1
|
Selective Expression of a SNARE-Cleaving Protease in Peripheral Sensory Neurons Attenuates Pain-Related Gene Transcription and Neuropeptide Release. Int J Mol Sci 2021; 22:ijms22168826. [PMID: 34445536 PMCID: PMC8396265 DOI: 10.3390/ijms22168826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is a leading health and socioeconomic problem and an unmet need exists for long-lasting analgesics. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are required for neuropeptide release and noxious signal transducer surface trafficking, thus, selective expression of the SNARE-cleaving light-chain protease of botulinum neurotoxin A (LCA) in peripheral sensory neurons could alleviate chronic pain. However, a safety concern to this approach is the lack of a sensory neuronal promoter to prevent the expression of LCA in the central nervous system. Towards this, we exploit the unique characteristics of Pirt (phosphoinositide-interacting regulator of TRP), which is expressed in peripheral nociceptive neurons. For the first time, we identified a Pirt promoter element and cloned it into a lentiviral vector driving transgene expression selectively in peripheral sensory neurons. Pirt promoter driven-LCA expression yielded rapid and concentration-dependent cleavage of SNAP-25 in cultured sensory neurons. Moreover, the transcripts of pain-related genes (TAC1, tachykinin precursor 1; CALCB, calcitonin gene-related peptide 2; HTR3A, 5-hydroxytryptamine receptor 3A; NPY2R, neuropeptide Y receptor Y2; GPR52, G protein-coupled receptor 52; SCN9A, sodium voltage-gated channel alpha subunit 9; TRPV1 and TRPA1, transient receptor potential cation channel subfamily V member 1 and subfamily A member 1) in pro-inflammatory cytokines stimulated sensory neurons were downregulated by viral mediated expression of LCA. Furthermore, viral expression of LCA yielded long-lasting inhibition of pain mediator release. Thus, we show that the engineered Pirt-LCA virus may provide a novel means for long lasting pain relief.
Collapse
|
2
|
Joussain C, Le Coz O, Pichugin A, Marconi P, Lim F, Sicurella M, Salonia A, Montorsi F, Wandosell F, Foster K, Giuliano F, Epstein AL, Aranda Muñoz A. Botulinum Neurotoxin Light Chains Expressed by Defective Herpes Simplex Virus Type-1 Vectors Cleave SNARE Proteins and Inhibit CGRP Release in Rat Sensory Neurons. Toxins (Basel) 2019; 11:toxins11020123. [PMID: 30791373 PMCID: PMC6409900 DOI: 10.3390/toxins11020123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
A set of herpes simplex virus type 1 (HSV-1) amplicon vectors expressing the light chains (LC) of botulinum neurotoxins (BoNT) A, B, C, D, E and F was constructed. Their properties have been assessed in primary cultures of rat embryonic dorsal root ganglia (DRG) neurons, and in organotypic cultures of explanted DRG from adult rats. Following infection of primary cultures of rat embryonic DRG neurons, the different BoNT LC induced efficient cleavage of their corresponding target Soluble N-ethylmaleimide-sensitive-factor Attachment protein Receptor (SNARE) protein (VAMP, SNAP25, syntaxin). A similar effect was observed following infection by BoNT-A LC of organotypic cultures of adult rat DRG. To quantify and compare the functional activities of the different BoNT LC, the inhibition of calcitonin gene-related protein (CGRP) secretion was assessed in DRG neurons following infection by the different vectors. All BoNT-LC were able to inhibit CGRP secretion although to different levels. Vectors expressing BoNT-F LC displayed the highest inhibitory activity, while those expressing BoNT-D and -E LC induced a significantly lower CGRP release inhibition. Cleavage of SNARE proteins and inhibition of CGRP release could be detected in neuron cultures infected at less than one transducing unit (TU) per neuron, showing the extreme efficacy of these vectors. To our knowledge this is the first study investigating the impact of vector-expressed transgenic BoNT LC in sensory neurons.
