1
|
Liu Y, Zhang L, Cai X, Rutikanga A, Qiu B, Hou Y. The Diversity of Wolbachia and Other Bacterial Symbionts in Spodoptera frugiperda. INSECTS 2024; 15:217. [PMID: 38667347 PMCID: PMC11050099 DOI: 10.3390/insects15040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Bacterial symbionts associated with insects can be crucial in insect nutrition, metabolism, immune responses, development, and reproduction. However, the bacterial symbionts of the fall armyworm Spodoptera frugiperda remain unclear. S. frugiperda is an invasive polyphagous pest that severely damages many crops, particularly maize and wheat. Here, we investigated the infection, composition, abundance, and diversity of bacterial symbionts, especially Wolbachia, in different tissues of S. frugiperda female adults. The infection prevalence frequencies of Wolbachia in five provinces of China, namely Pu'er, Yunnan; Nanning, Guangxi; Sanya, Hainan; Yunfu, Guangdong; and Nanping, Fujian, were assessed. The results indicated that Proteobacteria, Firmicutes, and Bacteroidetes were the three most dominant bacterial phyla in S. frugiperda adults. At the genus level, the abundant microbiota, which included Enterobacter and Enterococcus, varied in abundance between tissues of S. frugiperda. Wolbachia was found in the ovaries and salivary glands of S. frugiperda adults, and was present in 33.33% of the Pu'er, Yunnan, 23.33% of the Nanning, Guangxi, and 13.33% of the Sanya, Hainan populations, but Wolbachia was absent in the Yunfu, Guangdong and Nanping, Fujian populations. Further phylogenetic analyses revealed that all of the Wolbachia strains from the different S. frugiperda populations belonged to the supergroup B and were named the wFru strain. Since there were Wolbachia strains inducing cytoplasmic incompatibility in supergroup B, these findings may provide a foundation for developing potential biocontrol techniques against S. frugiperda.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Lina Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| | - Xiangyun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| | - Alexandre Rutikanga
- College of Agriculture and Animal Husbandry, University of Rwanda, Kigali 999051, Rwanda
| | - Baoli Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| |
Collapse
|
2
|
Hyder M, Lodhi AM, Wang Z, Bukero A, Gao J, Mao R. Wolbachia Interactions with Diverse Insect Hosts: From Reproductive Modulations to Sustainable Pest Management Strategies. BIOLOGY 2024; 13:151. [PMID: 38534421 DOI: 10.3390/biology13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Effective in a variety of insect orders, including dipteran, lepidopteran, and hemipteran, Wolbachia-based control tactics are investigated, noting the importance of sterile and incompatible insect techniques. Encouraging approaches for controlling Aedes mosquitoes are necessary, as demonstrated by the evaluation of a new SIT/IIT combination and the incorporation of SIT into Drosophila suzukii management. For example, Wolbachia may protect plants from rice pests, demonstrating its potential for agricultural biological vector management. Maternal transmission and cytoplasmic incompatibility dynamics are explored, while Wolbachia phenotypic impacts on mosquito and rice pest management are examined. The importance of host evolutionary distance is emphasised in recent scale insect research that addresses host-shifting. Using greater information, a suggested method for comprehending Wolbachia host variations in various contexts emphasises ecological connectivity. Endosymbionts passed on maternally in nematodes and arthropods, Wolbachia are widely distributed around the world and have evolved both mutualistic and parasitic traits. Wolbachia is positioned as a paradigm for microbial symbiosis due to advancements in multiomics, gene functional assays, and its effect on human health. The challenges and opportunities facing Wolbachia research include scale issues, ecological implications, ethical conundrums, and the possibility of customising strains through genetic engineering. It is thought that cooperative efforts are required to include Wolbachia-based therapies into pest management techniques while ensuring responsible and sustainable ways.
Collapse
Affiliation(s)
- Moazam Hyder
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Abdul Mubeen Lodhi
- Department Plant Protection, Sindh Agriculture University, Tandojam 70080, Pakistan
| | - Zhaohong Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Aslam Bukero
- Department of Entomology, Sindh Agriculture University, Tandojam 70080, Pakistan
| | - Jing Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Runqian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
3
|
Somia ES, Ullah I, Alyahya HS, Mahyoub JA. Identification of Wolbachia new strains from Aedes aegypti mosquitoes, the vector of dengue fever in Jeddah Province. BMC Microbiol 2023; 23:287. [PMID: 37803282 PMCID: PMC10557223 DOI: 10.1186/s12866-023-03010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023] Open
Abstract
Wolbachia are endosymbiotic bacteria found within many arthropods, including insects. A variety of benefits are provided by these bacteria to human and insect hosts, including protection from viruses and parasites and the ability to kill males. In this study, Wolbachia was identified in Aedes aegypti present in Jeddah, Saudi Arabia. A population of mosquitoes was collected from eight different areas, processed, and tested for Wolbachia using 16 S rRNA specific to Wolbachia bacteria and Wolbachia surface protein (wsp) under optimized PCR conditions. In five ecologically diverse sites to determine Wolbachia prevalence, we identified eleven diverse novel resident Wolbachia strains within Ae. Aegypti for the first time in Jeddah, Saudi Arabia. Future studies to evaluate the possible use of Wolbachia as a control agent in Aedes sp. in Saudi Arabia are necessary. Wolbachia prevalence rates and strain characterization through Sanger sequencing with multilocus sequence typing (MLST) and phylogenetic analysis revealed significant diversity. In developing biocontrol strategies, it is beneficial to consider the implications of resident Wolbachia strains.
