1
|
Tavakolidakhrabadi N, Ding WY, Saleem MA, Welsh GI, May C. Gene therapy and kidney diseases. Mol Ther Methods Clin Dev 2024; 32:101333. [PMID: 39434922 PMCID: PMC11492605 DOI: 10.1016/j.omtm.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, projected to become one of the leading causes of death by 2040. Current treatments primarily manage complications and slow progression, highlighting the urgent need for personalized therapies targeting the disease-causing genes. Our increased understanding of the underlying genomic changes that lead to kidney diseases coupled with recent successful gene therapies targeting specific kidney cells have turned gene therapy and genome editing into a promising therapeutic approach for treating kidney disease. This review paper reflects on different delivery routes and systems that can be exploited to target specific kidney cells and the ways that gene therapy can be used to improve kidney health.
Collapse
Affiliation(s)
- Nadia Tavakolidakhrabadi
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Wen Y. Ding
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Moin A. Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Gavin I. Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
2
|
Shao KM, Shao WH. Transcription Factors in the Pathogenesis of Lupus Nephritis and Their Targeted Therapy. Int J Mol Sci 2024; 25:1084. [PMID: 38256157 PMCID: PMC10816397 DOI: 10.3390/ijms25021084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype inflammatory autoimmune disease, characterized by breakdown of immunotolerance to self-antigens. Renal involvement, known as lupus nephritis (LN), is one of the leading causes of morbidity and a significant contributor to mortality in SLE. Despite current pathophysiological advances, further studies are needed to fully understand complex mechanisms underlying the development and progression of LN. Transcription factors (TFs) are proteins that regulate the expression of genes and play a crucial role in the development and progression of LN. The mechanisms of TF promoting or inhibiting gene expression are complex, and studies have just begun to reveal the pathological roles of TFs in LN. Understanding TFs in the pathogenesis of LN can provide valuable insights into this disease's mechanisms and potentially lead to the development of targeted therapies for its management. This review will focus on recent findings on TFs in the pathogenesis of LN and newly developed TF-targeted therapy in renal inflammation.
Collapse
Affiliation(s)
- Kasey M. Shao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Wen-Hai Shao
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Larcombe MR, Hsu S, Polo JM, Knaupp AS. Indirect Mechanisms of Transcription Factor-Mediated Gene Regulation during Cell Fate Changes. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200015. [PMID: 36911290 PMCID: PMC9993476 DOI: 10.1002/ggn2.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 06/18/2023]
Abstract
Transcription factors (TFs) are the master regulators of cellular identity, capable of driving cell fate transitions including differentiations, reprogramming, and transdifferentiations. Pioneer TFs recognize partial motifs exposed on nucleosomal DNA, allowing for TF-mediated activation of repressed chromatin. Moreover, there is evidence suggesting that certain TFs can repress actively expressed genes either directly through interactions with accessible regulatory elements or indirectly through mechanisms that impact the expression, activity, or localization of other regulatory factors. Recent evidence suggests that during reprogramming, the reprogramming TFs initiate opening of chromatin regions rich in somatic TF motifs that are inaccessible in the initial and final cellular states. It is postulated that analogous to a sponge, these transiently accessible regions "soak up" somatic TFs, hence lowering the initial barriers to cell fate changes. This indirect TF-mediated gene regulation event, which is aptly named the "sponge effect," may play an essential role in the silencing of the somatic transcriptional network during different cellular conversions.
Collapse
Affiliation(s)
- Michael R. Larcombe
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| | - Sheng Hsu
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| | - Jose M. Polo
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
- South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth Australia5005Australia
- Adelaide Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Anja S. Knaupp
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| |
Collapse
|
4
|
Synthetic Non-Coding RNA for Suppressing mTOR Translation to Prevent Renal Fibrosis Related to Autophagy in UUO Mouse Model. Int J Mol Sci 2022; 23:ijms231911365. [PMID: 36232665 PMCID: PMC9569483 DOI: 10.3390/ijms231911365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
The global burden of chronic kidney disease is increasing, and the majority of these diseases are progressive. Special site-targeted drugs are emerging as alternatives to traditional drugs. Oligonucleotides (ODNs) have been proposed as effective therapeutic tools in specific molecular target therapies for several diseases. We designed ring-type non-coding RNAs (ncRNAs), also called mTOR ODNs to suppress mammalian target rapamycin (mTOR) translation. mTOR signaling is associated with excessive cell proliferation and fibrogenesis. In this study, we examined the effects of mTOR suppression on chronic renal injury. To explore the regulation of fibrosis and inflammation in unilateral ureteral obstruction (UUO)-induced injury, we injected synthesized ODNs via the tail vein of mice. The expression of inflammatory-related markers (interleukin-1β, tumor necrosis factor-α), and that of fibrosis (α-smooth muscle actin, fibronectin), was decreased by synthetic ODNs. Additionally, ODN administration inhibited the expression of autophagy-related markers, microtubule-associated protein light chain 3, Beclin1, and autophagy-related gene 5-12. We confirmed that ring-type ODNs inhibited fibrosis, inflammation, and autophagy in a UUO mouse model. These results suggest that mTOR may be involved in the regulation of autophagy and fibrosis and that regulating mTOR signaling may be a therapeutic strategy against chronic renal injury.