Collapse
Affiliation(s)
- Charles Joussain
- UMR U1179 INSERM/Université de Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, 78180 Montigny-le-Bretonneux, France.
- Neuro-Urology R. Poincaré Hospital AP-HP, 92380 Garches, France.
- Ipsen Innovation SAS, 91940 Les Ulis, France.
| | - Olivier Le Coz
- UMR U1179 INSERM/Université de Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, 78180 Montigny-le-Bretonneux, France.
| | - Andrey Pichugin
- UMR U1179 INSERM/Université de Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, 78180 Montigny-le-Bretonneux, France.
| | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences (DipSCF), University of Ferrara, 44121 Ferrara, Italy.
| | - Filip Lim
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Universidad Autonoma de Madrid (UAM), 28049 Cantoblanco, Madrid, Spain.
| | - Mariaconcetta Sicurella
- Department of Chemical and Pharmaceutical Sciences (DipSCF), University of Ferrara, 44121 Ferrara, Italy.
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, 20129 Milan, Italy.
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, 20129 Milan, Italy.
- University Vita-Salute San Raffaele, 20129 Milan, Italy.
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, 20129 Milan, Italy.
- University Vita-Salute San Raffaele, 20129 Milan, Italy.
| | - Francisco Wandosell
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Universidad Autonoma de Madrid (UAM), 28049 Cantoblanco, Madrid, Spain.
| | - Keith Foster
- Ipsen Bioinnovation Ltd., Abingdon, Oxon OX14 4RY, UK.
| | - François Giuliano
- UMR U1179 INSERM/Université de Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, 78180 Montigny-le-Bretonneux, France.
- Neuro-Urology R. Poincaré Hospital AP-HP, 92380 Garches, France.
| | - Alberto L Epstein
- UMR U1179 INSERM/Université de Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, 78180 Montigny-le-Bretonneux, France.
| | - Alejandro Aranda Muñoz
- UMR U1179 INSERM/Université de Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, 78180 Montigny-le-Bretonneux, France.
| |
Collapse
|
3
|
Messenger SW, Jones EK, Holthaus CL, Thomas DDH, Cooley MM, Byrne JA, Mareninova OA, Gukovskaya AS, Groblewski GE. Acute acinar pancreatitis blocks vesicle-associated membrane protein 8 (VAMP8)-dependent secretion, resulting in intracellular trypsin accumulation. J Biol Chem 2017; 292:7828-7839. [PMID: 28242757 DOI: 10.1074/jbc.m117.781815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
Zymogen secretory granules in pancreatic acinar cells express two vesicle-associated membrane proteins (VAMP), VAMP2 and -8, each controlling 50% of stimulated secretion. Analysis of secretion kinetics identified a first phase (0-2 min) mediated by VAMP2 and second (2-10 min) and third phases (10-30 min) mediated by VAMP8. Induction of acinar pancreatitis by supramaximal cholecystokinin (CCK-8) stimulation inhibits VAMP8-mediated mid- and late-phase but not VAMP2-mediated early-phase secretion. Elevation of cAMP during supramaximal CCK-8 mitigates third-phase secretory inhibition and acinar damage caused by the accumulation of prematurely activated trypsin. VAMP8-/- acini are resistant to secretory inhibition by supramaximal CCK-8, and despite a 4.5-fold increase in total cellular trypsinogen levels, are fully protected from intracellular trypsin accumulation and acinar damage. VAMP8-mediated secretion is dependent on expression of the early endosomal proteins Rab5, D52, and EEA1. Supramaximal CCK-8 (60 min) caused a 60% reduction in the expression of D52 followed by Rab5 and EEA1 in isolated acini and in in vivo The loss of D52 occurred as a consequence of its entry into autophagic vacuoles and was blocked by lysosomal cathepsin B and L inhibition. Accordingly, adenoviral overexpression of Rab5 or D52 enhanced secretion in response to supramaximal CCK-8 and prevented accumulation of activated trypsin. These data support that acute inhibition of VAMP8-mediated secretion during pancreatitis triggers intracellular trypsin accumulation and loss of the early endosomal compartment. Maintaining anterograde endosomal trafficking during pancreatitis maintains VAMP8-dependent secretion, thereby preventing accumulation of activated trypsin.
