1
|
Zhang LZ, Du RJ, Wang D, Qin J, Yu C, Zhang L, Zhu HD. Enteral Route Nanomedicine for Cancer Therapy. Int J Nanomedicine 2024; 19:9889-9919. [PMID: 39351000 PMCID: PMC11439897 DOI: 10.2147/ijn.s482329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
With the in-depth knowledge of the pathological and physiological characteristics of the intestinal barrier-portal vein/intestinal lymphatic vessels-systemic circulation axis, oral targeted drug delivery is frequently being renewed. With many advantages, such as high safety, convenient administration, and good patient compliance, many researchers have begun to explore targeted drug delivery from intravenous injections to oral administration. Over the past few decades, the fields of materials science and nanomedicine have produced various drug delivery platforms that hold great potential in overcoming the multiple barriers associated with oral drug delivery. However, the oral transport of particles into the systemic circulation is extremely difficult due to immune rejection and biochemical invasion in the intestine, which limits absorption and entry into the bloodstream. The feasibility of the oral delivery of targeted drugs to sites outside the gastrointestinal tract (GIT) is unknown. This article reviews the biological barriers to drug absorption, the in vivo fate and transport mechanisms of drug carriers, the theoretical basis for oral administration, and the impact of carrier structural evolution on oral administration to achieve this goal. Finally, this article reviews the characteristics of different nano-delivery systems that can enhance the bioavailability of oral therapeutics and highlights their applications in the efficient creation of oral anticancer nanomedicines.
Collapse
Affiliation(s)
- Lin-Zhu Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Rui-Jie Du
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Juan Qin
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Chao Yu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Hai-Dong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
3
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein-based nanoparticles (part 2): Pharmaceutical applications. Eur J Pharm Sci 2023; 189:106558. [PMID: 37567394 DOI: 10.1016/j.ejps.2023.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Viral protein nanoparticles (ViP NPs) such as virus-like particles and virosomes are structures halfway between viruses and synthetic nanoparticles. The biological nature of ViP NPs endows them with the biocompatibility, biodegradability, and functional properties that many synthetic nanoparticles lack. At the same time, the absence of a viral genome avoids the safety concerns of viruses. Such characteristics of ViP NPs offer a myriad of opportunities for theirapplication at several points across disease development: from prophylaxis to diagnosis and treatment. ViP NPs present remarkable immunostimulant properties, and thus the vaccination field has benefited the most from these platforms capable of overcoming the limitations of both traditional and subunit vaccines. This was reflected in the marketing authorization of several VLP- and virosome-based vaccines. Besides, ViP NPs inherit the ability of viruses to deliver their cargo to target cells. Because of that, ViP NPs are promising candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze the pharmaceutical applications of ViP NPs, describing the products that are commercially available or under clinical evaluation, but also the advances that scientists are making toward the implementation of ViP NPs in other areas of major pharmaceutical interest.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Lambidis E, Chen CC, Lumen D, Sánchez AIF, Sarparanta M, Cheng RH, Airaksinen AJ. Biological evaluation of integrin α 3β 1-targeted 68Ga-labeled HEVNPs in HCT 116 colorectal tumor-bearing mice. Eur J Pharm Sci 2023; 180:106336. [PMID: 36403717 DOI: 10.1016/j.ejps.2022.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Integrins are cell surface receptors involved in multiple functions vital for cellular proliferation. Various tumor cells overexpress αβ-integrins, making them ideal biomarkers for diagnostic imaging and tumor-targeted drug delivery. LXY30 is a peptide that can specifically recognize and interact with the integrin α3β1, a molecule overexpressed in breast, ovarian and colorectal cancer. Hepatitis E virus nanoparticles (HEVNPs) are virus-like particles that have been investigated as drug delivery agents for the targeted delivery of nucleic acids and small proteins. HEVNPs can be a theranostic platform for monitoring and evaluating tumor-targeted therapies if tagged with a suitable diagnostic marker. Herein, we describe the radiolabeling and biological evaluation of integrin α3β1-targeted HEVNPs. HEVNPs were conjugated with DOTA and radiolabeled with gallium-68 (t1/2 = 67.7 min), a short-lived positron emitter used in positron emission tomography (PET). The synthesized [68Ga]Ga-DOTA-HEVNPs were used to evaluate the efficacy of conjugated LXY30 peptide to improve HEVNPs binding and internalization to integrin α3β1 expressing human colorectal HCT 116 cells. In vivo tumor accumulation of [68Ga]Ga-DOTA-HEVNP-LXY30 was evaluated in HCT 116 colorectal tumor-bearing mice. [68Ga]Ga-DOTA-HEVNP-LXY30 and non-targeted [68Ga]Ga-DOTA-HEVNP were radiolabeled with radiochemical yields (RCY) of 67.9 ± 3.3% and 73.7 ± 9.8%, respectively. [68Ga]Ga-DOTA-HEVNP-LXY30 exhibited significantly higher internalization in HCT 116 cells than the non-targeted [68Ga]Ga-DOTA-HEVNPs (21.0 ± 0.7% vs. 10.5 ± 0.3% at 3 h, ****P<0.0001). After intravenous administration to mice, accumulation of [68Ga]Ga-DOTA-HEVNP-LXY30 to HCT 116 xenograft tumors was at its highest rate of 0.8 ± 0.4%ID/g at 60 min. [68Ga]Ga-DOTA-HEVNP-LXY30 accumulated mainly in the liver and spleen (39.8 ± 13.0%%ID/g and 24.6 ± 24.1%ID/g, respectively). Despite the low targeting efficiency in vivo, we demonstrated that [68Ga]Ga-DOTA-HEVNP is a promising diagnostic platform for quantitative analysis of HEVNP distribution in vivo. This nanosystem can be utilized in future studies assessing the success of further engineered HEVNP structures with optimized targeting efficiency in vivo.
Collapse
Affiliation(s)
- Elisavet Lambidis
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Chun-Chieh Chen
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, U.S.A
| | - Dave Lumen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | | | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, U.S.A..
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland; Turku PET Centre, Department of Chemistry, University of Turku, Turku FI-20520, Finland.
| |
Collapse
|
5
|
Mougenot MF, Pereira VS, Costa ALR, Lancellotti M, Porcionatto MA, da Silveira JC, de la Torre LG. Biomimetic Nanovesicles—Sources, Design, Production Methods, and Applications. Pharmaceutics 2022; 14:pharmaceutics14102008. [PMID: 36297442 PMCID: PMC9610935 DOI: 10.3390/pharmaceutics14102008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Despite all the progress in the field of liposomes and nanoparticles for applications as drug and gene delivery systems, the specific targeting and immune system escape capabilities of these systems are still limited. Biomimetic nanovesicles emerged as a strategy to overcome these and other limitations associated with synthetic carriers, such as short circulation time, cytotoxicity, and difficulty in crossing biological barriers, since many of the desirable abilities of drug delivery systems are innate characteristics of biological vesicles. Thus, the question arises: would biomimetic nanovesicles be responsible for addressing these advances? It is currently known that biomimetic nanovesicles (BNV) can combine the intrinsic advantages of natural materials with the well-known production methods and controllability of synthetic systems. Besides, the development of the biotechnology and nanotechnology fields has provided a better understanding of the functionalities of biological vesicles and the means for the design and production of biomimetic nanovesicles (BNV). Based on this, this work will focus on tracking the main research on biomimetic nanovesicles (BNV) applied as drug and gene delivery systems, and for vaccines applications. In addition, it will describe the different sources of natural vesicles, the technical perspectives on obtaining them, and the possibility of their hybridization with synthetic liposomes.
