1
|
Metovic J, Li Y, Gong Y, Eichler F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics 2024; 21:e00443. [PMID: 39276676 PMCID: PMC11418141 DOI: 10.1016/j.neurot.2024.e00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
Leukodystrophies are progressive single gene disorders affecting the white matter of the brain. Several gene therapy trials are in progress to address the urgent unmet need for this patient population. We performed a comprehensive literature review of all gene therapy clinical trials listed in www.clinicaltrials.gov through August 2024, and the relevant preclinical studies that enabled clinical translation. Of the approximately 50 leukodystrophies described to date, only eight have existing gene therapy clinical trials: metachromatic leukodystrophy, X-linked adrenoleukodystrophy, globoid cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2 gangliosidoses, Alexander disease and Pelizaeus-Merzbacher disease. What led to the emergence of gene therapy trials for these specific disorders? What preclinical data or disease context was enabling? For each of these eight disorders, we first describe its pathophysiology and clinical presentation. We discuss the impact of gene therapy delivery route, targeted cell type, delivery modality, dosage, and timing on therapeutic efficacy. We note that use of allogeneic hematopoietic stem cell transplantation in some leukodystrophies allowed for an accelerated path to clinic even in the absence of available animal models. In other leukodystrophies, small and large animal model studies enabled clinical translation of experimental gene therapies. Human clinical trials for the leukodystrophies include ex vivo lentiviral gene delivery, in vivo AAV-mediated gene delivery, and intrathecal antisense oligonucleotide approaches. We outline adverse events associated with each modality focusing specifically on genotoxicity and immunotoxicity. We review monitoring and management of events related to insertional mutagenesis and immune responses. The data presented in this review show that gene therapy, while promising, requires systematic monitoring to account for the precarious disease biology and the adverse events associated with new technology.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yedda Li
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Audouard E, Khefif N, Mansat C, Nelcha O, Banchi EG, Lupiet C, Farabos D, Lamaziere A, Sevin C, Piguet F. Dose-response evaluation of intravenous gene therapy in a symptomatic mouse model of metachromatic leukodystrophy. Mol Ther Methods Clin Dev 2024; 32:101248. [PMID: 38680552 PMCID: PMC11046302 DOI: 10.1016/j.omtm.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Metachromatic leukodystrophy (MLD) is a rare, autosomal recessive neurodegenerative disease caused by deficient activity of the lysosomal enzyme arylsulfatase A (ARSA), resulting in sulfatide accumulation and subsequent demyelination and neuronal damage within the central and peripheral nervous systems. Three clinical forms of MLD have been described, based on age at symptom onset. The most frequent and severe forms have an early onset, with the disease progressing rapidly toward severe motor and cognitive regression and ultimately premature death. There are currently no approved therapies for most of these early-onset patients once symptoms are present. Thus, it is crucial to develop new approaches to treat symptomatic patients. Here, we proposed a gene therapy approach based on the intravenous delivery of AAVPHP.eB encoding ARSA. MLD mice were treated at 6 months for a dose-response study and at 9 months to assess late-treatment efficacy. Therapeutic efficacy was evaluated 3 or 6 months after injection. We demonstrated a broad transduction in the central nervous system, a complete correction of sulfatide storage, and a significant improvement in neuroinflammation at low dose and late treatment. Taken together, this work establishes a strong rationale for proposing a phase I/II clinical trial in MLD patients.
Collapse
Affiliation(s)
- Emilie Audouard
- TIDU GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Nicolas Khefif
- TIDU GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Charlotte Mansat
- TIDU GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Océane Nelcha
- TIDU GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Elena-Gaia Banchi
- TIDU GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Camille Lupiet
- TIDU GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Dominique Farabos
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP Sorbonne Université, 75012 Paris, France
| | - Antonin Lamaziere
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP Sorbonne Université, 75012 Paris, France
| | - Caroline Sevin
- TIDU GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
- Bicêtre Hospital, Neuropediatrics Unit, Le Kremlin Bicêtre, 94275 Paris, France
| | - Françoise Piguet
- TIDU GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| |
Collapse
|
3
|
St Martin T, Seabrook TA, Gall K, Newman J, Avila N, Hayes A, Kivaa M, Lotterhand J, Mercaldi M, Patel K, Rivas IJ, Woodcock S, Wright TL, Seymour AB, Francone OL, Gingras J. Single Systemic Administration of a Gene Therapy Leading to Disease Treatment in Metachromatic Leukodystrophy Arsa Knock-Out Mice. J Neurosci 2023; 43:3567-3581. [PMID: 36977578 PMCID: PMC10184740 DOI: 10.1523/jneurosci.1829-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is a rare, inherited, demyelinating lysosomal storage disorder caused by mutations in the arylsulfatase-A gene (ARSA). In patients, levels of functional ARSA enzyme are diminished and lead to deleterious accumulation of sulfatides. Herein, we demonstrate that intravenous administration of HSC15/ARSA restored the endogenous murine biodistribution of the corresponding enzyme, and overexpression of ARSA corrected disease biomarkers and ameliorated motor deficits in Arsa KO mice of either sex. In treated Arsa KO mice, when compared with intravenously administered AAV9/ARSA, significant increases in brain ARSA activity, transcript levels, and vector genomes were observed with HSC15/ARSA Durability of transgene expression was established in neonate and adult mice out to 12 and 52 weeks, respectively. Levels and correlation between changes in biomarkers and ARSA activity required to achieve functional motor benefit was also defined. Finally, we demonstrated blood-nerve, blood-spinal and blood-brain barrier crossing as well as the presence of circulating ARSA enzyme activity in the serum of healthy nonhuman primates of either sex. Together, these findings support the use of intravenous delivery of HSC15/ARSA-mediated gene therapy for the treatment of MLD.SIGNIFICANCE STATEMENT Herein, we describe the method of gene therapy adeno-associated virus (AAV) capsid and route of administration selection leading to an efficacious gene therapy in a mouse model of metachromatic leukodystrophy. We demonstrate the therapeutic outcome of a new naturally derived clade F AAV capsid (AAVHSC15) in a disease model and the importance of triangulating multiple end points to increase the translation into higher species via ARSA enzyme activity and biodistribution profile (with a focus on the CNS) with that of a key clinically relevant biomarker.
Collapse
Affiliation(s)
| | | | | | - Jenn Newman
- Homology Medicines, Bedford, Massachusetts 01730
| | - Nancy Avila
- Homology Medicines, Bedford, Massachusetts 01730
| | - April Hayes
- Homology Medicines, Bedford, Massachusetts 01730
| | | | | | | | - Kruti Patel
- Homology Medicines, Bedford, Massachusetts 01730
| | | | | | | | | | | | | |
Collapse
|
4
|
Ghauri MS, Ou L. AAV Engineering for Improving Tropism to the Central Nervous System. BIOLOGY 2023; 12:186. [PMID: 36829465 PMCID: PMC9953251 DOI: 10.3390/biology12020186] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Adeno-associated virus (AAV) is a non-pathogenic virus that mainly infects primates with the help of adenoviruses. AAV is being widely used as a delivery vector for in vivo gene therapy, as evidenced by five currently approved drugs and more than 255 clinical trials across the world. Due to its relatively low immunogenicity and toxicity, sustained efficacy, and broad tropism, AAV holds great promise for treating many indications, including central nervous system (CNS), ocular, muscular, and liver diseases. However, low delivery efficiency, especially for the CNS due to the blood-brain barrier (BBB), remains a significant challenge for more clinical application of AAV gene therapy. Thus, there is an urgent need for utilizing AAV engineering to discover next-generation capsids with improved properties, e.g., enhanced BBB penetrance, lower immunogenicity, and higher packaging efficiency. AAV engineering methods, including directed evolution, rational design, and in silico design, have been developed, resulting in the discovery of novel capsids (e.g., PhP.B, B10, PAL1A/B/C). In this review, we discuss key studies that identified engineered CNS capsids and/or established methodological improvements. Further, we also discussed important issues that need to be addressed, including cross-species translatability, cell specificity, and modular engineering to improve multiple properties simultaneously.
Collapse
Affiliation(s)
- Muhammad S. Ghauri
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA
| | - Li Ou
- Genemagic Biosciences, Media, PA 19086, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|
5
|
Audouard E, Oger V, Meha B, Cartier N, Sevin C, Piguet F. Complete Correction of Brain and Spinal Cord Pathology in Metachromatic Leukodystrophy Mice. Front Mol Neurosci 2021; 14:677895. [PMID: 34093126 PMCID: PMC8175802 DOI: 10.3389/fnmol.2021.677895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder characterized by accumulation of sulfatides in both glial cells and neurons. MLD results from an inherited deficiency of arylsulfatase A (ARSA) and myelin degeneration in the central and peripheral nervous systems. Currently, no effective treatment is available for the most frequent late infantile (LI) form of MLD after symptom onset. The LI form results in rapid neurological degradation and early death. ARSA enzyme must be rapidly and efficiently delivered to brain and spinal cord oligodendrocytes of patients with LI MLD in order to potentially stop the progression of the disease. We previously showed that brain gene therapy with adeno-associated virus serotype rh10 (AAVrh10) driving the expression of human ARSA cDNA alleviated most long-term disease manifestations in MLD mice but was not sufficient in MLD patient to improve disease progression. Herein, we evaluated the short-term effects of intravenous AAVPHP.eB delivery driving the expression of human ARSA cDNA under the control of the cytomegalovirus/b-actin hybrid (CAG) promoter in 6-month-old MLD mice that already show marked sulfatide accumulation and brain pathology. Within 3 months, a single intravenous injection of AAVPHP.eB-hARSA-HA resulted in correction of brain and spinal cord sulfatide storage, and improvement of astrogliosis and microgliosis in brain and spinal cord of treated animals. These results strongly support to consider the use of AAVPHP.eB-hARSA vector for intravenous gene therapy in symptomatic rapidly progressing forms of MLD.