Collapse
Affiliation(s)
- Scott W Messenger
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Elaina K Jones
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Conner L Holthaus
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana D H Thomas
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Michelle M Cooley
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, The Children's Hospital at Westmead, New South Wales 2145, Australia, and
| | - Olga A Mareninova
- Department of Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, California 90073
| | - Anna S Gukovskaya
- Department of Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, California 90073
| | - Guy E Groblewski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
4
|
Messenger SW, Falkowski MA, Thomas DDH, Jones EK, Hong W, Gaisano HY, Giasano HY, Boulis NM, Groblewski GE. Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway. J Biol Chem 2014; 289:28040-53. [PMID: 25138214 DOI: 10.1074/jbc.m114.593913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acinar cell zymogen granules (ZG) express 2 isoforms of the vesicle-associated membrane protein family (VAMP2 and -8) thought to regulate exocytosis. Expression of tetanus toxin to cleave VAMP2 in VAMP8 knock-out (-/-) acini confirmed that VAMP2 and -8 are the primary VAMPs for regulated exocytosis, each contributing ∼50% of the response. Analysis of VAMP8(-/-) acini indicated that although stimulated secretion was significantly reduced, a compensatory increase in constitutive secretion maintained total secretion equivalent to wild type (WT). Using a perifusion system to follow secretion over time revealed VAMP2 mediates an early rapid phase peaking and falling within 2-3 min, whereas VAMP8 controls a second prolonged phase that peaks at 4 min and slowly declines over 20 min to support the protracted secretory response. VAMP8(-/-) acini show increased expression of the endosomal proteins Ti-VAMP7 (2-fold) and Rab11a (4-fold) and their redistribution from endosomes to ZGs. Expression of GDP-trapped Rab11a-S25N inhibited secretion exclusively from the VAMP8 but not the VAMP2 pathway. VAMP8(-/-) acini also showed a >90% decrease in the early endosomal proteins Rab5/D52/EEA1, which control anterograde trafficking in the constitutive-like secretory pathway. In WT acini, short term (14-16 h) culture also results in a >90% decrease in Rab5/D52/EEA1 and a complete loss of the VAMP8 pathway, whereas VAMP2-secretion remains intact. Remarkably, rescue of Rab5/D52/EEA1 expression restored the VAMP8 pathway. Expressed D52 shows extensive colocalization with Rab11a and VAMP8 and partially copurifies with ZG fractions. These results indicate that robust trafficking within the constitutive-like secretory pathway is required for VAMP8- but not VAMP2-mediated ZG exocytosis.