Collapse
Affiliation(s)
- E Sharawi Somia
- Department of Biology Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ihsan Ullah
- Department of Biology Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanan S Alyahya
- Department of Biology Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jazem A Mahyoub
- Department of Biology Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- IBB University, Ibb, Republic of Yemen.
| |
Collapse
|
4
|
Muro T, Hikida H, Fujii T, Kiuchi T, Katsuma S. Two Complete Genomes of Male-Killing Wolbachia Infecting Ostrinia Moth Species Illuminate Their Evolutionary Dynamics and Association with Hosts. MICROBIAL ECOLOGY 2023; 86:1740-1754. [PMID: 36810610 PMCID: PMC10497655 DOI: 10.1007/s00248-023-02198-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wolbachia is an extremely widespread intracellular symbiont which causes reproductive manipulation on various arthropod hosts. Male progenies are killed in Wolbachia-infected lineages of the Japanese Ostrinia moth population. While the mechanism of male killing and the evolutionary interaction between host and symbiont are significant concerns for this system, the absence of Wolbachia genomic information has limited approaches to these issues. We determined the complete genome sequences of wFur and wSca, the male-killing Wolbachia of Ostrinia furnacalis and Ostrinia scapulalis. The two genomes shared an extremely high degree of homology, with over 95% of the predicted protein sequences being identical. A comparison of these two genomes revealed nearly minimal genome evolution, with a strong emphasis on the frequent genome rearrangements and the rapid evolution of ankyrin repeat-containing proteins. Additionally, we determined the mitochondrial genomes of both species' infected lineages and performed phylogenetic analyses to deduce the evolutionary dynamics of Wolbachia infection in the Ostrinia clade. According to the inferred phylogenetic relationship, two possible scenarios were proposed: (1) Wolbachia infection was established in the Ostrinia clade prior to the speciation of related species such as O. furnacalis and O. scapulalis, or (2) Wolbachia infection in these species was introgressively transferred from a currently unidentified relative. Simultaneously, the relatively high homology of mitochondrial genomes suggested recent Wolbachia introgression between infected Ostrinia species. The findings of this study collectively shed light on the host-symbiont interaction from an evolutionary standpoint.
Collapse
Affiliation(s)
- Tomohiro Muro
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Hiroyuki Hikida
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8657, Japan
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | - Takeshi Fujii
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Rushidi MNA, Azhari MLH, Yaakop S, Hazmi IR. Detection and Characterisation of Endosymbiont Wolbachia (Rickettsiales: Anaplasmataceae) in Elaeidobius kamerunicus (Coleoptera: Curculionoidea), Pollinating Agent of Oil Palm, and Its Relationships between Populations. Trop Life Sci Res 2023; 34:95-111. [PMID: 37860089 PMCID: PMC10583842 DOI: 10.21315/tlsr2023.34.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/08/2023] [Indexed: 10/21/2023] Open
Abstract
Elaeidobius kamerunicus is the most efficient pollinator of oil palm. Wolbachia is an endosymbiotic bacteria associated with E. kamerunicus that has a potential to affect the fecundity and fitness of the E. kamerunicus. Despite their importance, no studies have been conducted to investigate its prevalence in E. kamerunicus. The objectives of this study were to detect and characterise Wolbachia in E. kamerunicus and determine the phylogenetic relationship of Wolbachia strains that infect E. kamerunicus by using three genetic markers namely Filamenting temperature-sensitive mutant Z (ftsZ), Chaperonin folding protein (groEL), and Citrate Synthase Coding Gene (gltA). DNA was extracted from 210 individuals of E. kamerunicus and the Wolbachia infections were detected using the wsp marker. The infected samples (n = 25, 11.9%) were then sequenced using ftsZ, gltA and groEL markers for strain characterization. In this study, a combination of four markers was used to construct the phylogeny of Wolbachia. Similar topologies were shown in all trees; Neighbour-Joining (NJ), Maximum Parsimony (MP), and Bayesian Inference (BI), which showed the mixing of individuals that harbor Wolbachia between populations. Interestingly, Wolbachia on E. kamerunicus was claded together with the species Drosophila simulans under supergroup B. This is the first report of Wolbachia infecting E. kamerunicus which is very valuable and significant as one of the parameters to evaluate the quality of the E. kamerunicus population for sustaining its function as a great pollinator for oil palm.
Collapse
Affiliation(s)
- Mohd Nur Azad Rushidi
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Muhammad Luqman Hakim Azhari
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Izfa Riza Hazmi
- Centre for Insect Systematics, Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
6
|
Zhu X, Zhang L, Li J, He A, You M, You S. Effects of Antibiotic Treatment on the Development and Bacterial Community of the Wolbachia-Infected Diamondback Moth. Evol Bioinform Online 2023; 19:11769343231175269. [PMID: 37324163 PMCID: PMC10265341 DOI: 10.1177/11769343231175269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Based on the important role of antibiotic treatment in the research of the interaction between Wolbachia and insect hosts, this study aimed to identify the most suitable antibiotic and concentration for Wolbachia elimination in the P. xylostella, and to investigate the effect of Wolbachia and antibiotic treatment on the bacterial community of P. xylostella. Our results showed that the Wolbachia-infected strain was plutWB1 of supergroup B in the P. xylostella population collected in Nepal in this study; 1 mg/mL rifampicin could remove Wolbachia infection in P. xylostella after 1 generation of feeding treatment and the toxic effect was relatively low; among the 29 samples of adult P. xylostella in our study (10 WU samples, 10 WA samples, and 9 WI samples), 52.5% of the sequences were of Firmicutes and 47.5% were of Proteobacteria, with the dominant genera being mainly Carnobacterium (46.2%), Enterobacter (10.1%), and Enterococcus (6.2%); Moreover, antibiotic removal of Wolbachia infection in P. xylostella and transfer to normal conditions for 10 generations no longer significantly affected the bacterial community of P. xylostella. This study provides a theoretical basis for the elimination method of Wolbachia in the P. xylostella, as well as a reference for the elimination method of Wolbachia in other Wolbachia-infected insect species, and a basis for the study of the extent and duration of the effect of antibiotic treatment on the bacterial community of the P. xylostella.
