), a pro-angiogenic growth factor, urokinase-type plasminogen activator and contributor to VEGF-induced signalling were more highly expressed in conditioned media of UCB-MSCs cultured with PRP than in that of UCB-MSCs alone. Furthermore, conditioned media of UCB-MSCs cultured with PRP increased the formation of tube-like structures in HUVECs. Co-treatment of UCB-MSCs and PRP in a CRWI mouse model increased the wound closure rate and angiogenesis compared with an untreated irradiated group. Moreover, increased expression of VEGF and CD31 were observed in the wound tissue of co-treated mice compared with untreated irradiated mice. PRP stimulates the release of angiogenic factors from UCB-MSCs, and combined therapy of UCB-MSCs and PRP improves regeneration efficacy by enhancing angiogenesis in a CRWI model.
Collapse
Affiliation(s)
- Hyunwook Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Changsun Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Janet Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - JiHoon Kang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hwi-Yool Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
20
|
Glucose impairs angiogenesis and promotes ventricular remodelling following myocardial infarction via upregulation of microRNA-17. Exp Cell Res 2019; 381:191-200. [DOI: 10.1016/j.yexcr.2019.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
|
21
|
Oryan A, Alemzadeh E, Zarei M. Basic concepts, current evidence, and future potential for gene therapy in managing cutaneous wounds. Biotechnol Lett 2019; 41:889-898. [PMID: 31256273 DOI: 10.1007/s10529-019-02701-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Several studies have investigated the role of gene therapy in the healing process. The aim of this review is to explain the gene delivery systems in wound area. RESULTS Ninety-two studies were included and comprehensively overviewed. We described the importance of viral vectors such as adenoviruses, adeno-associated viruses, and retroviruses, and conventional non-viral vectors such as naked DNA injections, liposomes, gene gun, electroporation, and nanoparticles in achieving high-level expression of genes. Application of viral transfection, liposomal vectors, and electroporation were the main gene delivery systems. Genes encoding for growth factors or cytokines have been shown to result in a better wound closure in comparison to application of the synthetic growth factors. In addition, a combination of stem cell and gene therapy has been found an effective approach in regeneration of cutaneous wounds. CONCLUSIONS This article gives an overview of the methods and investigations applied on gene therapy in wound healing. However, clinical investigations need to be undertaken to gain a better understanding of gene delivery technologies and their roles in stimulating wound repair.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Esmat Alemzadeh
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Zarei
- Department of Agricultural Biotechnology, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
22
|
Korntner S, Lehner C, Gehwolf R, Wagner A, Grütz M, Kunkel N, Tempfer H, Traweger A. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev 2019; 146:170-189. [PMID: 29501628 DOI: 10.1016/j.addr.2018.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the process of new blood vessel formation from existing blood vessels, is a key aspect of virtually every repair process. During wound healing an extensive, but immature and leaky vascular plexus forms which is subsequently reduced by regression of non-functional vessels. More recent studies indicate that uncontrolled vessel growth or impaired vessel regression as a consequence of an excessive inflammatory response can impair wound healing, resulting in scarring and dysfunction. However, in order to elucidate targetable factors to promote functional tissue regeneration we need to understand the molecular and cellular underpinnings of physiological angiogenesis, ranging from induction to resolution of blood vessels. Especially for avascular tissues (e.g. cornea, tendon, ligament, cartilage, etc.), limiting rather than boosting vessel growth during wound repair potentially is beneficial to restore full tissue function and may result in favourable long-term healing outcomes.
Collapse
|
23
|
Wise LM, Stuart GS, Real NC, Fleming SB, Mercer AA. VEGF Receptor-2 Activation Mediated by VEGF-E Limits Scar Tissue Formation Following Cutaneous Injury. Adv Wound Care (New Rochelle) 2018; 7:283-297. [PMID: 30087804 DOI: 10.1089/wound.2016.0721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Objective: Vascular endothelial growth factor (VEGF) family members are critical regulators of tissue repair and depending on their distinct pattern of receptor specificity can also promote inflammation and scarring. This study utilized a receptor-selective VEGF to examine the role of VEGF receptor (VEGFR)-2 in scar tissue (ST) formation. Approach: Cutaneous skin wounds were created in mice using a 4 mm biopsy punch and then treated until closure with purified VEGF-E derived from orf virus stain NZ-2. Tissue samples were harvested to measure gene expression using quantitative PCR and to observe ST formation through histological examination and changes in cell populations by immunofluorescence. Results: VEGFR-2-activation with VEGF-E increased expression of anti-inflammatory cytokine interleukin (IL)-10 and reduced macrophage infiltration and myofibroblast differentiation in wounded skin compared with controls. VEGF-E treatment also increased microvascular density and improved pericyte coverage of blood vessels in the healing wounds. The ST that formed following treatment with VEGF-E was reduced in size and showed improved collagen structure. Innovation: The role of VEGFR-2 activation in wound epithelialization and angiogenesis is well established; but its contribution to ST formation is unclear. This study tests the effect of a selective VEGFR-2 activation on ST formation following cutaneous wounding in a murine model. Conclusion: VEGFR-2 stimulation can enhance the quality of skin repair, at least, in part, through the induction of IL-10 expression and dampening of wound inflammation and fibrosis. Therapies that selectively activate VEGFR-2 may therefore be beneficial to treat impaired healing or to prevent excess scarring.
