1
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Gharatape A, Sadeghi-Abandansari H, Seifalian A, Faridi-Majidi R, Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J Mater Chem B 2024; 12:3356-3375. [PMID: 38505950 DOI: 10.1039/d3tb02279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Casper J, Schenk SH, Parhizkar E, Detampel P, Dehshahri A, Huwyler J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J Control Release 2023; 362:667-691. [PMID: 37666302 DOI: 10.1016/j.jconrel.2023.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Polyethlyenimine (PEI) was introduced 1995 as a cationic polymer for nucleic acid delivery. PEI and its derivatives are extensively used in basic research and as reference formulations in the field of polymer-based gene delivery. Despite its widespread use, the number of clinical applications to date is limited. Thus, this review aims to consolidate the past applications of PEI in DNA delivery, elucidate the obstacles that hinder its transition to clinical use, and highlight potential prospects for novel iterations of PEI derivatives. The present review article is divided into three sections. The first section examines the mechanism of action employed by PEI, examining fundamental aspects of cellular delivery including uptake mechanisms, release from endosomes, and transport into the cell nucleus, along with potential strategies for enhancing these delivery phases. Moreover, an in-depth analysis is conducted concerning the mechanism underlying cellular toxicity, accompanied with approaches to overcome this major challenge. The second part is devoted to the in vivo performance of PEI and its application in various therapeutic indications. While systemic administration has proven to be challenging, alternative localized delivery routes hold promise, such as treatment of solid tumors, application as a vaccine, or serving as a therapeutic agent for pulmonary delivery. In the last section, the outcome of completed and ongoing clinical trials is summarized. Finally, an expert opinion is provided on the potential of PEI and its future applications. PEI-based formulations for nucleic acid delivery have a promising potential, it will be an important task for the years to come to introduce innovations that address PEI-associated shortcomings by introducing well-designed PEI formulations in combination with an appropriate route of administration.
Collapse
Affiliation(s)
- Jens Casper
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elahehnaz Parhizkar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
4
|
Hall A, Bartek J, Wagner E, Lächelt U, Moghimi SM. High-resolution bioenergetics correlates the length of continuous protonatable diaminoethane motif of four-armed oligo(ethanamino)amide transfectants to cytotoxicity. J Control Release 2023; 361:115-129. [PMID: 37532151 DOI: 10.1016/j.jconrel.2023.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Recent clinical success with Onpattro and cationic ionizable lipid nanoparticle-based mRNA vaccines has rejuvenated research in the design and engineering of broader synthetic cationic vectors for nucleic acid compaction and transfection. However, perturbation of metabolic processes and cytotoxicity are still of concern with synthetic cationic vectors. Here, through an integrated bioenergetic and biomembrane integrity probing in three different human cell lines we reveal the dynamic effect of a library of sequence-defined four-arm oligo(ethanamino)amide transfectant on cell homeostasis, and identify metabolically safe building units over wide concentration ranges. The results show differential effects of the oligo(ethanamino)amide structure of comparable molecular weight on cell energetics. The severity of polycation effect on bioenergetic crisis follows with the length of continuous protonatable diaminoethane motif in the ascending order of glutaryl-triethylene tetramine, succinyl-tetraethylene pentamine and succinyl-pentaethylene hexamine. We further identify oligomeric structures that do not induce bioenergetic crisis even at high concentrations. Finally, transfection studies with a library of polyplexes carrying a reporter gene show no correlation between transfection efficiency and cytotoxicity. These observations demonstrate the usefulness of integrated high-resolution respirometry and plasma membrane integrity probing as a highly sensitive medium-throughput screening strategy for identification and selection of safe building units for transfectant engineering.
Collapse
Affiliation(s)
- Arnaldur Hall
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians Universität, Butenandstrasse 5-13, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians Universität, Butenandstrasse 5-13, 81377 Munich, Germany; Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Seyed Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
5
|
Tilden SG, Ricco MH, Hemann EA, Anchordoquy TJ. Reducing off-target drug accumulation by exploiting a type-III interferon response. J Control Release 2023; 358:729-738. [PMID: 37230293 PMCID: PMC10389760 DOI: 10.1016/j.jconrel.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
Nanomedicines have been touted as the future of cancer therapy for decades. However, the field of tumor-targeted nanomedicine has failed to significantly advance toward becoming the primary choice for cancer intervention. One of the largest obstacles that has yet to be overcome is off-target accumulation of the nanoparticles. We propose a novel approach to tumor delivery by focusing on decreasing off-target accumulation of nanomedicines rather than directly increasing tumor delivery. Acknowledging a poorly understood "refractory" response to intravenously injected gene therapy vectors observed in ours and other studies, we hypothesize that virus-like particles (lipoplexes) can be utilized to initiate an anti-viral innate immune response that limits off-target accumulation of subsequently administered nanoparticles. Indeed, our results show a significant reduction in the deposition of both dextran and Doxil® in major organs with a concurrent increase in plasma and tumor accumulation when injection occurred 24 h after a lipoplex injection. Furthermore, our data showing that the direct injection of interferon lambda (IFN-λ) is capable of eliciting this response demonstrates a central role for this type III interferon in limiting accumulation in non-tumor tissues.
Collapse
Affiliation(s)
- Scott G Tilden
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Madison H Ricco
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Emily A Hemann
- Ohio State University, Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Thomas J Anchordoquy
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
6
|
Cojocaru E, Ghitman J, Stan R. Electrospun-Fibrous-Architecture-Mediated Non-Viral Gene Therapy Drug Delivery in Regenerative Medicine. Polymers (Basel) 2022; 14:2647. [PMID: 35808692 PMCID: PMC9269101 DOI: 10.3390/polym14132647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022] Open
Abstract
Gene-based therapy represents the latest advancement in medical biotechnology. The principle behind this innovative approach is to introduce genetic material into specific cells and tissues to stimulate or inhibit key signaling pathways. Although enormous progress has been achieved in the field of gene-based therapy, challenges connected to some physiological impediments (e.g., low stability or the inability to pass the cell membrane and to transport to the desired intracellular compartments) still obstruct the exploitation of its full potential in clinical practices. The integration of gene delivery technologies with electrospun fibrous architectures represents a potent strategy that may tackle the problems of stability and local gene delivery, being capable to promote a controlled and proficient release and expression of therapeutic genes in the targeted cells, improving the therapeutic outcomes. This review aims to outline the impact of electrospun-fibrous-architecture-mediated gene therapy drug delivery, and it emphatically discusses the latest advancements in their formulation and the therapeutic outcomes of these systems in different fields of regenerative medicine, along with the main challenges faced towards the translation of promising academic results into tangible products with clinical application.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Raluca Stan
- Department of Organic Chemistry “C. Nenitzescu”, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| |
Collapse
|
7
|
Elzes MR, Mertens I, Sedlacek O, Verbraeken B, Doensen ACA, Mees MA, Glassner M, Jana S, Paulusse JMJ, Hoogenboom R. Linear Poly(ethylenimine-propylenimine) Random Copolymers for Gene Delivery: From Polymer Synthesis to Efficient Transfection with High Serum Tolerance. Biomacromolecules 2022; 23:2459-2470. [PMID: 35499242 DOI: 10.1021/acs.biomac.2c00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Naturally occurring oligoamines, such as spermine, spermidine, and putrescine, are well-known regulators of gene expression. These oligoamines frequently have short alkyl spacers with varying lengths between the amines. Linear polyethylenimine (PEI) is a polyamine that has been widely applied as a gene vector, with various formulations currently in clinical trials. In order to emulate natural oligoamine gene regulators, linear random copolymers containing both PEI and polypropylenimine (PPI) repeat units were designed as novel gene delivery agents. In general, statistical copolymerization of 2-oxazolines and 2-oxazines leads to the formation of gradient copolymers. In this study, however, we describe for the first time the synthesis of near-ideal random 2-oxazoline/2-oxazine copolymers through careful tuning of the monomer structures and reactivity as well as polymerization conditions. These copolymers were then transformed into near-random PEI-PPI copolymers by controlled side-chain hydrolysis. The prepared PEI-PPI copolymers formed stable polyplexes with GFP-encoding plasmid DNA, as validated by dynamic light scattering. Furthermore, the cytotoxicity and transfection efficiency of polyplexes were evaluated in C2C12 mouse myoblasts. While the polymer chain length did not significantly increase the toxicity, a higher PPI content was associated with increased toxicity and also lowered the amount of polymers needed to achieve efficient transfection. The transfection efficiency was significantly influenced by the degree of polymerization of PEI-PPI, whereby longer polymers resulted in more transfected cells. Copolymers with 60% or lower PPI content exhibited a good balance between high plasmid-DNA transfection efficiency and low toxicity. Interestingly, these novel PEI-PPI copolymers revealed exceptional serum tolerance, whereby transfection efficiencies of up to 53% of transfected cells were achieved even under 50% serum conditions. These copolymers, especially PEI-PPI with DP500 and a 1:1 PEI/PPI ratio, were identified as promising transfection agents for plasmid DNA.