Collapse
Affiliation(s)
- Marcel Franco Mougenot
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
| | - Vanessa Sousa Pereira
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
| | - Ana Letícia Rodrigues Costa
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
- Institute of Exact and Technological Sciences, Campus Florestal, Federal University of Viçosa (UFV), Florestal 35690-000, Brazil
| | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | | | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-970, Brazil
- Correspondence: ; Tel.: +55-19-3521-0397
| |
Collapse
|
6
|
Lambidis E, Chen CC, Baikoghli M, Imlimthan S, Khng YC, Sarparanta M, Cheng RH, Airaksinen AJ. Development of 68Ga-Labeled Hepatitis E Virus Nanoparticles for Targeted Drug Delivery and Diagnostics with PET. Mol Pharm 2022; 19:2971-2979. [PMID: 35857429 PMCID: PMC9346612 DOI: 10.1021/acs.molpharmaceut.2c00359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Targeted delivery of diagnostics and therapeutics offers
essential
advantages over nontargeted systemic delivery. These include the reduction
of toxicity, the ability to reach sites beyond biological barriers,
and the delivery of higher cargo concentrations to diseased sites.
Virus-like particles (VLPs) can efficiently be used for targeted delivery
purposes. VLPs are derived from the coat proteins of viral capsids.
They are self-assembled, biodegradable, and homogeneously distributed.
In this study, hepatitis E virus (HEV) VLP derivatives, hepatitis
E virus nanoparticles (HEVNPs), were radiolabeled with gallium-68,
and consequently, the biodistribution of the labeled [68Ga]Ga-DOTA-HEVNPs was studied in mice. The results indicated that
[68Ga]Ga-DOTA-HEVNPs can be considered as promising theranostic
nanocarriers, especially for hepatocyte-targeting therapies.
Collapse
Affiliation(s)
- Elisavet Lambidis
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Chun-Chieh Chen
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Surachet Imlimthan
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - You Cheng Khng
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland.,Turku PET Centre, Department of Chemistry, University of Turku, Turku FI-20520, Finland
| |
Collapse
|
7
|
Zhang JY, Liu XX, Lin JY, Bao XY, Peng JQ, Gong ZP, Luan X, Chen Y. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. Int J Pharm 2022; 624:121979. [DOI: 10.1016/j.ijpharm.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
8
|
Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, Kong N, Chen E, Tao W. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm Sin B 2022; 12:2206-2223. [PMID: 35013704 PMCID: PMC8730377 DOI: 10.1016/j.apsb.2021.12.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Looking retrospectively at the development of humanity, vaccination is an unprecedented medical landmark that saves lives by harnessing the human immune system. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, vaccination is still the most effective defense modality. The successful clinical application of the lipid nanoparticle-based Pfizer/BioNTech and Moderna mRNA COVID-19 vaccines highlights promising future of nanotechnology in vaccine development. Compared with conventional vaccines, nanovaccines are supposed to have advantages in lymph node accumulation, antigen assembly, and antigen presentation; they also have, unique pathogen biomimicry properties because of well-organized combination of multiple immune factors. Beyond infectious diseases, vaccine nanotechnology also exhibits considerable potential for cancer treatment. The ultimate goal of cancer vaccines is to fully mobilize the potency of the immune system as a living therapeutic to recognize tumor antigens and eliminate tumor cells, and nanotechnologies have the requisite properties to realize this goal. In this review, we summarize the recent advances in vaccine nanotechnology from infectious disease prevention to cancer immunotherapy and highlight the different types of materials, mechanisms, administration methods, as well as future perspectives.
Collapse
Affiliation(s)
- Chan Feng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| |
Collapse
|
9
|
Suffian IFBM, Al-Jamal KT. Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev 2022; 180:114030. [PMID: 34736988 DOI: 10.1016/j.addr.2021.114030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are known as self-assembled, non-replicative and non-infectious protein particles, which imitate the formation and structure of original wild type viruses, however, lack the viral genome and/or their fragments. The capacity of VLPs to encompass small molecules like nucleic acids and others has made them as novel vessels of nanocarriers for drug delivery applications. In addition, VLPs surface have the capacity to achieve variation of the surface display via several modification strategies including genetic modification, chemical modification, and non-covalent modification. Among the VLPs nanocarriers, Hepatitis B virus core (HBc) particles have been the most encouraging candidate. HBc particles are hollow nanoparticles in the range of 30-34 nm in diameter and 7 nm thick envelopes, consisting of 180 or 240 copies of identical polypeptide monomer. They also employ a distinctive position among the VLPs carriers due to the high-level synthesis, which serves as a strong protective capsid shell and efficient self-assembly properties. This review highlights on the bioengineering of HBc particles as dynamic nanocarriers for in vivo delivery and specific targeting to solid tumours.
Collapse
Affiliation(s)
- Izzat F B M Suffian
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (Kuantan Campus), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
10
|
Sa-nguanmoo N, Namdee K, Khongkow M, Ruktanonchai U, Zhao Y, Liang XJ. Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. NANO RESEARCH 2021; 15:2196-2225. [PMID: 34659650 PMCID: PMC8501370 DOI: 10.1007/s12274-021-3832-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1-100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.
Collapse
Affiliation(s)
- Nawamin Sa-nguanmoo
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - YongXiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning, 530021 China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
11
|
Zoratto S, Weiss VU, van der Horst J, Commandeur J, Buengener C, Foettinger‐Vacha A, Pletzenauer R, Graninger M, Allmaier G. Molecular weight determination of adeno-associate virus serotype 8 virus-like particle either carrying or lacking genome via native nES gas-phase electrophoretic molecular mobility analysis and nESI QRTOF mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4786. [PMID: 34608711 PMCID: PMC9285973 DOI: 10.1002/jms.4786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Virus-like particles (VLPs) are proteinaceous shells derived from viruses lacking any viral genomic material. Adeno-associated virus (AAV) is a non-enveloped icosahedral virus used as VLP delivery system in gene therapy (GT). Its success as vehicle for GT is due to its selective tropism, high level of transduction, and low immunogenicity. In this study, two preparations of AAV serotype 8 (AAV8) VLPs either carrying or lacking completely genomic cargo (i.e., non-viral ssDNA) have been investigated by means of a native nano-electrospray gas-phase electrophoretic mobility molecular analyzer (GEMMA) (native nES GEMMA) and native nano-electrospray ionization quadrupole reflectron time-of-flight mass spectrometry (MS) (native nESI QRTOF MS). nES GEMMA is based on electrophoretic mobility principles: single-charge nanoparticles (NPs), that is, AAV8 particle, are separated in a laminar sheath flow of dry, particle-free air and a tunable orthogonal electric field. Thus, the electrophoretic mobility diameter (EMD) of a bio-NP (i.e., diameter of globular nano-objects) is obtained at atmospheric pressure, which can be converted into its MW based on a correlation. First is the native nESI QRTOF. MS's goal is to keep the native biological conformation of an analyte during the passage into the vacuum. Subsequently, highly accurate MW values are obtained from multiple-charged species after deconvolution. However, once applied to the analysis of megadalton species, native MS is challenging and requires customized instrumental modifications not readily available on standard devices. Hence, the analysis of AAV8 VLPs via native MS in our hands did not produce a defined charge state assignment, that is, charge deconvolution for exact MW determination was not possible. Nonetheless, the method we present is capable to estimate the MW of VLPs by combining the results from native nES GEMMA and native ESI QRTOF MS. In detail, our findings show a MW of 3.7 and 5.0 MDa for AAV8 VLPs either lacking or carrying an engineered genome, respectively.