Collapse
Affiliation(s)
- Lyn M. Wise
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gabriella S. Stuart
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicola C. Real
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B. Fleming
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A. Mercer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Desmet CM, Préat V, Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv Drug Deliv Rev 2018; 129:262-284. [PMID: 29448035 DOI: 10.1016/j.addr.2018.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/25/2018] [Accepted: 02/03/2018] [Indexed: 12/16/2022]
Abstract
Oxygen plays a key role in wound healing, and hypoxia is a major cause of wound healing impairment; therefore, treatments to improve hemodynamics and increase wound oxygenation are of particular interest for the treatment of chronic wounds. This article describes the roles of oxygen and angiogenesis in wound healing as well as the tools used to evaluate tissue oxygenation and perfusion and then presents a review of nanomedicines and gene therapies designed to improve perfusion and oxygenation and accelerate wound healing.
Collapse
|
25
|
Cai W, Salvador-Reyes LA, Zhang W, Chen QY, Matthew S, Ratnayake R, Seo SJ, Dolles S, Gibson DJ, Paul VJ, Luesch H. Apratyramide, a Marine-Derived Peptidic Stimulator of VEGF-A and Other Growth Factors with Potential Application in Wound Healing. ACS Chem Biol 2018; 13:91-99. [PMID: 29205032 DOI: 10.1021/acschembio.7b00827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel linear depsipeptide enriched with tyrosine-derived moieties, termed apratyramide, was isolated from an apratoxin-producing cyanobacterium. The structure was determined using a combination of NMR spectroscopy, mass spectrometry, and chiral analysis of the acid hydrolyzate and confirmed by total synthesis. Apratyramide up-regulated multiple growth factors at the transcript level in human keratinocyte (HaCaT) cells and induced the secretion of vascular endothelial growth factor A (VEGF-A) from HaCaT cells, suggesting the compound's potential wound-healing properties through growth factor induction. Transcriptome analysis and sequential validation supported the hypothesis and indicated its mode of action (MOA) through the unfolded protein response (UPR) pathway, which is functionally related to wound healing and angiogenesis. The conditioned medium of HaCaT cells treated with apratyramide induced angiogenesis in vitro. An ex vivo rabbit corneal epithelial model was applied to confirm the VEGF-A induction in this wound-healing model.
Collapse
Affiliation(s)
| | - Lilibeth A. Salvador-Reyes
- Marine
Science Institute, College of Science, University of the Philippines, Diliman, Quezon
City 1100, Philippines
| | - Wei Zhang
- School
of Pharmacy, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, Florida 34949, United States
| | | |
Collapse
|
26
|
Laiva AL, O'Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018; 12:e296-e312. [PMID: 28482114 PMCID: PMC5813216 DOI: 10.1002/term.2443] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off-the-shelf treatment; however, the dose- and time-dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Trinity Centre for BioengineeringTrinity Biomedical Sciences Institute, Trinity College DublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Medical University of BahrainAdliyaKingdom of Bahrain
| |
Collapse
|
27
|
Wang H, Feng Y, Jin X, Xia R, Cheng Y, Liu X, Zhu N, Zhou X, Yin L, Guo J. Augmentation of hypoxia-inducible factor-1-alpha in reinfused blood cells enhances diabetic ischemic wound closure in mice. Oncotarget 2017; 8:114251-114258. [PMID: 29371983 PMCID: PMC5768400 DOI: 10.18632/oncotarget.23214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
Diabetes-associated dysfunction in angiogenesis predominantly contributes to impairment of wound closure, but a role of hypoxia-inducible factor 1 alpha (HIF-1a) in the process remain poorly understood. Here, we examined whether expression of HIF-1a in re-infused blood cells may improve the diabetic wound closure in mice. We found that that expression of HIF-1a in re-infused isogeneic blood cells significantly improved diabetic wound healing in mice, seemingly through augmentation of wound-associated angiogenesis. Mechanistically, expression of HIF-1a in re-infused blood cells significantly increased macrophage infiltration at the wound site, and macrophages produced vascular endothelial growth factor A (VEGF-A) to promote wound-associated angiogenesis. Together, our data suggest that augmentation of HIF-1a in reinfused blood cells may enhance diabetic ischemic wound closure.
Collapse
Affiliation(s)
- Huan Wang
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Yufeng Feng
- Department of Anesthesiology,The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xiaoju Jin
- Department of Anesthesiology, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu 241001, China
| | - Rong Xia
- Transfusion Department, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yong Cheng
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Xiaoqian Liu
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Nana Zhu
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Xun Zhou
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Lei Yin
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| | - Jianrong Guo
- Department of Anesthesiology, Gongli Hospital, The Second Military Medical University, Shanghai 200135, China
| |
Collapse
|
28
|
Nirwana I, Rachmadi P, Rianti D. Potential of pomegranate fruit extract ( Punica granatum Linn.) to increase vascular endothelial growth factor and platelet-derived growth factor expressions on the post-tooth extraction wound of Cavia cobaya. Vet World 2017; 10:999-1003. [PMID: 28919696 PMCID: PMC5591492 DOI: 10.14202/vetworld.2017.999-1003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/01/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pomegranates fruit extracts have several activities, among others, anti-inflammatory, antibacterial, and antioxidants that have the main content punicalagin and ellagic acid. Pomegranate has the ability of various therapies through different mechanisms. Vascular endothelial growth factor (VEGF) function was to form new blood vessels produced by various cells one of them was macrophages. Platelet-derived growth factor (PDGF) was a growth factor proven chemotactic, increased fibroblast proliferation and collagen matrix production. In addition, VEGF and PDGF synergize in their ability to vascularize tissues. The PDGF function was to stabilize and regulate maturation of new blood vessels. Activities of pomegranate fruit extract were observed by measuring the increased of VEGF and PDGF expression as a marker of wound healing process. AIM To investigate the potential of pomegranate extracts on the tooth extraction wound to increase the expression of VEGF and PDGF on the 4th day of wound healing process. MATERIALS AND METHODS This study used 12 Cavia cobaya, which were divided into two groups, namely, the provision of 3% sodium carboxymethyl cellulose and pomegranate extract. The 12 C. cobaya would be executed on the 4th day, the lower jaw of experimental animals was taken, decalcified about 30 days. The expression of VEGF and PDGF was examined using immunohistochemical techniques. The differences of VEGF and PDGF expression were evaluated statistically using t-test. RESULTS Statistically analysis showed that there were significant differences between control and treatment groups (p<0.05). CONCLUSION Pomegranate fruit extract administration increased VEGF and PDGF expression on post-tooth extraction wound.