Collapse
Affiliation(s)
- M Rachèl Elzes
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Ine Mertens
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Ondrej Sedlacek
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Aniek C A Doensen
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands.,Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Maarten A Mees
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Mathias Glassner
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Somdeb Jana
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| | - Jos M J Paulusse
- Department of Biomolecular Nanotechnology, MESA + Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Zhang C, Ma Y, Zhang J, Kuo JCT, Zhang Z, Xie H, Zhu J, Liu T. Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules 2022; 27:molecules27061943. [PMID: 35335310 PMCID: PMC8949521 DOI: 10.3390/molecules27061943] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Lipid-based nanoparticles (LBNPs) are biocompatible and biodegradable vesicles that are considered to be one of the most efficient drug delivery platforms. Due to the prominent advantages, such as long circulation time, slow drug release, reduced toxicity, high transfection efficiency, and endosomal escape capacity, such synthetic nanoparticles have been widely used for carrying genetic therapeutics, particularly nucleic acids that can be applied in the treatment for various diseases, including congenital diseases, cancers, virus infections, and chronic inflammations. Despite great merits and multiple successful applications, many extracellular and intracellular barriers remain and greatly impair delivery efficacy and therapeutic outcomes. As such, the current state of knowledge and pitfalls regarding the gene delivery and construction of LBNPs will be initially summarized. In order to develop a new generation of LBNPs for improved delivery profiles and therapeutic effects, the modification strategies of LBNPs will be reviewed. On the basis of these developed modifications, the performance of LBNPs as therapeutic nanoplatforms have been greatly improved and extensively applied in immunotherapies, including infectious diseases and cancers. However, the therapeutic applications of LBNPs systems are still limited due to the undesirable endosomal escape, potential aggregation, and the inefficient encapsulation of therapeutics. Herein, we will review and discuss recent advances and remaining challenges in the development of LBNPs for nucleic acid-based immunotherapy.
Collapse
Affiliation(s)
- Chi Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Yifan Ma
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (Y.M.); (J.Z.)
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (Y.M.); (J.Z.)
| | - Jimmy Chun-Tien Kuo
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Zhongkun Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Haotian Xie
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Jing Zhu
- College of Nursing and Health Innovation, The University of Texas Arlington, Arlington, TX 76010, USA
- Correspondence: (J.Z.); (T.L.); Tel.: +1-614-570-1164 (J.Z.); +86-186-6501-3854 (T.L.)
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
- Correspondence: (J.Z.); (T.L.); Tel.: +1-614-570-1164 (J.Z.); +86-186-6501-3854 (T.L.)
| |
Collapse
|
9
|
Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BIOTECH 2022; 11:biotech11010006. [PMID: 35822814 PMCID: PMC9245904 DOI: 10.3390/biotech11010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
The research and development of non-viral gene therapy has been extensive over the past decade and has received a big push thanks to the recent successful approval of non-viral nucleic acid therapy products. Despite these developments, nucleic acid therapy applications in cancer have been limited. One of the main causes of this has been the imbalance in development of delivery vectors as compared with sophisticated nucleic acid payloads, such as siRNA, mRNA, etc. This paper reviews non-viral vectors that can be used to deliver nucleic acids for cancer treatment. It discusses various types of vectors and highlights their current applications. Additionally, it discusses a perspective on the current regulatory landscape to facilitate the commercial translation of gene therapy.
Collapse
Affiliation(s)
- Shrey Kanvinde
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
- Correspondence:
| | - Tanmay Kulkarni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Deep Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
10
|
Kubczak M, Michlewska S, Karimov M, Ewe A, Noske S, Aigner A, Bryszewska M, Ionov M. Unmodified and tyrosine-modified polyethylenimines as potential carriers for siRNA: Biophysical characterization and toxicity. Int J Pharm 2022; 614:121468. [PMID: 35031413 DOI: 10.1016/j.ijpharm.2022.121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
Polyethylenimines (PEIs) are being explored as efficient non-viral nanocarriers for nucleic acid delivery in vitro and in vivo. To address limitations regarding PEI efficacy and biocompatibility, modifications of the chemical structure of linear and branched PEIs have been introduced, including grafting with tyrosine. The aim has been to compare linear and branched polyethylenimines of a wider range of different molecular mass with their tyrosine-modified derivatives. To do so, physico-chemical and biological properties of the polymers were investigated. Even in the absence of a negatively charged nucleic acid counterpart, PEIs form particle structures with defined size and surface potential. Tyrosine modification of PEI led to significantly reduced toxicity, while simultaneously increasing interaction with cellular membranes. All the effects were also dependent on the PEI molecular weight and structure (i.e., linear vs. branched). Especially in the case of linear PEIs, the improved membrane interaction also translated into slightly enhanced hemolysis, whereas their genotoxic potential was essentially abolished. Due to the improvement of properties critical for nano-vector efficacy and biocompatibility, our data demonstrate that tyrosine-modified PEIs are very promising and safe nanocarriers for the delivery of small RNAs, like siRNAs and miRNAs.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland; Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
11
|
Grenda K, Idström A, Evenäs L, Persson M, Holmberg K, Bordes R. An analytical approach to elucidate the architecture of polyethyleneimines. J Appl Polym Sci 2022. [DOI: 10.1002/app.51657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kinga Grenda
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Göteborg Sweden
| | - Alexander Idström
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Göteborg Sweden
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Göteborg Sweden
| | | | - Krister Holmberg
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Göteborg Sweden
| | - Romain Bordes
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Göteborg Sweden
| |
Collapse
|
12
|
Heng ZSL, Yeo JY, Koh DWS, Gan SKE, Ling WL. Augmenting recombinant antibody production in HEK293E cells: Optimising transfection and culture parameters. Antib Ther 2022; 5:30-41. [PMID: 35146331 PMCID: PMC8825235 DOI: 10.1093/abt/tbac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 01/06/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Optimising recombinant antibody production is important for cost-effective therapeutics and diagnostics. With impact on commercialisation, higher productivity beyond laboratory scales is highly sought, where efficient production can also accelerate antibody characterisations and investigations.
Methods
Investigating HEK293E cells for mammalian antibody production, various transfection and culture parameters were systematically analysed for antibody light chain production before evaluating them for whole antibody production. Transfection parameters investigated include seeding cell density, the concentration of the transfection reagent and DNA, complexation time, temperature, and volume, as well as culture parameters such as medium replacement, serum deprivation, use of cell maintenance antibiotic, incubation temperature, medium volume, post-transfection harvest day and common nutrient supplements.
Results
Using 2 mL adherent HEK293E cell culture transfections with 25 kDa linear Polyethylenimine in the most optimised parameters, we demonstrated a ~ 2-fold production increase for light chain alone and for whole antibody production reaching 536 and 49 μg respectively in a cost-effective manner. With the addition of peptone, κ light chain increased by ~ 4-fold to 1032 μg while whole antibody increased to a lesser extent by ~ 2.5-fold to 51 μg, with benefits potentially for antibodies limited by their light chains in production.
Conclusions
Our optimised findings show promise for a more efficient and convenient antibody production method through transfection and culture optimisations that can be incorporated to scale up processes and with potential transferability to other mammalian-based recombinant protein production using HEK293E cells.
Statement of Significance
Recombinant antibody production is crucial for antibody research and development. Systematically investigating transfection and culture parameters such as PEI/DNA concentrations, complexation time, volume, and temperature, supplements, etc., we demonstrated a ~ 4-fold light chain alone production increase to 1032 μg and a 2.5-fold whole antibody production increase to 51 μg from 2 mL transfections.
Collapse
Affiliation(s)
- Zealyn Shi-Lin Heng
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Darius Wen-Shuo Koh
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- APD SKEG Pte Ltd., Singapore 439444, Singapore
- James Cook University, Singapore 387380, Singapore
| | - Wei-Li Ling
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| |
Collapse
|
13
|
Wahyuningtyas D, Chen WH, He RY, Huang YA, Tsao CK, He YJ, Yu CY, Lu PC, Chen YC, Wang SH, Ng KC, Po-Wen Chen B, Wei PK, Shie JJ, Kuo CH, Sun YH, Jen-Tse Huang J. Polyglutamine-Specific Gold Nanoparticle Complex Alleviates Mutant Huntingtin-Induced Toxicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60894-60906. [PMID: 34914364 DOI: 10.1021/acsami.1c18754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Huntington's disease (HD) belongs to protein misfolding disorders associated with polyglutamine (polyQ)-rich mutant huntingtin (mHtt) protein inclusions. Currently, it is indicated that the aggregation of polyQ-rich mHtt participates in neuronal toxicity and dysfunction. Here, we designed and synthesized a polyglutamine-specific gold nanoparticle (AuNP) complex, which specifically targeted mHtt and alleviated its toxicity. The polyglutamine-specific AuNPs were prepared by decorating the surface of AuNPs with an amphiphilic peptide (JLD1) consisting of both polyglutamine-binding sequences and negatively charged sequences. By applying the polyQ aggregation model system, we demonstrated that AuNPs-JLD1 dissociated the fibrillary aggregates from the polyQ peptide and reduced its β-sheet content in a concentration-dependent manner. By further integrating polyethyleneimine (PEI) onto AuNPs-JLD1, we generated a complex (AuNPs-JLD1-PEI). We showed that this complex could penetrate cells, bind to cytosolic mHtt proteins, dissociate mHtt inclusions, reduce mHtt oligomers, and ameliorate mHtt-induced toxicity. AuNPs-JLD1-PEI was also able to be transported to the brain and improved the functional deterioration in the HD Drosophila larva model. Our results revealed the feasibility of combining AuNPs, JLD1s, and cell-penetrating polymers against mHtt protein aggregation and oligomerization, which hinted on the early therapeutic strategies against HD.
