1
|
Ye D, Chukwu C, Yang Y, Hu Z, Chen H. Adeno-associated virus vector delivery to the brain: Technology advancements and clinical applications. Adv Drug Deliv Rev 2024; 211:115363. [PMID: 38906479 DOI: 10.1016/j.addr.2024.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Adeno-associated virus (AAV) vectors have emerged as a promising tool in the development of gene therapies for various neurological diseases, including Alzheimer's disease and Parkinson's disease. However, the blood-brain barrier (BBB) poses a significant challenge to successfully delivering AAV vectors to the brain. Strategies that can overcome the BBB to improve the AAV delivery efficiency to the brain are essential to successful brain-targeted gene therapy. This review provides an overview of existing strategies employed for AAV delivery to the brain, including direct intraparenchymal injection, intra-cerebral spinal fluid injection, intranasal delivery, and intravenous injection of BBB-permeable AAVs. Focused ultrasound has emerged as a promising technology for the noninvasive and spatially targeted delivery of AAV administered by intravenous injection. This review also summarizes each strategy's current preclinical and clinical applications in treating neurological diseases. Moreover, this review includes a detailed discussion of the recent advances in the emerging focused ultrasound-mediated AAV delivery. Understanding the state-of-the-art of these gene delivery approaches is critical for future technology development to fulfill the great promise of AAV in neurological disease treatment.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO 63110 USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
2
|
Choi SE, Rahman A, Ayoub T, Botelho O, Lee G, Gazdzinski LM, Wheeler AL, Weksberg R, Guger SL, Schachar RJ, Ito S, Hitzler J, Nieman BJ. High-frequency ultrasound-guided intrathecal injections in a young mouse model: Targeting the central nervous system in drug delivery. J Neurosci Methods 2023; 386:109778. [PMID: 36572156 DOI: 10.1016/j.jneumeth.2022.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Intrathecal injections provide important access to the central nervous system for delivery of anesthetic, analgesic or chemotherapeutic drugs that do not otherwise cross the blood-brain barrier. The administration of drugs via this route in animal models is challenging due to an inability to visualize the small target space during injection. Successful drug delivery therefore requires expertise in indirectly assessing vertebral and spinal cord anatomy and gaining advanced procedural skills. These factors are especially compounded in small animals such as mice (the most common mammalian model) and in investigations modeling pediatric drug delivery, where the animal is even smaller. NEW METHOD To address these issues, we have developed a method in which high-frequency ultrasound imaging is used to visualize and target the lumbar intrathecal space for injections. The technique is demonstrated in mice as young as postnatal day 16. To evaluate the method, a gadolinium-based magnetic resonance imaging (MRI) contrast agent was injected intrathecally, and subsequent brain delivery was verified post-injection by MRI. RESULTS Successful intrathecal injections of the MRI contrast agent showed distribution to the brain. In this study, we achieved a targeting success rate of 80% in 20 animals. COMPARISON WITH EXISTING METHODS AND CONCLUSION We expect that the new method will be convenient for drug delivery to the central nervous system in rodent research and provide higher reliability than unguided approaches, an essential contribution that will enable intrathecal delivery in pediatric mouse models.
Collapse
Affiliation(s)
- Sun Eui Choi
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Anum Rahman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tiffany Ayoub
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Owen Botelho
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Gail Lee
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lisa M Gazdzinski
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Anne L Wheeler
- Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Rosanna Weksberg
- Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Institutes of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sharon L Guger
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Russell J Schachar
- Institutes of Medical Science, University of Toronto, Toronto, ON, Canada; Psychiatry Research, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, ON, Canada
| | - Shinya Ito
- Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Johann Hitzler
- Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, ON, Canada
| |
Collapse
|
3
|
Podetz-Pedersen KM, Laoharawee K, Singh S, Nguyen TT, Smith MC, Temme A, Kozarsky K, McIvor RS, Belur LR. Neurologic Recovery in MPS I and MPS II Mice by AAV9-Mediated Gene Transfer to the CNS After the Development of Cognitive Dysfunction. Hum Gene Ther 2023; 34:8-18. [PMID: 36541357 PMCID: PMC10024071 DOI: 10.1089/hum.2022.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a group of recessively inherited conditions caused by deficiency of lysosomal enzymes essential to the catabolism of glycosaminoglycans (GAG). MPS I is caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA), while MPS II is caused by a lack of iduronate-2-sulfatase (IDS). Lack of these enzymes leads to early mortality and morbidity, often including neurological deficits. Enzyme replacement therapy has markedly improved the quality of life for MPS I and MPS II affected individuals but is not effective in addressing neurologic manifestations. For MPS I, hematopoietic stem cell transplant has shown effectiveness in mitigating the progression of neurologic disease when carried out in early in life, but neurologic function is not restored in patients transplanted later in life. For both MPS I and II, gene therapy has been shown to prevent neurologic deficits in affected mice when administered early, but the effectiveness of treatment after the onset of neurologic disease manifestations has not been characterized. To test if neurocognitive function can be recovered in older animals, human IDUA or IDS-encoding AAV9 vector was administered by intracerebroventricular injection into MPS I and MPS II mice, respectively, after the development of neurologic deficit. Vector sequences were distributed throughout the brains of treated animals, associated with high levels of enzyme activity and normalized GAG storage. Two months after vector infusion, treated mice exhibited spatial navigation and learning skills that were normalized, that is, indistinguishable from those of normal unaffected mice, and significantly improved compared to untreated, affected animals. We conclude that cognitive function was restored by AAV9-mediated, central nervous system (CNS)-directed gene transfer in the murine models of MPS I and MPS II, suggesting that gene transfer may result in neurodevelopment improvements in severe MPS I and MPS II when carried out after the onset of cognitive decline.
Collapse
Affiliation(s)
- Kelly M. Podetz-Pedersen
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kanut Laoharawee
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sajya Singh
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tam T. Nguyen
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miles C. Smith
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alexa Temme
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - R. Scott McIvor
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lalitha R. Belur
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Khang M, Bindra RS, Mark Saltzman W. Intrathecal delivery and its applications in leptomeningeal disease. Adv Drug Deliv Rev 2022; 186:114338. [PMID: 35561835 DOI: 10.1016/j.addr.2022.114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
Intrathecal delivery (IT) of opiates into the cerebrospinal fluid (CSF) for anesthesia and pain relief has been used clinically for decades, but this relatively straightforward approach of bypassing the blood-brain barrier has been underutilized for other indications because of its lack of utility in delivering small lipid-soluble drugs. However, emerging evidence suggests that IT drug delivery be an efficacious strategy for the treatment of cancers in which there is leptomeningeal spread of disease. In this review, we discuss CSF flow dynamics and CSF clearance pathways in the context of intrathecal delivery. We discuss human and animal studies of several new classes of therapeutic agents-cellular, protein, nucleic acid, and nanoparticle-based small molecules-that may benefit from IT delivery. The complexity of the CSF compartment presents several key challenges in predicting biodistribution of IT-delivered drugs. New approaches and strategies are needed that can overcome the high rates of turnover in the CSF to reach specific tissues or cellular targets.
Collapse
|
5
|
Zhang X, Chai Z, Lee Dobbins A, Itano MS, Askew C, Miao Z, Niu H, Samulski RJ, Li C. Customized blood-brain barrier shuttle peptide to increase AAV9 vector crossing the BBB and augment transduction in the brain. Biomaterials 2022; 281:121340. [PMID: 34998171 PMCID: PMC8810684 DOI: 10.1016/j.biomaterials.2021.121340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/24/2021] [Accepted: 12/25/2021] [Indexed: 02/03/2023]
Abstract
Recombinant adeno-associated virus (rAAV) vectors have been widely used as favored delivery vehicles for the treatment of inherited diseases in clinical trials, including neurological diseases. However, the noninvasive systemic delivery of rAAV to the central nervous system is severely hampered by the blood-brain barrier (BBB). Several approaches have been exploited to enhance AAV vector brain transduction after systemic administration, including genetic modification of AAV capsids and physical methods. However, these approaches are not always predictive of desirable outcomes in humans and induce complications. It is imperative to explore novel strategies to increase the ability of AAV9 to cross the BBB for enhanced brain transduction. Herein, we have conducted a combinatorial in vivo/in vitro phage display library screening in mouse brains and purified AAV9 virions to identify a customized BBB shuttle peptide, designated as PB5-3. The PB5-3 peptide specifically bound to AAV9 virions and enhanced widespread transduction of AAV9 in mouse brains, especially in neuronal cells, after systemic administration. Further study demonstrated that systemic administration of AAV9 vectors encoding IDUA complexed with PB5-3 increased the phenotypic correction in the brains of MPS I mice. Mechanistic studies revealed that the PB5-3 peptide effectively increased AAV9 trafficking and transcytosis efficiency in the human BBB model hCMEC/D3 cell line but did not interfere with AAV9 binding to the receptor terminal N-linked galactosylated glycans. Additionally, the PB5-3 peptide slowed the clearance of AAV9 from blood without hepatic toxicity. This study highlights, for the first time, the potential of this combinatorial approach for the isolation of peptides that interact with specific AAV vectors for enhanced and targeted AAV transduction. This promising approach will open new combined therapeutic avenues and shed light on the potential applications of peptides for the treatment of human diseases in future clinical trials with AAV vector-mediated gene delivery.