Collapse
Affiliation(s)
- Emilie Audouard
- NeuroGenCell, Institut du Cerveau et de la Moelle Épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Valentin Oger
- NeuroGenCell, Institut du Cerveau et de la Moelle Épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Béatrix Meha
- NeuroGenCell, Institut du Cerveau et de la Moelle Épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Nathalie Cartier
- NeuroGenCell, Institut du Cerveau et de la Moelle Épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Caroline Sevin
- NeuroGenCell, Institut du Cerveau et de la Moelle Épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,Bicêtre Hospital, Neuropediatrics Unit, Le Kremlin Bicêtre, Paris, France
| | - Françoise Piguet
- NeuroGenCell, Institut du Cerveau et de la Moelle Épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Sheth J, Nair A. Treatment for Lysosomal Storage Disorders. Curr Pharm Des 2021; 26:5110-5118. [PMID: 33059565 DOI: 10.2174/1381612826666201015154932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/22/2020] [Indexed: 12/31/2022]
Abstract
Lysosomal storage disorders comprise a group of approximately 70 types of inherited diseases resulting due to lysosomal gene defects. The outcome of the defect is a deficiency in either of the three: namely, lysosomal enzymes, activator protein, or transmembrane protein, as a result of which there is an unwanted accumulation of biomolecules inside the lysosomes. The pathophysiology of these conditions is complex affecting several organ systems and nervous system involvement in a majority of cases. Several research studies have well elucidated the mechanism underlying the disease condition leading to the development in devising the treatment strategies for the same. Currently, these approaches aim to reduce the severity of symptoms or delay the disease progression but do not provide a complete cure. The main treatment methods include Enzyme replacement therapy, Bone marrow transplantation, Substrate reduction therapy, use of molecular chaperones, and Gene therapy. This review article presents an elaborate description of these strategies and discusses the ongoing studies for the same.
Collapse
Affiliation(s)
- Jayesh Sheth
- Foundation for Research in Genetics and Endocrinology, Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, India
| | - Aadhira Nair
- Foundation for Research in Genetics and Endocrinology, Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Rosenberg JB, Chen A, De BP, Dyke JP, Ballon DJ, Monette S, Ricart Arbona RJ, Kaminsky SM, Crystal RG, Sondhi D. Safety of Direct Intraparenchymal AAVrh.10-Mediated Central Nervous System Gene Therapy for Metachromatic Leukodystrophy. Hum Gene Ther 2021; 32:563-580. [PMID: 33380277 DOI: 10.1089/hum.2020.269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metachromatic leukodystrophy, a fatal pediatric neurodegenerative lysosomal storage disease caused by mutations in the arylsulfatase A (ARSA) gene, is characterized by intracellular accumulation of sulfatides in the lysosomes of cells of the central nervous system (CNS). In previous studies, we have demonstrated efficacy of AAVrh.10hARSA, an adeno-associated virus (AAV) serotype rh.10 vector coding for the human ARSA gene to the CNS of a mouse model of the disease, and that catheter-based intraparenchymal administration of AAVrh.10hARSA to the CNS of nonhuman primates (NHPs) white matter results in widespread expression of ARSA. As a formal dose-escalating safety/toxicology study, we assessed the safety of intraparenchymal delivery of AAVrh.10hARSA vector to 12 sites in the white matter of the CNS of NHPs at 2.85 × 1010 (total low dose, 2.4 × 109 genome copies [gc]/site) and 1.5 × 1012 (total high dose, 1.3 × 1011 gc/site) gc, compared to AAVrh.10Null (1.5 × 1012 gc total, 1.3 × 1011 gc/site) as a vector control, and phosphate buffered saline for a sham surgical control. No significant adverse effects were observed in animals treated with low dose AAVrh.10hARSA. However, animals treated with the high dose AAVrh.10ARSA and the high dose Null vector had highly localized CNS abnormalities on magnetic resonance imaging scans at the sites of catheter infusions, and histopathology demonstrated that these sites were associated with infiltrates of T cells, B cells, microglial cells, and/or macrophages. Although these findings had no clinical consequences, these safety data contribute to understanding the dose limits for CNS white matter direct intraparenchymal administration of AAVrh.10 vectors for treatment of CNS disorders.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jonathan P Dyke
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, New York, USA
| | - Douglas J Ballon
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, New York, USA
| | - Sebastien Monette
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | - Rodolfo J Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
8
|
Perrier S, Michell-Robinson MA, Bernard G. POLR3-Related Leukodystrophy: Exploring Potential Therapeutic Approaches. Front Cell Neurosci 2021; 14:631802. [PMID: 33633543 PMCID: PMC7902007 DOI: 10.3389/fncel.2020.631802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Leukodystrophies are a class of rare inherited central nervous system (CNS) disorders that affect the white matter of the brain, typically leading to progressive neurodegeneration and early death. Hypomyelinating leukodystrophies are characterized by the abnormal formation of the myelin sheath during development. POLR3-related or 4H (hypomyelination, hypodontia, and hypogonadotropic hypogonadism) leukodystrophy is one of the most common types of hypomyelinating leukodystrophy for which no curative treatment or disease-modifying therapy is available. This review aims to describe potential therapies that could be further studied for effectiveness in pre-clinical studies, for an eventual translation to the clinic to treat the neurological manifestations associated with POLR3-related leukodystrophy. Here, we discuss the therapeutic approaches that have shown promise in other leukodystrophies, as well as other genetic diseases, and consider their use in treating POLR3-related leukodystrophy. More specifically, we explore the approaches of using stem cell transplantation, gene replacement therapy, and gene editing as potential treatment options, and discuss their possible benefits and limitations as future therapeutic directions.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Mackenzie A. Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, Montréal Children’s Hospital and McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
9
|
Garcia LM, Hacker JL, Sase S, Adang L, Almad A. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 2020; 146:105087. [PMID: 32977022 DOI: 10.1016/j.nbd.2020.105087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023] Open
Abstract
Glia cells are often viewed as support cells in the central nervous system, but recent discoveries highlight their importance in physiological functions and in neurological diseases. Central to this are leukodystrophies, a group of progressive, neurogenetic disease affecting white matter pathology. In this review, we take a closer look at multiple leukodystrophies, classified based on the primary glial cell type that is affected. While white matter diseases involve oligodendrocyte and myelin loss, we discuss how astrocytes and microglia are affected and impinge on oligodendrocyte, myelin and axonal pathology. We provide an overview of the leukodystrophies covering their hallmark features, clinical phenotypes, diverse molecular pathways, and potential therapeutics for clinical trials. Glial cells are gaining momentum as cellular therapeutic targets for treatment of demyelinating diseases such as leukodystrophies, currently with no treatment options. Here, we bring the much needed attention to role of glia in leukodystrophies, an integral step towards furthering disease comprehension, understanding mechanisms and developing future therapeutics.
Collapse
Affiliation(s)
- Luis M Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Julia L Hacker
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Laura Adang
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA.