Collapse
|
5
|
Tian J, Xiao Z, Wei J, Shan Y, Zeng D, Tao Y, Fang X, Tang C, Chen X, Li Y. NCTD Prevents Renal Interstitial Fibrosis via Targeting Sp1/lncRNA Gm26669 Axis. Int J Biol Sci 2021; 17:3118-3132. [PMID: 34421354 PMCID: PMC8375230 DOI: 10.7150/ijbs.59195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
In our previous study, we demonstrated that norcantharidin (NCTD) is a potential therapeutic agent for renal interstitial fibrosis (RIF). Recently, we found that lncRNA Gm26669 (Gm26669) contributed to the development of RIF and could be regulated by NCTD. However, the upstream mechanisms of Gm26669 and whether the anti-RIF effects of NCTD are related to its regulatory action on Gm26669 remain unclear. Our bioinformatics analysis indicated that special protein1 (Sp1), a transcription factor, may bind to the promoter of Gm26669. In the present study, we observed a significant increase in the nuclear translocation of Sp1 using both in vivo and in vitro models of RIF. Furthermore, the knockdown of Sp1 inhibited the expression of collagen type I (CoL-I) and fibronectin (Fn). Mechanistically, Sp1 promoted the expression levels of CoL-I and Fn by directly binding to the promoter of Gm26669 to elevate its expression level. Moreover, we found that NCTD alleviated RIF by inhibiting Gm26669 and the nuclear translocation of Sp1. Collectively, above results suggested that NCTD might prevent RIF via targeting the Sp1/Gm26669 axis, thus providing a new theoretical basis for the clinical application of NCTD in the treatment of RIF.
Collapse
Affiliation(s)
- Jiao Tian
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key laboratory of kidney Disease and Blood Purification in Hunan Province, Changsha, Hunan 410011, China
| | - Zheng Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key laboratory of kidney Disease and Blood Purification in Hunan Province, Changsha, Hunan 410011, China
| | - Ju Wei
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key laboratory of kidney Disease and Blood Purification in Hunan Province, Changsha, Hunan 410011, China
| | - Yi Shan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key laboratory of kidney Disease and Blood Purification in Hunan Province, Changsha, Hunan 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key laboratory of kidney Disease and Blood Purification in Hunan Province, Changsha, Hunan 410011, China
| | - Yilin Tao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key laboratory of kidney Disease and Blood Purification in Hunan Province, Changsha, Hunan 410011, China
| | - Xi Fang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key laboratory of kidney Disease and Blood Purification in Hunan Province, Changsha, Hunan 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key laboratory of kidney Disease and Blood Purification in Hunan Province, Changsha, Hunan 410011, China
| | - Xiaojun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key laboratory of kidney Disease and Blood Purification in Hunan Province, Changsha, Hunan 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key laboratory of kidney Disease and Blood Purification in Hunan Province, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Oligonucleotide-Based Therapies for Renal Diseases. Biomedicines 2021; 9:biomedicines9030303. [PMID: 33809425 PMCID: PMC8001091 DOI: 10.3390/biomedicines9030303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of chronic kidney disease (CKD) is increasing every year and represents a great cost for public healthcare systems, as the majority of these diseases are progressive. Therefore, there is an urgent need to develop new therapies. Oligonucleotide-based drugs are emerging as novel and promising alternatives to traditional drugs. Their expansion corresponds with new knowledge regarding the molecular basis underlying CKD, and they are already showing encouraging preclinical results, with two candidates being evaluated in clinical trials. However, despite recent technological advances, efficient kidney delivery remains challenging, and the presence of off-targets and side-effects precludes development and translation to the clinic. In this review, we provide an overview of the various oligotherapeutic strategies used preclinically, emphasizing the most recent findings in the field, together with the different strategies employed to achieve proper kidney delivery. The use of different nanotechnological platforms, including nanocarriers, nanoparticles, viral vectors or aptamers, and their potential for the development of more specific and effective treatments is also outlined.