Collapse
Affiliation(s)
- Scott W Messenger
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Michelle A Falkowski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana D H Thomas
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Elaina K Jones
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Wanjin Hong
- Institute of Molecular and Cellular Biology, National University of Singapore, Singapore 138673
| | | | - Herbert Y Giasano
- Departments of Medicine and Physiology, University of Toronto, Ontario M5S 1A8, Canada, and
| | - Nicholas M Boulis
- Department of Neurosurgery, Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Guy E Groblewski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
5
|
Boulis NM, Handy CR, Krudy CA, Donnelly EM, Federici T, Franz CK, Barrow EM, Teng Q, Kumar P, Cress D. Regulated Neuronal Neuromodulation via Spinal Cord Expression of the Gene for the Inwardly Rectifying Potassium Channel 2.1 (Kir2.1). Neurosurgery 2013; 72:653-61; discussion 661. [DOI: 10.1227/neu.0b013e318283f59a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Ando T, Sato S, Toyooka T, Kobayashi H, Nawashiro H, Ashida H, Obara M. Photomechanical wave-driven delivery of siRNAs targeting intermediate filament proteins promotes functional recovery after spinal cord injury in rats. PLoS One 2012; 7:e51744. [PMID: 23272155 PMCID: PMC3522723 DOI: 10.1371/journal.pone.0051744] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022] Open
Abstract
The formation of glial scars after spinal cord injury (SCI) is one of the factors inhibiting axonal regeneration. Glial scars are mainly composed of reactive astrocytes overexpressing intermediate filament (IF) proteins such as glial fibrillary acidic protein (GFAP) and vimentin. In the current study, we delivered small interfering RNAs (siRNAs) targeting these IF proteins to SCI model rats using photomechanical waves (PMWs), and examined the restoration of motor function in the rats. PMWs are generated by irradiating a light-absorbing material with 532-nm nanosecond laser pulses from a Q-switched Nd:YAG laser. PMWs can site-selectively increase the permeability of the cell membrane for molecular delivery. Rat spinal cord was injured using a weight-drop device and the siRNA(s) solutions were intrathecally injected into the vicinity of the exposed SCI, to which PMWs were applied. We first confirmed the substantial uptake of fluorescence-labeled siRNA by deep glial cells; then we delivered siRNAs targeting GFAP and vimentin into the lesion. The treatment led to a significant improvement in locomotive function from five days post-injury in rats that underwent PMW-mediated siRNA delivery. This was attributable to the moderate silencing of the IF proteins and the subsequent decrease in the cavity area in the injured spinal tissue.
Collapse
Affiliation(s)
- Takahiro Ando
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Shunichi Sato
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Japan
- * E-mail:
| | - Terushige Toyooka
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroaki Kobayashi
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Nawashiro
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Ashida
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Minoru Obara
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| |
Collapse
|
7
|
Ando T, Sato S, Toyooka T, Uozumi Y, Nawashiro H, Ashida H, Obara M. Site-specific gene transfer into the rat spinal cord by photomechanical waves. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:108002. [PMID: 22029370 DOI: 10.1117/1.3642014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.
Collapse
Affiliation(s)
- Takahiro Ando
- Keio University, Department of Electronics and Electrical Engineering, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Handy CR, Krudy C, Boulis N. Gene therapy: a potential approach for cancer pain. PAIN RESEARCH AND TREATMENT 2011; 2011:987597. [PMID: 22110939 PMCID: PMC3196247 DOI: 10.1155/2011/987597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/14/2010] [Accepted: 01/21/2011] [Indexed: 12/21/2022]
Abstract
Chronic pain is experienced by as many as 90% of cancer patients at some point during the disease. This pain can be directly cancer related or arise from a sensory neuropathy related to chemotherapy. Major pharmacological agents used to treat cancer pain often lack anatomical specificity and can have off-target effects that create new sources of suffering. These concerns establish a need for improved cancer pain management. Gene therapy is emerging as an exciting prospect. This paper discusses the potential for viral vector-based treatment of cancer pain. It describes studies involving vector delivery of transgenes to laboratory pain models to modulate the nociceptive cascade. It also discusses clinical investigations aimed at regulating pain in cancer patients. Considering the prevalence of pain among cancer patients and the growing potential of gene therapy, these studies could set the stage for a new class of medicines that selectively disrupt nociceptive signaling with limited off-target effects.