Collapse
Affiliation(s)
- Intan Nirwana
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No 47 Surabaya, Jawa Timur, 60132, Indonesia
| | - Priyawan Rachmadi
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No 47 Surabaya, Jawa Timur, 60132, Indonesia
| | - Devi Rianti
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No 47 Surabaya, Jawa Timur, 60132, Indonesia
| |
Collapse
|
29
|
From Inflammation to Current and Alternative Therapies Involved in Wound Healing. Int J Inflam 2017; 2017:3406215. [PMID: 28811953 PMCID: PMC5547704 DOI: 10.1155/2017/3406215] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023] Open
Abstract
Wound healing is a complex event that develops in three overlapping phases: inflammatory, proliferative, and remodeling. These phases are distinct in function and histological characteristics. However, they depend on the interaction of cytokines, growth factors, chemokines, and chemical mediators from cells to perform regulatory events. In this article, we will review the pathway in the skin healing cascade, relating the major chemical inflammatory mediators, cellular and molecular, as well as demonstrating the local and systemic factors that interfere in healing and disorders associated with tissue repair deficiency. Finally, we will discuss the current therapeutic interventions in the wounds treatment, and the alternative therapies used as promising results in the development of new products with healing potential.
Collapse
|
30
|
Seo E, Lim JS, Jun JB, Choi W, Hong IS, Jun HS. Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing. J Transl Med 2017; 15:35. [PMID: 28202074 PMCID: PMC5311833 DOI: 10.1186/s12967-017-1145-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/08/2017] [Indexed: 01/09/2023] Open
Abstract
Background Diminished wound healing is a major complication of diabetes mellitus and can lead to foot ulcers. However, there are limited therapeutic methods to treat this condition. Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, is known to have many beneficial effects on diabetes. In addition, mesenchymal stem cells are known to have wound healing effects. We investigated the effects of Ex-4 in combination with human adipose tissue-derived stem cells (ADSCs) on diabetic wound healing in a diabetic animal model. Methods Diabetic db/db (blood glucose levels, >500 mg/dl) or C57BL/6 mice were subjected to wounding on the skin of the back. One day after wounding, each wound received ADSCs (2.5 × 105 cells) injected intradermally around the wound and/or Ex-4 (50 μl of 100 nM Ex-4) topically applied on the wound with a fine brush daily. Wound size was monitored and wound histology was examined. Human endothelial cells and keratinocyte cells were used to assess angiogenesis and vascular endothelial growth factor expression in vitro. Results Topical administration of Ex-4 or injection of ADSCs resulted in a rapid reduction of wound size in both diabetic and normoglycemic animals compared with vehicle treatment. Histological analysis also showed rapid skin reconstruction in Ex-4-treated or ADSC-injected wounds. A combination of Ex-4 and ADSCs showed a significantly better therapeutic effect over either treatment alone. In vitro angiogenesis assays showed that both Ex-4 and ADSC-conditioned media (CM) treatment improved migration, invasion and proliferation of human endothelial cells. ADSC-CM also increased migration and proliferation of human keratinocytes. In addition, both Ex-4 and ADSC-CM increased the expression of vascular endothelial growth factor. Co-culture with ADSCs increased migration and proliferation of these cells similar to that found after ADSC-CM treatment. Conclusions We suggest that Ex-4 itself is effective for the treatment of diabetic skin wounds, and a combination of topical treatment of Ex-4 and injection of ADSCs has a better therapeutic effect. Thus, a combination of Ex-4 and ADSCs might be an effective therapeutic option for the treatment of diabetic wounds, such as foot ulcers.
Collapse
Affiliation(s)
- Eunhui Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
| | - Jae Soo Lim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea
| | - Jin-Bum Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea
| | - Woohyuk Choi
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - In-Sun Hong
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea. .,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea. .,Gachon Medical Research Institute, Gil Hospital, Incheon, 21565, Republic of Korea.
| |
Collapse
|
31
|
Urello MA, Kiick KL, Sullivan MO. Integration of growth factor gene delivery with collagen-triggered wound repair cascades using collagen-mimetic peptides. Bioeng Transl Med 2016; 1:207-219. [PMID: 27981245 PMCID: PMC5125401 DOI: 10.1002/btm2.10037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Growth factors (GFs) play vital roles in wound repair. Many GF therapies have reached clinical trials, but success has been hindered by safety concerns and a lack of efficacy. Previously, we presented an approach to produce protein factors in wound beds through localized gene delivery mediated by biomimetic peptides. Modification of polyethylenimine (PEI) DNA polyplexes with collagen-mimetic peptides (CMPs) enabled tailoring of polyplex release/retention and improved gene transfer activity in a cell-responsive manner. In this work, CMP-mediated delivery from collagen was shown to improve expression of platelet-derived growth factor-BB (PDGF-BB) and promote a diverse range of cellular processes associated with wound healing, including proliferation, extracellular matrix production, and chemotaxis. Collagens were pre-exposed to physiologically-simulating conditions (complete media, 37°C) for days to weeks prior to cell seeding to simulate the environment within typical wound dressings. In cell proliferation studies, significant increases in cell counts were demonstrated in collagen gels containing CMP-modified polyplex versus unmodified polyplex, and these effects became most pronounced following prolonged preincubation periods of greater than a week. Collagen containing CMP-modified polyplexes also induced a twofold increase in gel contraction as well as enhanced directionality and migratory activity in response to cell-secreted PDGF-BB gradients. While these PDGF-BB-triggered behaviors were observed in collagens containing unmodified polyplexes, the responses withstood much longer preincubation periods in CMP-modified polyplex samples (10 days vs. <5 days). Furthermore, enhanced closure rates in an in vitro wound model suggested that CMP-based PDGF-BB delivery may have utility in actual wound repair and other regenerative medicine applications.