| |
Collapse
|
10
|
Uchitel J, Kantor B, Smith EC, Mikati MA. Viral-Mediated Gene Replacement Therapy in the Developing Central Nervous System: Current Status and Future Directions. Pediatr Neurol 2020; 110:5-19. [PMID: 32684374 DOI: 10.1016/j.pediatrneurol.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
The past few years have witnessed rapid developments in viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders. Here, we provide pediatric neurologists with an up-to-date, comprehensive overview of these developments and note emerging trends for future research. This review presents the different types of viral vectors used in viral-mediated gene replacement therapy; the fundamental properties of viral-mediated gene replacement therapy; the challenges associated with the use of this therapy in the central nervous system; the pathway for therapy development, from translational basic science studies to clinical trials; and an overview of the therapies that have reached clinical trials in patients. Current viral platforms under investigation include adenovirus vectors, adeno-associated viral vectors, lentiviral/retroviral vectors, and herpes simplex virus type 1 vectors. This review also presents an in-depth analysis of numerous studies that investigated these viral platforms in cultured cells and in transgenic animal models for pediatric neurogenetic disorders. Viral vectors have been applied to clinical trials for many different pediatric neurogenetic disorders, including Canavan disease, metachromatic leukodystrophy, neuronal ceroid lipofuscinosis, mucopolysaccharidosis III, spinal muscular atrophy, and aromatic l-amino acid decarboxylase deficiency. Of these diseases, only spinal muscular atrophy has a viral-mediated gene replacement therapy approved for marketing. Despite significant progress in therapy development, many challenges remain. Surmounting these challenges is critical to advancing the current status of viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Boris Kantor
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Edward C Smith
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina; Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
11
|
Schlotawa L, Adang LA, Radhakrishnan K, Ahrens-Nicklas RC. Multiple Sulfatase Deficiency: A Disease Comprising Mucopolysaccharidosis, Sphingolipidosis, and More Caused by a Defect in Posttranslational Modification. Int J Mol Sci 2020; 21:E3448. [PMID: 32414121 PMCID: PMC7279497 DOI: 10.3390/ijms21103448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple sulfatase deficiency (MSD, MIM #272200) is an ultra-rare disease comprising pathophysiology and clinical features of mucopolysaccharidosis, sphingolipidosis and other sulfatase deficiencies. MSD is caused by impaired posttranslational activation of sulfatases through the formylglycine generating enzyme (FGE) encoded by the sulfatase modifying factor 1 (SUMF1) gene, which is mutated in MSD. FGE is a highly conserved, non-redundant ER protein that activates all cellular sulfatases by oxidizing a conserved cysteine in the active site of sulfatases that is necessary for full catalytic activity. SUMF1 mutations result in unstable, degradation-prone FGE that demonstrates reduced or absent catalytic activity, leading to decreased activity of all sulfatases. As the majority of sulfatases are localized to the lysosome, loss of sulfatase activity induces lysosomal storage of glycosaminoglycans and sulfatides and subsequent cellular pathology. MSD patients combine clinical features of all single sulfatase deficiencies in a systemic disease. Disease severity classifications distinguish cases based on age of onset and disease progression. A genotype- phenotype correlation has been proposed, biomarkers like excreted storage material and residual sulfatase activities do not correlate well with disease severity. The diagnosis of MSD is based on reduced sulfatase activities and detection of mutations in SUMF1. No therapy exists for MSD yet. This review summarizes the unique FGE/ sulfatase physiology, pathophysiology and clinical aspects in patients and their care and outlines future perspectives in MSD.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Goettingen, 37075 Goettingen, Germany
| | - Laura A. Adang
- Division of Child Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | | | - Rebecca C. Ahrens-Nicklas
- Division of Human Genetics and Metabolism, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Breiden B, Sandhoff K. Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease. Int J Mol Sci 2020; 21:ijms21072566. [PMID: 32272755 PMCID: PMC7178057 DOI: 10.3390/ijms21072566] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Gangliosidoses are caused by monogenic defects of a specific hydrolase or an ancillary sphingolipid activator protein essential for a specific step in the catabolism of gangliosides. Such defects in lysosomal function cause a primary accumulation of multiple undegradable gangliosides and glycosphingolipids. In reality, however, predominantly small gangliosides also accumulate in many lysosomal diseases as secondary storage material without any known defect in their catabolic pathway. In recent reconstitution experiments, we identified primary storage materials like sphingomyelin, cholesterol, lysosphingolipids, and chondroitin sulfate as strong inhibitors of sphingolipid activator proteins (like GM2 activator protein, saposin A and B), essential for the catabolism of many gangliosides and glycosphingolipids, as well as inhibitors of specific catabolic steps in lysosomal ganglioside catabolism and cholesterol turnover. In particular, they trigger a secondary accumulation of ganglioside GM2, glucosylceramide and cholesterol in Niemann–Pick disease type A and B, and of GM2 and glucosylceramide in Niemann–Pick disease type C. Chondroitin sulfate effectively inhibits GM2 catabolism in mucopolysaccharidoses like Hurler, Hunter, Sanfilippo, and Sly syndrome and causes a secondary neuronal ganglioside GM2 accumulation, triggering neurodegeneration. Secondary ganglioside and lipid accumulation is furthermore known in many more lysosomal storage diseases, so far without known molecular basis.
Collapse
|
13
|
Beerepoot S, Nierkens S, Boelens JJ, Lindemans C, Bugiani M, Wolf NI. Peripheral neuropathy in metachromatic leukodystrophy: current status and future perspective. Orphanet J Rare Dis 2019; 14:240. [PMID: 31684987 PMCID: PMC6829806 DOI: 10.1186/s13023-019-1220-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/09/2019] [Indexed: 11/23/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is an autosomal recessively inherited metabolic disease characterized by deficient activity of the lysosomal enzyme arylsulfatase A. Its deficiency results in accumulation of sulfatides in neural and visceral tissues, and causes demyelination of the central and peripheral nervous system. This leads to a broad range of neurological symptoms and eventually premature death. In asymptomatic patients with juvenile and adult MLD, treatment with allogeneic hematopoietic stem cell transplantation (HCT) provides a symptomatic and survival benefit. However, this treatment mainly impacts brain white matter, whereas the peripheral neuropathy shows no or only limited response. Data about the impact of peripheral neuropathy in MLD patients are currently lacking, although in our experience peripheral neuropathy causes significant morbidity due to neuropathic pain, foot deformities and neurogenic bladder disturbances. Besides, the reasons for residual and often progressive peripheral neuropathy after HCT are not fully understood. Preliminary studies suggest that peripheral neuropathy might respond better to gene therapy due to higher enzyme levels achieved than with HCT. However, histopathological and clinical findings also suggest a role of neuroinflammation in the pathology of peripheral neuropathy in MLD. In this literature review, we discuss clinical aspects, pathological findings, distribution of mutations, and treatment approaches in MLD with particular emphasis on peripheral neuropathy. We believe that future therapies need more emphasis on the management of peripheral neuropathy, and additional research is needed to optimize care strategies.
Collapse
Affiliation(s)
- Shanice Beerepoot
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Pediatric Blood and Marrow Transplantation Program, Princess Máxima Center and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap Jan Boelens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Pediatrics, Stem Cell Transplant and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline Lindemans
- Pediatric Blood and Marrow Transplantation Program, Princess Máxima Center and University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative medicine institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Rutherford HA, Hamilton N. Animal models of leukodystrophy: a new perspective for the development of therapies. FEBS J 2019; 286:4176-4191. [DOI: 10.1111/febs.15060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/31/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Holly A. Rutherford
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease University of Sheffield UK
| | - Noémie Hamilton
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease University of Sheffield UK
| |
Collapse
|
15
|
Piraud M, Pettazzoni M, Lavoie P, Ruet S, Pagan C, Cheillan D, Latour P, Vianey-Saban C, Auray-Blais C, Froissart R. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018; 41:457-477. [PMID: 29556840 DOI: 10.1007/s10545-017-0126-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Tandem mass spectrometry (MS/MS) is a highly sensitive and specific technique. Thanks to the development of triple quadrupole analyzers, it is becoming more widely used in laboratories working in the field of inborn errors of metabolism. We review here the state of the art of this technique applied to the diagnosis of lysosomal storage disorders (LSDs) and how MS/MS has changed the diagnostic rationale in recent years. This fine technology brings more sensitive, specific, and reliable methods than the previous biochemical ones for the analysis of urinary glycosaminoglycans, oligosaccharides, and sialic acid. In sphingolipidoses, the quantification of urinary sphingolipids (globotriaosylceramide, sulfatides) is possible. The measurement of new plasmatic biomarkers such as oxysterols, bile acids, and lysosphingolipids allows the screening of many sphingolipidoses and related disorders (Niemann-Pick type C), replacing tedious biochemical techniques. Applied to amniotic fluid, a more reliable prenatal diagnosis or screening of LSDs is now available for fetuses presenting with antenatal manifestations. Applied to enzyme measurements, it allows high throughput assays for the screening of large populations, even newborn screening. The advent of this new method can modify the diagnostic rationale behind LSDs.
Collapse
Affiliation(s)
- Monique Piraud
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France.