Collapse
|
7
|
Mehta N, Zhang D, Li R, Wang T, Gava A, Parthasarathy P, Gao B, Krepinsky JC. Caveolin-1 regulation of Sp1 controls production of the antifibrotic protein follistatin in kidney mesangial cells. Cell Commun Signal 2019; 17:37. [PMID: 30995923 PMCID: PMC6472091 DOI: 10.1186/s12964-019-0351-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We previously showed that caveolin-1 (cav-1), an integral membrane protein, is required for the synthesis of matrix proteins by glomerular mesangial cells (MC). In a previous study to understand how cav-1 is involved in regulating matrix production, we had identified significant upregulation of the antifibrotic protein follistatin in cav-1 knockout MC. Follistatin inhibits the profibrotic effects of several members of the transforming growth factor beta superfamily, in particular the activins. Here, we characterize the molecular mechanism through which cav-1 regulates the expression of follistatin. METHODS Kidneys from cav-1 wild type and knockout (KO) mice were analyzed and primary cultures of MC from cav-1 wild-type and KO mice were utilized. FST promoter deletion constructs were generated to determine the region of the promoter important for mediating FST upregulation in cav-1 KO MC. siRNA-mediated down-regulation and overexpression of Sp1 in conjunction with luciferase activity assays, immunoprecipitation, western blotting and ChiP was used to assess the role of Sp1 in transcriptionally regulating FST expression. Pharmacologic kinase inhibitors and specific siRNA were used to determine the post-translational mechanism through which cav-1 affects Sp1 activity. RESULTS Our results establish that follistatin upregulation occurs at the transcript level. We identified Sp1 as the critical transcription factor regulating activation of the FST promoter in cav-1 KO MC through binding to a region within 123 bp of the transcription start site. We further determined that the lack of cav-1 increases Sp1 nuclear levels and transcriptional activity. This occurred through increased phosphoinositide 3-kinase (PI3K) activity and downstream protein kinase C (PKC) zeta-mediated phosphorylation and activation of Sp1. CONCLUSIONS These findings shed light on the transcriptional mechanism by which cav-1 represses the expression of a major antifibrotic protein, and can inform the development of novel antifibrotic treatment strategies.
Collapse
Affiliation(s)
- Neel Mehta
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Dan Zhang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Renzhong Li
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Tony Wang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Agata Gava
- Physiological Sciences Graduate Program, Health Sciences Centre, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Bo Gao
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada. .,St. Joseph's Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
8
|
Youn SW, Park KK. Small-nucleic-acid-based therapeutic strategy targeting the transcription factors regulating the vascular inflammation, remodeling and fibrosis in atherosclerosis. Int J Mol Sci 2015; 16:11804-33. [PMID: 26006249 PMCID: PMC4463731 DOI: 10.3390/ijms160511804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis arises when injury to the arterial wall induces an inflammatory cascade that is sustained by a complex network of cytokines, together with accumulation of lipids and fibrous material. Inflammatory cascades involve leukocyte adherence and chemotaxis, which are coordinated by the local secretion of adhesion molecules, chemotactic factors, and cytokines. Transcription factors are critical to the integration of the various steps of the cascade response to mediators of vascular injury, and are induced in a stimulus-dependent and cell-type-specific manner. Several small-nucleic-acid-based therapeutic strategies have recently been developed to target transcription factors: antisense oligodeoxynucleotides, RNA interference, microRNA, and decoy oligodeoxynucleotides. The aim of this review was to provide an overview of these particular targeted therapeutic strategies, toward regulation of the vascular inflammation, remodeling and fibrosis associated with atherosclerosis.
Collapse
Affiliation(s)
- Sung Won Youn
- Department of Radiology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea.
| | - Kwan-Kyu Park
- Department of Pathology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea.
| |
Collapse
|
9
|
Li R, Xiao J, Qing X, Xing J, Xia Y, Qi J, Liu X, Zhang S, Sheng X, Zhang X, Ji X. Sp1 Mediates a Therapeutic Role of MiR-7a/b in Angiotensin II-Induced Cardiac Fibrosis via Mechanism Involving the TGF-β and MAPKs Pathways in Cardiac Fibroblasts. PLoS One 2015; 10:e0125513. [PMID: 25923922 PMCID: PMC4414609 DOI: 10.1371/journal.pone.0125513] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/12/2015] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-7a/b (miR-7a/b) protects cardiac myocytes from apoptosis during ischemia/reperfusion injury; however, its role in angiotensin II (ANG II)-stimulated cardiac fibroblasts (CFs) remains unknown. Therefore, the present study investigated the anti-fibrotic mechanism of miR-7a/b in ANG II-treated CFs. ANG II stimulated the expression of specific protein 1 (Sp1) and collagen I in a dose- and time-dependent manner, and the overexpression of miR-7a/b significantly down-regulated the expression of Sp1 and collagen I stimulated by ANG II (100 nM) for 24 h. miR-7a/b overexpression effectively inhibited MMP-2 expression/activity and MMP-9 expression, as well as CF proliferation and migration. In addition, miR-7a/b also repressed the activation of TGF-β, ERK, JNK and p38 by ANG II. The inhibition of Sp1 binding activity by mithramycin prevented collagen I overproduction; however, miR-7a/b down-regulation reversed this effect. Further studies revealed that Sp1 also mediated miR-7a/b-regulated MMP expression and CF migration, as well as TGF-β and ERK activation. In conclusion, miR-7a/b has an anti-fibrotic role in ANG II-treated CFs that is mediated by Sp1 mechanism involving the TGF-β and MAPKs pathways.