Collapse
Affiliation(s)
- Devi Wahyuningtyas
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Science Building 2, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan
| | - Wen-Hao Chen
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Ruei-Yu He
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Yung-An Huang
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Chia-Kang Tsao
- Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Yu-Jung He
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Chu-Yi Yu
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Po-Chao Lu
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University, 11F, No. 1, Section 1, Ren'ai Road, Zhongzheng District, Taipei 10051, Taiwan
| | - Yu-Cai Chen
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Sheng-Hann Wang
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 115, Taiwan
| | - Ka Chon Ng
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Bryan Po-Wen Chen
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 115, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Chun-Hong Kuo
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Y Henry Sun
- Institute of Molecular Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Joseph Jen-Tse Huang
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Chiayi University, No. 300, University Road, Chiayi 600, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
14
|
Diltemiz SE, Tavafoghi PhD M, Roberto de Barros N, Kanada M, Heinamaki J, Contag C, Seidlits S, Ashammakhi N. USE OF ARTIFICIAL CELLS AS DRUG CARRIERS. MATERIALS CHEMISTRY FRONTIERS 2021; 5:6672-6692. [PMID: 38344270 PMCID: PMC10857888 DOI: 10.1039/d1qm00717c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cells are the fundamental functional units of biological systems and mimicking their size, function and complexity is a primary goal in the development of new therapeutic strategies. Recent advances in chemistry, synthetic biology and material science have enabled the development of cell membrane-based drug delivery systems (DDSs), often referred to as "artificial cells" or protocells. Artificial cells can be made by removing functions from natural systems in a top-down manner, or assembly from synthetic, organic or inorganic materials, through a bottom-up approach where simple units are integrated to form more complex structures. This review covers the latest advances in the development of artificial cells as DDSs, highlighting how their designs have been inspired by natural cells or cell membranes. Advancement of artificial cell technologies has led to a set of drug carriers with effective and controlled release of a variety of therapeutics for a range of diseases, and with increasing complexity they will have a greater impact on therapeutic designs.
Collapse
Affiliation(s)
- Sibel Emir Diltemiz
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Chemistry, Eskisehir Technical University, Eskisehir, Turkey
| | - Maryam Tavafoghi PhD
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Natan Roberto de Barros
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Bioprocess and Biotechnology Engineering, São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jyrki Heinamaki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse Str. 1, EE-50411 Tartu, Estonia
| | - Christopher Contag
- Institute for Quantitative Health Science and Engineering (IQ) and Departments of Biomedical Engineering (BME), and Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Seidlits
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Gyarmati B, Mammadova A, Barczikai D, Stankovits G, Misra A, Alavijeh MS, Varga Z, László K, Szilágyi A. Side group ratio as a novel means to tune the hydrolytic degradation of thiolated and disulfide cross-linked polyaspartamides. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Dai CC, Huang W, Yang J, Hussein WM, Wang J, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Polyethylenimine quantity and molecular weight influence its adjuvanting properties in liposomal peptide vaccines. Bioorg Med Chem Lett 2021; 40:127920. [PMID: 33705898 DOI: 10.1016/j.bmcl.2021.127920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 01/23/2023]
Abstract
We recently reported that polyethylenimine (PEI; molecular weight of 600 Da) acted as a vaccine adjuvant for liposomal group A Streptococcus (GAS) vaccines, eliciting immune responses in vivo with IgG antibodies giving opsonic activity against five Australian GAS clinical isolates. However, to date, no investigation comparing the structure-activity relationship between the molecular weight of PEI and its adjuvanting activity in vaccine development has been performed. We hypothesized that the molecular weight and quantity of PEI in a liposomal vaccine will impact its adjuvanting properties. In this study, we successfully formulated liposomes containing different molecular weights of PEI (600, 1800, 10k and 25k Da) and equivalents of PEI (0.5, 1 and 2) of branched PEI. Outbred mice were administrated the vaccine formulations intranasally, and the mice that received a high ratio of PEI 600 reported a stronger immune response than the mice that received a lower ratio of PEI 600. Interestingly, mice that received the same quantity of PEI 600, PEI 10k and PEI 25k showed similar immune responses in vivo and in vitro. This comparative study highlights the ratio of PEI present in the liposome vaccines impacts adjuvanting activity, however, PEI molecular weight did not significantly enhance its adjuvanting properties. We also report that the stability of PEI liposomes is critical for vaccines to elicit the desired immune response.
Collapse
Affiliation(s)
- Charles C Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wenbin Huang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jingwen Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
17
|
Parbat D, Bhunia BK, Mandal BB, Manna U. Bio-inspired Underwater Super-Oil-Wettability for Controlling Platelet Adhesion. Chem Asian J 2021; 16:1081-1085. [PMID: 33742553 DOI: 10.1002/asia.202100143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Indexed: 01/07/2023]
Abstract
Control promotion and prevention of platelet adhesion are important for various biomedical applications. In the past, surface topography and chemical modifications have been commonly utilized for tailoring the promotion and prevention of platelet adhesion. Recently, lotus-leaf-inspired superhydrophobicity has appeared as an efficient avenue to prevent platelet adhesion. However, such extreme water repellent interfaces fail to perform upon prolonged and continuous exposure to aqueous phase. In this communication, the strategic use of a catalyst-free 1,4-conjugate addition reaction between amine and acrylate allowed us to investigate the impact of two distinct underwater oil-wettability on platelet adhesion activity. While underwater superoleophobicity inhibited platelet-adhesion, a highly aggregated fibrous network of adhered platelets was observed on underwater superoleophilic coating. Further, this biocompatible and haemocompatible underwater superoleophobic multilayer coating was deposited on a commercially available catheter tube to examine its potential towards the prevention of platelet attachment.
Collapse
Affiliation(s)
- Dibyangana Parbat
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Bibhas K Bhunia
- Biomaterial and Tissue Engineering laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India.,Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India.,Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
18
|
Liu XB, Yu GW, Gao XY, Huang JL, Qin LT, Ni HB, Lyu C. Intranasal delivery of plasmids expressing bovine herpesvirus 1 gB/gC/gD proteins by polyethyleneimine magnetic beads activates long-term immune responses in mice. Virol J 2021; 18:60. [PMID: 33743745 PMCID: PMC7981393 DOI: 10.1186/s12985-021-01536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background DNA vaccine is one of the research hotspots in veterinary vaccine development. Several advantages, such as cost-effectiveness, ease of design and production, good biocompatibility of plasmid DNA, attractive biosafety, and DNA stability, are found in DNA vaccines. Methods In this study, the plasmids expressing bovine herpesvirus 1 (BoHV-1) gB, gC, and gD proteins were mixed at the same mass ratio and adsorbed polyethyleneimine (PEI) magnetic beads with a diameter of 50 nm. Further, the plasmid and PEI magnetic bead polymers were packaged into double carboxyl polyethylene glycol (PEG) 600 to use as a DNA vaccine. The prepared DNA vaccine was employed to vaccinate mice via the intranasal route. The immune responses were evaluated in mice after vaccination. Results The expression of viral proteins could be largely detected in the lung and rarely in the spleen of mice subjected to a vaccination. The examination of biochemical indicators, anal temperature, and histology indicated that the DNA vaccine was safe in vivo. However, short-time toxicity was observed. The total antibody detected with ELISA in vaccinated mice showed a higher level than PBS, DNA, PEI + DNA, and PBS groups. The antibody level was significantly elevated at the 15th week and started to decrease since the 17th week. The neutralizing antibody titer was significantly higher in DNA vaccine than naked DNA vaccinated animals. The total IgA level was much greater in the DNA vaccine group compared to other component vaccinated groups. The examination of cellular cytokines and the percentage of CD4/CD8 indicated that the prepared DNA vaccine induced a strong cellular immunity. Conclusion The mixed application of plasmids expressing BoHV-1 gB/gC/gD proteins by nano-carrier through intranasal route could effectively activate long-term humoral, cellular, and mucosal immune responses at high levels in mice. These data indicate PEI magnetic beads combining with PEG600 are an efficient vector for plasmid DNA to deliver intranasally as a DNA vaccine candidate. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01536-w.