Collapse
Affiliation(s)
- Xintao Zhang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zheng Chai
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda Lee Dobbins
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle S Itano
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Askew
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhe Miao
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongqian Niu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021; 14:695937. [PMID: 34690692 PMCID: PMC8527017 DOI: 10.3389/fnmol.2021.695937] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.
Collapse
Affiliation(s)
- Thomas Leth Jensen
- Department of Neurology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
7
|
Srivastava V, Singh A, Jain GK, Ahmad FJ, Shukla R, Kesharwani P. Viral vectors as a promising nanotherapeutic approach against neurodegenerative disorders. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Stepankova K, Jendelova P, Machova Urdzikova L. Planet of the AAVs: The Spinal Cord Injury Episode. Biomedicines 2021; 9:613. [PMID: 34071245 PMCID: PMC8228984 DOI: 10.3390/biomedicines9060613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The spinal cord injury (SCI) is a medical and life-disrupting condition with devastating consequences for the physical, social, and professional welfare of patients, and there is no adequate treatment for it. At the same time, gene therapy has been studied as a promising approach for the treatment of neurological and neurodegenerative disorders by delivering remedial genes to the central nervous system (CNS), of which the spinal cord is a part. For gene therapy, multiple vectors have been introduced, including integrating lentiviral vectors and non-integrating adeno-associated virus (AAV) vectors. AAV vectors are a promising system for transgene delivery into the CNS due to their safety profile as well as long-term gene expression. Gene therapy mediated by AAV vectors shows potential for treating SCI by delivering certain genetic information to specific cell types. This review has focused on a potential treatment of SCI by gene therapy using AAV vectors.
Collapse
Affiliation(s)
- Katerina Stepankova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
9
|
Belur LR, Romero M, Lee J, Podetz-Pedersen KM, Nan Z, Riedl MS, Vulchanova L, Kitto KF, Fairbanks CA, Kozarsky KF, Orchard PJ, Frey WH, Low WC, McIvor RS. Comparative Effectiveness of Intracerebroventricular, Intrathecal, and Intranasal Routes of AAV9 Vector Administration for Genetic Therapy of Neurologic Disease in Murine Mucopolysaccharidosis Type I. Front Mol Neurosci 2021; 14:618360. [PMID: 34040503 PMCID: PMC8141728 DOI: 10.3389/fnmol.2021.618360] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). The two current treatments [hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT)], are insufficiently effective in addressing neurologic disease, in part due to the inability of lysosomal enzyme to cross the blood brain barrier. With a goal to more effectively treat neurologic disease, we have investigated the effectiveness of AAV-mediated IDUA gene delivery to the brain using several different routes of administration. Animals were treated by either direct intracerebroventricular (ICV) injection, by intrathecal (IT) infusion into the cerebrospinal fluid, or by intranasal (IN) instillation of AAV9-IDUA vector. AAV9-IDUA was administered to IDUA-deficient mice that were either immunosuppressed with cyclophosphamide (CP), or immunotolerized at birth by weekly injections of human iduronidase. In animals treated by ICV or IT administration, levels of IDUA enzyme ranged from 3- to 1000-fold that of wild type levels in all parts of the microdissected brain. In animals administered vector intranasally, enzyme levels were 100-fold that of wild type in the olfactory bulb, but enzyme expression was close to wild type levels in other parts of the brain. Glycosaminoglycan levels were reduced to normal in ICV and IT treated mice, and in IN treated mice they were normalized in the olfactory bulb, or reduced in other parts of the brain. Immunohistochemical analysis showed extensive IDUA expression in all parts of the brain of ICV treated mice, while IT treated animals showed transduction that was primarily restricted to the hind brain with some sporadic labeling seen in the mid- and fore brain. At 6 months of age, animals were tested for spatial navigation, memory, and neurocognitive function in the Barnes maze; all treated animals were indistinguishable from normal heterozygous control animals, while untreated IDUA deficient animals exhibited significant learning and spatial navigation deficits. We conclude that IT and IN routes are acceptable and alternate routes of administration, respectively, of AAV vector delivery to the brain with effective IDUA expression, while all three routes of administration prevent the emergence of neurocognitive deficiency in a mouse MPS I model.
Collapse
Affiliation(s)
- Lalitha R. Belur
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Megan Romero
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Junggu Lee
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kelly M. Podetz-Pedersen
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Zhenhong Nan
- Department of Neurosurgery and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Maureen S. Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Kelley F. Kitto
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn A. Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | | | - Paul J. Orchard
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - William H. Frey
- HealthPartners Neurosciences, Regions Hospital, St. Paul, MN, United States
| | - Walter C. Low
- Department of Neurosurgery and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - R. Scott McIvor
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Massaro G, Geard AF, Liu W, Coombe-Tennant O, Waddington SN, Baruteau J, Gissen P, Rahim AA. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021; 11:611. [PMID: 33924076 PMCID: PMC8074255 DOI: 10.3390/biom11040611] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Amy F. Geard
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Wenfei Liu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Oliver Coombe-Tennant
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Simon N. Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Gene Transfer Technology Group, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK;
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| |
Collapse
|
11
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
Affiliation(s)
- Luisa Natalia Pimentel Vera
- Centro de Pesquisa Experimental, Centro De Terapia Gênica- Hospital De Clínicas De Porto Alegre, Porto Alegre, Brazil
| | - Guilherme Baldo
- Centro de Pesquisa Experimental, Centro De Terapia Gênica- Hospital De Clínicas De Porto Alegre, Porto Alegre, Brazil
- Centro de Pesquisa Experimental, Programa De Pós-Graduação Em Genética E Biologia Molecular-UFRGS, Porto Alegre, Brazil
| |
Collapse
|
13
|
Detailed Method for Intrathecal Delivery of Gene Therapeutics by Direct Lumbar Puncture in Mice. Methods Mol Biol 2019; 1937:305-312. [PMID: 30706406 DOI: 10.1007/978-1-4939-9065-8_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Delivery of viral vectors directly into the central nervous system (CNS) has emerged as an important tool for the refinement of gene therapy. Intrathecal delivery by direct lumbar puncture in conscious rodents offers a minimally invasive approach that avoids tissue damage and/or destruction. Here we describe delivery of small quantities of viral vector product to the intrathecal space of rodents via direct lumbar puncture aided by a catheter.
Collapse
|
14
|
CNS-Wide over Expression of Fractalkine Improves Cognitive Functioning in a Tauopathy Model. J Neuroimmune Pharmacol 2018; 14:312-325. [PMID: 30499006 PMCID: PMC6525127 DOI: 10.1007/s11481-018-9822-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022]
Abstract
Accumulating evidence increasingly implicates regulation of neuroinflammation as a potential therapeutic target in Alzheimer’s disease and other neurodegenerative disorders. Fractalkine (FKN) is a unique chemokine that is expressed and secreted by neurons and reduces expression of pro-inflammatory genes. To further demonstrate the utility of agents that increase FKN signaling throughout the central nervous system as possible therapies for AD, we assessed the impact of soluble FKN (sFKN) over expression on cognition in tau depositing rTg450 mice after the onset of cognitive deficits. Using adeno-associated virus serotype 4, we infected cells lining the ventricular system with soluble FKN to increase FKN signaling over a larger fraction of the brain than achieved with intraparenchymal injections. We found that soluble FKN over expression by cells lining the ventricles significantly improved cognitive performance on the novel mouse recognition and radial arm water maze tasks. These benefits were achieved without detectable reductions in tau hyperphosphorylation, hippocampal atrophy, or microglial CD45 expression. Utilizing qPCR, we report a significant increase in Vegfa expression, indicating an increase in trophic support and possible neovascularization in AAV-sFKN-injected mice. To our knowledge, this is the first demonstration that FKN over expression can rescue cognitive function in a tau depositing mouse line. Regulating neuroinflammation is an attractive therapeutic target for Alzheimer’s disease. Microglial activation can not only drive pathology but also accelerate cognitive decline. The chemokine fractalkine regulates the microglial phenotype, increasing trophic support of neurons, and significantly improving cognitive functioning in the rTg4510 mouse model of tauopathy. ![]()
Collapse
|
15
|
Attenuation of the Niemann-Pick type C2 disease phenotype by intracisternal administration of an AAVrh.10 vector expressing Npc2. Exp Neurol 2018; 306:22-33. [DOI: 10.1016/j.expneurol.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/28/2018] [Accepted: 04/01/2018] [Indexed: 11/18/2022]
|
16
|
Wang D, Li J, Tran K, Burt DR, Zhong L, Gao G. Slow Infusion of Recombinant Adeno-Associated Viruses into the Mouse Cerebrospinal Fluid Space. Hum Gene Ther Methods 2018; 29:75-85. [PMID: 29596011 DOI: 10.1089/hgtb.2017.250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are the leading in vivo gene delivery platform, and have been extensively studied in gene therapy targeting various tissues, including the central nervous system (CNS). A single-bolus rAAV injection to the cerebrospinal fluid (CSF) space has been widely used to target the CNS, but it suffers from several drawbacks, such as leakage to peripheral tissues. Here, a protocol is described using an osmotic pump to infuse rAAV slowly into the mouse CSF space. Compared to the single-bolus injection technique, pump infusion can lead to higher CNS transduction and lower transduction in the peripheral tissues.