| | - Magali Pettazzoni
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Pamela Lavoie
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Séverine Ruet
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Cécile Pagan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - David Cheillan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Philippe Latour
- Unité de Neurogénétique Moléculaire, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christine Vianey-Saban
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Christiane Auray-Blais
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roseline Froissart
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| |
Collapse
|
16
|
Rosenberg JB, Kaminsky SM, Aubourg P, Crystal RG, Sondhi D. Gene therapy for metachromatic leukodystrophy. J Neurosci Res 2017; 94:1169-79. [PMID: 27638601 DOI: 10.1002/jnr.23792] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Accepted: 05/26/2016] [Indexed: 01/31/2023]
Abstract
Leukodystrophies (LDs) are rare, often devastating genetic disorders with neurologic symptoms. There are currently no disease-specific therapeutic approaches for these diseases. In this review we use metachromatic leukodystrophy as an example to outline in the brief the therapeutic approaches to MLD that have been tested in animal models and in clinical trials, such as enzyme-replacement therapy, bone marrow/umbilical cord blood transplants, ex vivo transplantation of genetically modified hematopoietic stem cells, and gene therapy. These studies suggest that to be successful the ideal therapy for MLD must provide persistent and high level expression of the deficient gene, arylsulfatase A in the CNS. Gene therapy using adeno-associated viruses is therefore the ideal choice for clinical development as it provides the best balance of potential for efficacy with reduced safety risk. Here we have summarized the published preclinical data from our group and from others that support the use of a gene therapy with AAVrh.10 serotype for clinical development as a treatment for MLD, and as an example of the potential of gene therapy for LDs especially for Krabbe disease, which is the focus of this special issue. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | | | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
17
|
Piguet F, Alves S, Cartier N. Clinical Gene Therapy for Neurodegenerative Diseases: Past, Present, and Future. Hum Gene Ther 2017; 28:988-1003. [DOI: 10.1089/hum.2017.160] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Françoise Piguet
- Translational Medicine and Neurogenetics Department, Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- Inserm U596, Illkirch, France; CNRS, UMR7104, Illkirch, France
- Faculte des Sciences de la Vie, Universite de Strasbourg, Strasbourg, France
| | | | - Nathalie Cartier
- INSERM/CEA UMR1169, MIRCen Fontenay aux Roses, France
- Universite Paris-Sud, Orsay, France
| |
Collapse
|
18
|
Penati R, Fumagalli F, Calbi V, Bernardo ME, Aiuti A. Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J Inherit Metab Dis 2017; 40:543-554. [PMID: 28560469 PMCID: PMC5500670 DOI: 10.1007/s10545-017-0052-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/15/2017] [Accepted: 04/27/2017] [Indexed: 01/10/2023]
Abstract
Lysosomal storage diseases (LSDs) are rare inherited metabolic disorders characterized by a dysfunction in lysosomes, leading to waste material accumulation and severe organ damage. Enzyme replacement therapy (ERT) and haematopoietic stem cell transplant (HSCT) have been exploited as potential treatments for LSDs but pre-clinical and clinical studies have shown in some cases limited efficacy. Intravenous ERT is able to control the damage of visceral organs but cannot prevent nervous impairment. Depending on the disease type, HSCT has important limitations when performed for early variants, unless treatment occurs before disease onset. In the attempt to overcome these issues, gene therapy has been proposed as a valuable therapeutic option, either ex vivo, with target cells genetically modified in vitro, or in vivo, by inserting the genetic material with systemic or intra-parenchymal, in situ administration. In particular, the use of autologous haematopoietic stem cells (HSC) transduced with a viral vector containing a healthy copy of the mutated gene would allow supra-normal production of the defective enzyme and cross correction of target cells in multiple tissues, including the central nervous system. This review will provide an overview of the most recent scientific advances in HSC-based gene therapy approaches for the treatment of LSDs with particular focus on metachromatic leukodystrophy (MLD) and mucopolysaccharidosis type I (MPS-I).
Collapse
Affiliation(s)
- Rachele Penati
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Fumagalli
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
19
|
Wiseman JA, Meng Y, Nemtsova Y, Matteson PG, Millonig JH, Moore DF, Sleat DE, Lobel P. Chronic Enzyme Replacement to the Brain of a Late Infantile Neuronal Ceroid Lipofuscinosis Mouse Has Differential Effects on Phenotypes of Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:204-212. [PMID: 28345005 PMCID: PMC5363315 DOI: 10.1016/j.omtm.2017.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Late infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal inherited neurodegenerative disease caused by loss of lysosomal protease tripeptidyl peptidase 1 (TPP1). We have investigated the effects of chronic intrathecal (IT) administration using enzyme replacement therapy (ERT) to the brain of an LINCL mouse model, in which locomotor function declines dramatically prior to early death. Median lifespan was significantly extended from 126 days to >259 days when chronic IT treatment was initiated before the onset of disease. While treated animals lived longer and showed little sign of locomotor dysfunction as measured by stride length, some or all (depending on regimen) still died prematurely. One explanation is that cerebrospinal fluid (CSF)-mediated delivery may not deliver TPP1 to all brain regions. Morphological studies support this, showing delivery of TPP1 to ventral, but not deeper and dorsal regions. When IT treatment is initiated in severely affected LINCL mice, lifespan was extended modestly in most but dramatically extended in approximately one-third of the cohort. Treatment improved locomotor function in these severely compromised animals after it had declined to the point at which animals normally die. This indicates that some pathology in LINCL is reversible and does not simply reflect neuronal death.
Collapse
Affiliation(s)
- Jennifer A Wiseman
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yu Meng
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuliya Nemtsova
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Paul G Matteson
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James H Millonig
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Neuroscience & Cell Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Dirk F Moore
- School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David E Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
King B, Setford ML, Hassiotis S, Trim PJ, Duplock S, Tucker JN, Hattersley K, Snel MF, Hopwood JJ, Hemsley KM. Low-dose, continual enzyme delivery ameliorates some aspects of established brain disease in a mouse model of a childhood-onset neurodegenerative disorder. Exp Neurol 2016; 278:11-21. [DOI: 10.1016/j.expneurol.2015.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
|
21
|
Biffi A. Gene therapy for lysosomal storage disorders: a good start. Hum Mol Genet 2015; 25:R65-75. [PMID: 26604151 DOI: 10.1093/hmg/ddv457] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage disorders (LSDs) are a heterogeneous group of inherited diseases with a collective frequency of ∼1 in 7000 births, resulting from the deficiency in one or more enzymes or transporters that normally reside within the lysosomes. Pathology results from the progressive accumulation of uncleaved lipids, glycoproteins and/or glycosaminoglycans in the lysosomes and secondary damages that affect the brain, viscera, bones and connective tissues. Most treatment modalities developed for LSD, including gene therapy (GT), are based on the lysosome-specific cross-correction mechanism, by which close proximity of normal cells leads to the correction of the biochemical consequences of enzymatic deficiency within the neighboring cells. Here, GT efforts addressing these disorders are reviewed with an up-to-date discussion of their impact on the LSD disease phenotype in animal models and patients.
Collapse
Affiliation(s)
- Alessandra Biffi
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Hironaka K, Yamazaki Y, Hirai Y, Yamamoto M, Miyake N, Miyake K, Okada T, Morita A, Shimada T. Enzyme replacement in the CSF to treat metachromatic leukodystrophy in mouse model using single intracerebroventricular injection of self-complementary AAV1 vector. Sci Rep 2015; 5:13104. [PMID: 26283284 PMCID: PMC4539541 DOI: 10.1038/srep13104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/09/2015] [Indexed: 12/02/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a functional deficiency in human arylsulfatase A (hASA). We recently reported that ependymal cells and the choroid plexus are selectively transduced by intracerebroventricular (ICV) injection of adeno-associated virus serotype 1 (AAV1) vector and serve as a biological reservoir for the secretion of lysosomal enzymes into the cerebrospinal fluid (CSF). In the present study, we examined the feasibility of this AAV-mediated gene therapy to treat MLD model mice. Preliminary experiments showed that the hASA level in the CSF after ICV injection of self-complementary (sc) AAV1 was much higher than in mice injected with single-stranded AAV1 or scAAV9. However, when 18-week-old MLD mice were treated with ICV injection of scAAV1, the concentration of hASA in the CSF gradually decreased and was not detectable at 12 weeks after injection, probably due to the development of anti-hASA antibodies. As a result, the sulfatide levels in brain tissues of treated MLD mice were only slightly reduced compared with those of untreated MLD mice. These results suggest that this approach is potentially promising for treating MLD, but that controlling the immune response appears to be crucial for long-term expression of therapeutic proteins in the CSF.
Collapse
Affiliation(s)
- Kohei Hironaka
- 1] Department of Biochemistry and Molecular Biology; Division of Gene Therapy, Research Center for Advanced Medical Technology; Nippon Medical School, Tokyo, 113-8603, Japan [2] Department of Neurological Surgery; Nippon Medical School, Tokyo, 113-8603, Japan
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology; Division of Gene Therapy, Research Center for Advanced Medical Technology; Nippon Medical School, Tokyo, 113-8603, Japan
| | - Yukihiko Hirai
- Department of Biochemistry and Molecular Biology; Division of Gene Therapy, Research Center for Advanced Medical Technology; Nippon Medical School, Tokyo, 113-8603, Japan
| | - Motoko Yamamoto
- Department of Biochemistry and Molecular Biology; Division of Gene Therapy, Research Center for Advanced Medical Technology; Nippon Medical School, Tokyo, 113-8603, Japan
| | - Noriko Miyake
- Department of Biochemistry and Molecular Biology; Division of Gene Therapy, Research Center for Advanced Medical Technology; Nippon Medical School, Tokyo, 113-8603, Japan
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology; Division of Gene Therapy, Research Center for Advanced Medical Technology; Nippon Medical School, Tokyo, 113-8603, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology; Division of Gene Therapy, Research Center for Advanced Medical Technology; Nippon Medical School, Tokyo, 113-8603, Japan
| | - Akio Morita
- Department of Neurological Surgery; Nippon Medical School, Tokyo, 113-8603, Japan
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology; Division of Gene Therapy, Research Center for Advanced Medical Technology; Nippon Medical School, Tokyo, 113-8603, Japan
| |
Collapse
|
23
|
Zerah M, Piguet F, Colle MA, Raoul S, Deschamps JY, Deniaud J, Gautier B, Toulgoat F, Bieche I, Laurendeau I, Sondhi D, Souweidane MM, Cartier-Lacave N, Moullier P, Crystal RG, Roujeau T, Sevin C, Aubourg P. Intracerebral Gene Therapy Using AAVrh.10-hARSA Recombinant Vector to Treat Patients with Early-Onset Forms of Metachromatic Leukodystrophy: Preclinical Feasibility and Safety Assessments in Nonhuman Primates. HUM GENE THER CL DEV 2015; 26:113-24. [PMID: 25758611 DOI: 10.1089/humc.2014.139] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
No treatment is available for early-onset forms of metachromatic leukodystrophy (MLD), a lysosomal storage disease caused by autosomal recessive defect in arylsulfatase A (ARSA) gene causing severe demyelination in central and peripheral nervous systems. We have developed a gene therapy approach, based on intracerebral administration of AAVrh.10-hARSA vector, coding for human ARSA enzyme. We have previously demonstrated potency of this approach in MLD mice lacking ARSA expression. We describe herein the preclinical efficacy, safety, and biodistribution profile of intracerebral administration of AAVrh.10-hARSA to nonhuman primates (NHPs). NHPs received either the dose planned for patients adjusted to the brain volume ratio between child and NHP (1×dose, 1.1×10(11) vg/hemisphere, unilateral or bilateral injection) or 5-fold this dose (5×dose, 5.5×10(11) vg/hemisphere, bilateral injection). NHPs were subjected to clinical, biological, and brain imaging observations and were euthanized 7 or 90 days after injection. There was no toxicity based on clinical and biological parameters, nor treatment-related histological findings in peripheral organs. A neuroinflammatory process correlating with brain MRI T2 hypersignals was observed in the brain 90 days after administration of the 5×dose, but was absent or minimal after administration of the 1×dose. Antibody response to AAVrh.10 and hARSA was detected, without correlation with brain lesions. After injection of the 1×dose, AAVrh.10-hARSA vector was detected in a large part of the injected hemisphere, while ARSA activity exceeded the normal endogenous activity level by 14-31%. Consistently with other reports, vector genome was detected in off-target organs such as liver, spleen, lymph nodes, or blood, but not in gonads. Importantly, AAVrh.10-hARSA vector was no longer detectable in urine at day 7. Our data demonstrate requisite safe and effective profile for intracerebral AAVrh.10-hARSA delivery in NHPs, supporting its clinical use in children affected with MLD.