Collapse
Affiliation(s)
- Xing-Bo Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Guo-Wei Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Xin-Yu Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Jin-Long Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Li-Ting Qin
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, China.,Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao, 266100, China
| | - Hong-Bo Ni
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China. .,College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| | - Chuang Lyu
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, China. .,Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao, 266100, China.
| |
Collapse
|
19
|
Jia TZ, Bapat NV, Verma A, Mamajanov I, Cleaves HJ, Chandru K. Incorporation of Basic α-Hydroxy Acid Residues into Primitive Polyester Microdroplets for RNA Segregation. Biomacromolecules 2021; 22:1484-1493. [PMID: 33663210 DOI: 10.1021/acs.biomac.0c01697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleic acid segregation and compartmentalization were likely essential functions that primitive compartment systems resolved during evolution. Recently, polyester microdroplets generated from dehydration synthesis of various α-hydroxy acids (αHA) were suggested as potential primitive compartments. Some of these droplets can differentially segregate and compartmentalize organic dyes, proteins, and nucleic acids. However, the previously studied polyester microdroplets included limited αHA chemical diversity, which may not reflect the chemical diversity available in the primitive Earth environment. Here, we increased the chemical diversity of polyester microdroplet systems by combinatorially adding an αHA monomer with a basic side chain, 4-amino-2-hydroxybutyric acid (4a2h), which was incorporated with different ratios of other αHAs containing uncharged side chains to form combinatorial heteropolyesters via dehydration synthesis. Incorporation of 4a2h in the polymers resulted in the assembly of some polyester microdroplets able to segregate fluorescent RNA or potentially acquire intrinsic fluorescent character, suggesting that minor modifications of polyester composition can significantly impact the functional properties of primitive compartments. This study suggests one process by which primitive chemical systems can increase diversity of compartment "phenotype" through simple modifications in their chemical composition.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154, United States
| | - Niraja V Bapat
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| | - Ajay Verma
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154, United States.,Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, United States
| | - Kuhan Chandru
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6 - Dejvice, Czech Republic.,Space Science Centre (ANGKASA), Institute of Climate Change, National University of Malaysia, UKM, Bangi, Selangor Darul Ehsan 43650, Malaysia
| |
Collapse
|
20
|
Pandey P, Pandey G, Narayan R. Polyethylenimine-mediated controlled synthesis of Prussian blue-gold nanohybrids for biomedical applications. J Biomater Appl 2020; 36:26-35. [PMID: 33297833 DOI: 10.1177/0885328220975575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report on polyethylenimine (PEI)-mediated synthesis of Prussian blue nanoparticles (PBNPs) and gold nanoparticles (AuNPs); the formation of PBNP-AuNP nanohybrids with a remarkable change in Prussian blue character as a function of gold cation concentration was also considered. It was shown that PEI-protected polycrystalline PBNPs can be synthesized in an acidic medium from the precursor potassium ferricyanide [K3Fe(CN)6] at 60 °C. Since PEI also enables the controlled formation of gold nanoparticles (AuNPs) in the presence of formaldehyde under ambient conditions, nanohybrids of PBNPs and AuNPs were prepared. The formation of AuNPs was recorded over a wide range of PEI concentrations, which allowed control over polymeric cation capping of the AuNPs. PEI concentration-dependent enhancement/quenching of fluorescence/resonance Rayleigh scattering was useful for non-enzymatic detection of serum glucose levels. The resonance Rayleigh scattering intensity of PBNPs was several-fold higher than that of AuNPs and acted as a potent quencher of fluorescence. At an optimal concentration of PEI, AuNPs allowed an increase in the fluorescence signal as function of glucose concentration; the quenching ability of PB was demonstrated to be a function of the glucose concentration. This method is efficient for fast glucose sensing and offers a wider linear dynamic range, 0-10 mM, which is useful for non-enzymatic detection of serum glucose levels.
Collapse
Affiliation(s)
- Prem Pandey
- Department of Chemistry, Indian Institute of Technology BHU Varanasi, Varanasi, India
| | - Govind Pandey
- Department of Pediatrics, King George Medical University, Lucknow, India
| | - Roger Narayan
- Biomedical Engineering, North Carolina State University, Raleigh, USA
| |
Collapse
|
21
|
Jain M, Seth JR, Hegde LR, Sharma KP. Unprecedented Self-Assembly in Dilute Aqueous Solution of Polyethyleneimine: Formation of Fibrillar Network. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mehak Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India
| | - Jyoti R. Seth
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India
| | - Lohitha R. Hegde
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India
| | - Kamendra P. Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India
| |
Collapse
|
22
|
Rodier JT, Tripathi R, Fink MK, Sharma A, Korampally M, Gangopadhyay S, Giuliano EA, Sinha PR, Mohan RR. Linear Polyethylenimine-DNA Nanoconstruct for Corneal Gene Delivery. J Ocul Pharmacol Ther 2020; 35:23-31. [PMID: 30699061 DOI: 10.1089/jop.2018.0024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE This study investigated the efficiency and potential toxicity of a linear 22-kDa polyethylenimine (PEI)-DNA nanoconstruct for delivering genes to corneal cells and the effects of PEI nitrogen-to-DNA phosphate (N:P) ratio on gene transfer efficiency in vitro and in vivo. METHODS A gel retardation assay, zeta potential measurement, bright-field microscopy, transfection with green fluorescent protein (GFP), immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were used to characterize the physicochemical and biological properties and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and reactive oxygen species (ROS) assay for cytotoxicity of the linear PEI-DNA nanoconstruct using in vitro cultured primary human corneal fibroblast and in vivo mouse models. RESULTS Of the several evaluated N:P ratios, the highest gene transfection efficiency achieved without any notable cytotoxicity was observed at an N:P ratio of 30:1 (N:P 30). In vivo gene transfer studies revealed substantial GFP gene delivery into the corneas of mice 3 days after a single 5-min topical application without any significant adverse ocular effects. Slit-lamp biomicroscope ophthalmic examination of the mouse exposed to the linear PEI-DNA nanoconstruct showed no evidence of hyperemia (redness), corneal edema, ocular inflammation, or epiphora (excessive tearing). CONCLUSIONS The 22-kDa linear PEI-DNA nanoconstruct is an efficient and well-tolerated vector for corneal gene therapy in vitro and in vivo and could be used as a platform for developing novel gene-based nanomedicine approaches for corneal diseases.
Collapse
Affiliation(s)
- Jason T Rodier
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 2 Mason Eye Institute, School of Medicine & Vision, University of Missouri, Columbia, Missouri
| | - Ratnakar Tripathi
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Michael K Fink
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Ajay Sharma
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Madhuri Korampally
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 4 Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri
| | - Shubhra Gangopadhyay
- 4 Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri
| | - Elizabeth A Giuliano
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Prashant R Sinha
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Rajiv R Mohan
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 2 Mason Eye Institute, School of Medicine & Vision, University of Missouri, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
23
|
Kapadia CH, Luo B, Dang MN, Irvin-Choy N, Valcourt DM, Day ES. Polymer nanocarriers for MicroRNA delivery. J Appl Polym Sci 2020; 137:48651. [PMID: 33384460 PMCID: PMC7773200 DOI: 10.1002/app.48651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
Abstract
Abnormal expression of microRNAs (miRNAs), which are highlyconserved noncoding RNAs that regulate the expression of various genes post transcriptionally to control cellular functions, has been associated with the development of many diseases. In some cases, disease-promoting miRNAs are upregulated, while in other instances disease-suppressive miRNAs are downregulated. To alleviate this imbalanced miRNA expression, either antagomiRs or miRNA mimics can be delivered to cells to inhibit or promote miRNA expression, respectively. Unfortunately, the clinical translation of bare antagomiRs and miRNA mimics has been challenging because nucleic acids are susceptible to nuclease degradation, display unfavorable pharmacokinetics, and cannot passively enter cells. This review emphasizes the challenges associated with miRNA mimic delivery and then discusses the design and implementation of polymer nanocarriers to overcome these challenges. Preclinical efforts are summarized, and a forward-looking perspective on the future clinical translation of polymer nanomaterials as miRNA delivery vehicles is provided.
Collapse
Affiliation(s)
- Chintan H Kapadia
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Benjamin Luo
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - N'Dea Irvin-Choy
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Danielle M Valcourt
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716
- Helen F. Graham Cancer Center and Research Institute, Newark, Delaware 19713
| |
Collapse
|
24
|
Geng J, Song H, Gao F, Kong Y, Fu J, Luo J, Yang Y, Yu C. Lyophilization enabled disentanglement of polyethylenimine on rambutan-like silica nanoparticles for enhanced plasmid DNA delivery. J Mater Chem B 2020; 8:4593-4600. [PMID: 32391536 DOI: 10.1039/d0tb00720j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyethylenimine (PEI) functionalization onto nanoparticles is a widely used strategy for constructing particulate vectors for gene delivery. However, how to control the conformation of PEI chains and the resultant impact on gene transfection efficiency remains largely unexplored. Herein, we report that drying methods dramatically affect the conformation of PEI chains modified on the surface of silica nanoparticles and consequently the plasmid DNA transfection performance. Specifically, lyophilization renders less entangled PEI compared to commonly used vacuum drying as evidenced by an elevated glass transition temperature. The lyophilization induced disentangled conformation is likely associated with the solid-to-gas phase transition drying mechanism, which removes the bound crystal water content and thus reduces hydrogen bonding between amines. Moreover, we find that the stretched PEI chains on the surface of rambutan-like silica nanoparticles promote their binding capacity towards plasmid DNA molecules and thereby enhanced gene delivery and transfection efficiency. Our findings have provided new understanding about amine based polymers modified on nanoparticles, and have significant implications on the design of efficient particulate vectors for gene delivery.