Collapse
Affiliation(s)
- Chalonda R. Handy
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Rm 6339, Atlanta, GA 30322, USA
| | - Christina Krudy
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Rm 6339, Atlanta, GA 30322, USA
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Rm 6339, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Handy CR, Krudy C, Boulis N, Federici T. Pain in amyotrophic lateral sclerosis: a neglected aspect of disease. Neurol Res Int 2011; 2011:403808. [PMID: 21766021 PMCID: PMC3135011 DOI: 10.1155/2011/403808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/06/2011] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder marked by progressive loss of motor neurons, muscle wasting, and respiratory dysfunction. With disease progression, secondary symptoms arise creating new problematic conditions for ALS patients. Amongst these is pain. Although not a primary consequence of disease, pain occurs in a substantial number of individuals. Yet, studies investigating its pathomechanistic properties in the ALS patient are lacking. Therefore, more exploratory efforts into its scope, severity, impact, and treatment should be initiated. Several studies investigating the use of Clostridial neurotoxins for the reduction of pain in ALS patients suggest the potential for a neural specific approach involving focal drug delivery. Gene therapy represents a way to accomplish this. Therefore, the use of viral vectors to express transgenes that modulate the nociceptive cascade could prove to be an effective way to achieve meaningful benefit in conditions of pain in ALS.
Collapse
Affiliation(s)
- Chalonda R. Handy
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| | - Christina Krudy
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| | - Thais Federici
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Affiliation(s)
- Jaimie M. Henderson
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California
| | - Thais Federici
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
|
12
|
Franz CK, Federici T, Yang J, Backus C, Oh SS, Teng Q, Carlton E, Bishop KM, Gasmi M, Bartus RT, Feldman EL, Boulis NM. Intraspinal cord delivery of IGF-I mediated by adeno-associated virus 2 is neuroprotective in a rat model of familial ALS. Neurobiol Dis 2008; 33:473-81. [PMID: 19135533 DOI: 10.1016/j.nbd.2008.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/02/2008] [Accepted: 12/04/2008] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating disease that is characterized by the progressive loss of motor neurons. Patients with ALS usually die from respiratory failure due to respiratory muscle paralysis. Consequently, therapies aimed at preserving segmental function of the respiratory motor neurons could extend life for these patients. Insulin-like growth factor-I (IGF-I) is known to be a potent survival factor for motor neurons. In this study we induced high levels of IGF-I expression in the cervical spinal cord of hSOD1(G93A) rats with intraspinal cord (ISC) injections of an adeno-associated virus serotype 2 vector (CERE-130). This approach reduced the extent of motor neuron loss in the treated segments of the spinal cord. However, a corresponding preservation of motor function was observed in male, but not female, hSOD1(G93A) rats. We conclude that ISC injection of CERE-130 has the potential to protect motor neurons and preserve neuromuscular function in ALS.
Collapse
Affiliation(s)
- Colin K Franz
- Department of Neurosurgery, Emory University, 1365B Clifton Rd., NE, Ste. 6200 Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carlton E, Teng Q, Federici T, Yang J, Riley J, Boulis NM. FUSION OF THE TETANUS TOXIN C FRAGMENT BINDING DOMAIN AND BCL-XL FOR PROTECTION OF PERIPHERAL NERVE NEURONS. Neurosurgery 2008; 63:1175-82; discussion 1182-4. [DOI: 10.1227/01.neu.0000334415.45003.ea] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Erin Carlton
- Department of Cell Biology, Cleveland Clinic, Cleveland, Ohio
| | - Qingshan Teng
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Thais Federici
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Jun Yang
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio
| | | | | |
Collapse
|
14
|