Collapse
Affiliation(s)
- Michel Zerah
- 1 Inserm U986, 94275 Le Kremlin Bicêtre , France .,2 Pediatric Neurosurgery, Necker Children's Hospital , 75014 Paris, France
| | | | - Marie-Anne Colle
- 3 INRA UMR U703 , 44000 Nantes, France .,4 Food Science and Engineering Oniris, Nantes-Atlantic College of Veterinary Medicine , 44000 Nantes, France
| | - Sylvie Raoul
- 5 Service de Neurochirurgie, CHU Nord , 44000 Nantes, France
| | - Jack-Yves Deschamps
- 3 INRA UMR U703 , 44000 Nantes, France .,4 Food Science and Engineering Oniris, Nantes-Atlantic College of Veterinary Medicine , 44000 Nantes, France
| | | | | | - Frédérique Toulgoat
- 6 Neuroradiologie Diagnostique et Interventionnelle, Hôpital Laennec, CHU de Nantes , 44000 Nantes, France
| | - Ivan Bieche
- 7 Faculté des Sciences Pharmaceutiques et Biologiques , 75005 Paris, France
| | - Ingrid Laurendeau
- 7 Faculté des Sciences Pharmaceutiques et Biologiques , 75005 Paris, France
| | - Dolan Sondhi
- 8 Department of Genetic Medicine, Weill-Cornell Medical College , New York, NY 10065
| | - Mark M Souweidane
- 9 Neurological Surgery and Pediatrics, Weill-Cornell Medical College , New York, NY 10065
| | | | | | - Ronald G Crystal
- 8 Department of Genetic Medicine, Weill-Cornell Medical College , New York, NY 10065
| | - Thomas Roujeau
- 11 Neurosurgery, Hôpitaux de Montpellier , 34000 Montpellier, France
| | - Caroline Sevin
- 1 Inserm U986, 94275 Le Kremlin Bicêtre , France .,12 Neuropediatrics Unit, Bicêtre Hospital , 94275 Le Kremlin Bicêtre, France
| | - Patrick Aubourg
- 1 Inserm U986, 94275 Le Kremlin Bicêtre , France .,12 Neuropediatrics Unit, Bicêtre Hospital , 94275 Le Kremlin Bicêtre, France
| |
Collapse
|
24
|
Hassiotis S, Beard H, Luck A, Trim PJ, King B, Snel MF, Hopwood JJ, Hemsley KM. Disease stage determines the efficacy of treatment of a paediatric neurodegenerative disease. Eur J Neurosci 2015; 39:2139-50. [PMID: 25068161 DOI: 10.1111/ejn.12557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lysosomal storage disorders are a large group of inherited metabolic conditions resulting from the deficiency of proteins involved in lysosomal catabolism, with resulting accumulation of substrates inside the cell. Two-thirds of these disorders are associated with a neurodegenerative phenotype and, although few therapeutic options are available to patients at present, clinical trials of several treatments including lysosomal enzyme replacement are underway. Although animal studies indicate the efficacy of presymptomatic treatment, it is largely unknown whether symptomatic disease-related pathology and functional deficits are reversible. To begin to address this, we used a naturally-occurring mouse model with Sanfilippo syndrome (mucopolysaccharidosis type IIIA) to examine the effectiveness of intracisternal cerebrospinal fluid enzyme replacement in early, mid- and symptomatic disease stage mice. We observed a disease-stage-dependent treatment effect, with the most significant reductions in primary and secondary substrate accumulation, astrogliosis and protein aggregate accumulation seen in mucopolysaccharidosis type IIIA mice treated very early in the disease course. Affected mice treated at a symptomatic age exhibited little change in these neuropathological markers in the time-frame of the study. Microgliosis was refractory to treatment regardless of the age at which treatment was instigated. Although longer-term studies are warranted, these findings indicate the importance of early intervention in this condition.
Collapse
|
25
|
McAllister RG, Liu J, Woods MW, Tom SK, Rupar CA, Barr SD. Lentivector integration sites in ependymal cells from a model of metachromatic leukodystrophy: non-B DNA as a new factor influencing integration. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e187. [PMID: 25158091 PMCID: PMC4221599 DOI: 10.1038/mtna.2014.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
The blood–brain barrier controls the passage of molecules from the blood into the central nervous system (CNS) and is a major challenge for treatment of neurological diseases. Metachromatic leukodystrophy is a neurodegenerative lysosomal storage disease caused by loss of arylsulfatase A (ARSA) activity. Gene therapy via intraventricular injection of a lentiviral vector is a potential approach to rapidly and permanently deliver therapeutic levels of ARSA to the CNS. We present the distribution of integration sites of a lentiviral vector encoding human ARSA (LV-ARSA) in murine brain choroid plexus and ependymal cells, administered via a single intracranial injection into the CNS. LV-ARSA did not exhibit a strong preference for integration in or near actively transcribed genes, but exhibited a strong preference for integration in or near satellite DNA. We identified several genomic hotspots for LV-ARSA integration and identified a consensus target site sequence characterized by two G-quadruplex-forming motifs flanking the integration site. In addition, our analysis identified several other non-B DNA motifs as new factors that potentially influence lentivirus integration, including human immunodeficiency virus type-1 in human cells. Together, our data demonstrate a clinically favorable integration site profile in the murine brain and identify non-B DNA as a potential new host factor that influences lentiviral integration in murine and human cells.