Collapse
Affiliation(s)
- Xiangyu Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
| | - Ling Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
| | - Jinyang Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
| | - Ao He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
| |
Collapse
|
7
|
Zhu X, Liu T, He A, Zhang L, Li J, Li T, Miao X, You M, You S. Diversity of Wolbachia infection and its influence on mitochondrial DNA variation in the diamondback moth, Plutella xylostella. Mol Phylogenet Evol 2023; 182:107751. [PMID: 36889655 DOI: 10.1016/j.ympev.2023.107751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/11/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Plutella xylostella is a pest that severely damages cruciferous vegetables worldwide and has been shown to be infected with the maternally inherited bacteria Wolbachia, with the main infected strain was plutWB1. In this study, we performed a large-scale global sampling of P. xylostella and amplified 3 mtDNA genes of P. xylostella and 6 Wolbachia genes to analyze the infection status, diversity of Wolbachia in P. xylostella, and its effect on mtDNA variation in P. xylostella. This study provides a conservative estimate of Wolbachia infection rates in P. xylostella, which was found to be 7% (104/1440). The ST 108 (plutWB1) was shared among butterfly species and the moth species P. xylostella, revealing that Wolbachia strain plutWB1 acquisition in P. xylostella may be through horizontal transmission. The Parafit analyses indicated a significant association between Wolbachia and Wolbachia-infected P. xylostella individuals, and individuals infected with plutWB1 tended to cluster in the basal positions of the phylogenetic tree based on the mtDNA data. Additionally, Wolbachia infections were associated with increased mtDNA polymorphism in the infected P. xylostella population. These data suggest that Wolbachia endosymbionts may have a potential effect on mtDNA variation of P. xylostella.
Collapse
Affiliation(s)
- Xiangyu Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tiansheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ao He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianpu Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Miao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; BGI-Sanya, Sanya 572025, China.
| |
Collapse
|
8
|
Wong ML, Zulzahrin Z, Vythilingam I, Lau YL, Sam IC, Fong MY, Lee WC. Perspectives of vector management in the control and elimination of vector-borne zoonoses. Front Microbiol 2023; 14:1135977. [PMID: 37025644 PMCID: PMC10070879 DOI: 10.3389/fmicb.2023.1135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The complex transmission profiles of vector-borne zoonoses (VZB) and vector-borne infections with animal reservoirs (VBIAR) complicate efforts to break the transmission circuit of these infections. To control and eliminate VZB and VBIAR, insecticide application may not be conducted easily in all circumstances, particularly for infections with sylvatic transmission cycle. As a result, alternative approaches have been considered in the vector management against these infections. In this review, we highlighted differences among the environmental, chemical, and biological control approaches in vector management, from the perspectives of VZB and VBIAR. Concerns and knowledge gaps pertaining to the available control approaches were discussed to better understand the prospects of integrating these vector control approaches to synergistically break the transmission of VZB and VBIAR in humans, in line with the integrated vector management (IVM) developed by the World Health Organization (WHO) since 2004.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zulhisham Zulzahrin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
9
|
Herran B, Sugimoto TN, Watanabe K, Imanishi S, Tsuchida T, Matsuo T, Ishikawa Y, Kageyama D. Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia. PNAS NEXUS 2022; 2:pgac293. [PMID: 36712932 PMCID: PMC9837667 DOI: 10.1093/pnasnexus/pgac293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Wolbachia, a maternally transmitted bacterium, shows male-killing, an adaptive phenotype for cytoplasmic elements, in various arthropod species during the early developmental stages. In lepidopteran insects, lethality of males is accounted for by improper dosage compensation in sex-linked genes owing to Wolbachia-induced feminization. Herein, we established Ostrinia scapulalis cell lines that retained sex specificity per the splicing pattern of the sex-determining gene doublesex (Osdsx). We found that Wolbachia transinfection in male cell lines enhanced the female-specific splice variant of Osdsx (OsdsxF ) while suppressing the male-specific variant (OsdsxM ), indicating that Wolbachia affects sex-determining gene signals even in vitro. Comparative transcriptome analysis isolated only two genes that behave differently upon Wolbachia infection. The two genes were respectively homologous to Masculinizer (BmMasc) and zinc finger-2 (Bmznf-2), male-specifically expressed sex-determining genes of the silkworm Bombyx mori that encode CCCH-type zinc finger motif proteins. By using cultured cells and organismal samples, OsMasc and Osznf-2 were found to be sex-determining genes of O. scapulalis that are subjected to sex-specific alternative splicing depending upon the chromosomal sex, developmental stage, and infection status. Overall, our findings expound the cellular autonomy in insect sex determination and the mechanism through which sex is manipulated by intracellular selfish microbes.
Collapse
Affiliation(s)
| | | | - Kazuyo Watanabe
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Shigeo Imanishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Tsutomu Tsuchida
- Faculty of Science, Academic Assembly, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan
| | - Takashi Matsuo
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukio Ishikawa
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka 573-0101, Japan
| | | |
Collapse
|
10
|
A Wolbachia factor for male killing in lepidopteran insects. Nat Commun 2022; 13:6764. [PMID: 36376299 PMCID: PMC9663696 DOI: 10.1038/s41467-022-34488-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial symbionts, such as Wolbachia species, can manipulate the sexual development and reproduction of their insect hosts. For example, Wolbachia infection induces male-specific death in the Asian corn borer Ostrinia furnacalis by targeting the host factor Masculinizer (Masc), an essential protein for masculinization and dosage compensation in lepidopteran insects. Here we identify a Wolbachia protein, designated Oscar, which interacts with Masc via its ankyrin repeats. Embryonic expression of Oscar inhibits Masc-induced masculinization and leads to male killing in two lepidopteran insects, O. furnacalis and the silkworm Bombyx mori. Our study identifies a mechanism by which Wolbachia induce male killing of host progeny.