Collapse
Affiliation(s)
- Jing Geng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ayyadevara VSSA, Roh KH. Calcium enhances polyplex-mediated transfection efficiency of plasmid DNA in Jurkat cells. Drug Deliv 2020; 27:805-815. [PMID: 32489110 PMCID: PMC8216448 DOI: 10.1080/10717544.2020.1770371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Jurkat, an immortalized cell line derived from human leukemic T lymphocytes, has been employed as an excellent surrogate model of human primary T-cells for the advancement of T-cell biology and their applications in medicine. However, presumably due to its T-cell origin, Jurkat cells are very difficult to transfect. Thus, for the genetic modification of Jurkat cells, expensive and time-consuming viral vectors are normally required. Despite many previous efforts, non-viral vectors have not yet overcome the hurdles of low transfection efficiency and/or high toxicity in transfection of Jurkat cells. Here, we report that a simple addition of calcium ions (Ca2+) into culture media at optimal concentrations can enhance the efficiency of the polyplex-mediated transfection using poly(ethylene imine) (PEI) by up to 12-fold when compared to the polyplex-only control. We show that calcium enhances the association between polyplex and Jurkat, which is at least partially responsible for the increase in transmembrane delivery of polyplex and consequential enhancement in expression of transgene. Other cations, Mg2+ or Na+ did not show similar enhancement. Interestingly, addition of Ca2+ was rather detrimental for the transfection of lipoplex on Jurkat cells. Observation of significant enhancement in the transfection of non-viral vectors with a simple and physiologically relevant reagent like Ca2+ in the engineering of hard-to-transfect cells such as Jurkat warrants further investigation on similar strategies.
Collapse
Affiliation(s)
| | - Kyung-Ho Roh
- Biotechnology Science and Engineering, University of Alabama in Huntsville, Huntsville, AL, USA.,Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
26
|
Yin D, Wen H, Wu G, Li S, Liu C, Lu H, Liang D. PEGylated gene carriers in serum under shear flow. SOFT MATTER 2020; 16:2301-2310. [PMID: 32052004 DOI: 10.1039/c9sm02397f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The behaviour of drug/gene carriers in the blood stream under shear is still a puzzle. In this work, using the complexes formed by 21 bp DNA and poly(ethylene glycol)-b-poly(l-lysine) (PEG-PLL) of varying PEG lengths, we studied the dynamic behaviour of the complexes in the presence of fetal bovine serum (FBS) and under flow at different shear rates, a condition mimicking the internal physical environment of blood vessels. The PEG5k-PLL/DNA complex possesses a dense DNA/PLL core and a loose PEG5k protecting layer. The PEGylated DNA complexes exhibit multiple responses to external shear in the presence of FBS. The loose PEG5k layer is firstly disturbed at a shear rate below 30 s-1. The exposure of the charged core to the environment results in a secondary aggregation of the complex with FBS. The size of the aggregate is limited to a certain range as the shear rate increases to 50 s-1. The dense DNA/PLL core starts to withstand the shear force as the shear rate reaches 500 s-1. The reorganization of the core to accommodate more serum molecules leads to tertiary aggregation of the complexes. If PEG cannot form a valid layer around the complex, as in PEG2k-PLL/DNA, the complex forms an aggregate even without shear, and the first shear dependent region is missing. If the PEG layer is too stable around the complex, as in PEG10k-PLL/DNA, no tertiary aggregation occurs. The mechanism of shear on the behaviour of delivery particles in serum helps to design gene carriers with high efficacy.
Collapse
Affiliation(s)
- Dongxiao Yin
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Hao Wen
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Guangqi Wu
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Shaolu Li
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Chenyang Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
27
|
Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics 2020; 12:pharmaceutics12020183. [PMID: 32098191 PMCID: PMC7076396 DOI: 10.3390/pharmaceutics12020183] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.
Collapse
|
28
|
Patiño Vargas MI, Mesa Cadavid M, Arenas Gómez CM, Diosa Arango J, Restrepo Múnera LM, Becerra Colorado NY. Polyplexes System to Enhance the LL-37 Antimicrobial Peptide Expression in Human Skin Cells. Tissue Eng Part A 2020; 26:400-410. [PMID: 31805827 DOI: 10.1089/ten.tea.2019.0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inefficient autologous tissue recovery in diverse skin injuries increases the susceptibility of patients to infections caused by multiresistant microorganisms, resulting in a high mortality rate. Nonviral transfection is an attractive alternative for these patients, where genetically modified cells incorporated into skin substitutes could release additional antimicrobial agents into the native skin. In this work, we have modulated the conditions of using a nonviral system for transfection of primary human keratinocytes and fibroblasts, consisting of a polymer/plasmid DNA (pDNA) complex called polyplex and its effects on the expression of LL-37 antimicrobial peptide. Linear and branched polyethylenimine (PEI) polymers in different weight concentrations were varied for evaluating the formation and colloidal characteristics of the polyplexes. The PEI/pDNA polyplexes with 19 nitrogen/phosphate ratio are nanometric particles (400 and 250 nm with linear and branched PEI, respectively) exhibiting positive surface (+30 ± 2 mV). Both kinds of polyplexes allowed the expression of a reporter gene and increased the human cathelicidin antimicrobial peptide gene expression in transfected keratinocytes and fibroblasts; however, greater cytotoxicity was observed when polyplexes formed with branched PEI were used. Moreover, cell culture supernatants from transfected cells with linear PEI/pDNA polyplexes showed enhanced antimicrobial activity (decrease of bacterial growth in 95.8%) against a Staphylococcus aureus strain in vitro. The study of the PEI/pDNA polyplexes formation allowed us to develop an improved transfection strategy of skin cells, promoting the production of LL-37 antimicrobial peptide. In the future, this strategy could be used for the construction of skin substitutes to prevent, reduce, or eliminate bacterial infections. Impact statement The results of this study contribute to the understanding of the polyplexes system in the genetic modification of skin cells and its effects on the expression of the LL-37 antimicrobial peptide. In the future, three-dimensional skin substitutes built with these cells could be an efficient way to decrease bacterial growth and prevent the infections in skin wounds.
Collapse
Affiliation(s)
- Maria Isabel Patiño Vargas
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Mónica Mesa Cadavid
- Materials Science Group, Faculty of Exact and Natural Sciences, The University Research Headquarters (SIU), University of Antioquia, Medellín, Colombia
| | - Claudia Marcela Arenas Gómez
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, Massachusetts
| | - Johnatan Diosa Arango
- Materials Science Group, Faculty of Exact and Natural Sciences, The University Research Headquarters (SIU), University of Antioquia, Medellín, Colombia
| | - Luz Marina Restrepo Múnera
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | | |
Collapse
|
29
|
Kopytynski M, Chen S, Legg S, Minter R, Chen R. A Versatile Polymer‐Based Platform for Intracellular Delivery of Macromolecules. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michal Kopytynski
- Department of Chemical EngineeringImperial College London South Kensington Campus London SW7 2AZ UK
| | - Siyuan Chen
- Department of Chemical EngineeringImperial College London South Kensington Campus London SW7 2AZ UK
| | - Sandrine Legg
- Department of Antibody Discovery and Protein EngineeringAstraZeneca Milstein Building, Granta Park Cambridge CB21 6GH UK
| | - Ralph Minter
- Department of Antibody Discovery and Protein EngineeringAstraZeneca Milstein Building, Granta Park Cambridge CB21 6GH UK
| | - Rongjun Chen
- Department of Chemical EngineeringImperial College London South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
30
|
Stevens AR, Ahmed U, Vigneswara V, Ahmed Z. Pigment Epithelium-Derived Factor Promotes Axon Regeneration and Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2019; 56:7490-7507. [PMID: 31049830 PMCID: PMC6815285 DOI: 10.1007/s12035-019-1614-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Although neurons in the adult mammalian CNS are inherently incapable of regeneration after injury, we previously showed that exogenous delivery of pigment epithelium-derived factor (PEDF), a 50-kDa neurotrophic factor (NTF), promoted adult retinal ganglion cell neuroprotection and axon regeneration. Here, we show that PEDF and other elements of the PEDF pathway are highly upregulated in dorsal root ganglion neurons (DRGN) from regenerating dorsal column (DC) injury paradigms when compared with non-regenerating DC injury models. Exogenous PEDF was neuroprotective to adult DRGN and disinhibited neurite outgrowth, whilst overexpression of PEDF after DC injury in vivo promoted significant DC axon regeneration with enhanced electrophysiological, sensory, and locomotor function. Our findings reveal that PEDF is a novel NTF for adult DRGN and may represent a therapeutically useful factor to promote functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Andrew R Stevens
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Umar Ahmed
- King Edward VI Camp Hill School for Boys, Vicarage Road, Kings Heath, Birmingham, B14 7QJ, UK
| | - Vasanthy Vigneswara
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
31
|
Craciun BF, Gavril G, Peptanariu D, Ursu LE, Clima L, Pinteala M. Synergistic Effect of Low Molecular Weight Polyethylenimine and Polyethylene Glycol Components in Dynamic Nonviral Vector Structure, Toxicity, and Transfection Efficiency. Molecules 2019; 24:E1460. [PMID: 31013863 PMCID: PMC6515267 DOI: 10.3390/molecules24081460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/17/2022] Open
Abstract
When studying polyethylenimine derivatives as nonviral vectors for gene delivery, among the important issues to be addressed are high toxicity, low transfection efficiency, and nucleic acid polyplex condensation. The molecular weight of polyethylenimine, PEGylation, biocompatibility and, also, supramolecular structure of potential carrier can all influence the nucleic acid condensation behavior, polyplex size, and transfection efficiency. The main challenge in building an efficient carrier is to find a correlation between the constituent components, as well as the synergy between them, to transport and to release, in a specific manner, different molecules of interest. In the present study, we investigated the synergy between components in dynamic combinatorial frameworks formed by connecting PEGylated squalene, poly-(ethyleneglycol)-bis(3-aminopropyl) and low molecular weight polyethylenimine components to 1,3,5-benzenetrialdehyde, via reversible imine bond, applying a dynamic combinatorial chemistry approach. We report comparative structural and morphological data, DNA binding affinity, toxicity and transfection efficiency concerning the ratio of polyethylenimine and presence or absence of poly-(ethyleneglycol)-bis(3-aminopropyl) in composition of dynamic combinatorial frameworks. In vitro biological assessments have revealed the fact that nonviral vectors containing poly-(ethyleneglycol)-bis(3-aminopropyl) and the lowest amount of polyethylenimine have significant transfection efficiency at N/P 50 ratio and display insignificant cytotoxicity on the HeLa cell line.