Yang J, Teng Q, Garrity-Moses ME, McClelland S, Federici T, Carlton E, Riley J, Boulis NM. Reversible unilateral nigrostriatal pathway inhibition induced through expression of adenovirus-mediated clostridial light chain gene in the substantia nigra. Neuromolecular Med 2007; 9:276-84. [PMID: 17914186 DOI: 10.1007/s12017-007-8003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 11/30/1999] [Accepted: 04/16/2007] [Indexed: 11/30/2022]
Abstract
Clostridial light chain (LC) inhibits synaptic transmission by digesting a vesicle-docking protein, synaptobrevin, without killing neurons. We here report the feasibility of creating a rat hemiparkinsonism model through LC gene expression in the substantia nigra (SN), inhibiting nigrostriatal transmission. 40 adult Sprague Dawley rats were divided into four groups for SN injections of PBS, 6-hydroxydopamine (6-OHDA), or adenoviral vectors for the expression of LC (AdLC), or GFP (AdGFP). Amphetamine and apomorphine induced rotations were assessed before and after SN injection, revealing significant rotational alterations at 8 or 10 days after injection in both AdLC and 6-OHDA but not PBS and AdGFP groups. Induced rotation recovered by one month in AdLC rats but persisted in 6-OHDA rats. Histological analysis of the SN revealed LC and GFP expression with corresponding synaptobrevin depletion in the LC, but not the GFP groups. Tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunohistochemistry (IHC) showed markedly decreased staining in ipsilateral SN and striatum in 6-OHDA but not AdLC or AdGFP rats. Similarly, compared with contralateral, ipsilateral striatal dopamine level only decreased in 6-OHDA but not AdLC, AdGFP, or PBS treated rats. Thus, LC expression induces nigral synaptobrevin depletion with resulting inhibition of nigrostriatal synaptic transmission. Unlike 6-OHDA, LC expression inhibits synaptic activity without killing neurons. This approach, therefore, represents a potentially reversible means of nigrostriatal pathway inhibition as a model for Parkinson's disease. Such a model might facilitate transient and controlled nigral inhibition for studying striatal recovery, dopaminergic re-innervation, and normalization of striatal receptors following the recovery of nigrostriatal transmission.
Collapse
Affiliation(s)
- Jun Yang
- Department of Neuroscience, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
McClelland S, Teng Q, Benson LS, Boulis NM. Motor neuron inhibition-based gene therapy for spasticity. Am J Phys Med Rehabil 2007; 86:412-21. [PMID: 17449986 DOI: 10.1097/phm.0b013e31804a83cf] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Spasticity is a condition resulting from excess motor neuron excitation, leading to involuntary muscle contraction in response to increased velocity of movement, for which there is currently no cure. Existing symptomatic therapies face a variety of limitations. The extent of relief that can be delivered by ablative techniques such as rhizotomy is limited by the potential for sensory denervation. Pharmacological approaches, including intrathecal baclofen, can be undermined by tolerance. One potential new approach to the treatment of spasticity is the control of neuromuscular overactivity through the delivery of genes capable of inducing synaptic inhibition. A variety of experiments in cell culture and animal models have demonstrated the ability of neural gene transfer to inhibit neuronal activity and suppress transmission. Similarly, enthusiasm for the application of gene therapy to neurodegenerative diseases of motor neurons has led to the development of a variety of strategies for motor neuron gene delivery. In this review, we discuss the limitations of existing spasticity therapies, the feasibility of motor neuron inhibition as a gene-based treatment for spasticity, potential inhibitory transgene candidates, strategies for control of transgene expression, and applicable motor neuron gene targeting strategies. Finally, we discuss future directions and the potential for gene-based motor neuron inhibition in therapeutic clinical trials to serve as an effective treatment modality for spasticity, either in conjunction with or as a replacement for presently available therapies.