Collapse
Affiliation(s)
- Rui Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jie Xiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoteng Qing
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Junhui Xing
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yanfei Xia
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jia Qi
- Department of Cardiology, Central Hospital of Zibo, Shandong, China
| | - Xiaojun Liu
- Department of Cardiology, Central Hospital of Zibo, Shandong, China
| | - Sen Zhang
- Department of Cardiology, Qilu Hospital of Shandong University, Qingdao, Shandong, China
| | - Xi Sheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
10
|
Rad SMAH, Bamdad T, Sadeghizadeh M, Arefian E, Lotfinia M, Ghanipour M. Transcription factor decoy against stem cells master regulators, Nanog and Oct-4: a possible approach for differentiation therapy. Tumour Biol 2014; 36:2621-9. [PMID: 25464862 DOI: 10.1007/s13277-014-2884-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/21/2014] [Indexed: 01/31/2023] Open
Abstract
Transcription factor decoys (TFDs) are exogenous oligonucleotides which can compete by cis-elements in promoters or enhancers for binding to TFs and downregulating gene expression in a specific manner. It is believed that tumor mass originates from cancer stem cells (CSCs) which the same with embryonic stem cells (ESCs) have the properties of both pluripotency and self-renewal (stemness). Many transcription factors such as Nanog, Oct-4, Sox2, Klf4, and Sall4 act as master regulators in the maintenance of stemness in both cell types. Differentiation therapy is based on this theory that by differentiation of CSCs, tumor mass can be eliminated with common cancer therapy methods. To our knowledge, the present study is the first report of a TFD approach against master regulator of stemness, Nanog, Oct-4, and Klf4, for downregulation purposes in P19 embryonic carcinoma stem cell. Different simple and complex decoys against Nanog, OCT-4, Sox2, and Klf4 were designed and used for this purpose. The results showed that the applied decoys especially Nanog-specific decoy decreased the expression of downstream genes.
Collapse
|
11
|
Kim KH, Park KK. Small RNA- and DNA-based gene therapy for the treatment of liver cirrhosis, where we are? World J Gastroenterol 2014; 20:14696-14705. [PMID: 25356032 PMCID: PMC4209535 DOI: 10.3748/wjg.v20.i40.14696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/03/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases with different aetiologies rely on the chronic activation of liver injuries which result in a fibrogenesis progression to the end stage of cirrhosis and liver failure. Based on the underlying cellular and molecular mechanisms of a liver fibrosis, there has been proposed several kinds of approaches for the treatment of liver fibrosis. Recently, liver gene therapy has been developed as an alternative way to liver transplantation, which is the only effective therapy for chronic liver diseases. The activation of hepatic stellate cells, a subsequent release of inflammatory cytokines and an accumulation of extracellular matrix during the liver fibrogenesis are the major obstacles to the treatment of liver fibrosis. Several targeted strategies have been developed, such as antisense oligodeoxynucleotides, RNA interference and decoy oligodeoxynucleotides to overcome this barriers. With this report an overview will be provided of targeted strategies for the treatment of liver cirrhosis, and particularly, of the targeted gene therapy using short RNA and DNA segments.
Collapse
|
12
|
Ghosh AK, Quaggin SE, Vaughan DE. Molecular basis of organ fibrosis: potential therapeutic approaches. Exp Biol Med (Maywood) 2013; 238:461-81. [PMID: 23856899 DOI: 10.1177/1535370213489441] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fibrosis, a non-physiological wound healing in multiple organs, is associated with end-stage pathological symptoms of a wide variety of vascular injury and inflammation related diseases. In response to chemical, immunological and physical insults, the body's defense system and matrix synthetic machinery respond to healing the wound and maintain tissue homeostasis. However, uncontrolled wound healing leads to scarring or fibrosis, a pathological condition characterized by excessive synthesis and accumulation of extracellular matrix proteins, loss of tissue homeostasis and organ failure. Understanding the actual cause of pathological wound healing and identification of igniter(s) of fibrogenesis would be helpful to design novel therapeutic approaches to control pathological wound healing and to prevent fibrosis related morbidity and mortality. In this article, we review the significance of a few key cytokines (TGF-β, IFN-γ, IL-10) transcriptional activators (Sp1, Egr-1, Smad3), repressors (Smad7, Fli-1, PPAR-γ, p53, Klotho) and epigenetic modulators (acetyltransferase, methyltransferases, deacetylases, microRNAs) involved in major matrix protein collagen synthesis under pathological stage of wound healing, and the potentiality of these regulators as therapeutic targets for fibrosis treatment. The significance of endothelial to mesenchymal transition (EndMT) and senescence, two newly emerged fields in fibrosis research, has also been discussed.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular Research Institute & Division of Nephrology, Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
13
|
Sp1 mediates microRNA-29c-regulated type I collagen production in renal tubular epithelial cells. Exp Cell Res 2013; 319:2254-65. [PMID: 23806282 DOI: 10.1016/j.yexcr.2013.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 02/06/2023]
Abstract
Specificity protein 1 (Sp1), a ubiquitously expressed transcription factor, plays a potential pathogenic role for fibrotic disease in many organs by regulating the expression of several fibrosis-related genes, however, its role in kidney fibrosis and the mechanisms regulating its expression remain incompletely clarified. Here, we found that Sp1 was markedly induced and closely correlated with interstitial type I collagen accumulation in kidney tubular epithelia from obstructive nephropathy. In vitro, both Sp1 and type I collagen expression were up-regulated in TGF-β1-treated kidney tubular epithelial cells (NRK-52E), whereas knockdown of Sp1 largely abolished TGF-β1-induced type I collagen production, suggesting that Sp1 induction is partially responsible for type I collagen expression. In addition, we found that miR-29c expression was remarkably reduced in either the tubular epithelial cells from kidney with UUO nephropathy or TGF-β1-treated NRK-52E cells. Knockdown of miR-29c could sufficiently induce Sp1 and type I collagen expression, whereas ectopic expression of miR-29c largely abolished their expression stimulated by TGF-β1 in NRK-52E cells. Furthermore, knockdown of Sp1 effectively hindered type I collagen induction stimulated by miR-29c down-regulation. Collectively, this study demonstrates that Sp1 acts as an essential mediator for miR-29c in regulating type I collagen production in tubular epithelial cells, which may provide a novel mechanistic insight about miR-29c in renal fibrosis.