Collapse
Affiliation(s)
- Samuele Zoratto
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | - Victor U. Weiss
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | | | | | - Carsten Buengener
- Pharmaceutical SciencesBaxalta Innovations (part of Takeda)ViennaAustria
| | | | - Robert Pletzenauer
- Pharmaceutical SciencesBaxalta Innovations (part of Takeda)ViennaAustria
| | - Michael Graninger
- Pharmaceutical SciencesBaxalta Innovations (part of Takeda)ViennaAustria
| | - Guenter Allmaier
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| |
Collapse
|
12
|
Abstract
Introduction: The oral route of vaccination is pain- and needle-free and can induce systemic and mucosal immunity. However, gastrointestinal barriers and antigen degradation impose significant hurdles in the development of oral vaccines. Live attenuated viruses and bacteria can overcome these barriers but at the risk of introducing safety concerns. As an alternative, particles have been investigated for antigen protection and delivery, yet there are no FDA-approved oral vaccines based on particle-based delivery systems. Our objective was to discover underlying determinants that can explain the current inadequacies and identify paradigms that can be implemented in future for successful development of oral vaccines relying on particle-based delivery systems.Areas covered: We reviewed literature related to the use of particles for oral vaccination and placed special emphasis on formulation characteristics and administration schedules to gain an insight into how these parameters impact production of antigen-specific antibodies in systemic and mucosal compartments.Expert opinion: Despite the long history of vaccines, particle-based oral vaccination is a relative new field with the first study published in 1989. Substantial variability exists between different studies with respect to dosing schedules, number of doses, and the amount of vaccine per dose. Most studies have not used adjuvants in the formulations. Better standardization in vaccination parameters is required to improve comparison between experiments, and adjuvants should be used to enhance the systemic and mucosal immune responses and to reduce the number of doses, which will make oral vaccines more attractive.
Collapse
Affiliation(s)
- Pedro Gonzalez-Cruz
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA
| | | |
Collapse
|
13
|
Ganganboina AB, Takemura K, Zhang W, Li TC, Park EY. Cargo encapsulated hepatitis E virus-like particles for anti-HEV antibody detection. Biosens Bioelectron 2021; 185:113261. [PMID: 33962156 DOI: 10.1016/j.bios.2021.113261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022]
Abstract
Viral capsid-nanoparticle hybrid structures incorporating quantum dots (QDs) into virus-like particles (VLPs) constitute an emerging bioinspired type of nanoarchitecture paradigm used for various applications. In the present study, we packed inorganic QDs in vitro into the hepatitis E virus-like particle (HEV-LP) and developed a fluorometric biosensor for HEV antibody detection. Firstly, for the preparation of QDs-encapsulated HEV-LPs (QDs@HEV-LP), the HEV-LPs produced by a recombinant baculovirus expression system were disassembled and reassembled in the presence of QDs using the self-assembly approach. Thus, the prepared QDs@HEV-LP exhibited excellent fluorescence properties similar to QDs. Further, in the presence of HEV antibodies in the serum samples, when mixed with QDs@HEV-LP, bind together and further bind to anti-IgG-conjugated magnetic nanoparticles (MNPs). The target-specific anti-IgG-MNPs and QDs@HEV-LP enrich the HEV antibodies by magnetic separation, and the separated QDs@HEV-LP-bound HEV antibodies are quantified by fluorescence measurement. This developed method was applied to detect the HEV antibody from sera of HEV-infected monkey from 0 to 68 days-post-infection and successfully diagnosed for HEV antibodies. The viral RNA copies number from monkey fecal samples by RT-qPCR was compared to the HEV antibody generation. This study first used QDs-encapsulated VLPs as useful fluorescence emitters for biosensing platform construction. It provides an efficient route for highly sensitive and specific antibody detection in clinical diagnosis research.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Kenshin Takemura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Wenjing Zhang
- Department of Virology 2, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayam-shi, Tokyo, 208-0011, Japan.
| | - Tian-Cheng Li
- Department of Virology 2, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayam-shi, Tokyo, 208-0011, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
14
|
Hepatitis B Virus-Like Particle: Targeted Delivery of Plasmid Expressing Short Hairpin RNA for Silencing the Bcl-2 Gene in Cervical Cancer Cells. Int J Mol Sci 2021; 22:ijms22052320. [PMID: 33652577 PMCID: PMC7956328 DOI: 10.3390/ijms22052320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 01/22/2023] Open
Abstract
Gene therapy research has advanced to clinical trials, but it is hampered by unstable nucleic acids packaged inside carriers and there is a lack of specificity towards targeted sites in the body. This study aims to address gene therapy limitations by encapsidating a plasmid synthesizing a short hairpin RNA (shRNA) that targets the anti-apoptotic Bcl-2 gene using truncated hepatitis B core antigen (tHBcAg) virus-like particle (VLP). A shRNA sequence targeting anti-apoptotic Bcl-2 was synthesized and cloned into the pSilencer 2.0-U6 vector. The recombinant plasmid, namely PshRNA, was encapsidated inside tHBcAg VLP and conjugated with folic acid (FA) to produce FA-tHBcAg-PshRNA VLP. Electron microscopy revealed that the FA-tHBcAg-PshRNA VLP has an icosahedral structure that is similar to the unmodified tHBcAg VLP. Delivery of FA-tHBcAg-PshRNA VLP into HeLa cells overexpressing the folate receptor significantly downregulated the expression of anti-apoptotic Bcl-2 at 48 and 72 h post-transfection. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay demonstrated that the cells' viability was significantly reduced from 89.46% at 24 h to 64.52% and 60.63%, respectively, at 48 and 72 h post-transfection. As a conclusion, tHBcAg VLP can be used as a carrier for a receptor-mediated targeted delivery of a therapeutic plasmid encoding shRNA for gene silencing in cancer cells.
Collapse
|
15
|
Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 2020; 41:107547. [PMID: 32294494 DOI: 10.1016/j.biotechadv.2020.107547] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Protein nanocompartments (PNCs) are self-assembling biological nanocages that can be harnessed as platforms for a wide range of nanobiotechnology applications. The most widely studied examples of PNCs include virus-like particles, bacterial microcompartments, encapsulin nanocompartments, enzyme-derived nanocages (such as lumazine synthase and the E2 component of the pyruvate dehydrogenase complex), ferritins and ferritin homologues, small heat shock proteins, and vault ribonucleoproteins. Structural PNC shell proteins are stable, biocompatible, and tolerant of both interior and exterior chemical or genetic functionalization for use as vaccines, therapeutic delivery vehicles, medical imaging aids, bioreactors, biological control agents, emulsion stabilizers, or scaffolds for biomimetic materials synthesis. This review provides an overview of the recent biomedical and bioengineering advances achieved with PNCs with a particular focus on recombinant PNC derivatives.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada.