Collapse
|
11
|
Vihinen M. Individual Genetic Heterogeneity. Genes (Basel) 2022; 13:1626. [PMID: 36140794 PMCID: PMC9498725 DOI: 10.3390/genes13091626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
12
|
Masculinizer and Doublesex as Key Factors Regulate Sexual Dimorphism in Ostrinia furnacalis. Cells 2022; 11:cells11142161. [PMID: 35883604 PMCID: PMC9320909 DOI: 10.3390/cells11142161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In animals, sexually dimorphic traits are ubiquitous and play vital roles in reproduction, courtship, and environmental adaptation, especially in insects. In this study, we used the CRISPR/Cas9 genome editing system to generate somatic mutations of the Masculinizer (Masc) and doublesex (dsx) genes in the sex determination pathway of Ostrinia furnacalis. The OfMasc and Ofdsx genes are structural orthologs of the key sex regulation factors in Bombyx mori. Mutation of the OfMasc and Ofdsx genes induced abnormal external genitalia, adult sterility, and sex reversal of sexually dimorphic traits including wing pigmentation, gene expression patterns, and dsx sex-specific splicing. These results demonstrate that the Masc and dsx genes are conserved factors in sexually dimorphic traits, and therefore represent potential target genes in the effort to control O. furnacalis and other lepidopteran pests. Abstract Sex determination is an important and traditional biological process. In Lepidoptera, Masculinizer (Masc) and doublesex (dsx) are the essential genes for sex determination and play critical roles in sexual differentiation and development. The functions of Masc and dsx have been characterized in several model insect species. However, the molecular mechanism and sex determination functions of Masc and dsx in Ostrinia furnacalis, an agricultural pest, are still unknown. Here, we successfully used the CRISPR/Cas9 genome editing system to knock out OfMasc and Ofdsx. Mutation of OfMasc induced male external genital defects and sterility. Disruptions of the Ofdsx common region caused sex-specific defects in the external genitals and adult sterility. In addition, we found that OfMasc and Ofdsx can regulate the pigmentation genes that control wing pigmentation patterns. These results demonstrate that OfMasc and Ofdsx play key roles in the sex determination of O. furnacalis, and suggest novel genetic control approaches for the management of pests, including O. furnacalis.
Collapse
|
13
|
Hill T, Unckless RL, Perlmutter JI. Positive Selection and Horizontal Gene Transfer in the Genome of a Male-Killing Wolbachia. Mol Biol Evol 2022; 39:msab303. [PMID: 34662426 PMCID: PMC8763111 DOI: 10.1093/molbev/msab303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome with other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia's success as a male-killer of divergent host species.
Collapse
Affiliation(s)
- Tom Hill
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | | |
Collapse
|
14
|
Russell A, Borrelli S, Fontana R, Laricchiuta J, Pascar J, Becking T, Giraud I, Cordaux R, Chandler CH. Evolutionary transition to XY sex chromosomes associated with Y-linked duplication of a male hormone gene in a terrestrial isopod. Heredity (Edinb) 2021; 127:266-277. [PMID: 34272503 PMCID: PMC8405825 DOI: 10.1038/s41437-021-00457-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Sex chromosomes are highly variable in some taxonomic groups, but the evolutionary mechanisms underlying this diversity are not well understood. In terrestrial isopod crustaceans, evolutionary turnovers in sex chromosomes are frequent, possibly caused by Wolbachia, a vertically-transmitted endosymbiont causing male-to-female sex reversal. Here, we use surgical manipulations and genetic crosses, plus genome sequencing, to examine sex chromosomes in the terrestrial isopod Trachelipus rathkei. Although an earlier cytogenetics study suggested a ZZ/ZW sex chromosome system in this species, we surprisingly find multiple lines of evidence that in our study population, sex is determined by an XX/XY system. Consistent with a recent evolutionary origin for this XX/XY system, the putative male-specific region of the genome is small. The genome shows evidence of Y-linked duplications of the gene encoding the androgenic gland hormone, a major component of male sexual differentiation in isopods. Our analyses also uncover sequences horizontally acquired from past Wolbachia infections, consistent with the hypothesis that Wolbachia may have interfered with the evolution of sex determination in T. rathkei. Overall, these results provide evidence for the co-occurrence of multiple sex chromosome systems within T. rathkei, further highlighting the relevance of terrestrial isopods as models for the study of sex chromosome evolution.
Collapse
Affiliation(s)
- Aubrie Russell
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Sevarin Borrelli
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Rose Fontana
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Joseph Laricchiuta
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Jane Pascar
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Thomas Becking
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Christopher H Chandler
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA.
| |
Collapse
|
15
|
Silva-Brandão KL, Cirino M, Magaldi LDM, Gueratto PE, Mattos RG, Freitas AVL. Subspecies limits and hidden Wolbachia diversity in Actinote pellenea butterflies. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1965669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Karina L. Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Candido Rondom, 400, Campinas, 13083-875, São Paulo, Brazil
| | - Mariana Cirino
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Candido Rondom, 400, Campinas, 13083-875, São Paulo, Brazil
| | - Luiza De Moraes Magaldi
- Programa de Pós-graduação em Ecologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Instituto de Biologia, Departamento de Biologia Animal, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, São Paulo, Brazil
| | - Patrícia Eyng Gueratto
- Programa de Pós-graduação em Ecologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Instituto de Biologia, Departamento de Biologia Animal, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, São Paulo, Brazil
| | - Ricardo Gabriel Mattos
- Programa de Pós-graduação em Ecologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - André V. L. Freitas
- Instituto de Biologia, Departamento de Biologia Animal, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, São Paulo, Brazil
| |
Collapse
|
16
|
Wang H, Zhang C, Cheng P, Wang Y, Liu H, Wang H, Wang H, Gong M. Differences in the intestinal microbiota between insecticide-resistant and -sensitive Aedes albopictus based on full-length 16S rRNA sequencing. Microbiologyopen 2021; 10:e1177. [PMID: 33970535 PMCID: PMC8087943 DOI: 10.1002/mbo3.1177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal symbiotic bacteria of Aedes albopictus play a potential role in host resistance to insecticides. In this study, we sequenced the full‐length of 16S rRNA and analyzed the differences in the intestinal microbiota between deltamethrin‐resistant and ‐sensitive Ae. albopictus. Symbiotic bacteria were cultured and analyzed using six types of culture media in aerobic and anaerobic environments. We found significant differences in the diversity and abundance of the intestinal microbiota of the two strains of Ae. albopictus. The symbiotic bacteria cultured in vitro were found to be mainly facultative anaerobes. The cultured bacteria such as Serratia oryzae and Acinetobacter junii may function to promote the development of insecticide resistance. This work indicates that intestinal bacteria may contribute to the enhancement of insecticide resistance of Ae. albopictus It also highlights the analytical advantage of full‐length 16S rRNA sequencing to study the intestinal microbiota of mosquitoes.