Collapse
|
14
|
Sung WJ, Kim KH, Kim YJ, Chang YC, Lee IH, Park KK. Antifibrotic effect of synthetic Smad/Sp1 chimeric decoy oligodeoxynucleotide through the regulation of epithelial mesenchymal transition in unilateral ureteral obstruction model of mice. Exp Mol Pathol 2013; 95:136-43. [PMID: 23791891 DOI: 10.1016/j.yexmp.2013.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Renal tubulointerstitial fibrosis is considered to be a common final pathway related to the progressive loss of renal function in chronic kidney disease. It is characterized by the excessive accumulation of extracellular matrix through the pivotal role of epithelial-mesenchymal transition. Transforming growth factor-β1 is postulated to play a central role in renal fibrosis via a downstream pathway such as Smad. Specificity protein 1 (Sp1), which is another transcription factor, is also involved in the basal expression of extracellular matrix. In this study, we investigate the effect of Smad decoy oligodeoxynucleotides (ODN) and Sp1 decoy ODN in unilateral ureteral obstruction induced renal fibrosis in mice. Furthermore, the effectiveness of the newly designed chimeric decoy ODN, which contains both Smad and Sp1 binding sequences in one decoy molecule (Smad/Sp1 chi decoy ODN), was demonstrated. The expression of fibrosis and inflammatory related cytokines and products of fibrosis were ameliorated in the Smad, Sp1 and chimeric decoy ODN treated groups compared with the scrambled decoy ODN treated group. Epithelial-mesenchymal transition was suppressed by the Smad, Sp1 and Smad/Sp1 chi decoy ODN. Immunohistochemistry and Western-blot analysis revealed that Smad/Sp1 chi decoy ODN showed a more significant inhibitory effect on fibrosis and EMT compared with Smad and Sp1 decoy ODNs. These results support the efficacy of Smad/Sp1 chi decoy compared with a single Smad or Sp1 decoy ODNs in preventing renal fibrosis induced by unilateral ureteral obstruction.
Collapse
Affiliation(s)
- Woo Jung Sung
- Department of Pathology, Catholic University of Daegu, School of Medicine, 3056-6 Daemyung 4-Dong, Nam-Gu, Daegu 705-718, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Kim KH, Park JH, Lee WR, Park JS, Kim HC, Park KK. The inhibitory effect of chimeric decoy oligodeoxynucleotide against NF-κB and Sp1 in renal interstitial fibrosis. J Mol Med (Berl) 2012; 91:573-86. [PMID: 23114611 DOI: 10.1007/s00109-012-0972-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/01/2023]
Abstract
The pathophysiology of chronic renal disease is characterized by a progressive loss of renal function and deposition of the extracellular matrix, leading to widespread tissue fibrosis. Much of the matrix in chronic renal disease is synthesized by interstitial myofibroblasts, recruited from resident fibroblasts and circulating precursors. These changes are believed to be derived from epithelial-mesenchymal transition (EMT) of tubuloepithelial cells. To develop a novel therapeutic approach for treating renal fibrosis, we examined the simultaneous inhibition of the transcription factors NF-κB and Sp1 in a mouse model of unilateral ureteral obstruction (UUO). To simultaneously inhibit both NF-κB and Sp1, we developed chimeric (Chi) decoy oligodeoxynucleotide (ODN) which contained binding sequences for both NF-κB and Sp1 in a single decoy molecule to enhance the effective use of decoy ODN strategy. Chi decoy ODN significantly attenuated tubulointerstitial fibrosis in a mouse model of UUO compared to scrambled decoy ODN, as demonstrated by the reduced interstitial volume, macrophage infiltration, and fibrosis-related gene expression. Interestingly, Chi decoy ODN also regulated EMT-related gene expression, leading to the inhibition of renal fibrotic changes in vivo and in vitro. The present study demonstrates the feasibility of Chi decoy ODN treatment for preventing renal fibrosis and EMT processes. This strategy might be useful to improve the clinical outcome after chronic renal disease.