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; Li Ka Shing Institute of Virology and Discovery Lab, Faculty of Medicine & Dentistry, University of Alberta, 6-010 Katz Center for Health Research, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
16
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
17
|
Lee EB, Kim JH, Hur W, Choi JE, Kim SM, Park DJ, Kang BY, Lee GW, Yoon SK. Liver-specific Gene Delivery Using Engineered Virus-Like Particles of Hepatitis E Virus. Sci Rep 2019; 9:1616. [PMID: 30733562 PMCID: PMC6367430 DOI: 10.1038/s41598-019-38533-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023] Open
Abstract
Virus-like particles (VLPs) possess great potential for organ-specific transport of therapeutic agents due to their central cavity surrounded by viral capsid proteins and similar tropism to their original viruses. The N-terminal truncated second open reading frame (Nt-ORF2) of the hepatotropic hepatitis E virus (HEV) forms VLPs via self-assembly. In the present study, we investigated whether HEV-LPs could deliver foreign genes specifically to the liver. HEV-LPs were obtained from Nt-ORF2 expression in Huh7 cells that were transduced with recombinant baculoviruses and purified by continuous density gradient centrifugation. The purified HEV-LPs efficiently penetrated liver-derived cell lines and the liver tissues. To evaluate HEV-LPs as gene delivery tools, we encapsulated foreign plasmids in HEV-LPs with disassembly/reassembly systems. Green fluorescence was detected at higher frequency in liver-derived Huh7 cells treated with HEV-LPs bearing GFP-encoding plasmids than in control cells. Additionally, HEV-LPs bearing Bax-encoding plasmids induced apoptotic signatures in Huh7 cells. In conclusion, HEV-LPs produced in mammalian cells can encapsulate foreign genes in their central cavity and specifically transport these genes to liver-derived cells, where they are expressed. The present study could contribute to advances in liver-targeted gene therapy.
Collapse
Affiliation(s)
- Eun Byul Lee
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- am SCIENCES, C-912, SK V1 GL Metrocity, 128, Beobwonro, Songpa-gu, Seoul, 05854, Republic of Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jung Eun Choi
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- 1014, A Building Gangseo-Hangang-Xi Tower 401 Yangcheon-ro, Gangseo-gu, Seoul, 157-801, Republic of Korea
| | - Sung Min Kim
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dong Jun Park
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Byung-Yoon Kang
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gil Won Lee
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
18
|
Abstract
For the past eight decades, subcutaneous injection has been the main route used for supplementing the suboptimal insulin secretion for administering insulin as a treatment for diabetes mellitus. Although this method is effective, subcutaneous injections are painful, inconvenient and carry a high risk of infections leading to poor patient compliance. The insulin-encapsulated hepatitis E virus nanoparticle, composed of the noninfectious hepatitis E viral capsid, is expected to deliver insulin from the GI tract to the liver after ingestion. Hepatitis E virus nanoparticle could be the answer to the long search of effective and efficient means to administer insulin orally and the most preferred route of drug delivery with highest patient compliance.
Collapse
|
19
|
Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins. Vaccines (Basel) 2017; 5:vaccines5040052. [PMID: 29257056 PMCID: PMC5748618 DOI: 10.3390/vaccines5040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Abstract
Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.
Collapse
|
20
|
Stark MC, Baikoghli MA, Lahtinen T, Malola S, Xing L, Nguyen M, Nguyen M, Sikaroudi A, Marjomäki V, Häkkinen H, Cheng RH. Structural characterization of site-modified nanocapsid with monodispersed gold clusters. Sci Rep 2017; 7:17048. [PMID: 29213060 PMCID: PMC5719084 DOI: 10.1038/s41598-017-17171-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023] Open
Abstract
Hepatitis E Virus-like particles self-assemble in to noninfectious nanocapsids that are resistant to proteolytic/acidic mucosal delivery conditions. Previously, the nanocapsid was engineered to specifically bind and enter breast cancer cells, where successful tumor targeting was demonstrated in animal models. In the present study, the nanocapsid surface was modified with a solvent-exposed cysteine to conjugate monolayer protected gold nanoclusters (AuNC). Unlike commercially available gold nanoparticles, AuNCs monodisperse in water and are composed of a discrete number of gold atoms, forming a crystalline gold core. Au102 pMBA44 (Au102) was an ideal conjugate given its small 2.5 nm size and detectability in cryoEM. Au102 was bound directly to nanocapsid surface cysteines via direct ligand exchange. In addition, Au102 was functionalized with a maleimide linker (Au102_C6MI) for maleimide-thiol conjugation to nanocapsid cysteines. The AuNC-bound nanocapsid constructs were conjugated in various conditions. We found Au102_C6MI to bind nanocapsid more efficiently, while Au102 remained more soluble over time. Nanocapsids conjugated to Au102_C6MI were imaged in cryoEM for single particle reconstruction to localize AuNC position on the nanocapsid surface. We resolved five unique high intensity volumes that formed a ring-shaped density at the 5-fold symmetry center. This finding was further supported by independent rigid modeling.
Collapse
Affiliation(s)
- Marie C Stark
- Department of Biology and Environmental Science, Nanoscience center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Mo A Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Tanja Lahtinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Sami Malola
- Department of Physics, Nanoscience center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Li Xing
- Department of Biology and Environmental Science, Nanoscience center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Michelle Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Marina Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Aria Sikaroudi
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Varpu Marjomäki
- Department of Biology and Environmental Science, Nanoscience center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Hannu Häkkinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, FI-40014, Finland.
- Department of Physics, Nanoscience center, University of Jyväskylä, Jyväskylä, FI-40014, Finland.
| | - R Holland Cheng
- Department of Biology and Environmental Science, Nanoscience center, University of Jyväskylä, Jyväskylä, FI-40014, Finland.
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Rancan F, Afraz Z, Hadam S, Weiß L, Perrin H, Kliche A, Schrade P, Bachmann S, Schäfer-Korting M, Blume-Peytavi U, Wagner R, Combadière B, Vogt A. Topically applied virus-like particles containing HIV-1 Pr55 gag protein reach skin antigen-presenting cells after mild skin barrier disruption. J Control Release 2017; 268:296-304. [PMID: 29080666 DOI: 10.1016/j.jconrel.2017.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
Abstract
Loading of antigen on particles as well as the choice of skin as target organ for vaccination were independently described as effective dose-sparing strategies for vaccination. Combining these two strategies, sufficient antigen recognition may be achievable via the transcutaneous route even with minimal-invasive tools. Here, we investigated the skin penetration and cellular uptake of topically administered virus-like particles (VLPs), composed of the HIV-1 precursor protein Pr55gag, as well as the migratory activity of skin antigen-presenting cells (APCs). We compared VLP administration on ex vivo human skin pre-treated with cyanoacrylate tape stripping (CSSS, minimal-invasive) to administration by skin pricking and intradermal injection (invasive). CSSS as well as pricking treatments resulted in penetration of VLPs in the viable skin layers. Electron microscopy confirmed that at least part of VLPs remained intact during the penetration process. Flow cytometry of epidermal, dermal, and HLA-DR+ APCs harvested from culture media of skin explants cultivated at air-liquid interface revealed that a number of cells had taken-up VLPs. Similar results were found between invasive and minimal-invasive VLP application methods. CSSS pre-treatment was associated with significantly increased levels of IL-1α levels in cell culture media as compared to untreated and pricked skin. Our findings provide first evidence for effective cellular uptake of VLPs after dermal application and indicate that even mild physical barrier disruption, as induced by CSSS, provides stimulatory signals that enable the activation of APCs and uptake of large antigenic material.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Zahra Afraz
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany; Institut für Pharmazie (Pharmakologie und Toxikologie), Freie Universität Berlin, 14195 Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Lina Weiß
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Hélène Perrin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Petra Schrade
- Institute of Vegetative Anatomy, Department of Anatomy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy, Department of Anatomy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Monika Schäfer-Korting
- Institut für Pharmazie (Pharmakologie und Toxikologie), Freie Universität Berlin, 14195 Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Béhazine Combadière
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany; Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France.
| |
Collapse
|
22
|
Surface modulatable nanocapsids for targeting and tracking toward nanotheranostic delivery. Pharm Pat Anal 2017; 5:307-17. [PMID: 27610752 DOI: 10.4155/ppa-2016-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoparticle diagnostics and therapeutics (nanotheranostics) have significantly advanced cancer detection and treatment. However, many nanotheranostics are ineffective due to defects in tumor localization and bioavailability. An engineered Hepatitis E Virus (HEV) nanocapsid is a proposed platform for targeted cancer-cell delivery. Self-assembling from HEV capsid subunits, nanocapsids retain the capacity to enter cells and resist proteolytic/acidic conditions, but lack infectious viral elements. The nanocapsid surface was modified for chemical activation to confer tumor-specific targeting and detection, immune-response manipulation and controlled theranostic delivery. Nanotheranostic molecules can be packaged in the hollow nanocapsid shell during in vitro assembly. Complementing the adapted stability and cell-entry characteristics of the HEV capsid, a modified nanocapsid serves as a tunable tumor-targeting platform for nanotheronostic delivery.