Collapse
Affiliation(s)
- Dan Wang
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Jia Li
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Karen Tran
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Daniel R Burt
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Li Zhong
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Guangping Gao
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts.,4 Viral Vector Core, University of Massachusetts Medical School , Worcester, Massachusetts.,5 West China Hospital, Sichuan University , Chengdu, China
| |
Collapse
|
17
|
Hordeaux J, Dubreil L, Robveille C, Deniaud J, Pascal Q, Dequéant B, Pailloux J, Lagalice L, Ledevin M, Babarit C, Costiou P, Jamme F, Fusellier M, Mallem Y, Ciron C, Huchet C, Caillaud C, Colle MA. Long-term neurologic and cardiac correction by intrathecal gene therapy in Pompe disease. Acta Neuropathol Commun 2017; 5:66. [PMID: 28874182 PMCID: PMC5585940 DOI: 10.1186/s40478-017-0464-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022] Open
Abstract
Pompe disease is a lysosomal storage disorder caused by acid-α-glucosidase (GAA) deficiency, leading to glycogen storage. The disease manifests as a fatal cardiomyopathy in infantile form. Enzyme replacement therapy (ERT) has recently prolonged the lifespan of these patients, revealing a new natural history. The neurologic phenotype and the persistence of selective muscular weakness in some patients could be attributed to the central nervous system (CNS) storage uncorrected by ERT. GAA-KO 6neo/6neo mice were treated with a single intrathecal administration of adeno-associated recombinant vector (AAV) mediated gene transfer of human GAA at 1 month and their neurologic, neuromuscular, and cardiac function was assessed for 1 year. We demonstrate a significant functional neurologic correction in treated animals from 4 months onward, a neuromuscular improvement from 9 months onward, and a correction of the hypertrophic cardiomyopathy at 12 months. The regions most affected by the disease i.e. the brainstem, spinal cord, and the left cardiac ventricular wall all show enzymatic, biochemical and histological correction. Muscle glycogen storage is not affected by the treatment, thus suggesting that the restoration of muscle functionality is directly related to the CNS correction. This unprecedented global and long-term CNS and cardiac cure offer new perspectives for the management of patients.
Collapse
|
18
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
19
|
Belur LR, Temme A, Podetz-Pedersen KM, Riedl M, Vulchanova L, Robinson N, Hanson LR, Kozarsky KF, Orchard PJ, Frey WH, Low WC, McIvor RS. Intranasal Adeno-Associated Virus Mediated Gene Delivery and Expression of Human Iduronidase in the Central Nervous System: A Noninvasive and Effective Approach for Prevention of Neurologic Disease in Mucopolysaccharidosis Type I. Hum Gene Ther 2017; 28:576-587. [PMID: 28462595 DOI: 10.1089/hum.2017.187] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a progressive, multi-systemic, inherited metabolic disease caused by deficiency of α-L-iduronidase (IDUA). Current treatments for this disease are ineffective in treating central nervous system (CNS) disease due to the inability of lysosomal enzymes to traverse the blood-brain barrier. A noninvasive and effective approach was taken in the treatment of CNS disease by intranasal administration of an IDUA-encoding adeno-associated virus serotype 9 (AAV9) vector. Adult IDUA-deficient mice aged 3 months were instilled intranasally with AAV9-IDUA vector. Animals sacrificed 5 months post instillation exhibited IDUA enzyme activity levels that were up to 50-fold that of wild-type mice in the olfactory bulb, with wild-type levels of enzyme restored in all other parts of the brain. Intranasal treatment with AAV9-IDUA also resulted in the reduction of tissue glycosaminoglycan storage materials in the brain. There was strong IDUA immunofluorescence staining of tissue sections observed in the nasal epithelium and olfactory bulb, but there was no evidence of the presence of transduced cells in other portions of the brain. This indicates that reduction of storage materials most likely occurred as a result of enzyme diffusion from the olfactory bulb and the nasal epithelium into deeper areas of the brain. At 8 months of age, neurocognitive testing using the Barnes maze to assess spatial navigation demonstrated that treated IDUA-deficient mice were no different from normal control animals, while untreated IDUA-deficient mice exhibited significant learning and navigation deficits. This novel, noninvasive strategy for intranasal AAV9-IDUA instillation could potentially be used to treat CNS manifestations of human MPS I.
Collapse
Affiliation(s)
- Lalitha R Belur
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| | - Alexa Temme
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| | - Kelly M Podetz-Pedersen
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| | - Maureen Riedl
- 2 Department of Neuroscience, University of Minnesota , Minneapolis
| | - Lucy Vulchanova
- 2 Department of Neuroscience, University of Minnesota , Minneapolis
| | - Nicholas Robinson
- 3 Department of Research Animal Resources, University of Minnesota , Minneapolis
| | - Leah R Hanson
- 4 HealthPartners Neurosciences, Regions Hospital , St. Paul, Minneapolis
| | | | - Paul J Orchard
- 6 Program in Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota , Minneapolis
| | - William H Frey
- 4 HealthPartners Neurosciences, Regions Hospital , St. Paul, Minneapolis
| | - Walter C Low
- 7 Department of Neurosurgery and Graduate Program in Neuroscience, University of Minnesota , Minneapolis
| | - R Scott McIvor
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| |
Collapse
|
20
|
Golebiowski D, van der Bom IMJ, Kwon CS, Miller AD, Petrosky K, Bradbury AM, Maitland S, Kühn AL, Bishop N, Curran E, Silva N, GuhaSarkar D, Westmoreland SV, Martin DR, Gounis MJ, Asaad WF, Sena-Esteves M. Direct Intracranial Injection of AAVrh8 Encoding Monkey β-N-Acetylhexosaminidase Causes Neurotoxicity in the Primate Brain. Hum Gene Ther 2017; 28:510-522. [PMID: 28132521 DOI: 10.1089/hum.2016.109] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
GM2 gangliosidoses, including Tay-Sachs disease and Sandhoff disease, are lysosomal storage disorders caused by deficiencies in β-N-acetylhexosaminidase (Hex). Patients are afflicted primarily with progressive central nervous system (CNS) dysfunction. Studies in mice, cats, and sheep have indicated safety and widespread distribution of Hex in the CNS after intracranial vector infusion of AAVrh8 vectors encoding species-specific Hex α- or β-subunits at a 1:1 ratio. Here, a safety study was conducted in cynomolgus macaques (cm), modeling previous animal studies, with bilateral infusion in the thalamus as well as in left lateral ventricle of AAVrh8 vectors encoding cm Hex α- and β-subunits. Three doses (3.2 × 1012 vg [n = 3]; 3.2 × 1011 vg [n = 2]; or 1.1 × 1011 vg [n = 2]) were tested, with controls infused with vehicle (n = 1) or transgene empty AAVrh8 vector at the highest dose (n = 2). Most monkeys receiving AAVrh8-cmHexα/β developed dyskinesias, ataxia, and loss of dexterity, with higher dose animals eventually becoming apathetic. Time to onset of symptoms was dose dependent, with the highest-dose cohort producing symptoms within a month of infusion. One monkey in the lowest-dose cohort was behaviorally asymptomatic but had magnetic resonance imaging abnormalities in the thalami. Histopathology was similar in all monkeys injected with AAVrh8-cmHexα/β, showing severe white and gray matter necrosis along the injection track, reactive vasculature, and the presence of neurons with granular eosinophilic material. Lesions were minimal to absent in both control cohorts. Despite cellular loss, a dramatic increase in Hex activity was measured in the thalamus, and none of the animals presented with antibody titers against Hex. The high overexpression of Hex protein is likely to blame for this negative outcome, and this study demonstrates the variations in safety profiles of AAVrh8-Hexα/β intracranial injection among different species, despite encoding for self-proteins.