Collapse
Affiliation(s)
- Kyung-Hyun Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 3056-6 Daemyung 4-dong, Daegu, Nam-gu, 705-718, Republic of Korea
| | | | | | | | | | | |
Collapse
|
16
|
Chen H, Zhou Y, Chen KQ, An G, Ji SY, Chen QK. Anti-fibrotic effects via regulation of transcription factor Sp1 on hepatic stellate cells. Cell Physiol Biochem 2012; 29:51-60. [PMID: 22415074 DOI: 10.1159/000337586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatic stellate cells (HSCs), the central cells in hepatic fibrosis, are characterized by sustaining activation, a process that consists in increased proliferation and over-expression of fibrotic genes. Transcription factor Sp1 mediates the expression of a variety of fibrotic genes expression and thereby play an important role in fibrosis. In addition, previous reports have indicated that Sp1 binding activity is greatly increased in activated HSCs. Thus, our aim was to investigate the anti-proliferative and anti-fibrotic effects of the oligonuceotide decoy of the transcription factor Sp1, ODN, a potent inhibitor of Sp1-activated transcription. METHODS We optimized Lipofectamin 2000 (LF2000):ODN DNA ratio for the transfection of hepatic stellate cells HSC-T6. Then we measure the effect of transfected ODN on HSC-T6 cells' proliferation and fibrotic gene expression, and study the mechanism involved. RESULTS At a DNA concentration of 1 μM and a ratio ODN DNA:LF2000 of 1:3, HSC-T6 cells have the maximal transfection efficiency with the lowest toxicity. Transfected ODN effectively blocks Sp1 binding to the promoter regions of cell cycle regulatory proteins cyclin D1, p27(KIP1) and fibrotic genes, including transforming growth factor (TGF)-β1, Platelet-derived growth factor (PDGF)-BB, α-SMA, α1 (I) collagen and tissue inhibitor of metalloproteinases-1 (TIMP-1). ODN inhibits HSC-T6 proliferation and fibrotic genes expression in vitro. CONCLUSION Sp1 is a key transcription factor that mediates proliferation and fibrotic gene synthesis of HSC-T6, inhibition of Sp1 with decoy ODN may be an effective approach to prevent the progression of hepatic fibrosis.
Collapse
Affiliation(s)
- Hao Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
17
|
Soldati C, Bithell A, Conforti P, Cattaneo E, Buckley NJ. Rescue of gene expression by modified REST decoy oligonucleotides in a cellular model of Huntington's disease. J Neurochem 2010; 116:415-25. [PMID: 21105876 DOI: 10.1111/j.1471-4159.2010.07122.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transcriptional dysfunction is a prominent hallmark of Huntington's disease (HD). Several transcription factors have been implicated in the aetiology of HD progression and one of the most prominent is repressor element 1 (RE1) silencing transcription factor (REST). REST is a global repressor of neuronal gene expression and in the presence of mutant Huntingtin increased nuclear REST levels lead to elevated RE1 occupancy and a concomitant increase in target gene repression, including brain-derived neurotrophic factor. It is of great interest to devise strategies to reverse transcriptional dysregulation caused by increased nuclear REST and determine the consequences in HD. Thus far, such strategies have involved RNAi or mutant REST constructs. Decoys are double-stranded oligodeoxynucleotides corresponding to the DNA-binding element of a transcription factor and act to sequester it, thereby abrogating its transcriptional activity. Here, we report the use of a novel decoy strategy to rescue REST target gene expression in a cellular model of HD. We show that delivery of the decoy in cells expressing mutant Huntingtin leads to its specific interaction with REST, a reduction in REST occupancy of RE1s and rescue of target gene expression, including Bdnf. These data point to an alternative strategy for rebalancing the transcriptional dysregulation in HD.