Collapse
Affiliation(s)
- Morgan A. Urello
- Dept. of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716
| | - Kristi L. Kiick
- Dept. of Material Science and EngineeringUniversity of DelawareNewarkDE19716
| | | |
Collapse
|
32
|
Zgheib C, Liechty KW. Shedding light on miR-26a: Another key regulator of angiogenesis in diabetic wound healing. J Mol Cell Cardiol 2016; 92:203-5. [PMID: 26906635 DOI: 10.1016/j.yjmcc.2016.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO, USA
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
33
|
PDGFRα plays a crucial role in connective tissue remodeling. Sci Rep 2015; 5:17948. [PMID: 26639755 PMCID: PMC4671150 DOI: 10.1038/srep17948] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022] Open
Abstract
Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling.
Collapse
|
34
|
Avitabile S, Odorisio T, Madonna S, Eyerich S, Guerra L, Eyerich K, Zambruno G, Cavani A, Cianfarani F. Interleukin-22 Promotes Wound Repair in Diabetes by Improving Keratinocyte Pro-Healing Functions. J Invest Dermatol 2015; 135:2862-2870. [PMID: 26168231 DOI: 10.1038/jid.2015.278] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/08/2015] [Accepted: 06/18/2015] [Indexed: 11/09/2022]
Abstract
Impaired re-epithelialization, imbalanced expression of cytokines and growth factors, and vascular disease contribute to healing impairment in diabetes. IL-22, a pro-inflammatory cytokine mediating a cross-talk between immune system and epithelial cells, has been shown to have a role in repair processes. In this study we aimed to investigate IL-22 regenerative potential in the poor healing context of diabetic wounds. By using streptozotocin-induced diabetic mice, we demonstrated that IL-22 wound treatment significantly accelerated the healing process, by promoting re-epithelialization, granulation tissue formation, and vascularization. Improved re-epithelialization was associated with increased keratinocyte proliferation and signal transducer and activator of transcription 3 (STAT3) activation. We showed that endogenous IL-22 content was reduced at both mRNA and protein level during the inflammatory phase of diabetic wounds, with fewer IL-22-positive cells infiltrating the granulation tissue. We demonstrated that IL-22 treatment promoted proliferation and injury repair of hyperglycemic keratinocytes and induced activation of STAT3 and extracellular signal-regulated kinase transduction pathways in keratinocytes grown in hyperglycemic condition or isolated from diabetic patients. Finally, we demonstrated that IL-22 treatment was able to inhibit diabetic keratinocyte differentiation while promoting vascular endothelial growth factor release. Our data indicate a pro-healing role of IL-22 in diabetic wounds, suggesting a therapeutic potential for this cytokine in diabetic ulcer management.
Collapse
Affiliation(s)
- Simona Avitabile
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Biochemistry, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Stefanie Eyerich
- ZAUM - Center of Allergy and Environment, Technische Universität and Helmholtz Center, Munich, Germany
| | - Liliana Guerra
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technische Universität, Munich, Germany
| | - Giovanna Zambruno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Andrea Cavani
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy.
| | - Francesca Cianfarani
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy.
| |
Collapse
|
35
|
Krukovets I, Legerski M, Sul P, Stenina-Adognravi O. Inhibition of hyperglycemia-induced angiogenesis and breast cancer tumor growth by systemic injection of microRNA-467 antagonist. FASEB J 2015; 29:3726-36. [PMID: 26018675 DOI: 10.1096/fj.14-267799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 05/11/2015] [Indexed: 12/24/2022]
Abstract
Abnormal angiogenesis in multiple tissues is a key characteristic of the vascular complications of diabetes. However, angiogenesis may be increased in one tissue but decreased in another in the same patient at the same time point in the disease. The mechanisms of aberrant angiogenesis in diabetes are not understood. There are no selective therapeutic approaches to target increased neovascularization without affecting physiologic angiogenesis and angiogenesis in ischemic tissues. We recently reported a novel miRNA-dependent pathway that up-regulates angiogenesis in response to hyperglycemia in a cell- and tissue-specific manner. The goal of the work described herein was to test whether systemic administration of an antagonist of miR-467 would prevent hyperglycemia-induced local angiogenesis in a tissue-specific manner. We examined the effect of the antagonist on hyperglycemia-induced tumor growth and angiogenesis and on skin wound healing in mouse models of diabetes. Our data demonstrated that the systemic injection of the antagonist prevented hyperglycemia-induced angiogenesis and growth of mouse and human breast cancer tumors, where the miR-467 pathway was active in hyperglycemia. In tissues where the miR-467-dependent mechanism was not activated by hyperglycemia, there was no effect of the antagonist: the systemic injection did not affect skin wound healing or the growth of prostate tumors. The data show that systemic administration of the miR-467 antagonist could be a breakthrough approach in the treatment and prevention of diabetes-associated breast cancer in a tissue-specific manner without affecting physiologic angiogenesis and angiogenesis in ischemic tissues.