Collapse
Affiliation(s)
- Diane Golebiowski
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Imramsjah M J van der Bom
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Churl-Su Kwon
- 5 Department of Neurosurgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Andrew D Miller
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Keiko Petrosky
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Allison M Bradbury
- 7 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University , Alabama.,8 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Alabama
| | - Stacy Maitland
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Anna Luisa Kühn
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Nina Bishop
- 9 Department of Animal Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Elizabeth Curran
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Nilsa Silva
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Dwijit GuhaSarkar
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Susan V Westmoreland
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Douglas R Martin
- 7 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University , Alabama.,8 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Alabama
| | - Matthew J Gounis
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Wael F Asaad
- 10 Department of Neurosurgery, Alpert Medical School, Brown University , Providence, Rhode Island.,11 Brown Institute for Brain Science, Brown University , Providence, Rhode Island.,12 Rhode Island Hospital , Providence, Rhode Island
| | - Miguel Sena-Esteves
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
21
|
Tung JK, Berglund K, Gross RE. Optogenetic Approaches for Controlling Seizure Activity. Brain Stimul 2016; 9:801-810. [PMID: 27496002 PMCID: PMC5143193 DOI: 10.1016/j.brs.2016.06.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023] Open
Abstract
Optogenetics, a technique that utilizes light-sensitive ion channels or pumps to activate or inhibit neurons, has allowed scientists unprecedented precision and control for manipulating neuronal activity. With the clinical need to develop more precise and effective therapies for patients with drug-resistant epilepsy, these tools have recently been explored as a novel treatment for halting seizure activity in various animal models. In this review, we provide a detailed and current summary of these optogenetic approaches and provide a perspective on their future clinical application as a potential neuromodulatory therapy.
Collapse
Affiliation(s)
- Jack K Tung
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA; Department of Neurosurgery, Emory University, Atlanta, GA
| | - Ken Berglund
- Department of Neurosurgery, Emory University, Atlanta, GA
| | - Robert E Gross
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA; Department of Neurosurgery, Emory University, Atlanta, GA.
| |
Collapse
|
22
|
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27:478-96. [PMID: 27267688 PMCID: PMC4960479 DOI: 10.1089/hum.2016.087] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery.
Collapse
Affiliation(s)
| | | | - Mickael Audrain
- Université Paris Descartes, Paris, France
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| | | | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
23
|
Intrathecal gene therapy rescues a model of demyelinating peripheral neuropathy. Proc Natl Acad Sci U S A 2016; 113:E2421-9. [PMID: 27035961 DOI: 10.1073/pnas.1522202113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Inherited demyelinating peripheral neuropathies are progressive incurable diseases without effective treatment. To develop a gene therapy approach targeting myelinating Schwann cells that can be translatable, we delivered a lentiviral vector using a single lumbar intrathecal injection and a myelin-specific promoter. The human gene of interest, GJB1, which is mutated in X-linked Charcot-Marie-Tooth Disease (CMT1X), was delivered intrathecally into adult Gjb1-null mice, a genetically authentic model of CMT1X that develops a demyelinating peripheral neuropathy. We obtained widespread, stable, and cell-specific expression of connexin32 in up to 50% of Schwann cells in multiple lumbar spinal roots and peripheral nerves. Behavioral and electrophysiological analysis revealed significantly improved motor performance, quadriceps muscle contractility, and sciatic nerve conduction velocities. Furthermore, treated mice exhibited reduced numbers of demyelinated and remyelinated fibers and fewer inflammatory cells in lumbar motor roots, as well as in the femoral motor and sciatic nerves. This study demonstrates that a single intrathecal lentiviral gene delivery can lead to Schwann cell-specific expression in spinal roots extending to multiple peripheral nerves. This clinically relevant approach improves the phenotype of an inherited neuropathy mouse model and provides proof of principle for treating inherited demyelinating neuropathies.
Collapse
|
24
|
Pasta S, Akhile O, Tabron D, Ting F, Shackleton C, Watson G. Delivery of the 7-dehydrocholesterol reductase gene to the central nervous system using adeno-associated virus vector in a mouse model of Smith-Lemli-Opitz Syndrome. Mol Genet Metab Rep 2015; 4:92-98. [PMID: 26347274 PMCID: PMC4559272 DOI: 10.1016/j.ymgmr.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Smith Lemli Opitz syndrome (SLOS) is an inherited malformation and mental retardation metabolic disorder with no cure. Mutations in the last enzyme of the cholesterol biosynthetic pathway, 7-dehydrocholesterol reductase (DHCR7), lead to cholesterol insufficiency and accumulation of its dehyrdocholesterol precursors, and contribute to its pathogenesis. The central nervous system (CNS) constitutes a major pathophysiological component of this disorder and remains unamenable to dietary cholesterol therapy due to the impenetrability of the blood brain barrier (BBB). The goal of this study was to restore sterol homeostasis in the CNS. To bypass the BBB, gene therapy using an adeno-associated virus (AAV-8) vector carrying a functional copy of the DHCR7 gene was administered by intrathecal (IT) injection directly into the cerebrospinal fluid of newborn mice. Two months post-treatment, vector DNA and DHCR7 expression was observed in the brain and a corresponding improvement of sterol levels seen in the brain and spinal cord. Interestingly, sterol levels in the peripheral nervous system also showed a similar improvement. This study shows that IT gene therapy can have a positive biochemical effect on sterol homeostasis in the central and peripheral nervous systems in a SLOS animal model. A single dose delivered three days after birth had a sustained effect into adulthood, eight weeks post-treatment. These observations pave the way for further studies to understand the effect of biochemical improvement of sterol levels on neuronal function, to provide a greater understanding of neuronal cholesterol homeostasis, and to develop potential therapies.
Collapse
Affiliation(s)
- Saloni Pasta
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Omoye Akhile
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Dorothy Tabron
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Flora Ting
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Cedric Shackleton
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Gordon Watson
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| |
Collapse
|
25
|
|
26
|
Muro S. Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders. Drug Deliv Transl Res 2015; 2:169-86. [PMID: 24688886 DOI: 10.1007/s13346-012-0072-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of about fifty life-threatening conditions caused by genetic defects affecting lysosomal components. The underscoring molecular deficiency leads to widespread cellular dysfunction through most tissues in the body, including peripheral organs and the central nervous system (CNS). Efforts during the last few decades have rendered a remarkable advance regarding our knowledge, medical awareness, and early detection of these genetic defects, as well as development of several treatment modalities. Clinical and experimental strategies encompassing enzyme replacement, gene and cell therapies, substrate reduction, and chemical chaperones are showing considerable potential in attenuating the peripheral pathology. However, a major drawback has been encountered regarding the suboptimal impact of these approaches on the CNS pathology. Particular anatomical and biochemical constraints of this tissue pose a major obstacle to the delivery of therapeutics into the CNS. Approaches to overcome these obstacles include modalities of local administration, strategies to enhance the blood-CNS permeability, intranasal delivery, use of exosomes, and those exploiting targeting of transporters and transcytosis pathways in the endothelial lining. The later two approaches are being pursued at the time by coupling therapeutic agents to affinity moieties and drug delivery systems capable of targeting these natural transport routes. This approach is particularly promising, as using paths naturally active at this interface may render safe and effective delivery of LSD therapies into the CNS.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research University of Maryland, College Park, MD, 20742, USA ; Fischell Dept. of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
27
|
Wolf DA, Banerjee S, Hackett PB, Whitley CB, McIvor RS, Low WC. Gene therapy for neurologic manifestations of mucopolysaccharidoses. Expert Opin Drug Deliv 2014; 12:283-96. [PMID: 25510418 DOI: 10.1517/17425247.2015.966682] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPS) are a family of lysosomal disorders caused by mutations in genes that encode enzymes involved in the catabolism of glycoaminoglycans. These mutations affect multiple organ systems and can be particularly deleterious to the nervous system. At the present time, enzyme replacement therapy and hematopoietic stem-cell therapy are used to treat patients with different forms of these disorders. However, to a great extent, the nervous system is not adequately responsive to current therapeutic approaches. AREAS COVERED Recent advances in gene therapy show great promise for treating MPS. This article reviews the current state of the art for routes of delivery in developing genetic therapies for treating the neurologic manifestations of MPS. EXPERT OPINION Gene therapy for treating neurological manifestations of MPS can be achieved by intraventricular, intrathecal, intranasal and systemic administrations. The intraventricular route of administration appears to provide the most widespread distribution of gene therapy vectors to the brain. The intrathecal route of delivery results in predominant distribution to the caudal areas of the brain. The systemic route of delivery via intravenous infusion can also achieve widespread delivery to the CNS; however, the distribution to the brain is greatly dependent on the vector system. Intravenous delivery using lentiviral vectors appear to be less effective than adeno-associated viral (AAV) vectors. Moreover, some subtypes of AAV vectors are more effective than others in crossing the blood-brain barrier. In summary, the recent advances in gene vector technology and routes of delivery to the CNS will facilitate the clinical translation of gene therapy for the treatment of the neurological manifestations of MPS.