Collapse
Affiliation(s)
- Robert G McAllister
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - Jiahui Liu
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Matthew W Woods
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - Sean K Tom
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - C Anthony Rupar
- 1] Department of Biochemistry, Western University, London, Ontario, Canada [2] Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada [3] Department of Pediatrics, Western University, London, Ontario, Canada [4] Children's Health Research Institute, Western University, London, Ontario, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| |
Collapse
|
26
|
Rosenberg JB, Sondhi D, Rubin DG, Monette S, Chen A, Cram S, De BP, Kaminsky SM, Sevin C, Aubourg P, Crystal RG. Comparative efficacy and safety of multiple routes of direct CNS administration of adeno-associated virus gene transfer vector serotype rh.10 expressing the human arylsulfatase A cDNA to nonhuman primates. HUM GENE THER CL DEV 2014; 25:164-77. [PMID: 25144894 DOI: 10.1089/humc.2013.239] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metachromatic leukodystrophy (MLD), a fatal disorder caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA), is associated with an accumulation of sulfatides, causing widespread demyelination in both central and peripheral nervous systems. On the basis of prior studies demonstrating that adeno-associated virus AAVrh.10 can mediate widespread distribution in the CNS of a secreted lysosomal transgene, and as a prelude to human trials, we comparatively assessed the optimal CNS delivery route of an AAVrh.10 vector encoding human ARSA in a large animal model for broadest distribution of ARSA enzyme. Five routes were tested (each total dose, 1.5 × 10(12) genome copies of AAVrh.10hARSA-FLAG): (1) delivery to white matter centrum ovale; (2) deep gray matter delivery (putamen, thalamus, and caudate) plus overlying white matter; (3) convection-enhanced delivery to same deep gray matter locations; (4) lateral cerebral ventricle; and (5) intraarterial delivery with hyperosmotic mannitol to the middle cerebral artery. After 13 weeks, the distribution of ARSA activity subsequent to each of the three direct intraparenchymal administration routes was significantly higher than in phosphate-buffered saline-administered controls, but administration by the intraventricular and intraarterial routes failed to demonstrate measurable levels above controls. Immunohistochemical staining in the cortex, white matter, deep gray matter of the striatum, thalamus, choroid plexus, and spinal cord dorsal root ganglions confirmed these results. Of the five routes studied, administration to the white matter generated the broadest distribution of ARSA, with 80% of the brain displaying more than a therapeutic (10%) increase in ARSA activity above PBS controls. No significant toxicity was observed with any delivery route as measured by safety parameters, although some inflammatory changes were seen by histopathology. We conclude that AAVrh.10-mediated delivery of ARSA via CNS administration into the white matter is likely to be safe and yields the widest distribution of ARSA, making it the most suitable route of vector delivery.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- 1 Department of Genetic Medicine, Weill Medical College of Cornell University , New York, NY 10065
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Piguet F, Sondhi D, Piraud M, Fouquet F, Hackett NR, Ahouansou O, Vanier MT, Bieche I, Aubourg P, Crystal RG, Cartier N, Sevin C. Correction of brain oligodendrocytes by AAVrh.10 intracerebral gene therapy in metachromatic leukodystrophy mice. Hum Gene Ther 2012; 23:903-14. [PMID: 22642214 DOI: 10.1089/hum.2012.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder characterized by accumulation of sulfatides in glial cells and neurons, the result of an inherited deficiency of arylsulfatase A (ARSA; EC 3.1.6.8) and myelin degeneration in the central and peripheral nervous systems. No effective treatment is currently available for the most frequent late infantile (LI) form of MLD, which results in rapid neurological degradation and early death after the onset of clinical manifestations. To potentially arrest or reverse disease progression, ARSA enzyme must be rapidly delivered to brain oligodendrocytes of patients with LI MLD. We previously showed that brain gene therapy with adeno-associated virus serotype 5 (AAV5) driving the expression of human ARSA cDNA under the control of the murine phosphoglycerate kinase (PGK) promoter alleviated most long-term disease manifestations in MLD mice. Herein, we evaluated the short-term effects of AAVrh.10 driving the expression of human ARSA cDNA under the control of the cytomegalovirus/β-actin hybrid (CAG/cu) promoter in 8-month-old MLD mice that already show marked sulfatide accumulation and brain pathology. Within 2 months, and in contrast to results with the AAV5-PGK-ARSA vector, a single intrastriatal injection of AAVrh.10cuARSA resulted in correction of brain sulfatide storage, accumulation of specific sulfatide species in oligodendrocytes, and associated brain pathology in the injected hemisphere. Better potency of the AAVrh.10cuARSA vector was mediated by higher neuronal and oligodendrocyte transduction, axonal transport of the AAVrh.10 vector and ARSA enzyme, as well as higher CAG/cu promoter driven expression of ARSA enzyme. These results strongly support the use of AAVrh.10cuARSA vector for intracerebral gene therapy in rapidly progressing early-onset forms of MLD.
Collapse
|
28
|
Batzios SP, Zafeiriou DI. Developing treatment options for metachromatic leukodystrophy. Mol Genet Metab 2012; 105:56-63. [PMID: 22078456 DOI: 10.1016/j.ymgme.2011.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 12/25/2022]
Abstract
Metachromatic leukodystrophy (MLD) represents a devastating lysosomal storage disease characterized by intralysosomal accumulation of the sphingolipid sulfatide in various tissues. Three types of the disease are currently distinguished: the late-infantile, which is the most commonly observed, the juvenile and the adult type. Demyelination represents the main histopathological feature of the disorder, leading to neurological impairment with no curative treatment currently available. Nevertheless, the increased scientific interest on the disease has led to the experimental use of innovative therapeutic approaches in animal models, aiming to provide an effective therapeutic regimen for human patients, as well. This paper provides an overview of developing treatment options among patients with MLD. Apart from hematopoietic stem cell transplantation, already in use for decades, other recent data discussed includes umbilical cord blood and stem cell transplantation, enzyme replacement therapy, gene therapy and autologous hematopoietic transplantation of genetically modified stem cells. Gene therapy with oligodedroglial, neural progenitor, embryonic and microencapsulated recombinant cells represents add-on treatment options still on experimental level.
Collapse
Affiliation(s)
- Spyros P Batzios
- 1st Department of Paediatrics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
29
|
Duncan ID, Kondo Y, Zhang SC. The myelin mutants as models to study myelin repair in the leukodystrophies. Neurotherapeutics 2011; 8:607-24. [PMID: 21979830 PMCID: PMC3250297 DOI: 10.1007/s13311-011-0080-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The leukodystrophies are rare and serious genetic disorders of the central nervous system that primarily affect children who frequently die early in life or have significantly delayed motor and mental milestones that result in long-term disability. Although with some of these disorders, early intervention with bone marrow or cord blood transplantation has been proven useful, it has not yet been determined that such therapies promote myelin repair of the central nervous system. Research on experimental therapies aimed at myelin repair is aided by the ability to test cell replacement strategies in genetic models in which the mutations and neuropathology match the human disorder. Thus, models exist of Pelizaeus-Merzbacher disease and the lysosomal storage disorder, Krabbe disease, which reflect the clinical and pathological course of the human disorders. Collectively, animals with mutations in myelin genes are called the myelin mutants, and they include rodent models such as the shiverer mouse that have been extensively used to study myelination by exogenous cell transplantation. These studies have encompassed many permutations of the age of the recipient, type of transplanted cell, site of engraftment, and so forth, and they offer hope that the scaling up of myelin produced by transplanted cells will have clinical significance in treating patients. Here we review these models and discuss their relative importance and use in such translational approaches. We discuss how grafts are identified and functional outcomes are measured. Finally, we briefly discuss the cells that have been successfully transplanted, which may be used in future clinical trials.
Collapse
Affiliation(s)
- Ian D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
30
|
Faldini E, Stroobants S, Lüllmann-Rauch R, Eckhardt M, Gieselmann V, Balschun D, D’Hooge R. Telencephalic histopathology and changes in behavioural and neural plasticity in a murine model for metachromatic leukodystrophy. Behav Brain Res 2011; 222:309-14. [DOI: 10.1016/j.bbr.2011.03.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/24/2011] [Accepted: 03/27/2011] [Indexed: 11/16/2022]
|
31
|
Shachar T, Lo Bianco C, Recchia A, Wiessner C, Raas-Rothschild A, Futerman AH. Lysosomal storage disorders and Parkinson's disease: Gaucher disease and beyond. Mov Disord 2011; 26:1593-604. [PMID: 21618611 DOI: 10.1002/mds.23774] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/28/2011] [Accepted: 04/06/2011] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease is associated with mutations in the glucocerebrosidase gene, which result in the enzyme deficiency causing Gaucher disease, the most common lysosomal storage disorder. We have performed an exhaustive literature search and found that additional lysosomal storage disorders might be associated with Parkinson's disease, based on case reports, the appearance of pathological features such as α-synuclein deposits in the brain, and substantia nigra pathology. Our findings suggest that the search for biochemical and cellular pathways that link Parkinson's disease with lysosomal storage disorders should not be limited exclusively to changes that occur in Gaucher disease, such as changes in glucocerebrosidase activity or in glucosylceramide levels, but rather include changes that might be common to a wide variety of lysosomal storage disorders. Moreover, we propose that additional genetic, epidemiological, and clinical studies should be performed to check the precise incidence of mutations in genes encoding lysosomal proteins in patients displaying Parkinson's symptoms.
Collapse
Affiliation(s)
- Tamar Shachar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Leukodystrophies (LDs) refer to a group on inherited diseases in which molecular abnormalities of glial cells are responsible for exclusive or predominant defects in myelin formation and/or maintenance within the central and, sometimes, the peripheral nervous system. For three of them [X-linked adrenoleukodystrophy (X-ALD), metachromatic (MLD) and globoid cell LDs], a gene therapy strategy aiming at transferring the disease gene into autologous hematopoietic stem cells (HSCs) using lentiviral vectors has been developed and has already entered into the clinics for X-ALD and MLD. Long-term follow-up has shown that HSCs gene therapy can arrest the devastating progression of X-ALD. Brain gene therapy relying upon intracerebral injections of adeno-associated vectors is also envisaged for MLD. The development of new gene therapy viral vectors allowing targeting of the disease gene into oligodendrocytes or astrocytes should soon benefit other forms of LDs.
Collapse
Affiliation(s)
- Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
33
|
Lavdas AA, Efrose R, Douris V, Gaitanou M, Papastefanaki F, Swevers L, Thomaidou D, Iatrou K, Matsas R. Soluble forms of the cell adhesion molecule L1 produced by insect and baculovirus-transduced mammalian cells enhance Schwann cell motility. J Neurochem 2010; 115:1137-49. [PMID: 20846298 DOI: 10.1111/j.1471-4159.2010.07003.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For biotechnological applications, insect cell lines are primarily known as hosts for the baculovirus expression system that is capable to direct synthesis of high levels of recombinant proteins through use of powerful viral promoters. Here, we demonstrate the implementation of two alternative approaches based on the baculovirus system for production of a mammalian recombinant glycoprotein, comprising the extracellular part of the cell adhesion molecule L1, with potential important therapeutic applications in nervous system repair. In the first approach, the extracellular part of L1 bearing a myc tag is produced in permanently transformed insect cell lines and purified by affinity chromatography. In the second approach, recombinant baculoviruses that express L1-Fc chimeric protein, derived from fusion of the extracellular part of L1 with the Fc part of human IgG1, under the control of a mammalian promoter are used to infect mammalian HEK293 and primary Schwann cells. Both the extracellular part of L1 bearing a myc tag accumulating in the supernatants of insect cultures as well as L1-Fc secreted by transduced HEK293 or Schwann cells are capable of increasing the motility of Schwann cells with similar efficiency in a gap bridging bioassay. In addition, baculovirus-transduced Schwann cells show enhanced motility when grafted on organotypic cultures of neonatal brain slices while they retain their ability to myelinate CNS axons. This proof-of-concept that the migratory properties of myelin-forming cells can be modulated by recombinant protein produced in insect culture as well as by means of baculovirus-mediated adhesion molecule expression in mammalian cells may have beneficial applications in the field of CNS therapies.