Collapse
Affiliation(s)
- Irene Krukovets
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Legerski
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pavel Sul
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
36
|
Angiogenesis is induced and wound size is reduced by electrical stimulation in an acute wound healing model in human skin. PLoS One 2015; 10:e0124502. [PMID: 25928356 PMCID: PMC4415761 DOI: 10.1371/journal.pone.0124502] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/03/2015] [Indexed: 11/24/2022] Open
Abstract
Angiogenesis is critical for wound healing. Insufficient angiogenesis can result in impaired wound healing and chronic wound formation. Electrical stimulation (ES) has been shown to enhance angiogenesis. We previously showed that ES enhanced angiogenesis in acute wounds at one time point (day 14). The aim of this study was to further evaluate the role of ES in affecting angiogenesis during the acute phase of cutaneous wound healing over multiple time points. We compared the angiogenic response to wounding in 40 healthy volunteers (divided into two groups and randomised), treated with ES (post-ES) and compared them to secondary intention wound healing (control). Biopsy time points monitored were days 0, 3, 7, 10, 14. Objective non-invasive measures and H&E analysis were performed in addition to immunohistochemistry (IHC) and Western blotting (WB). Wound volume was significantly reduced on D7, 10 and 14 post-ES (p = 0.003, p = 0.002, p<0.001 respectively), surface area was reduced on days 10 (p = 0.001) and 14 (p<0.001) and wound diameter reduced on days 10 (p = 0.009) and 14 (p = 0.002). Blood flow increased significantly post-ES on D10 (p = 0.002) and 14 (p = 0.001). Angiogenic markers were up-regulated following ES application; protein analysis by IHC showed an increase (p<0.05) in VEGF-A expression by ES treatment on days 7, 10 and 14 (39%, 27% and 35% respectively) and PLGF expression on days 3 and 7 (40% on both days), compared to normal healing. Similarly, WB demonstrated an increase (p<0.05) in PLGF on days 7 and 14 (51% and 35% respectively). WB studies showed a significant increase of 30% (p>0.05) on day 14 in VEGF-A expression post-ES compared to controls. Furthermore, organisation of granulation tissue was improved on day 14 post-ES. This randomised controlled trial has shown that ES enhanced wound healing by reduced wound dimensions and increased VEGF-A and PLGF expression in acute cutaneous wounds, which further substantiates the role of ES in up-regulating angiogenesis as observed over multiple time points. This therapeutic approach may have potential application for clinical management of delayed and chronic wounds.
Collapse
|
37
|
Greaves NS, Morris J, Benatar B, Alonso-Rasgado T, Baguneid M, Bayat A. Acute cutaneous wounds treated with human decellularised dermis show enhanced angiogenesis during healing. PLoS One 2015; 10:e0113209. [PMID: 25602294 PMCID: PMC4300088 DOI: 10.1371/journal.pone.0113209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The influence of skin substitutes upon angiogenesis during wound healing is unclear. OBJECTIVES To compare the angiogenic response in acute cutaneous human wounds treated with autogenic, allogenic and xenogenic skin substitutes to those left to heal by secondary intention. METHODS On day 0, four 5mm full-thickness punch biopsies were harvested from fifty healthy volunteers (sites 1-4). In all cases, site 1 healed by secondary intention (control), site 2 was treated with collagen-GAG scaffold (CG), cadaveric decellularised dermis (DCD) was applied to site 3, whilst excised tissue was re-inserted into site 4 (autograft). Depending on study group allocation, healing tissue from sites 1-4 was excised on day 7, 14, 21 or 28. All specimens were bisected, with half used in histological and immunohistochemical evaluation whilst extracted RNA from the remainder enabled whole genome microarrays and qRT-PCR of highlighted angiogenesis-related genes. All wounds were serially imaged over 6 weeks using laser-doppler imaging and spectrophotometric intracutaneous analysis. RESULTS Inherent structural differences between skin substitutes influenced the distribution and organisation of capillary networks within regenerating dermis. Haemoglobin flux (p = 0.0035), oxyhaemoglobin concentration (p = 0.0005), and vessel number derived from CD31-based immunohistochemistry (p = 0.046) were significantly greater in DCD wounds at later time points. This correlated with time-matched increases in mRNA expression of membrane-type 6 matrix metalloproteinase (MT6-MMP) (p = 0.021) and prokineticin 2 (PROK2) (p = 0.004). CONCLUSION Corroborating evidence from invasive and non-invasive modalities demonstrated that treatment with DCD resulted in increased angiogenesis after wounding. Significantly elevated mRNA expression of pro-angiogenic PROK2 and extracellular matrix protease MT6-MMP seen only in the DCD group may contribute to observed responses.
Collapse
Affiliation(s)
- Nicholas S. Greaves
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, Lancashire, United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, Lancashire, United Kingdom
| | - Julie Morris
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, Lancashire, United Kingdom
| | - Brian Benatar
- Department of Histopatholgy, Pennine Acute Hospitals NHS Trust, Royal Oldham Hospital, Rochdale Road, Oldham, Lancashire, United Kingdom
| | - Teresa Alonso-Rasgado
- School of Materials, University of Manchester, Manchester, Lancashire, United Kingdom
| | - Mohamed Baguneid
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, Lancashire, United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, Lancashire, United Kingdom
- Centre for Dermatology, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
38
|
Agis H, Hueber L, Pour Sadeghian N, Pensch M, Gruber R. In vitro release of dimethyloxaloylglycine and l-mimosine from bovine bone mineral. Arch Oral Biol 2014; 59:1024-31. [DOI: 10.1016/j.archoralbio.2014.05.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
|
39
|
Johnson KE, Wilgus TA. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv Wound Care (New Rochelle) 2014; 3:647-661. [PMID: 25302139 DOI: 10.1089/wound.2013.0517] [Citation(s) in RCA: 620] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Significance: Angiogenesis, the growth of new blood vessels from existing vessels, is an important aspect of the repair process. Restoration of blood flow to damaged tissues provides oxygen and nutrients required to support the growth and function of reparative cells. Vascular endothelial growth factor (VEGF) is one of the most potent proangiogenic growth factors in the skin, and the amount of VEGF present in a wound can significantly impact healing. Recent Advances: The activity of VEGF was once considered to be specific for endothelial cells lining the inside of blood vessels, partly because VEGF receptor (VEGFR) expression was believed to be restricted to endothelial cells. It is now known, however, that VEGFRs can be expressed by a variety of other cell types involved in wound repair. For example, keratinocytes and macrophages, which both carry out important functions during wound healing, express VEGFRs and are capable of responding directly to VEGF. Critical Issues: The mechanisms by which VEGF promotes angiogenesis are well established. Recent studies, however, indicate that VEGF can directly affect the activity of several nonendothelial cell types present in the skin. The implications of these extra-angiogenic effects of VEGF on wound repair are not yet known, but they suggest that this growth factor may play a more complex role during wound healing than previously believed. Future Directions: Despite the large number of studies focusing on VEGF and wound healing, it is clear that the current knowledge of how VEGF contributes to the repair of skin wounds is incomplete. Further research is needed to obtain a more comprehensive understanding of VEGF activities during the wound healing process.