Collapse
|
23
|
Shakya AK, Chowdhury MYE, Tao W, Gill HS. Mucosal vaccine delivery: Current state and a pediatric perspective. J Control Release 2016; 240:394-413. [PMID: 26860287 PMCID: PMC5381653 DOI: 10.1016/j.jconrel.2016.02.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/21/2016] [Accepted: 02/05/2016] [Indexed: 12/30/2022]
Abstract
Most childhood infections occur via the mucosal surfaces, however, parenterally delivered vaccines are unable to induce protective immunity at these surfaces. In contrast, delivery of vaccines via the mucosal routes can allow antigens to interact with the mucosa-associated lymphoid tissue (MALT) to induce both mucosal and systemic immunity. The induced mucosal immunity can neutralize the pathogen on the mucosal surface before it can cause infection. In addition to reinforcing the defense at mucosal surfaces, mucosal vaccination is also expected to be needle-free, which can eliminate pain and the fear of vaccination. Thus, mucosal vaccination is highly appealing, especially for the pediatric population. However, vaccine delivery across mucosal surfaces is challenging because of the different barriers that naturally exist at the various mucosal surfaces to keep the pathogens out. There have been significant developments in delivery systems for mucosal vaccination. In this review we provide an introduction to the MALT, highlight barriers to vaccine delivery at different mucosal surfaces, discuss different approaches that have been investigated for vaccine delivery across mucosal surfaces, and conclude with an assessment of perspectives for mucosal vaccination in the context of the pediatric population.
Collapse
Affiliation(s)
| | | | - Wenqian Tao
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
24
|
Abstract
If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action.
Collapse
Affiliation(s)
- Shane Miersch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Jariyapong P. Nodavirus-based biological container for targeted delivery system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 43:355-60. [PMID: 24588230 DOI: 10.3109/21691401.2014.889702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biological containers such as virus-like particles (VLPs) have gained increasing interest in the fields of gene therapy and vaccine development. Several virus-based materials have been studied, but the toxicity, biodistribution, and immunology of these systems still require extensive investigation. The specific goal of this review is to provide information about nodaviruses, which are causative infectious agents of insects and aquatic animals, but not humans. By understanding the structure and biophysical properties of such viruses, further chemical or genetic modification for novel nanocarriers could be developed. Therefore, their application for therapeutic purposes, particularly in humans, is of great interest.
Collapse
|
26
|
|
27
|
Shirbaghaee Z, Bolhassani A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers 2016; 105:113-32. [PMID: 26509554 PMCID: PMC7161881 DOI: 10.1002/bip.22759] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
Abstract
Virus-like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co-administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
- Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
28
|
Chen CC, Xing L, Stark M, Ou T, Holla P, Xiao K, Kamita SG, Hammock BD, Lam K, Cheng RH. Chemically activatable viral capsid functionalized for cancer targeting. Nanomedicine (Lond) 2016; 11:377-90. [PMID: 26786134 DOI: 10.2217/nnm.15.207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM To design a theranostic capsule using the virus-like nanoparticle of the hepatitis E virus modified to display breast cancer cell targeting functional group (LXY30). METHODS Five surface-exposed residues were mutated to cysteine to allow conjugation to maleimide-linked chemical groups via thiol-selective linkages. Engineered virus-like nanoparticles were then covalently conjugated to a breast cancer recognized ligand, LXY30 and an amine-coupled near-infrared fluorescence dye. RESULTS LXY30-HEV VLP was checked for its binding and entry to a breast cancer cell line and for tumor targeting in vivo to breast cancer tissue in mice. The engineered virus-like nanoparticle not only targeted cancer cells, but also appeared immune silent to native hepatitis E virus antibodies due to epitope disruption at the antibody-binding site. CONCLUSION These results demonstrate the production of a theranostic capsule suitable for cancer diagnostics and therapeutics based on surface modification of a highly stable virus-like nanoparticle.
Collapse
Affiliation(s)
- Chun-Chieh Chen
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Li Xing
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Marie Stark
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Tingwei Ou
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Prasida Holla
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Kai Xiao
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Shizuo G Kamita
- Department of Entomology & Nematology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology & Nematology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Kit Lam
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - R Holland Cheng
- Department of Molecular & Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
29
|
|
30
|
Yang N, Ekanem NR, Sakyi CA, Ray SD. Hepatocellular carcinoma and microRNA: new perspectives on therapeutics and diagnostics. Adv Drug Deliv Rev 2015; 81:62-74. [PMID: 25450260 DOI: 10.1016/j.addr.2014.10.029] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/03/2014] [Accepted: 10/30/2014] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most lethal forms of cancer in the world. In this arena, utilities of microRNA (miRNA) as a sophisticated tool, in therapeutics and diagnostics, remains a prime focus among the leading researchers. It is well known that viral hepatitis, chronic alcoholism and metabolic syndrome are the prime causes of HCCs. Nevertheless, HCCs are usually diagnosed at late stages by using current serum biomarkers. Most epidemiological studies have found the survival rate in HCC cases to be relatively low. Therefore, development of effective noninvasive biomarkers for early detention of HCC and new strategies for HCC treatment remains a high priority research area on the shoulders of liver oncologists. Accumulating evidence in cancer diagnostics and therapeutics indicates that miRNAs involve in HCC progression, which may serve as sensitive biomarkers for detecting carcinogenesis and monitoring therapies of HCC. This review focuses on the role of miRNAs in the diagnostics and therapeutics of HCC.
Collapse
|
31
|
Poles J, Alvarez Y, Hioe CE. Induction of intestinal immunity by mucosal vaccines as a means of controlling HIV infection. AIDS Res Hum Retroviruses 2014; 30:1027-40. [PMID: 25354023 DOI: 10.1089/aid.2014.0233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD4(+) T cells in the mucosa of the gastrointestinal (GI) tract are preferentially targeted and depleted by HIV. As such, the induction of an effective anti-HIV immune response in the mucosa of the GI tract-through vaccination-could protect this vulnerable population of cells. Mucosal vaccination provides a promising means of inducing robust humoral and cellular responses in the GI tract. Here we review data from the literature about the effectiveness of various mucosal vaccination routes--oral (intraintestinal/tonsilar/sublingual), intranasal, and intrarectal--with regard to the induction of immune responses mediated by cytotoxic T cells and antibodies in the GI mucosa, as well as protective efficacy in challenge models. We present data from the literature indicating that mucosal routes have the potential to effectively elicit GI mucosal immunity and protect against challenge. Given their capacity for the induction of anti-HIV immune responses in the GI mucosa, we propose that mucosal routes, including the nonconventional sublingual, tonsilar, and intrarectal routes, be considered for the delivery of the next generation HIV vaccines. However, further studies are necessary to determine the ideal vectors and vaccination regimens for these routes of immunization and to validate their efficacy in controlling HIV infection.