Collapse
Affiliation(s)
- Chiara Soldati
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, The James Black Centre, London, UK
| | | | | | | | | |
Collapse
|
18
|
N-methyl amine-substituted fluoxetine derivatives: New dopamine transporter inhibitors. Arch Pharm Res 2010; 32:1663-71. [DOI: 10.1007/s12272-009-2201-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 08/28/2009] [Accepted: 08/29/2009] [Indexed: 10/19/2022]
|
19
|
Park JH, Jo JH, Kim KH, Kim SJ, Lee WR, Park KK, Park JB. Antifibrotic effect through the regulation of transcription factor using ring type-Sp1 decoy oligodeoxynucleotide in carbon tetrachloride-induced liver fibrosis. J Gene Med 2009; 11:824-33. [PMID: 19554625 DOI: 10.1002/jgm.1355] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Liver fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM). Recent advances in the knowledge about the cellular, molecular and genetic aspects of fibrosis have opened a new era of research on liver cirrhosis. A transcription factor, Sp1, originally described as a ubiquitous transcription factor, is involved in the basal expression of ECM genes and may be important in the fibrotic processes. METHODS The chronic hepatic damage received intraperitoneal injection of carbon tetrachloride (2 mg/kg) dissolved in corn oil (1 : 3 ratio) three times a weekly for 8 weeks. The delivery of decoy oligodeoxynucleotide (ODN) was performed by injection of 10 microg of scrambled decoy ODN or 10 microg of ring type (R)-Sp1 decoy ODN through the mouse tail vein. All animals of each group were sacrificed, DNA binding activity, expression of cytokines and histological analysis were measured. RESULTS We have generated a R-Sp1 decoy ODN that effectively blocks Sp1 binding to the promoter region for transcription regulation of transforming growth factor (TGF)-beta1. The expression of fibrotic cytokines and inflammatory cytokines was decreased by using the R-Sp1 decoy ODN in liver cirrhosis. CONCLUSIONS The present study demonstrates that the R-Sp1 decoy ODN inhibits TGF-beta1 expression in liver cirrhosis. These results indicate that targeting Sp1 can efficiently block ECM expression, and suggest that such an approach may represent an interesting therapeutic alternative towards the treatment of cirrhosis.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Department of Pathology, Catholic University of Daegu, College of Medicine, Nam-gu, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Kim KH, Lee ES, Cha SH, Park JH, Park JS, Chang YC, Park KK. Transcriptional regulation of NF-kappaB by ring type decoy oligodeoxynucleotide in an animal model of nephropathy. Exp Mol Pathol 2008; 86:114-20. [PMID: 19118545 DOI: 10.1016/j.yexmp.2008.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 11/26/2008] [Indexed: 11/26/2022]
Abstract
Inflammation of the tubulointerstitial compartment, leading to fibrosis, is a major factor in the progressive loss of renal function in a wide variety of kidney diseases. In order to develop a therapeutic approach for nephropathy, we examined the simultaneous inhibition of transcription factor nuclear factor-kappaB (NF-kappaB), which is responsible for a wide range of cellular processes, especially inflammation, in a mouse model of unilateral ureteral obstruction. In this study, we employed a ring-type NF-kappaB (R-NF-kappaB) decoy oligodeoxynucleotide (ODN), containing consensus promoter sequences of NF-kappaB. This R-NF-kappaB decoy ODN is more highly resistant to degradation by nucleases than is the current phosphothiolated double stranded NF-kappaB decoy ODN. The inhibitory effect of R-NF-kappaB decoy ODN on nephropathy was confirmed by molecular and histological examinations. In addition, treatment with R-NF-kappaB decoy ODN reduced the activities of inflammatory cytokines, such as tumor necrosis factor-alpha and interleukin-1beta. Interestingly, the treatment with R-NF-kappaB decoy ODN also suppressed the gene expression of transforming growth factor-beta1 and fibronectin, resulting in the inhibition of fibrotic changes. These results suggest that the inhibition of NF-kappaB using R-NF-kappaB decoy ODN has potential therapeutic application in the prevention of renal fibrosis.
Collapse
Affiliation(s)
- Kyung-Hyun Kim
- Department of Pathology, Catholic University of Daegu, College of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Antisense makes sense in engineered regenerative medicine. Pharm Res 2008; 26:263-75. [PMID: 19015958 DOI: 10.1007/s11095-008-9772-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/28/2008] [Indexed: 12/16/2022]
Abstract
The use of antisense strategies such as ribozymes, oligodeoxynucleotides (ODNs) and small interfering RNA (siRNA) in gene therapy, in conjunction with the use of stem cells and tissue engineering, has opened up possibilities in curing degenerative diseases and injuries to non-regenerating organs and tissues. With their unique ability to down-regulate or silence gene expression, antisense oligonucleotides are uniquely suited in turning down the production of pathogenic or undesirable proteins and cytokines. Here, we review the antisense strategies and their applications in regenerative medicine with a focus on their efficacies in promoting cell viability, regulating cell functionalities as well as shaping an optimal microenvironment for therapeutic purposes.
Collapse
|
22
|
Lok CN, Ehrlich HP, White SL, Buttolph TR, Cutroneo KR, Chiu JF. Oligodeoxynucleotide decoy therapy blocks type 1 procollagen transcription and the prolyl hydroxylase beta subunit translation. J Cell Biochem 2008; 103:1066-75. [PMID: 18027883 DOI: 10.1002/jcb.21477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Persistent transforming growth factor-beta1 (TGF-beta1) exposure to lungs increases type 1 collagen synthesis and deposition resulting in excess fibrosis which leads to morbidity and possibly death. We now report using human embryonic lung fibroblasts in the presence of TGF-beta1, a novel double-stranded (ds) DNA decoy with phosphorothioate (PT) linkages, containing the TGF-beta cis-element found in the distal promoter region of the COL1A1 gene which silences COL1A1 gene expression. In a cell-free protein translation system, we have previously reported that collagen synthesis was inhibited by disulfide isomerase, the prolyl-4-hydroxylase (P-4-H) beta subunit. By comparative proteomics dsdecoy therapy increased the levels of disulfide isomerase, the P-4-H beta subunit. These findings taken together support the notion that the dsdecoy inhibits type 1 collagen synthesis at both the transcriptional and translational levels.