Collapse
Affiliation(s)
- Bogdan Florin Craciun
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Gabriela Gavril
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Dragos Peptanariu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Laura Elena Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Lilia Clima
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Mariana Pinteala
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| |
Collapse
|
32
|
Zhang Y, Zhou J, Ma S, He Y, Yang J, Gu Z. Reactive Oxygen Species (ROS)-Degradable Polymeric Nanoplatform for Hypoxia-Targeted Gene Delivery: Unpacking DNA and Reducing Toxicity. Biomacromolecules 2019; 20:1899-1913. [DOI: 10.1021/acs.biomac.9b00054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuxin Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jie Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Shengnan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Yiyan He
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, People’s Republic of China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, People’s Republic of China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, People’s Republic of China
| |
Collapse
|
33
|
Wang Y, Ye M, Xie R, Gong S. Enhancing the In Vitro and In Vivo Stabilities of Polymeric Nucleic Acid Delivery Nanosystems. Bioconjug Chem 2019; 30:325-337. [PMID: 30592619 PMCID: PMC6941189 DOI: 10.1021/acs.bioconjchem.8b00749] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gene therapy holds great promise for various medical and biomedical applications. Nonviral gene delivery systems formed by cationic polymer and nucleic acids (e.g., polyplexes) have been extensively investigated for targeted gene therapy; however, their in vitro and in vivo stability is affected by both their intrinsic properties such as chemical compositions (e.g., polymer molecular weight and structure, and N/P ratio) and a number of environmental factors (e.g., shear stress during circulation in the bloodstream, interaction with the serum proteins, and physiological ionic strength). In this review, we surveyed the effects of a number of important intrinsic and environmental factors on the stability of polymeric gene delivery systems, and discussed various strategies to enhance the stability of polymeric gene delivery systems, thereby enabling efficient gene delivery into target cells. Future opportunities and challenges of polymeric nucleic acid delivery nanosystems were also briefly discussed.
Collapse
Affiliation(s)
- Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| | - Mingzhou Ye
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
34
|
Basu S, Venable RM, Rice B, Ogharandukun E, Klauda JB, Pastor RW, Chandran PL. Mannobiose‐Grafting Shifts PEI Charge and Biphasic Dependence on pH. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Saswati Basu
- Department of Chemical Engineering Howard University Washington DC
| | - Richard M. Venable
- Laboratory of Computational Biology National Heart, Lung, and Blood Institute National Institutes of Health Bethesda MD
| | - Bria Rice
- Department of Chemical Engineering Howard University Washington DC
| | | | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering and Biophysics Program University of Maryland College Park Maryland
| | - Richard W. Pastor
- Laboratory of Computational Biology National Heart, Lung, and Blood Institute National Institutes of Health Bethesda MD
| | | |
Collapse
|
35
|
Acet Ö, Aksoy NH, Erdönmez D, Odabaşı M. Determination of some adsorption and kinetic parameters of α-amylase onto Cu+2-PHEMA beads embedded column. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S538-S545. [DOI: 10.1080/21691401.2018.1501378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ömür Acet
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Neşe Hayat Aksoy
- Faculty of Veterinary Medicine, Aksaray University, Aksaray, Turkey
| | - Demet Erdönmez
- Faculty of Arts and Science, Biology Department, Aksaray University, Aksaray, Turkey
| | - Mehmet Odabaşı
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| |
Collapse
|
36
|
Bohórquez AC, Unni M, Belsare S, Chiu-Lam A, Rice L, Pampo C, Siemann D, Rinaldi C. Stability and Mobility of Magnetic Nanoparticles in Biological Environments Determined from Dynamic Magnetic Susceptibility Measurements. Bioconjug Chem 2018; 29:2793-2805. [PMID: 30011185 DOI: 10.1021/acs.bioconjchem.8b00419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low tumor accumulation following systemic delivery remains a key challenge for advancing many cancer nanomedicines. One obstacle in engineering nanoparticles for high tumor accumulation is a lack of techniques to monitor their stability and mobility in situ. One way to monitor the stability and mobility of magnetic nanoparticles biological fluids in situ is through dynamic magnetic susceptibility measurements (DMS), which under certain conditions provide a measure of the particle's rotational diffusivity. For magnetic nanoparticles modified to have commonly used biomedical surface coatings, we describe a systematic comparison of DMS measurements in whole blood and tumor tissue explants. DMS measurements clearly demonstrated that stability and mobility changed over time and from one medium to another for each different coating. It was found that nanoparticles coated with covalently grafted, dense layers of PEG were the only ones to show good stability and mobility in all settings tested. These studies illustrate the utility of DMS measurements to estimate the stability and mobility of nanoparticles in situ, and which can provide insights that lead to engineering better nanoparticles for in vivo use.
Collapse
Affiliation(s)
- Ana C Bohórquez
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States
| | - Mythreyi Unni
- Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| | - Sayali Belsare
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States
| | - Andreina Chiu-Lam
- Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| | - Lori Rice
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Christine Pampo
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Dietmar Siemann
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States.,Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| |
Collapse
|
37
|
Almutiri S, Berry M, Logan A, Ahmed Z. Non-viral-mediated suppression of AMIGO3 promotes disinhibited NT3-mediated regeneration of spinal cord dorsal column axons. Sci Rep 2018; 8:10707. [PMID: 30013050 PMCID: PMC6048058 DOI: 10.1038/s41598-018-29124-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/05/2018] [Indexed: 01/13/2023] Open
Abstract
After injury to the mature central nervous system (CNS), myelin-derived inhibitory ligands bind to the Nogo-66 tripartite receptor complex expressed on axonal growth cones, comprised of LINGO-1 and p75NTR/TROY and induce growth cone collapse through the RhoA pathway. We have also shown that amphoterin-induced gene and open reading frame-3 (AMIGO3) substitutes for LINGO-1 and can signal axon growth cone collapse. Here, we investigated the regeneration of dorsal root ganglion neuron (DRGN) axons/neurites after treatment with a short hairpin RNA (sh) AMIGO3 plasmid delivered with a non-viral in vivo-jetPEI vector, and the pro-survival/axogenic neurotrophin (NT) 3 in vitro and in vivo. A bicistronic plasmid, containing both shAMIGO3 and NT3 knocked down >75% of AMIGO3 mRNA in cultured DRGN and significantly overexpressed NT3 production. In vivo, intra-DRG injection of in vivo-jetPEI plasmids containing shAMIGO3/gfp and shAMIGO3/nt3 both knocked down AMIGO3 expression in DRGN and, in combination with NT3 overexpression, promoted DC axon regeneration, recovery of conduction of compound action potentials across the lesion site and improvements in sensory and locomotor function. These findings demonstrate that in vivo-jetPEI is a potential non-viral, translatable DRGN delivery vehicle in vivo and that suppression of AMIGO3 disinhibits the growth of axotomised DRGN enabling NT3 to stimulate the regeneration of their DC axons and enhances functional recovery.