Collapse
Affiliation(s)
- Jordan Poles
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - Yelina Alvarez
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| | - Catarina E. Hioe
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| |
Collapse
|
32
|
Abstract
Most infectious diseases are caused by pathogenic infiltrations from the mucosal tract. Therefore, vaccines delivered to the mucosal tissues can mimic natural infections and provide protection at the first site of infection. Thus, mucosal, especially, oral delivery is becoming the most preferred mode of vaccination. However, oral vaccines have to overcome several barriers such as the extremely low pH of the stomach, the presence of proteolytic enzymes and bile salts as well as low permeability in the intestine. Several formulations based on nanoparticle strategies are currently being explored to prepare stable oral vaccine formulations. This review briefly discusses several molecular mechanisms involved in intestinal immune cell activation and various aspects of oral nanoparticle-based vaccine design that should be considered for improved mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Nirmal Marasini
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
33
|
Buonaguro L, Tagliamonte M, Visciano ML. Chemokine receptor interactions with virus-like particles. Methods Mol Biol 2013; 1013:57-66. [PMID: 23625493 DOI: 10.1007/978-1-62703-426-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Virus-like particles (VLPs) presenting conformational envelope proteins on their surface represent an invaluable tool to study molecular interactions between viruses and cellular receptors/co-receptors, eliminating biological risks associated with working with live native viruses. The availability of target cells expressing specific chemokine receptors facilitates the dissection of specific interactions between human immunodeficiency virus (HIV) viral envelope proteins and these receptors in the laboratory. Here, we describe a method to evaluate HIV-VLP binding to cellular chemokine co-receptors, by carboxyfluorescein succinimidyl ester labeling and cellular uptake.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori "Fond G. Pascale", Naples, Italy
| | | | | |
Collapse
|
34
|
Jariyapong P, Chotwiwatthanakun C, Somrit M, Jitrapakdee S, Xing L, Cheng HR, Weerachatyanukul W. Encapsulation and delivery of plasmid DNA by virus-like nanoparticles engineered from Macrobrachium rosenbergii nodavirus. Virus Res 2013; 179:140-6. [PMID: 24184445 DOI: 10.1016/j.virusres.2013.10.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/29/2013] [Accepted: 10/24/2013] [Indexed: 12/29/2022]
Abstract
Virus-like particles (VLPs) are potential candidates in developing biological containers for packaging therapeutic or biologically active agents. Here, we expressed Macrobrachium rosenbergii nodavirus (MrNv) capsid protein (encoding amino acids M1-N371 with 6 histidine residuals) in an Escherichia coli BL21(DE3). These easily purified capsid protein self-assembled into VLPs, and disassembly/reassembly could be controlled in a calcium-dependent manner. Physically, MrNv VLPs resisted to digestive enzymes, a property that should be advantageous for protection of active compounds against harsh conditions. We also proved that MrNv VLPs were capable of encapsulating plasmid DNA in the range of 0.035-0.042 mol ratio (DNA/protein) or 2-3 plasmids/VLP (assuming that MrNV VLPs is T=1, i made up of 60 capsid monomers). These VLPs interacted with cultured insect cells and delivered loaded plasmid DNA into the cells as shown by green fluorescent protein (GFP) reporter. With many advantageous properties including self-encapsulation, MrNv VLPs are good candidates for delivery of therapeutic agents.
Collapse
Affiliation(s)
- Pitchanee Jariyapong
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand; School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, Thailand
| | | | - Monsicha Somrit
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| | - Li Xing
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616, United States
| | - Holland R Cheng
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616, United States
| | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand.
| |
Collapse
|
35
|
Liu J, Wu J, Wang B, Zeng S, Qi F, Lu C, Kimura Y, Liu B. Oral vaccination with a liposome-encapsulated influenza DNA vaccine protects mice against respiratory challenge infection. J Med Virol 2013; 86:886-94. [PMID: 24122866 DOI: 10.1002/jmv.23768] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2013] [Indexed: 11/06/2022]
Abstract
It is well accepted that vaccination by oral administration has many advantages over injected parenteral immunization. The present study focuses on whether oral vaccination with a DNA vaccine could induce protective immunity against respiratory challenge infection. The M1 gene of influenza A virus was used to construct DNA vaccine using pcDNA 3.1(+) plasmid, a eukaryotic expression vector. The cationic liposomes were used to deliver the constructed DNA vaccine. In vitro and in vivo expression of M1 gene was observed in the cell line and in the intestine of orally vaccinated C57BL/6 mice, respectively. It became clear that this type of oral DNA vaccination was capable of inducing both humoral and cellular immune responses, together with an augmentation of IFN-γ production. In addition, oral vaccination with liposome-encapsulated DNA vaccine could protect the mice against respiratory challenge infection. These results suggest that gastrointestinal tract, a constituent member of the common mucosal immune system, is a potent candidate applicable as a DNA vaccine route against virus respiratory diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 2013; 3:13. [PMID: 23532930 PMCID: PMC3607064 DOI: 10.3389/fcimb.2013.00013] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/05/2013] [Indexed: 12/16/2022] Open
Abstract
Vaccination has had a major impact on the control of infectious diseases. However, there are still many infectious diseases for which the development of an effective vaccine has been elusive. In many cases the failure to devise vaccines is a consequence of the inability of vaccine candidates to evoke appropriate immune responses. This is especially true where cellular immunity is required for protective immunity and this problem is compounded by the move toward devising sub-unit vaccines. Over the past decade nanoscale size (<1000 nm) materials such as virus-like particles, liposomes, ISCOMs, polymeric, and non-degradable nanospheres have received attention as potential delivery vehicles for vaccine antigens which can both stabilize vaccine antigens and act as adjuvants. Importantly, some of these nanoparticles (NPs) are able to enter antigen-presenting cells by different pathways, thereby modulating the immune response to the antigen. This may be critical for the induction of protective Th1-type immune responses to intracellular pathogens. Their properties also make them suitable for the delivery of antigens at mucosal surfaces and for intradermal administration. In this review we compare the utilities of different NP systems for the delivery of sub-unit vaccines and evaluate the potential of these delivery systems for the development of new vaccines against a range of pathogens.
Collapse
Affiliation(s)
- Anthony E Gregory
- College of Life and Environmental Sciences, University of Exeter Exeter, UK.
| | | | | |
Collapse
|
37
|
Buonaguro L, Tagliamonte M, Visciano ML, Tornesello ML, Buonaguro FM. Developments in virus-like particle-based vaccines for HIV. Expert Rev Vaccines 2013; 12:119-127. [PMID: 23414404 DOI: 10.1586/erv.12.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Virus-like particles (VLPs) hold great promise for the development of effective and affordable vaccines. VLPs, indeed, are suitable for presentation and efficient delivery to antigen-presenting cells of linear as well as conformational antigens. This will ultimately result in a crosspresentation with both MHC class I and II molecules to prime CD4(+) T-helper and CD8(+) cytotoxic T cells. This review describes an update on the development and use of VLPs as vaccine approaches for HIV.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Department of Experimental Oncology, Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori 'Fond Pascale', Via Mariano Semmola 142, 80131 Napoli, Italy
| | | | | | | | | |
Collapse
|
38
|
Abstract
Vaccination has had a major impact on the control of infectious diseases. However, there are still many infectious diseases for which the development of an effective vaccine has been elusive. In many cases the failure to devise vaccines is a consequence of the inability of vaccine candidates to evoke appropriate immune responses. This is especially true where cellular immunity is required for protective immunity and this problem is compounded by the move toward devising sub-unit vaccines. Over the past decade nanoscale size (<1000 nm) materials such as virus-like particles, liposomes, ISCOMs, polymeric, and non-degradable nanospheres have received attention as potential delivery vehicles for vaccine antigens which can both stabilize vaccine antigens and act as adjuvants. Importantly, some of these nanoparticles (NPs) are able to enter antigen-presenting cells by different pathways, thereby modulating the immune response to the antigen. This may be critical for the induction of protective Th1-type immune responses to intracellular pathogens. Their properties also make them suitable for the delivery of antigens at mucosal surfaces and for intradermal administration. In this review we compare the utilities of different NP systems for the delivery of sub-unit vaccines and evaluate the potential of these delivery systems for the development of new vaccines against a range of pathogens.