Collapse
Affiliation(s)
- Haiyang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Yang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Hongmei Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Haifang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Huaiwei Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| |
Collapse
|
17
|
Lefoulon E, Clark T, Guerrero R, Cañizales I, Cardenas-Callirgos JM, Junker K, Vallarino-Lhermitte N, Makepeace BL, Darby AC, Foster JM, Martin C, Slatko BE. Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm. Microb Genom 2020; 6:mgen000487. [PMID: 33295865 PMCID: PMC8116671 DOI: 10.1099/mgen.0.000487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/14/2020] [Indexed: 01/13/2023] Open
Abstract
Wolbachia are alpha-proteobacteria symbionts infecting a large range of arthropod species and two different families of nematodes. Interestingly, these endosymbionts are able to induce diverse phenotypes in their hosts: they are reproductive parasites within many arthropods, nutritional mutualists within some insects and obligate mutualists within their filarial nematode hosts. Defining Wolbachia 'species' is controversial and so they are commonly classified into 17 different phylogenetic lineages, termed supergroups, named A-F, H-Q and S. However, available genomic data remain limited and not representative of the full Wolbachia diversity; indeed, of the 24 complete genomes and 55 draft genomes of Wolbachia available to date, 84 % belong to supergroups A and B, exclusively composed of Wolbachia from arthropods. For the current study, we took advantage of a recently developed DNA-enrichment method to produce four complete genomes and two draft genomes of Wolbachia from filarial nematodes. Two complete genomes, wCtub and wDcau, are the smallest Wolbachia genomes sequenced to date (863 988 bp and 863 427 bp, respectively), as well as the first genomes representing supergroup J. These genomes confirm the validity of this supergroup, a controversial clade due to weaknesses of the multilocus sequence typing approach. We also produced the first draft Wolbachia genome from a supergroup F filarial nematode representative (wMhie), two genomes from supergroup D (wLsig and wLbra) and the complete genome of wDimm from supergroup C. Our new data confirm the paradigm of smaller Wolbachia genomes from filarial nematodes containing low levels of transposable elements and the absence of intact bacteriophage sequences, unlike many Wolbachia from arthropods, where both are more abundant. However, we observe differences among the Wolbachia genomes from filarial nematodes: no global co-evolutionary pattern, strong synteny between supergroup C and supergroup J Wolbachia, and more transposable elements observed in supergroup D Wolbachia compared to the other supergroups. Metabolic pathway analysis indicates several highly conserved pathways (haem and nucleotide biosynthesis, for example) as opposed to more variable pathways, such as vitamin B biosynthesis, which might be specific to certain host-symbiont associations. Overall, there appears to be no single Wolbachia-filarial nematode pattern of co-evolution or symbiotic relationship.
Collapse
Affiliation(s)
- Emilie Lefoulon
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
- Present address: School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Travis Clark
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
| | - Ricardo Guerrero
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Israel Cañizales
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
- Ediciones La Fauna KPT SL, Madrid, Spain
| | - Jorge Manuel Cardenas-Callirgos
- Neotropical Parasitology Research Network - NEOPARNET, Asociación Peruana de Helmintología e Invertebrados Afines – APHIA, Peru
| | - Kerstin Junker
- Epidemiology, Parasites and Vectors, ARC-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa
| | - Nathaly Vallarino-Lhermitte
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C. Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jeremy M. Foster
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Barton E. Slatko
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
| |
Collapse
|
18
|
Gong Q, Cao LJ, Sun LN, Chen JC, Gong YJ, Pu DQ, Huang Q, Hoffmann AA, Wei SJ. Similar Gut Bacterial Microbiota in Two Fruit-Feeding Moth Pests Collected from Different Host Species and Locations. INSECTS 2020; 11:insects11120840. [PMID: 33260684 PMCID: PMC7759971 DOI: 10.3390/insects11120840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary The peach fruit moth, Carposina sasakii, and the oriental fruit moth, Grapholita molesta are two co-occurring pests in orchards. Larvae of both species bore into fruits and cause damage to fruit production. Understanding the gut microbes, as well as the influencing factors between these co-occurring pests, may provide insight into their occurrence and control. In this study, we found that the two pests shared many bacteria in their gut from the genera Pseudomonas, Gluconobacter, Acetobacter, and Pantoea. The composition of the gut microbiota is similar between the two species collected from the same host plant and orchard; however, the gut microbiota of individuals collected from different orchards of the same host plant can be different within pest species. These results show that the two fruit moth pests have similar gut bacteria and varied environment in orchards can influence their gut microbiota. Abstract Numerous gut microbes are associated with insects, but their composition remains largely unknown for many insect groups, along with factors influencing their composition. Here, we compared gut bacterial microbiota of two co-occurring agricultural pests, the peach fruit moth (PFM), Carposina sasakii, and the oriental fruit moth (OFM), Grapholita molesta, collected from different orchards and host plant species. Gut microbiota of both species was mainly composed of bacteria from Proteobacteria, followed by Firmicutes. The two species shared bacteria from the genera Pseudomonas, Gluconobacter, Acetobacter, and Pantoea. When we compared two pairs of PFM and OFM populations collected from the same host species and the same orchard, there is no difference in alpha and beta diversity in gut microbiota. When we compared gut microbiota of the same species and host plant from different orchards, alpha and beta diversity was different in populations of PFM collected from two pear orchards but not in other comparisons. Our study suggests that the two pests share many features of gut microbiota and environment in orchards is a main factor influencing their gut microbiota.
Collapse
Affiliation(s)
- Qiang Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
- College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
| | - Li-Na Sun
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
- Department of Forestry Protection, Beijing Forestry University, Beijing 100083, China
| | - Jin-Cui Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
| | - Ya-Jun Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
| | - De-Qiang Pu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Qiong Huang
- College of Forestry, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Ary Anthony Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia;
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (Q.G.); (L.-J.C.); (L.-N.S.); (J.-C.C.); (Y.-J.G.)