Collapse
Affiliation(s)
- Sharif Almutiri
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
38
|
Yamamoto T, Tsunoda M, Ozono M, Watanabe A, Kotake K, Hiroshima Y, Yamada A, Terada H, Shinohara Y. Polyethyleneimine renders mitochondrial membranes permeable by interacting with negatively charged phospholipids in them. Arch Biochem Biophys 2018; 652:9-17. [PMID: 29886045 DOI: 10.1016/j.abb.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/21/2023]
Abstract
Polyethyleneimines (PEIs) are used for transfection of cells with nucleic acids. Meanwhile, the interaction of PEI with mitochondria causes cytochrome c release prior to apoptosis; the mechanisms how PEI causes this permeabilization of mitochondrial membranes and the release of cytochrome c remain unclear. To clarify these mechanisms, we examined the effects of branched-type PEI and linear-type PEI, each of which was 25 kDa in size, on mitochondria. The permeabilization potency of mitochondrial membranes by branched PEI was stronger than that by linear PEI. The permeabilization by PEIs were insensitive to permeability-transition inhibitors, indicating that PEI-induced permeabilization was not attributed to permeability transition. Meanwhile, PEIs caused permeabilization of artificial lipid vesicles; again, the permeabilization potency of branched PEI was stronger than that of linear PEI. Such a difference in this potency was close to that in the case of isolated mitochondria, signifying that the PEI-induced permeabilization of mitochondrial membranes could be attributed to PEI's interaction with the phospholipid phase. Furthermore, this PEI-induced permeabilization of the lipid vesicles was observed only in the case of lipid vesicles including negatively charged phospholipids. These results indicate that PEIs interacted with negatively charged phospholipids in the mitochondrial membranes to directly lead to their permeabilization.
Collapse
Affiliation(s)
- Takenori Yamamoto
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan.
| | - Moe Tsunoda
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Mizune Ozono
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Akira Watanabe
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Kazumasa Kotake
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Yuka Hiroshima
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan
| | - Akiko Yamada
- School of Dentistry, Tokushima University, Kuramotocho-3, Tokushima 770-8504, Japan
| | - Hiroshi Terada
- Niigata University of Pharmacy and Applied Life Sciences, Niigata City 956-8603, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| |
Collapse
|
39
|
Wang J, Li S, Han Y, Guan J, Chung S, Wang C, Li D. Poly(Ethylene Glycol)-Polylactide Micelles for Cancer Therapy. Front Pharmacol 2018; 9:202. [PMID: 29662450 PMCID: PMC5890116 DOI: 10.3389/fphar.2018.00202] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
For the treatment of malignancy, many therapeutic agents, including small molecules, photosensitizers, immunomodulators, proteins and genes, and so forth, have been loaded into nanocarriers for controllable cancer therapy. Among these nanocarriers, polymeric micelles have been considered as one of the most promising nanocarriers, some of which have already been applied in different stages of clinical trials. The successful advantages of polymeric micelles from bench to bedside are due to their special core/shell structures, which can carry specific drugs in certain disease conditions. Particularly, poly(ethylene glycol)–polylactide (PEG–PLA) micelles have been considered as one of the most promising platforms for drug delivery. The PEG shell effectively prevents the adsorption of proteins and phagocytes, thereby evidently extending the blood circulation period. Meanwhile, the hydrophobic PLA core can effectively encapsulate many therapeutic agents. This review summarizes recent advances in PEG–PLA micelles for the treatment of malignancy. In addition, future perspectives for the development of PEG–PLA micelles as drug delivery systems are also presented.
Collapse
Affiliation(s)
- Jixue Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shengxian Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingjing Guan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shirley Chung
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
40
|
Jeong GW, Nah JW. Evaluation of disulfide bond-conjugated LMWSC-g-bPEI as non-viral vector for low cytotoxicity and efficient gene delivery. Carbohydr Polym 2017; 178:322-330. [DOI: 10.1016/j.carbpol.2017.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
|
41
|
Grasso G, Deriu MA, Patrulea V, Borchard G, Möller M, Danani A. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization. PLoS One 2017; 12:e0186816. [PMID: 29088239 PMCID: PMC5663398 DOI: 10.1371/journal.pone.0186816] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Marco Agostino Deriu
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Viorica Patrulea
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Michael Möller
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Andrea Danani
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| |
Collapse
|
42
|
Kang JH, Battogtokh G, Ko YT. Self-Assembling Lipid-Peptide Hybrid Nanoparticles of Phospholipid-Nonaarginine Conjugates for Enhanced Delivery of Nucleic Acid Therapeutics. Biomacromolecules 2017; 18:3733-3741. [PMID: 28954191 DOI: 10.1021/acs.biomac.7b01084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite potential applications of nucleic acid therapeutics, the lack of effective delivery systems hinders their clinical application. To overcome the barriers to nucleic acid delivery, we previously reported nanoparticles using phospholipid-polyethylenimine conjugates. However, toxicity of polyethylenimine remains as a problematic issue. Herein, we proposed to substitute the polyethylenimine with arginine-rich peptide to obtain a less-toxic carrier system. Nonaarginine was conjugated to the distal end of phospholipid hydrocarbon chains leading to phospholipid-nonaarginine conjugates (PL9R) and then lipid-peptide hybrid nanoparticles carrying oligonucleotide therapeutics (hNP) were constructed by self-assembly process. The hNP were further modified with cell penetrating Tat peptide (T-hNP) to enhance cellular uptake. The PL9R was less cytotoxic, and the hNP showed high loading capacity and colloidal stability. The T-hNP showed higher cellular uptake and transfection efficiency and effective accumulation to tumor tissue and silencing effect in tumor bearing mice. Altogether, T-hNP could provide a promising nanocarrier for nucleic acid therapeutics.
Collapse
Affiliation(s)
- Ji Hee Kang
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University , Incheon, South Korea 21936
| | - Gantumur Battogtokh
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University , Incheon, South Korea 21936
| | - Young Tag Ko
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University , Incheon, South Korea 21936
| |
Collapse
|
43
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
44
|
Wu SY, Debele TA, Kao YC, Tsai HC. Synthesis and Characterization of Dual-Sensitive Fluorescent Nanogels for Enhancing Drug Delivery and Tracking Intracellular Drug Delivery. Int J Mol Sci 2017; 18:ijms18051090. [PMID: 28534813 PMCID: PMC5454999 DOI: 10.3390/ijms18051090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/16/2017] [Accepted: 05/12/2017] [Indexed: 01/09/2023] Open
Abstract
Here, dual-sensitive fluorescent branched alginate-polyethyleneimine copolymer (bAPSC) nanogels were synthesized from thiolated alginate and stearoyl-derivatized branched polyethyleneimine. The formation of bAPSC conjugates was confirmed through proton nuclear magnetic resonance and Fourier transform infrared spectroscopy, whereas dynamic light scattering was used to measure the particle size and ζ potential of the nanogels. The fluorescent properties of the nanogels were confirmed through fluorescent spectroscopy and microscopy. In addition to the excitation-dependent fluorescence behavior, the fluorescence emission intensity of bAPSC was altered by both pH and γ-irradiation. This intensity was higher at a lower pH than at a higher pH, and it slightly decreased after γ-irradiation. The drug loading and encapsulation efficiency of bAPSC were 25.9% and 11.2%, respectively. An in vitro drug release study revealed that the synthesized nanogels release their doxorubicin (Dox) contents in a time-dependent manner, and the drug release was higher after 96 h of incubation. Approximately 43.74% and 88.36% of Dox was released after 96 h of incubation at pH 5.5 in the absence and presence of glutathione (GSH), respectively. However, relatively lower drug release, approximately 21.6% and 16%, was observed in the presence and absence of GSH at pH 7.4, respectively. Fluorescence microscopy confirmed that Dox-loaded bAPSC nanogels were internalized by HeLa cells, and drug distribution was easily tracked using fluorescent materials without additional probing agents. Moreover, cellular cytotoxicity and hemolysis results revealed less cytotoxicity and hemocompatibility of the synthesized nanogels, confirming that they are the most favorable alternative drug carriers for drug delivery systems.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 106, Taiwan.
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Biotechnology, Hungkuang University, Taichung 433, Taiwan.
| | - Tilahun Ayane Debele
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Yu-Chih Kao
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
45
|
Schmohl KA, Gupta A, Grünwald GK, Trajkovic-Arsic M, Klutz K, Braren R, Schwaiger M, Nelson PJ, Ogris M, Wagner E, Siveke JT, Spitzweg C. Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene. Oncotarget 2017; 8:33393-33404. [PMID: 28380420 PMCID: PMC5464876 DOI: 10.18632/oncotarget.16499] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 12/18/2022] Open
Abstract
The theranostic sodium iodide symporter (NIS) gene allows detailed molecular imaging of transgene expression and application of therapeutic radionuclides. As a crucial step towards clinical application, we investigated tumor specificity and transfection efficiency of epidermal growth factor receptor (EGFR)-targeted polyplexes as systemic NIS gene delivery vehicles in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) that closely reflects human disease. PDAC was induced in mice by pancreas-specific activation of constitutively active KrasG12D and deletion of Trp53. We used tumor-targeted polyplexes (LPEI-PEG-GE11/NIS) based on linear polyethylenimine, shielded by polyethylene glycol and coupled with the EGFR-specific peptide ligand GE11, to target a NIS-expressing plasmid to high EGFR-expressing PDAC. In vitro iodide uptake studies in cell explants from murine EGFR-positive and EGFR-ablated PDAC lesions demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo 123I gamma camera imaging and three-dimensional high-resolution 124I PET showed significant tumor-specific accumulation of radioiodide after systemic LPEI-PEG-GE11/NIS injection. Administration of 131I in LPEI-PEG-GE11/NIS-treated mice resulted in significantly reduced tumor growth compared to controls as determined by magnetic resonance imaging, though survival was not significantly prolonged. This study opens the exciting prospect of NIS-mediated radionuclide imaging and therapy of PDAC after systemic non-viral NIS gene delivery.