Collapse
Affiliation(s)
- Daniel A Wolf
- University of Minnesota, Department of Genetics, Cell Biology, and Development , Minneapolis, MN 55455 , USA
| | | | | | | | | | | |
Collapse
|
28
|
McIntyre C, Derrick-Roberts ALK, Byers S, Anson DS. Correction of murine mucopolysaccharidosis type IIIA central nervous system pathology by intracerebroventricular lentiviral-mediated gene delivery. J Gene Med 2014; 16:374-87. [DOI: 10.1002/jgm.2816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chantelle McIntyre
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
| | - Ainslie L. K. Derrick-Roberts
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
| | - Sharon Byers
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
- School of Molecular and Biomedical Science; University of Adelaide; South Australia Australia
| | - Donald S. Anson
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
| |
Collapse
|
29
|
Janson CG, Romanova LG, Leone P, Nan Z, Belur L, McIvor RS, Low WC. Comparison of Endovascular and Intraventricular Gene Therapy With Adeno-Associated Virus-α-L-Iduronidase for Hurler Disease. Neurosurgery 2014; 74:99-111. [PMID: 24077583 DOI: 10.1227/neu.0000000000000157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hurler disease (mucopolysaccharidosis type I [MPS-I]) is an inherited metabolic disorder characterized by deficiency of the lysosomal enzyme α-L-iduronidase (IDUA). Currently, the only therapies for MPS-I, enzyme replacement and hematopoietic stem cell transplantation, are generally ineffective for central nervous system manifestations. OBJECTIVE To test whether brain-targeted gene therapy with recombinant adeno-associated virus (rAAV5)-IDUA vectors in an MPS-I transgenic mouse model would reverse the pathological hallmarks. METHODS Gene therapy approaches were compared using intraventricular or endovascular delivery with a marker (rAAV5-green fluorescent protein) or therapeutic (rAAV5-IDUA) vector. To improve the efficiency of brain delivery, we tested different applications of hyperosmolar mannitol to disrupt the blood-brain barrier or ependymal-brain interface. RESULTS Intraventricular delivery of 1 × 10 viral particles of rAAV5-IDUA with systemic 5 g/kg mannitol co-administration resulted in IDUA expression throughout the brain, with global enzyme activity >200% of the baseline level in age-matched, wild-type mice. Endovascular delivery of 1 × 10 viral particles of rAAV5-IDUA to the carotid artery with 29.1% mannitol blood-brain barrier disruption resulted in mainly ipsilateral brain IDUA expression and ipsilateral brain enzyme activity 42% of that in wild-type mice. Quantitative assays for glycosaminoglycans showed a significant decrease in both hemispheres after intraventricular delivery and in the ipsilateral hemisphere after endovascular delivery compared with untreated MPS-I mice. Immunohistochemistry for ganglioside GM3, another disease marker, showed reversal of neuronal inclusions in areas with IDUA co-expression in both delivery methods. CONCLUSION Physiologically relevant biochemical correction is possible with neurosurgical or endovascular gene therapy approaches for MPS-I. Intraventricular or endovascular delivery of rAAV5-IDUA was effective in reversing brain pathology, but in the latter method, effects were limited to the ipsilateral hemisphere.
Collapse
Affiliation(s)
- Christopher G Janson
- *Department of Neurosurgery, ‡Department of Neurology, ¶Department of Medicine, and ‖Genetics and Cell Biology, University of Minnesota, School of Medicine §Cell & Gene Therapy Center, University of Medicine and Dentistry of New Jersey School of Medicine
| | | | | | | | | | | | | |
Collapse
|
30
|
Schuster DJ, Belur LR, Riedl MS, Schnell SA, Podetz-Pedersen KM, Kitto KF, McIvor RS, Vulchanova L, Fairbanks CA. Supraspinal gene transfer by intrathecal adeno-associated virus serotype 5. Front Neuroanat 2014; 8:66. [PMID: 25147505 PMCID: PMC4122912 DOI: 10.3389/fnana.2014.00066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/23/2014] [Indexed: 11/20/2022] Open
Abstract
We report the pattern of transgene expression across brain regions after intrathecal delivery of adeno-associated virus serotype 5 (AAV5). Labeling in hindbrain appeared to be primarily neuronal, and was detected in sensory nuclei of medulla, pontine nuclei, and all layers of cerebellar cortex. Expression in midbrain was minimal, and generally limited to isolated neurons and astrocytes in the cerebral peduncles. GFP immunoreactivity (-ir) in thalamus was most prominent in medial geniculate nucleus, and otherwise limited to posterior nuclei of the dorsal and lateral margins. Labeling was also observed in neurons and astrocytes of the hippocampal formation and amygdaloid complex. In the hippocampal formation, GFP-ir was found in neuronal cell bodies of the rostral ventral portion, but was largely restricted to fiber-like staining in the molecular layer of dentate gyrus and stratum lacunosum-moleculare of the rostral dorsal region. GFP-ir was seen in neurons and astroglia throughout caudal cortex, whereas in rostral regions of neocortex it was limited to isolated neurons and non-neuronal cells. Labeling was also present in olfactory bulb. These results demonstrate that intrathecal delivery of AAV5 vector leads to transgene expression in discrete CNS regions throughout the rostro-caudal extent of the neuraxis. A caudal-to-rostral gradient of decreasing GFP-ir was present in choroid plexus and Purkinje cells, suggesting that spread of virus through cerebrospinal fluid plays a role in the resulting transduction pattern. Other factors contributing to the observed expression pattern likely include variations in cell-surface receptors and inter-parenchymal space.
Collapse
Affiliation(s)
- Daniel J Schuster
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Lalitha R Belur
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, MN, USA
| | - Maureen S Riedl
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Stephen A Schnell
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Kelly M Podetz-Pedersen
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, MN, USA
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - R Scott McIvor
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, MN, USA
| | - Lucy Vulchanova
- Department of Pharmacology, University of Minnesota Minneapolis, MN, USA
| | - Carolyn A Fairbanks
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA ; Department of Pharmacology, University of Minnesota Minneapolis, MN, USA ; Department of Pharmaceutics, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
31
|
El-Amouri SS, Dai M, Han JF, Brady RO, Pan D. Normalization and improvement of CNS deficits in mice with Hurler syndrome after long-term peripheral delivery of BBB-targeted iduronidase. Mol Ther 2014; 22:2028-2037. [PMID: 25088464 DOI: 10.1038/mt.2014.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/29/2014] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a progressive lysosomal storage disorder with systemic and central nervous system (CNS) involvement due to deficiency of α-L-iduronidase (IDUA). We previously identified a receptor-binding peptide from apolipoprotein E (e) that facilitated a widespread delivery of IDUAe fusion protein into CNS. In this study, we evaluated the long-term CNS biodistribution, dose-correlation, and therapeutic benefits of IDUAe after systemic, sustained delivery via hematopoietic stem cell (HSC)-mediated gene therapy with expression restricted to erythroid/megakaryocyte lineages. Compared to the highest dosage group treated by nontargeted control IDUAc (165 U/ml), physiological levels of IDUAe in the circulation (12 U/ml) led to better CNS benefits in MPS I mice as demonstrated in glycosaminoglycan accumulation, histopathology analysis, and neurological behavior. Long-term brain metabolic correction and normalization of exploratory behavior deficits in MPS I mice were observed by peripheral enzyme therapy with physiological levels of IDUAe derived from clinically attainable levels of HSC transduction efficiency (0.1). Importantly, these levels of IDUAe proved to be more beneficial on correction of cerebrum pathology and behavioral deficits in MPS I mice than wild-type HSCs fully engrafted in MPS I chimeras. These results provide compelling evidence for CNS efficacy of IDUAe and its prospective translation to clinical application.
Collapse
Affiliation(s)
- Salim S El-Amouri
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mei Dai
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jing-Fen Han
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Roscoe O Brady
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dao Pan
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
32
|
Oligonucleotide-based therapy for neurodegenerative diseases. Brain Res 2014; 1584:116-28. [PMID: 24727531 DOI: 10.1016/j.brainres.2014.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/12/2022]
Abstract
Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity.
Collapse
|
33
|
Cheng SH. Gene therapy for the neurological manifestations in lysosomal storage disorders. J Lipid Res 2014; 55:1827-38. [PMID: 24683200 DOI: 10.1194/jlr.r047175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past several years, considerable progress has been made in the development of gene therapy as a therapeutic strategy for a variety of inherited metabolic diseases, including neuropathic lysosomal storage disorders (LSDs). The premise of gene therapy for this group of diseases is borne of findings that genetic modification of a subset of cells can provide a more global benefit by virtue of the ability of the secreted lysosomal enzymes to effect cross-correction of adjacent and distal cells. Preclinical studies in small and large animal models of these disorders support the application of either a direct in vivo approach using recombinant adeno-associated viral vectors or an ex vivo strategy using lentiviral vector-modified hematopoietic stem cells to correct the neurological component of these diseases. Early clinical studies utilizing both approaches have begun or are in late-stage planning for a small number of neuropathic LSDs. Although initial indications from these studies are encouraging, it is evident that second-generation vectors that exhibit a greater safety profile and transduction activity may be required before this optimism can be fully realized. Here, I review recent progress and the remaining challenges to treat the neurological aspects of various LSDs using this therapeutic paradigm.