- Correspondence: ; Tel.: +86-1051503439
| |
Collapse
|
19
|
Gómez‐Zurita J. Assessment of the role of Wolbachia in mtDNA paraphyly and the evolution of unisexuality in Calligrapha (Coleoptera: Chrysomelidae). Ecol Evol 2019; 9:11198-11214. [PMID: 31641465 PMCID: PMC6802014 DOI: 10.1002/ece3.5621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/02/2023] Open
Abstract
Calligrapha is a New World leaf beetle genus that includes several unisexual species in northeastern North America. Each unisexual species had an independent hybrid origin involving different combinations of bisexual species. However, surprisingly, they all cluster in a single mtDNA clade and with some individuals of their parental species, which are in turn deeply polyphyletic for mtDNA. This pattern is suggestive of a selective sweep which, together with mtDNA taxonomic incongruence and occurrence of unisexuality in Calligrapha, led to hypothesize that Wolbachia might be responsible. I tested this hypothesis studying the correlation between diversity of Wolbachia and well-established mtDNA lineages in >500 specimens of two bisexual species of Calligrapha and their derived unisexual species. Wolbachia appears highly prevalent (83.4%), and fifteen new supergroup-A strains of the bacteria are characterized, belonging to three main classes: wCallA, occupying the whole species ranges, and wCallB and wCallC, narrowly parapatric, infecting beetles with highly divergent mtDNAs where they coexist. Most beetles (71.6%) carried double infections of wCallA with another sequence class. Bayesian inference of ancestral character states and association tests between bacterial diversity and the mtDNA genealogy show that each mtDNA lineage of Calligrapha has specific types of infection. Moreover, shifts can be explained by horizontal or vertical transfer from local populations to an expanding lineage and cytoplasmic incompatibility between wCallB and wCallC types, suggesting that the symbionts hitchhike with the host and are not responsible for selective mtDNA sweeps. Lack of evidence for sweeps and the fact that individuals in the unisexual clade are uninfected or infected by the widespread wCallA type indicate that Wolbachia does not induce unisexuality in Calligrapha, although they may manipulate host reproduction through cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Jesús Gómez‐Zurita
- Animal Biodiversity and EvolutionInstitute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| |
Collapse
|
20
|
Sanaei E, Husemann M, Seiedy M, Rethwisch M, Tuda M, Toshova TB, Kim MJ, Atanasova D, Kim I. Global genetic diversity, lineage distribution, and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol Evol 2019; 9:9546-9563. [PMID: 31534674 PMCID: PMC6745856 DOI: 10.1002/ece3.5474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
The alfalfa weevil (Hypera postica) is a well-known example of a worldwide-distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.
Collapse
Affiliation(s)
- Ehsan Sanaei
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
- School of Biological ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | | | - Marjan Seiedy
- School of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of ScienceUniversity of TehranTehranIran
| | | | - Midori Tuda
- Faculty of AgricultureInstitute of Biological ControlKyushu UniversityFukuokaJapan
- Laboratory of Insect Natural EnemiesDepartment of Bioresource SciencesFaculty of AgricultureKyushu UniversityFukuokaJapan
| | - Teodora B. Toshova
- Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
| | - Min Jee Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| | - Daniela Atanasova
- Department of EntomologyFaculty of Plant Protection and AgroecologyAgricultural UniversityPlovdivBulgaria
| | - Iksoo Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| |
Collapse
|
21
|
Wasala SK, Brown AMV, Kang J, Howe DK, Peetz AB, Zasada IA, Denver DR. Variable Abundance and Distribution of Wolbachia and Cardinium Endosymbionts in Plant-Parasitic Nematode Field Populations. Front Microbiol 2019; 10:964. [PMID: 31134014 PMCID: PMC6513877 DOI: 10.3389/fmicb.2019.00964] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023] Open
Abstract
The bacterial endosymbiont Wolbachia interacts with different invertebrate hosts, engaging in diverse symbiotic relationships. Wolbachia is often a reproductive parasite in arthropods, but an obligate mutualist in filarial nematodes. Wolbachia was recently discovered in plant-parasitic nematodes, and, is thus far known in just two genera Pratylenchus and Radopholus, yet the symbiont's function remains unknown. The occurrence of Wolbachia in these economically important plant pests offers an unexplored biocontrol strategy. However, development of Wolbachia-based biocontrol requires an improved understanding of symbiont-host functional interactions and the symbiont's prevalence among nematode field populations. This study used a molecular-genetic approach to assess the prevalence of a Wolbachia lineage (wPpe) in 32 field populations of Pratylenchus penetrans. Populations were examined from eight different plant species in Washington, Oregon, and California. Nematodes were also screened for the endosymbiotic bacterium Cardinium (cPpe) that was recently shown to co-infect P. penetrans. Results identified wPpe in 9/32 and cPpe in 1/32 of P. penetrans field populations analyzed. No co-infection was observed in field populations. Wolbachia was detected in nematodes from 4/8 plant-hosts examined (raspberry, strawberry, clover, and lily), and in all three states surveyed. Cardinium was detected in nematodes from mint in Washington. In the wPpe-infected P. penetrans populations collected from raspberry, the prevalence of wPpe infection ranged from 11 to 58%. This pattern is unlike that in filarial nematodes where Wolbachia is an obligate mutualist and occurs in 100% of the host. Further analysis of wPpe-infected populations revealed female-skewed sex ratios (up to 96%), with the degree of skew positively correlating with wPpe prevalence. Uninfected nematode populations had approximately equal numbers of males and females. Comparisons of 54 wPpe 16S ribosomal RNA sequences revealed high similarity across the geographic isolates, with 45 of 54 isolates being identical at this locus. The complete absence of wPpe among some populations and low prevalence in others suggest that this endosymbiont is not an obligate mutualist of P. penetrans. The observed sex ratio bias in wPpe-infected nematode populations is similar to that observed in arthropods where Wolbachia acts as a reproductive manipulator, raising the question of a similar role in plant-parasitic nematodes.