Collapse
Affiliation(s)
- Kelly E. Johnson
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Traci A. Wilgus
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
40
|
Maan ZN, Rodrigues M, Rennert RC, Whitmore A, Duscher D, Januszyk M, Hu M, Whittam AJ, Davis CR, Gurtner GC. Understanding regulatory pathways of neovascularization in diabetes. Expert Rev Endocrinol Metab 2014; 9:487-501. [PMID: 30736211 DOI: 10.1586/17446651.2014.938054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetes mellitus and its associated comorbidities represent a significant health burden worldwide. Vascular dysfunction is the major contributory factor in the development of these comorbidities, which include impaired wound healing, cardiovascular disease and proliferative diabetic retinopathy. While the etiology of abnormal neovascularization in diabetes is complex and paradoxical, the dysregulation of the varied processes contributing to the vascular response are due in large part to the effects of hyperglycemia. In this review, we explore the mechanisms by which hyperglycemia disrupts chemokine expression and function, including the critical hypoxia inducible factor-1 axis. We place particular emphasis on the therapeutic potential of strategies addressing these pathways; as such targeted approaches may one day help alleviate the healthcare burden of diabetic sequelae.
Collapse
Affiliation(s)
- Zeshaan N Maan
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Melanie Rodrigues
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Robert C Rennert
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Arnetha Whitmore
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Dominik Duscher
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Michael Januszyk
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Michael Hu
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Alexander J Whittam
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | - Christopher R Davis
- a Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | | |
Collapse
|
41
|
Huang NT, Zhang HL, Chung MT, Seo JH, Kurabayashi K. Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. LAB ON A CHIP 2014; 14:1230-45. [PMID: 24525555 DOI: 10.1039/c3lc51211h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellular analysis plays important roles in various biological applications, such as cell biology, drug development, and disease diagnosis. Conventional cellular analysis usually measures the average response from a whole cell group. However, bulk measurements may cause misleading interpretations due to cell heterogeneity. Another problem is that current cellular analysis may not be able to differentiate various subsets of cell populations, each exhibiting a different behavior than the others. Single-cell analysis techniques are developed to analyze cellular properties, conditions, or functional responses in a large cell population at the individual cell level. Integrating optics with microfluidic platforms provides a well-controlled microenvironment to precisely control single cell conditions and perform non-invasive high-throughput analysis. This paper reviews recent developments in optofluidic technologies for various optics-based single-cell analyses, which involve single cell manipulation, treatment, and property detection. Finally, we provide our views on the future development of integrated optics with microfluidics for single-cell analysis and discuss potential challenges and opportunities of this emerging research field in biological applications.
Collapse
Affiliation(s)
- Nien-Tsu Huang
- Department of Electrical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | | | | | | | | |
Collapse
|
42
|
Urello MA, Kiick KL, Sullivan MO. A CMP-based method for tunable, cell-mediated gene delivery from collagen scaffolds. J Mater Chem B 2014; 2:8174-8185. [DOI: 10.1039/c4tb01435a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Collagen mimetic peptides (CMP)s were used to tailor release vs. retention of DNA polyplexes from collagen while preserving polyplex activity.
Collapse
Affiliation(s)
- M. A. Urello
- The Department of Chemical and Biomolecular Engineering
- The University of Delaware
- Newark, USA
| | - K. L. Kiick
- The Department of Materials Science and Engineering
- The University of Delaware
- Newark, USA
| | - M. O. Sullivan
- The Department of Chemical and Biomolecular Engineering
- The University of Delaware
- Newark, USA
| |
Collapse
|
43
|
Greaves NS, Ashcroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci 2013; 72:206-17. [PMID: 23958517 DOI: 10.1016/j.jdermsci.2013.07.008] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/11/2022]
Abstract
Cutaneous wound healing ultimately functions to facilitate barrier restoration following injury-induced loss of skin integrity. It is an evolutionarily conserved, multi-cellular, multi-molecular process involving co-ordinated inter-play between complex signalling networks. Cellular proliferation is recognised as the third stage of this sequence. Within this phase, fibroplasia and angiogenesis are co-dependent processes which must be successfully completed in order to form an evolving extracellular matrix and granulation tissue. The resultant structures guide cellular infiltration, differentiation and secretory profile within the wound environment and consequently have major influence on the success or failure of wound healing. This review integrates in vitro, animal and human in vivo studies, to provide up to date descriptions of molecular and cellular interactions involved in fibroplasia and angiogenesis. Significant molecular networks include adhesion molecules, proteinases, cytokines and chemokines as well as a plethora of growth factors. These signals are produced by, and affect behaviour of, cells including fibroblasts, fibrocytes, keratinocytes, endothelial cells and inflammatory cells resulting in significant cellular phenotypic and functional plasticity, as well as controlling composition and remodelling of structural proteins including collagen and fibronectin. The interdependent relationship between angiogenesis and fibroplasia relies on dynamic reciprocity between cellular components, matrix proteins and bioactive molecules. Unbalanced regulation of any one component can have significant consequences resulting in delayed healing, chronic wounds or abnormal scar formation. Greater understanding of angiogenic and fibroplastic mechanisms underlying chronic wound pathogenesis has identified novel therapeutic targets and enabled development of improved treatment strategies including topical growth factors and skin substitutes.