Collapse
Affiliation(s)
- Seng H Cheng
- Genzyme, a Sanofi Company, Framingham, MA 01701-9322
| |
Collapse
|
34
|
Ying L, Matabosch X, Serra M, Watson B, Shackleton C, Watson G. Biochemical and Physiological Improvement in a Mouse Model of Smith-Lemli-Opitz Syndrome (SLOS) Following Gene Transfer with AAV Vectors. Mol Genet Metab Rep 2014; 1:103-113. [PMID: 25024934 PMCID: PMC4093838 DOI: 10.1016/j.ymgmr.2014.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an inborn error of cholesterol synthesis resulting from a defect in 7-dehydrocholesterol reductase (DHCR7), the enzyme that produces cholesterol from its immediate precursor 7-dehydrocholesterol. Current therapy employing dietary cholesterol is inadequate. As SLOS is caused by a defect in a single gene, restoring enzyme functionality through gene therapy may be a direct approach for treating this debilitating disorder. In the present study, we first packaged a human DHCR7 construct into adeno-associated virus (AAV) vectors having either type-2 (AAV2) or type-8 (AAV2/8) capsid, and administered treatment to juvenile mice. While a positive response (assessed by increases in serum and liver cholesterol) was seen in both groups, the improvement was greater in the AAV2/8-DHCR7 treated mice. Newborn mice were then treated with AAV2/8-DHCR7 and these mice, compared to mice treated as juveniles, showed higher DHCR7 mRNA expression in liver and a greater improvement in serum and liver cholesterol levels. Systemic treatment did not affect brain cholesterol in any of the experimental groups. Both juvenile and newborn treatments with AAV2/8-DHCR7 resulted in increased rates of weight gain indicating that gene transfer had a positive physiological effect.
Collapse
Affiliation(s)
- Lee Ying
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| | - Xavier Matabosch
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| | - Montserrat Serra
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| | - Berna Watson
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| | - Cedric Shackleton
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| | - Gordon Watson
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, Ca 94609, USA
| |
Collapse
|
35
|
Baldo G, Wozniak DF, Ohlemiller KK, Zhang Y, Giugliani R, Ponder KP. Retroviral-vector-mediated gene therapy to mucopolysaccharidosis I mice improves sensorimotor impairments and other behavioral deficits. J Inherit Metab Dis 2013; 36:499-512. [PMID: 22983812 PMCID: PMC3548941 DOI: 10.1007/s10545-012-9530-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/12/2012] [Accepted: 07/30/2012] [Indexed: 12/20/2022]
Abstract
Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to α-L-iduronidase (IDUA) deficiency that results in the accumulation of glycosaminoglycans (GAG). Systemic gene therapy to MPS I mice can reduce lysosomal storage in the brain, but few data are available regarding the effect upon behavioral function. We investigated the effect of gene therapy with a long-terminal-repeat (LTR)-intact retroviral vector or a self-inactivating (SIN) vector on behavioral function in MPS I mice. The LTR vector was injected intravenously to 6-week-old MPS I mice, and the SIN vector was given to neonatal or 6-week-old mice. Adult-LTR, neonatal-SIN, and adult-SIN-treated mice achieved serum IDUA activity of 235 ± 20 (84-fold normal), 127 ± 10, and 71 ± 7 U/ml, respectively. All groups had reduction in histochemical evidence of lysosomal storage in the brain, with the adult-LTR group showing the best response, while adult-LTR mice had reductions in lysosomal storage in the cristae of the vestibular system. Behavioral evaluation was performed at 8 months. Untreated MPS I mice had a markedly reduced ability to hold onto an inverted screen or climb down a pole. LTR-vector-treated mice had marked improvements on both of these tests, whereas neonatal-SIN mice showed improvement in the pole test. We conclude that both vectors can reduce brain disease in MPS I mice, with the LTR vector achieving higher serum IDUA levels and better correction. Vestibular abnormalities may contribute to mobility problems in patients with MPS I, and gene therapy may reduce symptoms.
Collapse
Affiliation(s)
- Guilherme Baldo
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO, USA
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, RS, Brazil
| | - David F. Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis MO, USA
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis MO, USA
| | - Yanming Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO, USA
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, RS, Brazil
| | - Katherine P. Ponder
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis MO, USA
| |
Collapse
|
36
|
Abstract
This review aims to provide a broad overview of the targets, challenges and potential for gene therapy in the CNS, citing specific examples. There are a broad range of therapeutic targets, with very different requirements for a suitable viral vector. By utilizing different vector tropisms, novel routes of administration and engineered promoter control, transgenes can be targeted to specific therapeutic applications. Viral vectors have proven efficacious in preclinical models for several disease applications, spurring several clinical trials. While the field has pushed the limits of existing adeno-associated virus-based vectors, a next generation of vectors based on rational engineering of viral capsids should expand the application of gene therapy to be more effective in specific therapeutic applications.
Collapse
|
37
|
Merits of combination cortical, subcortical, and cerebellar injections for the treatment of Niemann-Pick disease type A. Mol Ther 2012; 20:1893-901. [PMID: 22828503 DOI: 10.1038/mt.2012.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Niemann-Pick disease Type A (NPA) is a neuronopathic lysosomal storage disease (LSD) caused by the loss of acid sphingomyelinase (ASM). The goals of the current study are to ascertain the levels of human ASM that are efficacious in ASM knockout (ASMKO) mice, and determine whether these levels can be attained in non-human primates (NHPs) using a multiple parenchymal injection strategy. Intracranial injections of different doses of AAV1-hASM in ASMKO mice demonstrated that only a small amount of enzyme (<0.5 mg hASM/g tissue) was sufficient to increase survival, and that increasing the amount of hASM did not enhance this survival benefit until a new threshold level of >10 mg hASM/g tissue was reached. In monkeys, injection of 12 tracts of AAV1-hASM resulted in efficacious levels of enzyme in broad regions of the brain that was aided, in part, by axonal transport of adeno-associated virus (AAV) and movement through the perivascular space. This study demonstrates that a combination cortical, subcortical, and cerebellar injection protocol could provide therapeutic levels of hASM to regions of the NHP brain that are highly affected in NPA patients. The information from this study might help design new AAV-mediated enzyme replacement protocols for NPA and other neuronopathic LSDs in future clinical trials.
Collapse
|
38
|
Tomanin R, Zanetti A, Zaccariotto E, D'Avanzo F, Bellettato CM, Scarpa M. Gene therapy approaches for lysosomal storage disorders, a good model for the treatment of mendelian diseases. Acta Paediatr 2012; 101:692-701. [PMID: 22428546 DOI: 10.1111/j.1651-2227.2012.02674.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED This review describes the different gene therapy technologies applied to approach lysosomal storage disorders, monogenic conditions, with known genetic and biochemical defects, for many of which animal models are available. Both viral and nonviral procedures are described, underlying the specific needs that the treatment of genetic disorders requires. CONCLUSIONS Lysosomal storage disorders represent a good model of study of gene therapeutic procedures that are, or could be, relevant to the treatment of several other mendelian diseases.
Collapse
Affiliation(s)
- Rosella Tomanin
- Gene Therapy Laboratory, Department of Pediatrics, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Treatment of adult MPSI mouse brains with IDUA-expressing mesenchymal stem cells decreases GAG deposition and improves exploratory behavior. GENETIC VACCINES AND THERAPY 2012; 10:2. [PMID: 22520214 PMCID: PMC3404940 DOI: 10.1186/1479-0556-10-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022]
Abstract
Background Mucopolysaccharidosis type I (MPSI) is caused by a deficiency in alpha-L iduronidase (IDUA), which leads to lysosomal accumulation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate. While the currently available therapies have good systemic effects, they only minimally affect the neurodegenerative process. Based on the neuroprotective and tissue regenerative properties of mesenchymal stem cells (MSCs), we hypothesized that the administration of MSCs transduced with a murine leukemia virus (MLV) vector expressing IDUA to IDUA KO mouse brains could reduce GAG deposition in the brain and, as a result, improve neurofunctionality, as measured by exploratory activity. Methods MSCs infected with an MLV vector encoding IDUA were injected into the left ventricle of the brain of 12- or 25-month-old IDUA KO mice. The behavior of the treated mice in the elevated plus maze and open field tests was observed for 1 to 2 months. Following these observations, the brains were removed for biochemical and histological analyses. Results After 1 or 2 months of observation, the presence of the transgene in the brain tissue of almost all of the treated mice was confirmed using PCR, and a significant reduction in GAG deposition was observed. This reduction was directly reflected in an improvement in exploratory activity in the open field and the elevated plus maze tests. Despite these behavioral improvements and the reduction in GAG deposition, IDUA activity was undetectable in these samples. Overall, these results indicate that while the initial level of IDUA was not sustainable for a month, it was enough to reduce and maintain low GAG deposition and improve the exploratory activity for months. Conclusions These data show that gene therapy, via the direct injection of IDUA-expressing MSCs into the brain, is an effective way to treat neurodegeneration in MPSI mice.