Collapse
Affiliation(s)
- Anthony E Gregory
- College of Life and Environmental Sciences, University of Exeter Exeter, UK.
| | | | | |
Collapse
|
39
|
Jariyapong P, Xing L, van Houten NE, Li TC, Weerachatyanukul W, Hsieh B, Moscoso CG, Chen CC, Niikura M, Cheng RH. Chimeric hepatitis E virus-like particle as a carrier for oral-delivery. Vaccine 2012; 31:417-24. [PMID: 23107594 DOI: 10.1016/j.vaccine.2012.10.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/12/2012] [Accepted: 10/19/2012] [Indexed: 12/22/2022]
Abstract
Oral delivery with virus-like particles (VLPs) is advantageous because of the inherited entry pathway from their parental viral capsids, which enables VLP to withstand the harsh and enzymatic environment associated with human digestive tract. However, the repeat use of this system is challenged by the self-immunity. In order to overcome this problem, we engineered the recombinant capsid protein of hepatitis E virus by inserting p18 peptide, derived from the V3 loop of HIV-1 gp120, into the antibody-binding site. The chimeric VLP resembled the tertiary and quaternary structures of the wild type VLP and specifically reacted with an HIV-1 antibody against V3 loop. Different from the wild type VLP, the chimeric VLP was vulnerable to trypsin cleavage although it appeared as intact particle, suggesting that the intermolecular forces of attraction between the recombinant capsid proteins are strong enough to maintain the VLP icosahedral arrangement. Importantly, this VLP containing the V3 loop did not react with anti-HEV antibodies, in correspondence to the mutation at its antibody-binding site. Therefore, the insertion of peptides at the surface antigenic site could allow VLPs to escape pre-existing anti-HEV humoral immunity.
Collapse
Affiliation(s)
- Pitchanee Jariyapong
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Borel F, Konstantinova P, Jansen PLM. Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. J Hepatol 2012; 56:1371-83. [PMID: 22314424 DOI: 10.1016/j.jhep.2011.11.026] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/08/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are evolutionary conserved small non-coding RNAs that regulate gene expression by mediating post-transcriptional silencing of target genes. Since miRNAs are involved in fine-tuning of physiological responses, they have become of interest for diagnosis and therapy of a number of diseases. Moreover, the role of dysregulated miRNAs in maintaining the malignant phenotype has profound implications for cancer therapy. We will review the best defined cellular miRNAs and changes in their expression profile in hepatocellular carcinoma (HCC). Cellular miRNAs can also be released into the circulation, and these miRNAs are detected in most body fluids. Circulating miRNAs are associated with HCC and are possible biomarkers. Finally, by affecting several clinically relevant targets, artificially increasing or decreasing the expression level of a given miRNA offers fascinating therapeutic perspectives. We will therefore highlight recent developments in miRNA-based gene therapy with a focus on their therapeutic potential for HCC.
Collapse
Affiliation(s)
- Florie Borel
- Department of Research & Development, Amsterdam Molecular Therapeutics, Meibergdreef 61, 1105 BA Amsterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Abstract
Mucosal surfaces are a major portal of entry for many human pathogens that are the cause of infectious diseases worldwide. Vaccines capable of eliciting mucosal immune responses can fortify defenses at mucosal front lines and protect against infection. However, most licensed vaccines are administered parenterally and fail to elicit protective mucosal immunity. Immunization by mucosal routes may be more effective at inducing protective immunity against mucosal pathogens at their sites of entry. Recent advances in our understanding of mucosal immunity and identification of correlates of protective immunity against specific mucosal pathogens have renewed interest in the development of mucosal vaccines. Efforts have focused on efficient delivery of vaccine antigens to mucosal sites that facilitate uptake by local antigen-presenting cells to generate protective mucosal immune responses. Discovery of safe and effective mucosal adjuvants are also being sought to enhance the magnitude and quality of the protective immune response.
Collapse
Affiliation(s)
- Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
42
|
Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM. Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev Vaccines 2012; 10:1569-83. [PMID: 22043956 DOI: 10.1586/erv.11.135] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Virus-like particles hold great promise for the development of effective and affordable vaccines. Indeed, virus-like particles are suitable for presentation and efficient delivery of linear as well as conformational antigens to antigen-presenting cells. This will ultimately result in optimal B-cell activation and cross-presentation with both MHC class I and II molecules to prime CD4(+) T-helper as well as CD8(+) cytotoxic T cells. This article provides an update on the development and use of virus-like particles as vaccine approaches for infectious diseases and cancer.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | | | |
Collapse
|
43
|
Abstract
This review provides a detailed look at the attributes and immunologic mechanisms of plasmid DNA vaccines and their utility as laboratory tools as well as potential human vaccines. The immunogenicity and efficacy of DNA vaccines in a variety of preclinical models is used to illustrate how they differ from traditional vaccines in novel ways due to the in situ antigen production and the ease with which they are constructed. The ability to make new DNA vaccines without needing to handle a virulent pathogen or to adapt the pathogen for manufacturing purposes demonstrates the potential value of this vaccine technology for use against emerging and epidemic pathogens. Similarly, personalized anti-tumor DNA vaccines can also readily be made from a biopsy. Because DNA vaccines bias the T-helper (Th) cell response to a Th1 phenotype, DNA vaccines are also under development for vaccines against allergy and autoimmune diseases. The licensure of four animal health products, including two prophylactic vaccines against infectious diseases, one immunotherapy for cancer, and one gene therapy delivery of a hormone for a food animal, provides evidence of the efficacy of DNA vaccines in multiple species including horses and pigs. The size of these target animals provides evidence that the somewhat disappointing immunogenicity of DNA vaccines in a number of human clinical trials is not due simply to the larger mass of humans compared with most laboratory animals. The insights gained from the mechanisms of protection in the animal vaccines, the advances in the delivery and expression technologies for increasing the potency of DNA vaccines, and encouragingly potent human immune responses in certain clinical trials, provide insights for future efforts to develop DNA vaccines into a broadly useful vaccine and immunotherapy platform with applications for human and animal health.
Collapse
|
44
|
|
45
|
Kamili S. Toward the development of a hepatitis E vaccine. Virus Res 2011; 161:93-100. [PMID: 21620908 DOI: 10.1016/j.virusres.2011.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 12/15/2022]
Abstract
Hepatitis E virus (HEV) causes large epidemics of enterically transmitted acute hepatitis and accounts for a majority of sporadic acute hepatitis in endemic countries. Due to a very high mortality rate among infected pregnant women and substantial morbidity, disability and costs associated with hepatitis E, concerted efforts are being made to develop an efficacious vaccine. Experimental vaccines, based on recombinant proteins derived from the capsid gene of HEV, have been shown efficacious in pre-clinical trials in macaques conferring cross-protection against various genotypes. Two vaccine candidates, the rHEV vaccine expressed in baculovirus and the HEV 239 vaccine, expressed in Escherichia coli, were successfully evaluated in Phase II/III trials. However, at this time no approved vaccine against hepatitis E is commercially available.