Collapse
Affiliation(s)
- Alexandros A Lavdas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pathology and current treatment of neurodegenerative sphingolipidoses. Neuromolecular Med 2010; 12:362-82. [PMID: 20730629 DOI: 10.1007/s12017-010-8133-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 08/10/2010] [Indexed: 01/09/2023]
Abstract
Sphingolipidoses constitute a large subgroup of lysosomal storage disorders (LSDs). Many of them are associated with a progressive neurodegeneration. As is the case for LSDs in general, most sphingolipidoses are caused by deficiencies in lysosomal hydrolases. However, accumulation of sphingolipids can also result from deficiencies in proteins involved in the transport or posttranslational modification of lysosomal enzymes, transport of lipids, or lysosomal membrane proteins required for transport of lysosomal degradation end products. The accumulation of sphingolipids in the lysosome together with secondary changes in the concentration and localization of other lipids may cause trafficking defects of membrane lipids and proteins, affect calcium homeostasis, induce the unfolded protein response, activate apoptotic cascades, and affect various signal transduction pathways. To what extent, however, these changes contribute to the pathogenesis of the diseases is not fully understood. Currently, there is no cure for sphingolipidoses. Therapies like enzyme replacement, pharmacological chaperone, and substrate reduction therapy, which have been shown to be efficient in non-neuronopathic LSDs, are currently evaluated in clinical trials of neuronopathic sphingolipidoses. In the future, neural stem cell therapy and gene therapy may become an option for these disorders.
Collapse
|
35
|
Colle MA, Piguet F, Bertrand L, Raoul S, Bieche I, Dubreil L, Sloothaak D, Bouquet C, Moullier P, Aubourg P, Cherel Y, Cartier N, Sevin C. Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Hum Mol Genet 2010; 19:147-58. [PMID: 19837699 DOI: 10.1093/hmg/ddp475] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is a lethal neurodegenerative disease caused by a deficiency in the lysosomal arylsulfatase A (ARSA) enzyme leading to the accumulation of sulfatides in glial and neuronal cells. We previously demonstrated in ARSA-deficient mice that intracerebral injection of a serotype 5 adeno-associated vector (AAV) encoding human ARSA corrects the biochemical, neuropathological and behavioral abnormalities. However, before considering a potential clinical application, scaling-up issues should be addressed in large animals. Therefore, we performed intracerebral injection of the same AAV vector (total dose of 3.8 x 10(11) or 1.9 x 10(12) vector genome, three sites of injection in the right hemisphere, two deposits per site of injection) into three selected areas of the centrum semiovale white matter, or in the deep gray matter nuclei (caudate nucleus, putamen, thalamus) of six non-human primates to evaluate vector distribution, as well as expression and activity of human ARSA. The procedure was perfectly tolerated, without any adverse effect or change in neurobehavioral examination. AAV vector was detected in a brain volume of 12-15 cm(3) that corresponded to 37-46% of the injected hemisphere. ARSA enzyme was expressed in multiple interconnected brain areas over a distance of 22-33 mm. ARSA activity was increased by 12-38% in a brain volume that corresponded to 50-65% of injected hemisphere. These data provide substantial evidence for potential benefits of brain gene therapy in patients with MLD.
Collapse
|
36
|
Iwamoto N, Watanabe A, Yamamoto M, Miyake N, Kurai T, Teramoto A, Shimada T. Global diffuse distribution in the brain and efficient gene delivery to the dorsal root ganglia by intrathecal injection of adeno-associated viral vector serotype 1. J Gene Med 2009; 11:498-505. [DOI: 10.1002/jgm.1325] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B. Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann–Pick C1 disease — Lysosomal storage disorders caused by defects of non-lysosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:710-25. [DOI: 10.1016/j.bbamcr.2008.11.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/11/2008] [Accepted: 11/24/2008] [Indexed: 12/11/2022]
|
38
|
Enzyme replacement improves ataxic gait and central nervous system histopathology in a mouse model of metachromatic leukodystrophy. Mol Ther 2009; 17:600-6. [PMID: 19174759 DOI: 10.1038/mt.2008.305] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inherited deficiencies of lysosomal hydrolases cause lysosomal storage diseases (LSDs) that are characterized by a progressive multisystemic pathology and premature death. Repeated intravenous injection of the active counterpart of the deficient enzyme, a treatment strategy called enzyme replacement therapy (ERT), evolved as a clinical option for several LSDs without central nervous system (CNS) involvement. To assess the efficacy of long-term ERT in metachromatic leukodystrophy (MLD), an LSD with prevailing nervous system disease, we treated immunotolerant arylsulfatase A (ASA) knockout mice with 52 doses of either 4 or 50 mg/kg recombinant human ASA (rhASA). ERT was tolerated without side effects and improved disease manifestations in a dose-dependent manner. Dosing of 4 mg/kg diminished sulfatide storage in kidney and peripheral nervous system (PNS) but not the CNS, whereas treatment with 50 mg/kg was also effective in the CNS in reducing storage in brain and spinal cord by 34 and 45%, respectively. Histological analyses revealed regional differences in sulfatide clearance. While 70% less storage profiles were detectable, for example, in the hippocampal fimbria, the histopathology of the brain stem was unchanged. Both enzyme doses normalized the ataxic gait of ASA knockout mice, demonstrating prevention of nervous system dysfunctions that dominate early stages of MLD.
Collapse
|
39
|
Abstract
A review is presented of the major clinical features of a number of glycolipidoses including Fabry, Gaucher, Tay-Sachs, metachromatic leukodystrophy as well as CeroidLipofucinosis and Sjogren-Larsson syndrome. The possibilities offered by lipidomics for diagnosis and follow-up after enzyme replacement therapy are presented from a practical perspective. The contribution of HPLC coupled with tandem mass spectrometry has considerably simplified the detection and assay of abnormal metabolites. Corresponding internal standards consisting of weighed mixtures of the stable-isotope labeled metabolites required to calibrate and quantitate lipid components of these orphan diseases standards have yet to become commercially available. A lipidomics approach has been found to compare favorably with DNA-sequence analysis for the rapid diagnosis of pre-birth syndromes resulting from these multiple gene defects. The method also seems to be suitable for screening applications in terms of a high throughput combined with a low rate of false diagnoses based on the wide differences in metabolite concentrations found in affected patients as compared with normal subjects. The practical advantages of handling samples for lipidomic diagnoses as compared to enzyme assay are presented for application to diagnosis during pregnancy.
Collapse
|
40
|
The Role and Metabolism of Sulfatide in the Nervous System. Mol Neurobiol 2008; 37:93-103. [DOI: 10.1007/s12035-008-8022-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/09/2008] [Indexed: 12/16/2022]
|
41
|
Abstract
UNLABELLED Metachromatic leukodystrophy is a lysosomal storage disease caused by the deficiency of arylsulphatase A (ASA). This leads to storage of the membrane lipid sulphatide, which is abundant in myelin. A pathological hallmark of the disease is demyelination, causing various and ultimately lethal neurological symptoms. Today more than 110 mutations in the ASA gene have been identified, of which only three are frequent. Patients homozygous for alleles, which do not allow for the synthesis of functional ASA always suffer from the severe form of the disease, whereas alleles allowing the expression of residual enzyme activity are associated with the later onset juvenile or adult forms of metachromatic leukodystrophy. In addition, there are other as yet unknown genetic or epigenetic factors modifying the phenotype substantially. ASA-deficient mice have been generated as a model of metachromatic leukodystrophy. These mice store sulphatide and show progressive neurological symptoms, but do not demyelinate. This animal model was recently improved using a transgenic approach, which generated mice in which sulphatide synthesis in myelin-producing cells is enhanced. This new animal model reflects the pathological characteristics of the human disease. ASA-deficient mice have been used in various therapeutic trials involving enzyme replacement, haematopoietic stem-cell-based gene therapy and direct injections of ASA-expressing viral vectors into the brain. These animal studies have paved the way for future clinical studies of enzyme replacement and gene therapy. CONCLUSION For many years this devastating disorder was considered untreatable and the outlook for patients was poor. Within a comparatively short period of time since the ASA gene was cloned in 1989, genetic and biochemical studies and data generated from newly developed animal models have led to the first clinical trials. It is hoped that these developments will prove beneficial for patients.