Collapse
|
40
|
Pike LS, Tannous BA, Deliolanis NC, Hsich G, Morse D, Tung CH, Sena-Esteves M, Breakefield XO. Imaging gene delivery in a mouse model of congenital neuronal ceroid lipofuscinosis. Gene Ther 2011; 18:1173-8. [PMID: 21900963 PMCID: PMC3235265 DOI: 10.1038/gt.2011.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/09/2022]
Abstract
Adeno-associated virus (AAV)-mediated gene replacement for lysosomal disorders have been spurred by the ability of some serotypes to efficiently transduce neurons in the brain and by the ability of lysosomal enzymes to cross-correct among cells. Here, we explored enzyme replacement therapy in a knock-out mouse model of congenital neuronal ceroid lipofuscinosis (NCL), the most severe of the NCLs in humans. The missing protease in this disorder, cathepsin D (CathD) has high levels in the central nervous system. This enzyme has the potential advantage for assessing experimental therapy in that it can be imaged using a near-infrared fluorescence (NIRF) probe activated by CathD. Injections of an AAV2/rh8 vector-encoding mouse CathD (mCathD) into both cerebral ventricles and peritoneum of newborn knock-out mice resulted in a significant increase in lifespan. Successful delivery of active CathD by the AAV2/rh8-mCathD vector was verified by NIRF imaging of mouse embryonic fibroblasts from knock-out mice in culture, as well as by ex vivo NIRF imaging of the brain and liver after gene transfer. These studies support the potential effectiveness and imaging evaluation of enzyme replacement therapy to the brain and other organs in CathD null mice via AAV-mediated gene delivery in neonatal animals.
Collapse
Affiliation(s)
- Lisa S. Pike
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Bakhos A. Tannous
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
- Center for Molecular Imaging Research, Department of Radiology, Boston, Massachusetts, USA
| | | | - Gary Hsich
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Danielle Morse
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Ching-Hsuan Tung
- Center for Molecular Imaging Research, Department of Radiology, Boston, Massachusetts, USA
| | - Miguel Sena-Esteves
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Xandra O. Breakefield
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA
- Center for Molecular Imaging Research, Department of Radiology, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Early clinical markers of central nervous system involvement in mucopolysaccharidosis type II. J Pediatr 2011; 159:320-6.e2. [PMID: 21530981 DOI: 10.1016/j.jpeds.2011.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 01/24/2011] [Accepted: 03/10/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To identify early clinical markers of neurologic involvement in mucopolysaccharidosis type II. STUDY DESIGN A retrospective review of neurobehavioral standardized assessments of patients with mucopolysaccharidosis type II evaluated at the Program for Neurodevelopmental Function in Rare Disorders was completed. Patients were grouped based on the presence or absence of central nervous system (CNS) involvement at the most recent evaluation. Differences in early signs and symptoms between resulting cohorts were tested for significance, and an index severity score was developed. RESULTS Between December 2002 and November 2010, clinical evaluations of 49 patients and 151 patient encounters were reviewed. Thirty-seven patients exhibited neurologic deterioration. Of the 25 signs evaluated, 7 early clinical markers were strongly correlated with subsequent cognitive dysfunction: sleep disturbance, increased activity, behavior difficulties, seizure-like behavior, perseverative chewing behavior, and inability to achieve bowel training and bladder training. A new severity score index was developed, with a score ≥3 indicating a high likelihood of developing CNS disease. CONCLUSION Seven early clinical markers and a severity score index of CNS involvement can be used for initial screening of children who might benefit from CNS-directed therapies.
Collapse
|
42
|
Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12:341-55. [PMID: 21499295 DOI: 10.1038/nrg2988] [Citation(s) in RCA: 666] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vivo gene replacement for the treatment of inherited disease is one of the most compelling concepts in modern medicine. Adeno-associated virus (AAV) vectors have been extensively used for this purpose and have shown therapeutic efficacy in a range of animal models. Successful translation to the clinic was initially slow, but long-term expression of donated genes at therapeutic levels has now been achieved in patients with inherited retinal disorders and haemophilia B. Recent exciting results have raised hopes for the treatment of many other diseases. As we discuss here, the prospects and challenges for AAV gene therapy are to a large extent dependent on the target tissue and the specific disease.
Collapse
Affiliation(s)
- Federico Mingozzi
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5th Floor CTRB, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
43
|
Abstract
INTRODUCTION Lysosomal storage disorders (LSDs) encompass more than 50 distinct diseases, caused by defects in various aspects of lysosomal function. Neurodegeneration and/or dysmyelination are the hallmark of roughly 70% of LSDs. Gene therapy represents a promising approach for the treatment of CNS manifestations in LSDs, as it has the potential to provide a permanent source of the deficient enzyme, either by direct injection of vectors or by transplantation of gene-corrected cells. In this latter approach, the biology of neural stem/progenitor cells and hematopoietic cells might be exploited. AREAS COVERED Based on an extensive literature search up until March 2011, the author reviews and discusses the progress, the crucial aspects and the major challenges towards the development of novel gene therapy strategies aimed to target the CNS, with particular attention to direct intracerebral gene delivery and transplantation of neural stem/progenitor cells. EXPERT OPINION The implementation of viral vector delivery systems with specific tropism, regulated transgene expression, low immunogenicity and low genotoxic risk and the improvement in isolation and manipulation of relevant cell types to be transplanted, are fundamental challenges to the field. Also, combinatorial strategies might be required to achieve full correction in LSDs with neurological involvement.
Collapse
Affiliation(s)
- Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.
| |
Collapse
|
44
|
Bowers WJ, Breakefield XO, Sena-Esteves M. Genetic therapy for the nervous system. Hum Mol Genet 2011; 20:R28-41. [PMID: 21429918 PMCID: PMC3095060 DOI: 10.1093/hmg/ddr110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/11/2011] [Indexed: 12/12/2022] Open
Abstract
Genetic therapy is undergoing a renaissance with expansion of viral and synthetic vectors, use of oligonucleotides (RNA and DNA) and sequence-targeted regulatory molecules, as well as genetically modified cells, including induced pluripotent stem cells from the patients themselves. Several clinical trials for neurologic syndromes appear quite promising. This review covers genetic strategies to ameliorate neurologic syndromes of different etiologies, including lysosomal storage diseases, Alzheimer's disease and other amyloidopathies, Parkinson's disease, spinal muscular atrophy, amyotrophic lateral sclerosis and brain tumors. This field has been propelled by genetic technologies, including identifying disease genes and disruptive mutations, design of genomic interacting elements to regulate transcription and splicing of specific precursor mRNAs and use of novel non-coding regulatory RNAs. These versatile new tools for manipulation of genetic elements provide the ability to tailor the mode of genetic intervention to specific aspects of a disease state.
Collapse
Affiliation(s)
- William J. Bowers
- Department of Neurology, Center for Neural Development and Disease, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xandra O. Breakefield
- Neuroscience Center and Molecular Neurogenetics Unit, Department of Neurology and
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA and
| | - Miguel Sena-Esteves
- Department of Neurology, Gene Therapy Center, Interdisciplinary Graduate Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
45
|
Abstract
Leukodystrophies (LDs) refer to a group on inherited diseases in which molecular abnormalities of glial cells are responsible for exclusive or predominant defects in myelin formation and/or maintenance within the central and, sometimes, the peripheral nervous system. For three of them [X-linked adrenoleukodystrophy (X-ALD), metachromatic (MLD) and globoid cell LDs], a gene therapy strategy aiming at transferring the disease gene into autologous hematopoietic stem cells (HSCs) using lentiviral vectors has been developed and has already entered into the clinics for X-ALD and MLD. Long-term follow-up has shown that HSCs gene therapy can arrest the devastating progression of X-ALD. Brain gene therapy relying upon intracerebral injections of adeno-associated vectors is also envisaged for MLD. The development of new gene therapy viral vectors allowing targeting of the disease gene into oligodendrocytes or astrocytes should soon benefit other forms of LDs.
Collapse
Affiliation(s)
- Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
46
|
Hawkins-Salsbury JA, Reddy AS, Sands MS. Combination therapies for lysosomal storage disease: is the whole greater than the sum of its parts? Hum Mol Genet 2011; 20:R54-60. [PMID: 21421999 DOI: 10.1093/hmg/ddr112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lysosomal storage diseases (LSDs), as a group, are among the most common inherited diseases affecting children. The primary defect is typically a genetic deficiency of one of the lysosomal enzymes, often causing accumulation of undegraded substrates within the lysosome. This accumulation causes numerous secondary effects that contribute to the disease phenotype. Viral-mediated gene therapy (GT) can supply a persistent source of the deficient enzyme. However, with some notable exceptions, GT has been only modestly successful as a single approach. Recently, various therapies have been combined in order to more effectively target the diverse pathogenic mechanisms at work in LSDs. One strategy that has shown promise involves providing a persistent source of the deficient enzyme (GT, stem cell transplantation) while targeting a secondary consequence of disease with a more transient approach (substrate reduction, anti-inflammatories, pharmacological mimetic, etc.). This general strategy has resulted in both additive and synergistic effects. Interestingly, some therapeutic approaches by themselves provide essentially no clinical benefit but contribute greatly to the overall efficacy when used in combination with other treatments. Unfortunately, no therapeutic combination is universally effective. This adds to the difficulty in predicting and identifying combinations that will be most effective for individual LSDs. A better understanding of both pathogenic and therapeutic mechanisms is necessary in order to identify potentially successful combinations. While a single treatment would be ideal, the complex nature of these diseases may unavoidably limit the efficacy of single therapies. In order to more successfully treat LSDs, a shift in focus towards a combination therapy may be necessary.