Collapse
Affiliation(s)
- Nicholas S Greaves
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, UK; The University of Manchester, Manchester Academic Health Science Centre, University Hospital South Manchester Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | | | | | | |
Collapse
|
44
|
Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Skin Wound Care 2012; 25:349-70. [PMID: 22820962 DOI: 10.1097/01.asw.0000418541.31366.a3] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This is the second of 2 articles that discuss the biology and pathophysiology of wound healing, reviewing the role that growth factors play in this process and describing the current methods for growth factor delivery into the wound bed.
Collapse
|
45
|
Ozbolat IT, Koc B. 3D hybrid wound devices for spatiotemporally controlled release kinetics. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012; 108:922-931. [PMID: 22672934 DOI: 10.1016/j.cmpb.2012.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 04/28/2012] [Accepted: 05/02/2012] [Indexed: 06/01/2023]
Abstract
This paper presents localized and temporal control of release kinetics over 3-dimensional (3D) hybrid wound devices to improve wound-healing process. Imaging study is performed to extract wound bed geometry in 3D. Non-Uniform Rational B-Splines (NURBS) based surface lofting is applied to generate functionally graded regions. Diffusion-based release kinetics model is developed to predict time-based release of loaded modifiers for functionally graded regions. Multi-chamber single nozzle solid freeform dispensing system is used to fabricate wound devices with controlled dispensing concentration. Spatiotemporal control of biological modifiers thus enables a way to achieve target delivery to improve wound healing.
Collapse
Affiliation(s)
- Ibrahim T Ozbolat
- Mechanical and Industrial Engineering Department, The University of Iowa, 2130 Seamans Center, Iowa City, IA 52242, USA.
| | | |
Collapse
|
46
|
Kim SW, Zhang HZ, Guo L, Kim JM, Kim MH. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities. PLoS One 2012; 7:e41105. [PMID: 22815931 PMCID: PMC3398889 DOI: 10.1371/journal.pone.0041105] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/18/2012] [Indexed: 12/16/2022] Open
Abstract
Although human amniotic mesenchymal stem cells (AMMs) have been recognised as a promising stem cell resource, their therapeutic potential for wound healing has not been widely investigated. In this study, we evaluated the therapeutic potential of AMMs using a diabetic mouse wound model. Quantitative real-time PCR and ELISA results revealed that the angiogenic factors, IGF-1, EGF and IL-8 were markedly upregulated in AMMs when compared with adipose-derived mesenchymal stem cells (ADMs) and dermal fibroblasts. In vitro scratch wound assays also showed that AMM-derived conditioned media (CM) significantly accelerated wound closure. Diabetic mice were generated using streptozotocin and wounds were created by skin excision, followed by AMM transplantation. AMM transplantation significantly promoted wound healing and increased re-epithelialization and cellularity. Notably, transplanted AMMs exhibited high engraftment rates and expressed keratinocyte-specific proteins and cytokeratin in the wound area, indicating a direct contribution to cutaneous closure. Taken together, these data suggest that AMMs possess considerable therapeutic potential for chronic wounds through the secretion of angiogenic factors and enhanced engraftment/differentiation capabilities.
Collapse
Affiliation(s)
- Sung-Whan Kim
- Regional Clinical Center, Dong-A University Hospital, Busan, South Korea
- Department of Cardiology, College of Medicine, Dong-A University, Busan, South Korea
| | - Hong-Zhe Zhang
- Regional Clinical Center, Dong-A University Hospital, Busan, South Korea
- Department of Cardiology, College of Medicine, Dong-A University, Busan, South Korea
| | - Longzhe Guo
- Regional Clinical Center, Dong-A University Hospital, Busan, South Korea
- Department of Cardiology, College of Medicine, Dong-A University, Busan, South Korea
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, South Korea
| | - Moo Hyun Kim
- Regional Clinical Center, Dong-A University Hospital, Busan, South Korea
- Department of Cardiology, College of Medicine, Dong-A University, Busan, South Korea
| |
Collapse
|
47
|
Kiwanuka E, Junker J, Eriksson E. Harnessing growth factors to influence wound healing. Clin Plast Surg 2012; 39:239-48. [PMID: 22732373 DOI: 10.1016/j.cps.2012.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cutaneous wound healing is a dynamic process with the ultimate goal of restoring skin integrity. On injury to the skin, inflammatory cells, endothelial cells, fibroblasts, and keratinocytes undergo changes in gene expression and phenotype, leading to cell proliferation, migration, and differentiation. Cytokines and growth factors play an essential role in initiating and directing the phases of wound healing. These signaling peptides are produced by a variety of cells and lead to a concerted effort to restore the skin barrier function.