Collapse
Affiliation(s)
- Shearwood McClelland
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
16
|
Yang J, Teng Q, Federici T, Najm I, Chabardes S, Moffitt M, Alexopoulos A, Riley J, Boulis NM. Viral clostridial light chain gene-based control of penicillin-induced neocortical seizures. Mol Ther 2007; 15:542-51. [PMID: 17213837 DOI: 10.1038/sj.mt.6300069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Restraining excitatory neurotransmission within a seizure focus provides a nondestructive treatment strategy for intractable neocortical epilepsy. Clostridial toxin light chain (LC) inhibits synaptic transmission by digesting a critical vesicle-docking protein, synaptobrevin, without directly altering neuronal health. This study tests the treatment efficacy of adenoviral vector delivered LC (AdLC) on a model of seizures in rats induced by motor cortex penicillin (PCN) injection. LC expression significantly reduced electroencephalogram (EEG) frequency, amplitude, duration, and latency compared to control groups injected with either an adenoviral vector bearing green fluorescent protein (AdGFP) or phosphate buffered solution (PBS). Correspondingly, LC gene expression improved behavioral manifestations including seizure severity and latency. There was no statistical difference in motor function before and after vector administration between treatment and control groups. Histological analysis revealed spatially discrete LC expression with corresponding synaptobrevin depletion in the cortex surrounding the injection site. Thus, vector-mediated LC gene delivery is capable of improving both the EEG and behavioral manifestations of PCN-induced focal neocortical seizures through synaptobrevin depletion.
Collapse
Affiliation(s)
- Jun Yang
- Departments of Neuroscience and Neurosurgery, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao Z, Krishnaney A, Teng Q, Yang J, Garrity-Moses M, Liu JK, Venkiteswaran K, Subramanian T, Davis M, Boulis NM. Anatomically discrete functional effects of adenoviral clostridial light chain gene-based synaptic inhibition in the midbrain. Gene Ther 2006; 13:942-52. [PMID: 16511525 DOI: 10.1038/sj.gt.3302733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gene for the Light Chain fragment of Tetanus Toxin (LC) induces synaptic inhibition by preventing the release of synaptic vesicles. The present experiment applied this approach within the rat midbrain in order to demonstrate that LC gene expression can achieve functionally and anatomically discrete effects within a sensitive brain structure. The deep layers of the superior colliculus/deep mesencephalic nucleus (dSC/DpMe) that are located in the rostral midbrain has been implicated in fear-induced increase of the acoustic startle reflex (fear potentiated startle) but exists in close proximity to neural structures important for a variety of critical functions. The dSC/DpMe of adult rats was injected bilaterally with adenoviral vectors for LC, green fluorescent protein, or vehicle. Synaptobrevin was depleted in brain regions of adenoviral LC expression. LC gene expression in the dSC/DpMe inhibited the increase in startle amplitude seen with the control viral infection, and blocked context-dependent potentiation of startle induced by fear conditioning. Although LC gene expression reduced the absolute amount of cue-specific fear potentiated startle, it did not decrease percent potentiated startle to a cue, nor did it reduce fear-induced contextual freezing, nonspecific locomotor activity, or general health, indicating that its effects were functionally and anatomically specific. Thus, vector-driven LC expression inhibits the function of deep brain nuclei without altering the function of surrounding structures supporting its application to therapeutic neuromodulation.
Collapse
Affiliation(s)
- Z Zhao
- Department of Psychiatry and Behavioral Science, Center for Behavioral Neurosciences, Yerkes National Primate Center, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 2005; 36:171-85. [PMID: 15704098 DOI: 10.1002/lsm.20143] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Photobiomodulation (PBM) has been proposed as a potential therapy for spinal cord injury (SCI). We aimed to demonstrate that 810 nm light can penetrate deep into the body and promote neuronal regeneration and functional recovery. STUDY DESIGN/MATERIALS AND METHODS Adult rats underwent a T9 dorsal hemisection, followed by treatment with an 810 nm, 150 mW diode laser (dosage = 1,589 J/cm2). Axonal regeneration and functional recovery were assessed using single and double label tract tracing and various locomotor tasks. The immune response within the spinal cord was also assessed. RESULTS PBM, with 6% power penetration to the spinal cord depth, significantly increased axonal number and distance of regrowth (P < 0.001). PBM also returned aspects of function to baseline levels and significantly suppressed immune cell activation and cytokine/chemokine expression. CONCLUSION Our results demonstrate that light, delivered transcutaneously, improves recovery after injury and suggests that light will be a useful treatment for human SCI.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|