Collapse
Affiliation(s)
- Jacqueline A Hawkins-Salsbury
- Department of Internal Medicine, Washington University, Campus PO Box 8007, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
47
|
Dindot S, Piccolo P, Grove N, Palmer D, Brunetti-Pierri N. Intrathecal injection of helper-dependent adenoviral vectors results in long-term transgene expression in neuroependymal cells and neurons. Hum Gene Ther 2011; 22:745-51. [PMID: 21175294 DOI: 10.1089/hum.2010.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Helper-dependent adenoviral (HDAd) vectors are devoid of all viral genes and result in long-term transgene expression in the absence of chronic toxicity. Because of their ability to infect post-mitotic cells, including cells of the central nervous system, HDAd vectors are particularly attractive for brain-directed gene therapy. In this study, we show that intrathecal injection of HDAd results in extensive transduction of ependymal cells and sustained expression of the transgene up to 1 year post-administration. We also demonstrate, for the first time, the ability of HDAd injected by this route of delivery to transduce neuronal cells. The transduced neuroepithelial cells can be potentially used to secrete therapeutic proteins into the cerebrospinal fluid and provide them via cross-correction to nontransduced cells. Targeting of neuronal cells and long-term transgene expression make this approach attractive for the treatment of several neurologic diseases.
Collapse
Affiliation(s)
- Scott Dindot
- College of Veterinary Medicine and Biomedical Sciences, Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | | | |
Collapse
|
48
|
Matabosch X, Ying L, Serra M, Wassif CA, Porter FD, Shackleton C, Watson G. Increasing cholesterol synthesis in 7-dehydrosterol reductase (DHCR7) deficient mouse models through gene transfer. J Steroid Biochem Mol Biol 2010; 122:303-9. [PMID: 20800683 PMCID: PMC2966472 DOI: 10.1016/j.jsbmb.2010.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 02/07/2023]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is caused by deficiency in the terminal step of cholesterol biosynthesis: the conversion of 7-dehydrocholesterol (7DHC) to cholesterol (C), catalyzed by 7-dehydrocholesterol reductase (DHCR7). This disorder exhibits several phenotypic traits including dysmorphia and mental retardation with a broad range of severity. There are few proven treatment options. That most commonly used is a high cholesterol diet that seems to enhance the quality of life and improve behavioral characteristics of patients, although these positive effects are controversial. The goal of our study was to investigate the possibility of restoring DHCR7 activity by gene transfer. We constructed an adeno-associated virus (AAV) vector containing the DHCR7 gene. After we infused this vector into affected mice, the introduced DHCR7 gene could be identified in liver, mRNA was expressed and a functional enzyme was produced. Evidence of functionality came from the ability to partially normalize the serum ratio of 7DHC/C in treated animals, apparently by increasing cholesterol production with concomitant decrease in 7DHC precursor. By 5 weeks after treatment the mean ratio (for 7 animals) had fallen to 0.05 while the ratio for untreated littermate controls had risen to 0.14. This provides proof of principle that gene transfer can ameliorate the genetic defect causing SLOS and provides a new experimental tool for studying the pathogenesis of this disease. If effective in humans, it might also offer a possible alternative to exogenous cholesterol therapy. However, it would not offer a complete cure for the disorder as many of the negative implications of defective synthesis are already established during prenatal development.
Collapse
Affiliation(s)
- Xavier Matabosch
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way Oakland, 94609, California
| | - Lee Ying
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way Oakland, 94609, California
| | - Montserrat Serra
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way Oakland, 94609, California
| | - Christopher A. Wassif
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| | - Forbes D. Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| | - Cedric Shackleton
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way Oakland, 94609, California
- Center for Endocrinology, Diabetes and Metabolism (CEDAM), Institute of Biomedical Research, University of Birmingham, Wolfson Drive, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gordon Watson
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way Oakland, 94609, California
- Address for correspondence: Dr Gordon Watson, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Way, Oakland, CA 94609, United States of America, Tel (001) 510 450 7665, Fax (001)510 450 7910,
| |
Collapse
|
49
|
Baek RC, Broekman MLD, Leroy SG, Tierney LA, Sandberg MA, d'Azzo A, Seyfried TN, Sena-Esteves M. AAV-mediated gene delivery in adult GM1-gangliosidosis mice corrects lysosomal storage in CNS and improves survival. PLoS One 2010; 5:e13468. [PMID: 20976108 PMCID: PMC2956705 DOI: 10.1371/journal.pone.0013468] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND GM1-gangliosidosis is a glycosphingolipid (GSL) lysosomal storage disease caused by a genetic deficiency of acid β-galactosidase (βgal), which results in the accumulation of GM1-ganglioside and its asialo-form (GA1) primarily in the CNS. Age of onset ranges from infancy to adulthood, and excessive ganglioside accumulation produces progressive neurodegeneration and psychomotor retardation in humans. Currently, there are no effective therapies for the treatment of GM1-gangliosidosis. METHODOLOGY/PRINCIPAL FINDINGS In this study we examined the effect of thalamic infusion of AAV2/1-βgal vector in adult GM1 mice on enzyme distribution, activity, and GSL content in the CNS, motor behavior, and survival. Six to eight week-old GM1 mice received bilateral injections of AAV vector in the thalamus, or thalamus and deep cerebellar nuclei (DCN) with pre-determined endpoints at 1 and 4 months post-injection, and the humane endpoint, or 52 weeks of age. Enzyme activity was elevated throughout the CNS of AAV-treated GM1 mice and GSL storage nearly normalized in most structures analyzed, except in the spinal cord which showed ∼50% reduction compared to age-matched untreated GM1 mice spinal cord. Survival was significantly longer in AAV-treated GM1 mice (52 wks) than in untreated mice. However the motor performance of AAV-treated GM1 mice declined over time at a rate similar to that observed in untreated GM1 mice. CONCLUSIONS/SIGNIFICANCE Our studies show that the AAV-modified thalamus can be used as a 'built-in' central node network for widespread distribution of lysosomal enzymes in the mouse cerebrum. In addition, this study indicates that thalamic delivery of AAV vectors should be combined with additional targets to supply the cerebellum and spinal cord with therapeutic levels of enzyme necessary to achieve complete correction of the neurological phenotype in GM1 mice.
Collapse
Affiliation(s)
- Rena C. Baek
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Marike L. D. Broekman
- Program in Neuroscience, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stanley G. Leroy
- Program in Neuroscience, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Laryssa A. Tierney
- Program in Neuroscience, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Michael A. Sandberg
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Miguel Sena-Esteves
- Program in Neuroscience, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Lattanzi A, Neri M, Maderna C, di Girolamo I, Martino S, Orlacchio A, Amendola M, Naldini L, Gritti A. Widespread enzymatic correction of CNS tissues by a single intracerebral injection of therapeutic lentiviral vector in leukodystrophy mouse models. Hum Mol Genet 2010; 19:2208-27. [PMID: 20203170 DOI: 10.1093/hmg/ddq099] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Leukodystrophies are rare diseases caused by defects in the genes coding for lysosomal enzymes that degrade several glycosphingolipids. Gene therapy for leukodystrophies requires efficient distribution of the missing enzymes in CNS tissues to prevent demyelination and neurodegeneration. In this work, we targeted the external capsule (EC), a white matter region enriched in neuronal projections, with the aim of obtaining maximal protein distribution from a single injection site. We used bidirectional (bd) lentiviral vectors (LV) (bdLV) to ensure coordinate expression of a therapeutic gene (beta-galactocerebrosidase, GALC; arylsulfatase A, ARSA) and of a reporter gene, thus monitoring simultaneously transgene distribution and enzyme reconstitution. A single EC injection of bdLV.GALC in early symptomatic twitcher mice (a murine model of globoid cell leukodystrophy) resulted in rapid and robust expression of a functional GALC protein in the telencephalon, cerebellum, brainstem and spinal cord. This led to global rescue of enzymatic activity, significant reduction of tissue storage and decrease of activated astroglia and microglia. Widespread protein distribution and complete metabolic correction were also observed after EC injection of bdLV.ARSA in a mouse model of metachromatic leukodystrophy. Our data indicated axonal transport, distribution through cerebrospinal fluid flow and cross-correction as the mechanisms contributing to widespread bioavailability of GALC and ARSA proteins in CNS tissues. LV-mediated gene delivery of lysosomal enzymes by targeting highly interconnected CNS regions is a potentially effective strategy that, combined with a treatment able to target the PNS and peripheral organs, may provide significant therapeutic benefit to patients affected by leukodystrophies.
Collapse
Affiliation(s)
- Annalisa Lattanzi
- San Raffaele Scientific Institute, Telethon Institute for Gene Therapy (HSR-TIGET), Via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|