Collapse
Affiliation(s)
- Elizabeth Kiwanuka
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Wise LM, Inder MK, Real NC, Stuart GS, Fleming SB, Mercer AA. The vascular endothelial growth factor (VEGF)-E encoded by orf virus regulates keratinocyte proliferation and migration and promotes epidermal regeneration. Cell Microbiol 2012; 14:1376-90. [PMID: 22507661 DOI: 10.1111/j.1462-5822.2012.01802.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/27/2012] [Accepted: 04/05/2012] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF)-A, a key regulator of cutaneous blood vessel formation, appears to have an additional role during wound healing, enhancing re-epithelialization. Orf virus, a zoonotic parapoxvirus, induces proliferative skin lesions that initiate in wounds and are characterized by extensive blood vessel formation, epidermal hyperplasia and rete ridge formation. The vascular changes beneath the lesion are largely due to viral-expressed VEGF-E. This study investigated using mouse skin models whether VEGF-E can induce epidermal changes such as that seen in the viral lesion. Injection of VEGF-E into normal skin increased the number of endothelial cells and blood vessels within the dermis and increased epidermal thickening and keratinocyte number. Injection of VEGF-E into wounded skin, which more closely mimics orf virus lesions, increased neo-epidermal thickness and area, promoted rete ridge formation, and enhanced wound re-epithelialization. Quantitative RT-PCR analysis showed that VEGF-E did not induce expression of epidermal-specific growth factors within the wound, but did increase matrix metalloproteinase (MMP)-2 and MMP-9 expression. In cell-based assays, VEGF-E induced keratinocyte migration and proliferation, responses that were inhibited by a neutralizing antibody against VEGF receptor (VEGFR)-2. These findings demonstrate that VEGF-E, both directly and indirectly, regulates keratinocyte function, thereby promoting epidermal regeneration.
Collapse
Affiliation(s)
- Lyn M Wise
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
49
|
de la Garza-Rodea AS, Knaän-Shanzer S, van Bekkum DW. Pressure ulcers: description of a new model and use of mesenchymal stem cells for repair. Dermatology 2011; 223:266-84. [PMID: 22116308 DOI: 10.1159/000334628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/19/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pressure ulcers (PUs) still represent a heavy burden on many patients and nursing institutions. Our understanding of the pathophysiology and development of new treatments are hampered by the scarcity of suitable animal models. OBJECTIVE Evaluation of the translational value of an easily accessible mouse model. METHODS PUs were induced by application of magnetic devices on the dorsal skin of mice, which causes localized ischemia. The extent of the lesions and healing rate were quantified. Variations in ischemic exposure time were compared in hairless and normal mice. A detailed histological analysis of regeneration is presented. The influence of streptozotocin-induced diabetes, skin X-irradiation and treatment of the ulcers with human mesenchymal stem cells (MSCs) was investigated using immunodeficient NOD/SCID mice. RESULTS Ulcers induced by this form of ischemia have many features in common with decubitus ulcers in humans. No difference between hairy and hairless mice was observed in the rate of healing of the PUs. Unexpectedly, healing was not delayed in diabetic mice, but skin X-irradiation prior to ischemia resulted in a doubling of the time to complete closure of the PUs, and delayed repair of the dermis and panniculus carnosus muscle. Intradermal transplantation of human MSCs did not accelerate healing. The grafted MSCs were short-lived and only marginally participated in regeneration by differentiating into tissue-specific cells. CONCLUSION The results emphasize the difference in the characteristics of PUs as compared to surgical wounds. This experimental model is recommended for preclinical research on decubitus ulcers because of its mechanistic similarity with clinical PUs and its simplicity.
Collapse
Affiliation(s)
- Anabel S de la Garza-Rodea
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands. A.S.de_la_Garza @ lumc.nl
| | | | | |
Collapse
|
50
|
Jazwa A, Kucharzewska P, Leja J, Zagorska A, Sierpniowska A, Stepniewski J, Kozakowska M, Taha H, Ochiya T, Derlacz R, Vahakangas E, Yla-Herttuala S, Jozkowicz A, Dulak J. Combined vascular endothelial growth factor-A and fibroblast growth factor 4 gene transfer improves wound healing in diabetic mice. GENETIC VACCINES AND THERAPY 2010; 8:6. [PMID: 20804557 PMCID: PMC2939607 DOI: 10.1186/1479-0556-8-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 08/30/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND Impaired wound healing in diabetes is related to decreased production of growth factors. Hence, gene therapy is considered as promising treatment modality. So far, efforts concentrated on single gene therapy with particular emphasis on vascular endothelial growth factor-A (VEGF-A). However, as multiple proteins are involved in this process it is rational to test new approaches. Therefore, the aim of this study was to investigate whether single AAV vector-mediated simultaneous transfer of VEGF-A and fibroblast growth factor 4 (FGF4) coding sequences will improve the wound healing over the effect of VEGF-A in diabetic (db/db) mice. METHODS Leptin receptor-deficient db/db mice were randomized to receive intradermal injections of PBS or AAVs carrying β-galactosidase gene (AAV-LacZ), VEGF-A (AAV-VEGF-A), FGF-4 (AAV-FGF4-IRES-GFP) or both therapeutic genes (AAV-FGF4-IRES-VEGF-A). Wound healing kinetics was analyzed until day 21 when all animals were sacrificed for biochemical and histological examination. RESULTS Complete wound closure in animals treated with AAV-VEGF-A was achieved earlier (day 19) than in control mice or animals injected with AAV harboring FGF4 (both on day 21). However, the fastest healing was observed in mice injected with bicistronic AAV-FGF4-IRES-VEGF-A vector (day 17). This was paralleled by significantly increased granulation tissue formation, vascularity and dermal matrix deposition. Mechanistically, as shown in vitro, FGF4 stimulated matrix metalloproteinase-9 (MMP-9) and VEGF receptor-1 expression in mouse dermal fibroblasts and when delivered in combination with VEGF-A, enhanced their migration. CONCLUSION Combined gene transfer of VEGF-A and FGF4 can improve reparative processes in the wounded skin of diabetic mice better than single agent treatment.
Collapse
Affiliation(s)
- Agnieszka Jazwa
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|