Collapse
Affiliation(s)
- Volkmar Gieselmann
- Institut für Physiologische Chemie, Rheinische-Friedrich-Wilhems Universität Bonn, Bonn, Germany.
| |
Collapse
|
42
|
Darlix JL, Lévy Y. Le virus du Sida au milieu du gué vingt-cinq ans après. Med Sci (Paris) 2008; 24:4-6. [DOI: 10.1051/medsci/20082414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Gärtner J, Kohlschütter A, Gieselmann V. Netzwerkprojekte für die Erforschung von Leukodystrophien, einer Gruppe seltener Erkrankungen der weißen Substanz des Nervensystems. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2007; 50:1531-40. [DOI: 10.1007/s00103-007-0388-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Eichler F, Van Haren K. Immune response in leukodystrophies. Pediatr Neurol 2007; 37:235-44. [PMID: 17903666 DOI: 10.1016/j.pediatrneurol.2007.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/02/2007] [Accepted: 06/27/2007] [Indexed: 01/13/2023]
Abstract
Although the genetics and biochemistry of leukodystrophies have been extensively explored, the immune response in these disorders has received relatively little attention. Both the disease course and its response to treatment may be highly dependent on the immune system. In this review, we compare three common leukodystrophies, each with a different immune response: (1) X-linked adrenoleukodystrophy, which demonstrates a severe, lymphocytic inflammatory response; (2) metachromatic leukodystrophy, which yields a histiocytic response; and (3) vanishing white-matter disease, in which no inflammation is typically seen. We highlight the biochemical, pathologic, and clinical differences, while focusing on the immune response in each disease. We also review the response of leukodystrophies to immunomodulatory therapies and interventions such as hematopoietic stem-cell transplantation. Future studies may delineate specific inflammatory markers as possible candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
45
|
Capotondo A, Cesani M, Pepe S, Fasano S, Gregori S, Tononi L, Venneri MA, Brambilla R, Quattrini A, Ballabio A, Cosma MP, Naldini L, Biffi A. Safety of Arylsulfatase A Overexpression for Gene Therapy of Metachromatic Leukodystrophy. Hum Gene Ther 2007; 18:821-36. [PMID: 17845130 DOI: 10.1089/hum.2007.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Successful gene therapy approaches for metachromatic leukodystrophy (MLD), based either on hematopoietic stem/progenitor cells (HSPCs) or direct central nervous system (CNS) gene transfer, highlighted a requirement for high levels of arylsulfatase A (ARSA) expression to achieve correction of disease manifestations in the mouse model. Full assessment of the safety of ARSA expression above physiological levels thus represents a prerequisite for clinical translation of these approaches. Here, using lentiviral vectors (LVs), we generated two relevant models for the stringent evaluation of the consequences of ARSA overexpression in transduced cells. We first demonstrated that ARSA overexpression in human HSPCs does not affect their clonogenic and multilineage differentiation capacities in clonogenic assays and in a neonatal hematochimeric mouse model. Further, we studied ARSA overexpression in all body tissues by generating transgenic mice overexpressing the ARSA enzyme by LV up to 15-fold above the normal range and carrying multiple copies of LV in their genome. Characterization of these mice demonstrated the safety of ARSA overexpression in two main gene therapy targets, HSPCs and neurons, with maintenance of the complex functions of the hematopoietic and nervous system in the presence of supraphysiological enzyme levels. The activity of other sulfatases dependent on the same common activator, sulfatase-modifying factor-1 (SUMF1), was tested in ARSA-overexpressing HSPCs and in transgenic mice, excluding the occurrence of saturation phenomena. Overall, these data indicate that from the perspective of clinical translation, therapeutic levels of ARSA overexpression can be safely achieved. Further, they demonstrate an experimental platform for the preclinical assessment of the safety of new gene therapy approaches.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, CD34/immunology
- Antigens, CD34/metabolism
- Blotting, Southern
- Cell Differentiation
- Cell Lineage
- Cell Proliferation
- Cerebroside-Sulfatase/adverse effects
- Cerebroside-Sulfatase/analysis
- Cerebroside-Sulfatase/metabolism
- Colony-Forming Units Assay
- Feasibility Studies
- Genetic Therapy
- Genetic Vectors
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Lentivirus/genetics
- Leukodystrophy, Metachromatic/genetics
- Leukodystrophy, Metachromatic/metabolism
- Leukodystrophy, Metachromatic/pathology
- Leukodystrophy, Metachromatic/therapy
- Mice
- Mice, Transgenic
- Models, Animal
- Neurons/cytology
- Neurons/metabolism
- Polymerase Chain Reaction
- Spleen/cytology
- Transduction, Genetic
Collapse
Affiliation(s)
- A Capotondo
- San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Biffi A, Naldini L. Novel candidate disease for gene therapy: metachromatic leukodystrophy. Expert Opin Biol Ther 2007; 7:1193-205. [PMID: 17696818 DOI: 10.1517/14712598.7.8.1193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metachromatic leukodystrophy (MLD) is a rare, fatal, inherited, autosomal recessive, lysosomal storage disorder, characterized by severe and progressive demyelination affecting the central and peripheral nervous systems. Despite some initial expectations in hematopoietic stem cell transplantation, and despite the ameliorated supportive therapy, MLD remains a life-threatening disease, with an extremely poor quality of life and a severe prognosis for all affected patients. Prospectively, in children affected by MLD, who have no other therapeutic option and an extremely poor prognosis, the potential risks associated with the use of a novel technology, such as gene therapy, might be well balanced by the potential benefit of a positive outcome. Thus, MLD might be considered an optimal candidate disease for testing innovative and potentially efficacious therapeutic approaches. Some of the gene therapy approaches discussed here, such as hematopoietic stem cells gene therapy, are likely to enter clinical testing in the near future.
Collapse
Affiliation(s)
- Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy and Vita Salute University, H. San Raffaele Scientific Institute, Milan, Italy. a.biffi @hsr.it
| | | |
Collapse
|
47
|
Cabrera-Salazar MA, Roskelley EM, Bu J, Hodges BL, Yew N, Dodge JC, Shihabuddin LS, Sohar I, Sleat DE, Scheule RK, Davidson BL, Cheng SH, Lobel P, Passini MA. Timing of therapeutic intervention determines functional and survival outcomes in a mouse model of late infantile batten disease. Mol Ther 2007; 15:1782-8. [PMID: 17637720 DOI: 10.1038/sj.mt.6300249] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Classical late infantile neuronal ceroid lipofuscinosis (cLINCL) is a monogenic disorder caused by the loss of tripeptidyl peptidase 1 (TPP1) activity as a result of mutations in CLN2. Absence of TPP1 results in lysosomal storage with an accompanying axonal degeneration throughout the central nervous system (CNS), which leads to progressive neurodegeneration and early death. In this study, we compared the efficacies of pre- and post-symptomatic injections of recombinant adeno-associated virus (AAV) for treating the cellular and functional abnormalities of CLN2 mutant mice. Intracranial injection of AAV1-hCLN2 resulted in widespread human TPP1 (hTPP1) activity in the brain that was 10-100-fold above wild-type levels. Injections before disease onset prevented storage and spared neurons from axonal degeneration, reflected by the preservation of motor function. Furthermore, the majority of CLN2 mutant mice treated pre-symptomatically lived for at least 330 days, compared with a median survival of 151 days in untreated CLN2 mutant controls. In contrast, although injection after disease onset ameliorated lysosomal storage, there was evidence of axonal degeneration, motor function showed limited recovery, and the animals had a median lifespan of 216 days. These data illustrate the importance of early intervention for enhanced therapeutic benefit, which may provide guidance in designing novel treatment strategies for cLINCL patients.
Collapse
|
48
|
Sevin C, Aubourg P, Cartier N. Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. J Inherit Metab Dis 2007; 30:175-83. [PMID: 17347913 DOI: 10.1007/s10545-007-0540-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 12/11/2022]
Abstract
Metachromatic leukodystrophy (MLD) is a demyelinating storage disease caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA). Lack of ARSA activity leads to the accumulation of galactosylceramide-3-O-sulfate (sulfatide) in the central and peripheral nervous systems. Based on the age at onset, the disease is usually classified into three forms: the late-infantile form, which manifests in the second year of life; the juvenile variants (onset between 4 and 12 years), which are subdivided into early-juvenile (EJ, onset before 6 years) and late-juvenile (LJ, onset after 6 years); and the adult form (onset after 12 years of age). Currently, there is no efficient therapy for the late-infantile form of MLD (50% of the patients), death occurring within a few years after onset of neurological symptoms. Allogeneic haematopoietic cell transplantation (HCT), when performed at a very early stage of the disease, may improve selected patients with juvenile or adult forms of MLD. As with other lysosomal storage diseases, the physiopathology of MLD is poorly understood. Demyelination is the main pathological finding, but substantial storage of sulfatides in neurons also occurs, and may contribute to the clinical phenotype. The physiopathological process leading to neuronal and glial cell degeneration and apoptosis involves accumulation of undegraded sulfatides but also secondary abnormalities (storage/mislocalization of unrelated lipids, inflammatory processes). This review summarizes the recent advances in the understanding of the physiopathology of MLD and the new therapeutic perspectives currently under preclinical investigation, including enzyme replacement therapy, gene therapy and cell therapy.
Collapse
Affiliation(s)
- C Sevin
- University René-Descartes Paris 5, INSERM U745, Paris, France
| | | | | |
Collapse
|