Collapse
Affiliation(s)
- Sulochana K. Wasala
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Amanda M. V. Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Jiwon Kang
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Dana K. Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Amy B. Peetz
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, United States
| | - Inga A. Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, United States
| | - Dee R. Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
22
|
Asselin AK, Villegas-Ospina S, Hoffmann AA, Brownlie JC, Johnson KN. Contrasting Patterns of Virus Protection and Functional Incompatibility Genes in Two Conspecific Wolbachia Strains from Drosophila pandora. Appl Environ Microbiol 2019; 85:e02290-18. [PMID: 30552191 PMCID: PMC6384105 DOI: 10.1128/aem.02290-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Wolbachia infections can present different phenotypes in hosts, including different forms of reproductive manipulation and antiviral protection, which may influence infection dynamics within host populations. In populations of Drosophila pandora two distinct Wolbachia strains coexist, each manipulating host reproduction: strain wPanCI causes cytoplasmic incompatibility (CI), whereas strain wPanMK causes male killing (MK). CI occurs when a Wolbachia-infected male mates with a female not infected with a compatible type of Wolbachia, leading to nonviable offspring. wPanMK can rescue wPanCI-induced CI but is unable to induce CI. The antiviral protection phenotypes provided by the wPanCI and wPanMK infections were characterized; the strains showed differential protection phenotypes, whereby cricket paralysis virus (CrPV)-induced mortality was delayed in flies infected with wPanMK but enhanced in flies infected with wPanCI compared to their respective Wolbachia-cured counterparts. Homologs of the cifA and cifB genes involved in CI identified in wPanMK and wPanCI showed a high degree of conservation; however, the CifB protein in wPanMK is truncated and is likely nonfunctional. The presence of a likely functional CifA in wPanMK and wPanMK's ability to rescue wPanCI-induced CI are consistent with the recent confirmation of CifA's involvement in CI rescue, and the absence of a functional CifB protein further supports its involvement as a CI modification factor. Taken together, these findings indicate that wPanCI and wPanMK have different relationships with their hosts in terms of their protective and CI phenotypes. It is therefore likely that different factors influence the prevalence and dynamics of these coinfections in natural Drosophila pandora hosts.IMPORTANCEWolbachia strains are common endosymbionts in insects, with multiple strains often coexisting in the same species. The coexistence of multiple strains is poorly understood but may rely on Wolbachia organisms having diverse phenotypic effects on their hosts. As Wolbachia is increasingly being developed as a tool to control disease transmission and suppress pest populations, it is important to understand the ways in which multiple Wolbachia strains persist in natural populations and how these might then be manipulated. We have therefore investigated viral protection and the molecular basis of cytoplasmic incompatibility in two coexisting Wolbachia strains with contrasting effects on host reproduction.
Collapse
Affiliation(s)
- Angelique K Asselin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Simon Villegas-Ospina
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeremy C Brownlie
- School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Niang EHA, Bassene H, Fenollar F, Mediannikov O. Biological Control of Mosquito-Borne Diseases: The Potential of Wolbachia-Based Interventions in an IVM Framework. J Trop Med 2018; 2018:1470459. [PMID: 30581476 PMCID: PMC6276417 DOI: 10.1155/2018/1470459] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
People living in the tropical and subtropical regions of the world face an enormous health burden due to mosquito-borne diseases such as malaria, dengue fever, and filariasis. Historically and today, targeting mosquito vectors with, primarily, insecticide-based control strategies have been a key control strategy against major mosquito-borne diseases. However, the success to date of such approaches is under threat from multiple insecticide resistance mechanisms while vector control (VC) options are still limited. The situation therefore requires the development of innovative control measures against major mosquito-borne diseases. Transinfecting mosquitos with symbiotic bacteria that can compete with targeted pathogens or manipulate host biology to reduce their vectorial capacity are a promising and innovative biological control approach. In this review, we discuss the current state of knowledge about the association between mosquitoes and Wolbachia, emphasizing the limitations of different mosquito control strategies and the use of mosquitoes' commensal microbiota as innovative approaches to control mosquito-borne diseases.
Collapse
Affiliation(s)
- El Hadji Amadou Niang
- VITROME, Campus International UCAD-IRD, Dakar, Senegal
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Senegal
| | - Hubert Bassene
- VITROME, Campus International UCAD-IRD, Dakar, Senegal
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Florence Fenollar
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Oleg Mediannikov
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
24
|
Duplouy A, Hornett EA. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ 2018; 6:e4629. [PMID: 29761037 PMCID: PMC5947162 DOI: 10.7717/peerj.4629] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
The Lepidoptera is one of the most widespread and recognisable insect orders. Due to their remarkable diversity, economic and ecological importance, moths and butterflies have been studied extensively over the last 200 years. More recently, the relationship between Lepidoptera and their heritable microbial endosymbionts has received increasing attention. Heritable endosymbionts reside within the host’s body and are often, but not exclusively, inherited through the female line. Advancements in molecular genetics have revealed that host-associated microbes are both extremely prevalent among arthropods and highly diverse. Furthermore, heritable endosymbionts have been repeatedly demonstrated to play an integral role in many aspects of host biology, particularly host reproduction. Here, we review the major findings of research of heritable microbial endosymbionts of butterflies and moths. We promote the Lepidoptera as important models in the study of reproductive manipulations employed by heritable endosymbionts, with the mechanisms underlying male-killing and feminisation currently being elucidated in moths and butterflies. We also reveal that the vast majority of research undertaken of Lepidopteran endosymbionts concerns Wolbachia. While this highly prevalent bacterium is undoubtedly important, studies should move towards investigating the presence of other, and interacting endosymbionts, and we discuss the merits of examining the microbiome of Lepidoptera to this end. We finally consider the importance of understanding the influence of endosymbionts under global environmental change and when planning conservation management of endangered Lepidoptera species.