Collapse
Affiliation(s)
- Saleem Kamili
- Centers for Disease Control and Prevention, National Center for HIV/Hepatitis/STD/TB Prevention, Division of Viral Hepatitis, Atlanta, GA 30333, USA.
| |
Collapse
|
46
|
Tagliamonte M, Visciano ML, Tornesello ML, De Stradis A, Buonaguro FM, Buonaguro L. HIV-Gag VLPs presenting trimeric HIV-1 gp140 spikes constitutively expressed in stable double transfected insect cell line. Vaccine 2011; 29:4913-22. [PMID: 21596085 DOI: 10.1016/j.vaccine.2011.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/07/2011] [Accepted: 05/01/2011] [Indexed: 12/25/2022]
Abstract
We have previously described the establishment and characterization of a stably transfected insect cell line for the constitutive and efficient expression of Pr55 HIV Gag proteins, which auto-assemble into enveloped Virus-Like Particles (VLPs) released into the cell culture supernatant. Such HIV-Gag VLPs have been shown to elicit a specific systemic humoral response in vivo, proving the appropriate antigenic presentation of the HIV Gag protein to the immune system. Here we describe the establishment of a stable double transfected insect cell line for the constitutive and reproducible production of Pr55Gag-VLPs expressing on their surface trimeric forms of HIV-1 envelope glycoproteins. The persistence of HIV coding genes has been verified in clonal resistant insect cells, the protein expression and conformation has been verified by Western blot analysis. The resulting HIV-VLPs have been visualized by standard transmission electron microscopy and their immunogenicity has been evaluated in vivo. This represents, to our knowledge, the first example of stable double transfected insect cell line for the constitutive production of enveloped HIV-Gag VLPs presenting trimeric HIV-gp140 on their surface.
Collapse
Affiliation(s)
- M Tagliamonte
- Lab. of Molecular Biology and Viral Oncogenesis, Istituto Nazionale Tumori Fond. G. Pascale, Naples, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Mori Y, Matsuura Y. Structure of hepatitis E viral particle. Virus Res 2011; 161:59-64. [PMID: 21440590 DOI: 10.1016/j.virusres.2011.03.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/08/2011] [Accepted: 03/18/2011] [Indexed: 01/03/2023]
Abstract
Hepatitis E is acute hepatitis caused by infection of hepatitis E virus (HEV) via a fecal-to-oral or zoonotic route. HEV is a small, non-enveloped virus containing positive strand RNA as a genome. Recently, the three-dimensional structures of the HEV-like particles and spike domain protruded from the surface of the particle expressed by recombinant baculovirus or bacteria have been revealed. Based on these reports, the structural features of the HEV capsid subunit and viral particle are reviewed to give insights to the mechanisms underlying the particle assembly, antigenicity, host cell attachment and native virion packaging.
Collapse
Affiliation(s)
- Yoshio Mori
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|
48
|
Challacombe SJ, Fidel PL, Tugizov S, Tao L, Wahl SM. HIV infection and specific mucosal immunity: workshop 4B. Adv Dent Res 2011; 23:142-51. [PMID: 21441496 PMCID: PMC11506872 DOI: 10.1177/0022034511400222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most HIV infections are transmitted across mucosal epithelium. An area of fundamental importance is understanding the role of innate and specific mucosal immunity in susceptibility or protection against HIV infection, as well as the effect of HIV infection on mucosal immunity, which leads to increased susceptibility to bacterial, fungal, and viral infections of oral and other mucosae. This workshop attempted to address 5 basic issues-namely, HIV acquisition across mucosal surfaces, innate and adaptive immunity in HIV resistance, antiviral activity of breast milk as a model mucosal fluid, neutralizing immunoglobulin A antibodies against HIV, and progress toward a mucosal vaccine against HIV. The workshop attendants agreed that progress had been made in each area covered, with much recent information. However, these advances revealed how little work had been performed on stratified squamous epithelium compared with columnar epithelium, and the attendants identified several important biological questions that had not been addressed. It is increasingly clear that innate immunity has an important biological role, although basic understanding of the mechanisms of normal homeostasis is still being investigated. Application of the emerging knowledge was lacking with regard to homeostatic mucosal immunity to HIV and its role in changing this homeostasis. With regard to breast milk, a series of studies have demonstrated the differences between transmitters and nontransmitters, although whether these findings could be generalized to other secretions such as saliva was less clear. Important progress toward an oral mucosal HIV vaccine has been made, demonstrating proof of principle for administering vaccine candidates into oral lymphoid tissues to trigger anti-HIV local and systemic immune responses. Similarly, experimental data emphasized the central role of neutralizing antibodies to prevent HIV infection via mucosal routes.
Collapse
Affiliation(s)
- S J Challacombe
- Department of Oral Medicine, Kings College London Dental Institute, London, UK.
| | | | | | | | | |
Collapse
|
49
|
Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Conformational HIV-1 envelope on particulate structures: a tool for chemokine coreceptor binding studies. J Transl Med 2011; 9 Suppl 1:S1. [PMID: 21284899 PMCID: PMC3105500 DOI: 10.1186/1479-5876-9-s1-s1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 presents conserved binding sites for binding to the primary virus receptor CD4 as well as the major HIV chemokine coreceptors, CCR5 and CXCR4. Concerted efforts are underway to understand the specific interactions between gp120 and coreceptors as well as their contribution to the subsequent membrane fusion process. The present review summarizes the current knowledge on this biological aspect, which represents one of the key and essential points of the HIV-host cell interplay and HIV life cycle. The relevance of conformational HIV-1 Envelope proteins presented on Virus-like Particles for appropriate assessment of this molecular interaction, is also discussed.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab, of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori Fond, G, Pascale, Naples, Italy
| | | | | | | |
Collapse
|
50
|
Domingo-Espín J, Unzueta U, Saccardo P, Rodríguez-Carmona E, Corchero JL, Vázquez E, Ferrer-Miralles N. Engineered biological entities for drug delivery and gene therapy protein nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:247-98. [PMID: 22093221 PMCID: PMC7173510 DOI: 10.1016/b978-0-12-416020-0.00006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of genetic engineering techniques has speeded up the growth of the biotechnological industry, resulting in a significant increase in the number of recombinant protein products on the market. The deep knowledge of protein function, structure, biological interactions, and the possibility to design new polypeptides with desired biological activities have been the main factors involved in the increase of intensive research and preclinical and clinical approaches. Consequently, new biological entities with added value for innovative medicines such as increased stability, improved targeting, and reduced toxicity, among others have been obtained. Proteins are complex nanoparticles with sizes ranging from a few nanometers to a few hundred nanometers when complex supramolecular interactions occur, as for example, in viral capsids. However, even though protein production is a delicate process that imposes the use of sophisticated analytical methods and negative secondary effects have been detected in some cases as immune and inflammatory reactions, the great potential of biodegradable and tunable protein nanoparticles indicates that protein-based biotechnological products are expected to increase in the years to come.
Collapse
Affiliation(s)
- Joan Domingo-Espín
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Ugutz Unzueta
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Paolo Saccardo
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Escarlata Rodríguez-Carmona
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - José Luís Corchero
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Esther Vázquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| |
Collapse
|