Collapse
Affiliation(s)
- Kathrin A. Schmohl
- Department of Internal Medicine II and IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Aayush Gupta
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Geoffrey K. Grünwald
- Department of Internal Medicine II and IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Klutz
- Department of Internal Medicine II and IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Rickmer Braren
- Department of Radiology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Peter J. Nelson
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Manfred Ogris
- Department of Pharmaceutical Chemistry, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for System-Based Drug Research and Center for Nanoscience, LMU Munich, Munich, Germany
| | - Jens T. Siveke
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Spitzweg
- Department of Internal Medicine II and IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
46
|
Kretzmann JA, Ho D, Evans CW, Plani-Lam JHC, Garcia-Bloj B, Mohamed AE, O'Mara ML, Ford E, Tan DEK, Lister R, Blancafort P, Norret M, Iyer KS. Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci 2017; 8:2923-2930. [PMID: 28451358 PMCID: PMC5376716 DOI: 10.1039/c7sc00097a] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/26/2017] [Indexed: 01/10/2023] Open
Abstract
Tools for editing the genome and epigenome have revolutionised the field of molecular biology and represent a new frontier in targeted therapeutic intervention. Although efficiencies and specificities of genome editing technologies have improved with the development of TALEs and CRISPR platforms, intracellular delivery of these larger constructs still remains a challenge using existing delivery agents. Viral vectors, including lentiviruses and adeno-associated viruses, as well as some non-viral strategies, such as cationic polymers and liposomes, are limited by packaging capacity, poor delivery, toxicity, and immunogenicity. We report a highly controlled synthetic strategy to engineer a flexible dendritic polymer using click chemistry to overcome the aforementioned delivery challenges associated with genome engineering technologies. Using a systematic approach, we demonstrate that high transfection efficiencies and packaging capacity can be achieved using this non-viral delivery methodology to deliver zinc fingers, TALEs and CRISPR/dCas9 platforms.
Collapse
Affiliation(s)
- Jessica A Kretzmann
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| | - Diwei Ho
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
| | - Cameron W Evans
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
| | - Janice H C Plani-Lam
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| | - Benjamin Garcia-Bloj
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| | - A Elaaf Mohamed
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Megan L O'Mara
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Ethan Ford
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
- ARC Centre of Excellence in Plant Energy Biology , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia
| | - Dennis E K Tan
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
- ARC Centre of Excellence in Plant Energy Biology , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia
| | - Ryan Lister
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
- ARC Centre of Excellence in Plant Energy Biology , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
- School of Anatomy, Physiology and Human Biology , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia
| | - Marck Norret
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
| | - K Swaminathan Iyer
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . ;
| |
Collapse
|
47
|
Shao D, Wu H, Shen F, Wu H, Quan J. Carbon dioxide-modified polyethylenimine as a novel gene delivery vector and its in vitro validation. J Biomater Appl 2017; 31:1257-1266. [PMID: 28350204 DOI: 10.1177/0885328217701324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, the CO2-modified polyethylenimine, as a novel delivery vector, has been validated by combining with the plasmid DNA to form plasmid DNA/CO2-modified polyethylenimine complexes. We have modified polyethylenimine using CO2 to partially convert amine groups to carbamic acid groups. The buffering capacity and the plasmid DNA binding ability of the CO2-modified polyethylenimine and PEI-25 (polyethylenimine with Mw = 25 kDa) were characterized by acid-base titration and agarose gel electrophoresis, respectively. The particle size and zeta potential of the complexes were determined using a Zetasizer Nano ZS. Resistance to nuclease digestion was determined via DNase I protection assay. The cytotoxicity was measured by the MTT assay. The transfection efficiency of the complexes has been evaluated by flow cytometry. It is observed that the condensation capacity of CO2-modified polyethylenimine is still comparable to polyethylenimine and the CO2-modified polyethylenimine can protect plasmid DNA from degradation by DNase I. The diameter of the plasmid DNA/CO2-modified polyethylenimine complex is around 140 nm and the zeta potential decreases. MTT assays confirm that the cytotoxicity is much lower for plasmid DNA/CO2-modified polyethylenimine than for plasmid DNA/PEI-25. The flow cytometry found that in serum-free medium the transfection efficiency can reach a value of ∼60% for plasmid DNA/CO2-modified polyethylenimine, and in 10% fetal bovine serum medium, the transfection efficiency is still as high as ∼40%, which is much higher than that of plasmid DNA/PEI-25. CO2-modified polyethylenimine could be a novel and promising nonviral gene vector for gene therapy.
Collapse
Affiliation(s)
- Dongjie Shao
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China
| | - Hanbing Wu
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China
| | - Fawei Shen
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China
| | - Hua Wu
- 2 Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Jing Quan
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China
| |
Collapse
|
48
|
Zhang F, Correia A, Mäkilä E, Li W, Salonen J, Hirvonen JJ, Zhang H, Santos HA. Receptor-Mediated Surface Charge Inversion Platform Based on Porous Silicon Nanoparticles for Efficient Cancer Cell Recognition and Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10034-10046. [PMID: 28248078 DOI: 10.1021/acsami.7b02196] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Negatively charged surface-modified drug delivery systems are promising for in vivo applications as they have more tendency to accumulate in tumor tissues. However, the inefficient cell uptake of these systems restricts their final therapeutic performance. Here, we have fabricated a receptor-mediated surface charge inversion nanoparticle made of undecylenic acid modified, thermally hydrocarbonized porous silicon (UnTHCPSi) nanoparticles core and sequentially modified with polyethylenimine (PEI), methotrexate (MTX), and DNA aptamer AS1411 (herein termed as UnTHCPSi-PEI-MTX@AS1411) for enhancing the cell uptake of nucleolin-positive cells. The efficient interaction of AS1411 and the relevant receptor nucleolin caused the disintegration of the negative-charged AS1411 surface. The subsequent surface charge inversion and exposure of the active targeting ligand, MTX, enhanced the cell uptake of the nanoparticles. On the basis of this synergistic effect, the UnTHCPSi-PEI-MTX@AS1411 (hydrodynamic diameter is 242 nm) were efficiently internalized by nucleolin-positive MDA-MB-231 breast cancer cells, with an efficiency around 5.8 times higher than that of nucleolin-negative cells (NIH 3T3 fibroblasts). The receptor competition assay demonstrated that the major mechanism (more than one-half) of the internalized nanoparticles in MDA-MB-231 cells was due to the receptor-mediated surface charge inversion process. Finally, after loading of sorafenib, the nanosystem showed efficient performance for combination therapy with an inhibition ratio of 35.6%.
Collapse
Affiliation(s)
- Feng Zhang
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Alexandra Correia
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , Turku FI-20014, Finland
| | - Wei Li
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , Turku FI-20014, Finland
| | - Jouni J Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| |
Collapse
|
49
|
Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM. Polyplex Evolution: Understanding Biology, Optimizing Performance. Mol Ther 2017; 25:1476-1490. [PMID: 28274797 DOI: 10.1016/j.ymthe.2017.01.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Polyethylenimine (PEI) is a gold standard polycationic transfectant. However, the highly efficient transfecting activity of PEI and many of its derivatives is accompanied by serious cytotoxic complications and safety concerns at innate immune levels, which impedes the development of therapeutic polycationic nucleic acid carriers in general and their clinical applications. In recent years, the dilemma between transfection efficacy and adverse PEI activities has been addressed from in-depth investigations of cellular processes during transfection and elucidation of molecular mechanisms of PEI-mediated toxicity and translation of these integrated events to chemical engineering of novel PEI derivatives with an improved benefit-to-risk ratio. This review addresses these perspectives and discusses molecular events pertaining to dynamic and multifaceted PEI-mediated cytotoxicity, including membrane destabilization, mitochondrial dysfunction, and perturbations of glycolytic flux and redox homeostasis as well as chemical strategies for the generation of better tolerated polycations. We further examine the effect of PEI and its derivatives on complement activation and interaction with Toll-like receptors. These perspectives are intended to lay the foundation for an improved understanding of interlinked mechanisms controlling transfection and toxicity and their translation for improved engineering of polycation-based transfectants.
Collapse
Affiliation(s)
- Arnaldur Hall
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 65 Solna, Sweden
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany.
| | - Seyed Moein Moghimi
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, UK.
| |
Collapse
|
50
|
Toncheva-Moncheva N, Veleva-Kostadinova E, Tsvetanov C, Momekova D, Rangelov S. Preparation and properties of positively charged mesoglobules based on poly(2-isopropyl-2-oxazoline) and evaluation of their potential as carriers of polynucleotides. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|