Collapse
Affiliation(s)
- Chun-Nam Lok
- Department of Anatomy, Hong Kong University, Peoples' Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Kang JH, Chae YM, Park KK, Kim CH, Lee IS, Chang YC. Suppression of mesangial cell proliferation and extracellular matrix production in streptozotocin-induced diabetic rats by Sp1 decoy oligodeoxynucleotide in vitro and in vivo. J Cell Biochem 2008; 103:663-74. [PMID: 17557290 DOI: 10.1002/jcb.21440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcription factor Sp-1 is an important fibrogenic factor that is involved in the pathogenesis of diabetic nephropathy. In this study, we examined the effect of Sp1 decoy oligodeoxynucleotides (ODNs) on the extracellular matrix (ECM) gene expression in cultured rat mesangial cells (RMC) and streptozotocin (STZ)-induced diabetic rats. The ring-type Sp1 decoy ODNs significantly decreased ECM mRNA expression and Sp1 binding to the promoter region of these PDGF-induced genes in RMC. In addition, the decoy ODNs was introduced into the left renal artery of diabetic rat using the hemagglutinating virus of Japan (HVJ)-liposome mediated gene transfer method and effectively delivered to the kidney. On 14 days after ring-type Sp1 decoy ODNs injection, type IV collagen, fibronectin mRNA, and protein expression were markedly decreased, and the rate of urinary creatinine excretion was reduced in the ring-type Sp1 decoy ODNs-treated diabetic rats. These results indicated that the ring-type Sp1 decoy ODNs would be superior to P-Sp1 ODNs. Also, the R-Sp1 decoy ODN when introduced in vivo, effectively reduced ECM production during the progression of nephropathy. Therefore, ring-type Sp1 decoy is a promising tool for developing new therapeutic applications for progressive diabetic nephropathy.
Collapse
Affiliation(s)
- Jeong Han Kang
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu 705-718, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Hecker M, Wagner S, Henning SW, Wagner AH. Decoy Oligodeoxynucleotides to Treat Inflammatory Diseases. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Markus Hecker
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg Germany
| | | | | | - Andreas H. Wagner
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg Germany
| |
Collapse
|
25
|
Kum YS, Kim KH, Park TI, Suh IS, Oh HK, Cho CH, Park JB, Chang YC, Park JH, Lee KG, Park KK. Antifibrotic effect via the regulation of transcription factor Sp1 in lung fibrosis. Biochem Biophys Res Commun 2007; 363:368-74. [PMID: 17869213 DOI: 10.1016/j.bbrc.2007.08.176] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
The aim of this study is to evaluate the antifibrotic effect of ring-type Sp1 decoy oligonucleotides (ODNs) through blocking the transcription of transforming growth factor (TGF)-beta1 and its downstream target genes. In this experiment, the expression of TGF-beta1, metalloproteinase (MMP)-13, and fibronectin was decreased in the group with the treatment of the ring-type Sp1 decoy ODNs. Also, alpha-smooth muscle actin positive bronchial lining cells and alveolar epithelial cells were observed, especially around the lesions of extracellular matrix (ECM) deposition. These findings provide evidences for the finding of pulmonary epithelial-mesenchymal transition (EMT) and the effectiveness of Sp1 transcription factor as a target for the gene therapy on lung fibrosis.
Collapse
Affiliation(s)
- Yoon-Seup Kum
- Department of Pathology, Catholic University of Daegu, College of Medicine, 3056-6, Daemyung 4-Dong, Nam-Gu, Daegu 705-718, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kwon YG, Lee YG, Kang I, Lee ES, Park KK, Keum YS, Kim KH, Park JS. The Effect of Ring-type NF-kappa B (NF-kB) Decoy Oligodeoxynucleotide on the Kidney for an Experimental Unilateral Ureteral Obstruction in Mice. Korean J Urol 2007; 48:815. [DOI: 10.4111/kju.2007.48.8.815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Affiliation(s)
- Young Gun Kwon
- Department of Urology, Daegu Catholic University College of Medicine, Daegu, Korea
| | - Young Guk Lee
- Department of Urology, Daegu Catholic University College of Medicine, Daegu, Korea
| | - Il Kang
- Department of Urology, Daegu Catholic University College of Medicine, Daegu, Korea
| | - Eun Suk Lee
- Department of Urology, Daegu Catholic University College of Medicine, Daegu, Korea
| | - Kwan Kyu Park
- Department of Pathology, Daegu Catholic University College of Medicine, Daegu, Korea
| | - Yoon Seop Keum
- Department of Pathology, Daegu Catholic University College of Medicine, Daegu, Korea
| | - Kyung Hyun Kim
- Department of Pathology, Daegu Catholic University College of Medicine, Daegu, Korea
| | - Jae Shin Park
- Department of Urology, Daegu Catholic University College of Medicine, Daegu, Korea
| |
Collapse
|