Collapse
Affiliation(s)
- Anne Duplouy
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Emily A Hornett
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Front Microbiol 2018; 9:556. [PMID: 29636736 PMCID: PMC5881003 DOI: 10.3389/fmicb.2018.00556] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
The insect’s microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera) has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i) review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii) elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii) routes of transfer and (iv) the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we compared studies of the microbiome from 30 lepidopteran species. Gut bacteria of the Enterobacteriaceae, Bacillaceae, and Pseudomonadaceae families were the most widespread across species, with Pseudomonas, Bacillus, Staphylococcus, Enterobacter, and Enterococcus being the most common genera. Several studies indicate that habitat, food plant, and age of the host insect can greatly impact the gut microbiome, which contributes to digestion, detoxification, or defense against natural enemies. We mainly focus on the gut microbiome, but we also include some examples of intracellular endosymbionts. These symbionts are present across a broad range of insect taxa and are known to exert different effects on their host, mostly including nutrition and reproductive manipulation. Only two intracellular bacteria genera (Wolbachia and Spiroplasma) have been reported to colonize reproductive tissues of Lepidoptera, affecting their host’s reproduction. We explore routes of transmission of both gut microbiota and intracellular symbionts and have found that these microbes may be horizontally transmitted through the host plant, but also vertically via the egg stage. More detailed knowledge about the functions and plasticity of the microbiome in Lepidoptera may provide novel leads for the control of lepidopteran pest species.
Collapse
Affiliation(s)
| | - Enric Frago
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, La Réunion
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
26
|
Couchoux C, Dechaume-Moncharmont FX, Rigaud T, Bollache L. Male Gammarus roeseli provide smaller ejaculates to females infected with vertically transmitted microsporidian parasites. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Mereghetti V, Chouaia B, Montagna M. New Insights into the Microbiota of Moth Pests. Int J Mol Sci 2017; 18:ijms18112450. [PMID: 29156569 PMCID: PMC5713417 DOI: 10.3390/ijms18112450] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.
Collapse
Affiliation(s)
- Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
28
|
Drezen JM, Josse T, Bézier A, Gauthier J, Huguet E, Herniou EA. Impact of Lateral Transfers on the Genomes of Lepidoptera. Genes (Basel) 2017; 8:E315. [PMID: 29120392 PMCID: PMC5704228 DOI: 10.3390/genes8110315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022] Open
Abstract
Transfer of DNA sequences between species regardless of their evolutionary distance is very common in bacteria, but evidence that horizontal gene transfer (HGT) also occurs in multicellular organisms has been accumulating in the past few years. The actual extent of this phenomenon is underestimated due to frequent sequence filtering of "alien" DNA before genome assembly. However, recent studies based on genome sequencing have revealed, and experimentally verified, the presence of foreign DNA sequences in the genetic material of several species of Lepidoptera. Large DNA viruses, such as baculoviruses and the symbiotic viruses of parasitic wasps (bracoviruses), have the potential to mediate these transfers in Lepidoptera. In particular, using ultra-deep sequencing, newly integrated transposons have been identified within baculovirus genomes. Bacterial genes have also been acquired by genomes of Lepidoptera, as in other insects and nematodes. In addition, insertions of bracovirus sequences were present in the genomes of certain moth and butterfly lineages, that were likely corresponding to rearrangements of ancient integrations. The viral genes present in these sequences, sometimes of hymenopteran origin, have been co-opted by lepidopteran species to confer some protection against pathogens.
Collapse
Affiliation(s)
- Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Jérémy Gauthier
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Elisabeth Anne Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| |
Collapse
|
29
|
Abstract
Selfishness is pervasive and manifests at all scales of biology, from societies, to individuals, to genetic elements within a genome. The relentless struggle to seek evolutionary advantages drives perpetual cycles of adaptation and counter-adaptation, commonly referred to as Red Queen interactions. In this review, we explore insights gleaned from molecular and genetic studies of such genetic conflicts, both extrinsic (between genomes) and intrinsic (within genomes or cells). We argue that many different characteristics of selfish genetic elements can be distilled into two types of advantages: an over-replication advantage (e.g. mobile genetic elements in genomes) and a transmission distortion advantage (e.g. meiotic drivers in populations). These two general categories may help classify disparate types of selfish genetic elements.
Collapse
Affiliation(s)
- Richard N McLaughlin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
30
|
Xu C, Ding J, Zhao Y, Luo J, Mu W, Zhang Z. Cyantraniliprole at Sublethal Dosages Negatively Affects the Development, Reproduction, and Nutrient Utilization of Ostrinia furnacalis (Lepidoptera: Crambidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:230-238. [PMID: 28011688 DOI: 10.1093/jee/tow248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To better understand the application prospect of cyantraniliprole against the Asian corn borer, Ostrinia furnacalis, a diet-incorporation bioassay was adopted to determine the toxicity of cyantraniliprole against the fourth instar of O. furnacalis. Moreover, other experiments were conducted to examine effects of sublethal levels of cyantraniliprole on larval development, nutrient utilization, and reproduction. In this study, cyantraniliprole showed a high toxicity to fourth-instar larvae of O. furnacalis at dosages of 0.05 μg/g (LC5), 0.11 μg/g (LC20), 0.20 μg/g (LC40), and 0.26 μg/g (LC50) administered through artificial diet. At three sublethal dosages, cyantraniliprole inhibited larval feeding processes, decreased the relative growth rate, the relative consumption rate, the efficiency of food ingestion, and the efficiency of food digestion, as well as decreased the contents of nutrients such as proteins, lipids, and carbohydrates. All these effects go against to the normal growth of O. furnacalis, including reductions in larval and pupal weight, the extension of the larval and pupal period, the prolongation of the adult preoviposition period, total preoviposition period, and mean generation time, and the reduction of adult longevity, oviposition period, and eggs laid by female adults. Together, these changes resulted in the reduction of the intrinsic rate of increase. Hence, even at sublethal concentrations, cyantraniliprole can affect population dynamics by reducing the survival rate, fecundity, and population parameters. This result provides useful information for developing control strategies for O. furnacalis.
Collapse
Affiliation(s)
- Chunmei Xu
- College of Plant Protection, Shandong Agricultural University, 61 Daizong St., Tai'an, Shandong, P.R. China
| | - Jinfeng Ding
- College of Plant Protection, Shandong Agricultural University, 61 Daizong St., Tai'an, Shandong, P.R. China
| | - Yunhe Zhao
- College of Plant Protection, Shandong Agricultural University, 61 Daizong St., Tai'an, Shandong, P.R. China
| | - Jian Luo
- College of Plant Protection, Shandong Agricultural University, 61 Daizong St., Tai'an, Shandong, P.R. China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, 61 Daizong St., Tai'an, Shandong, P.R. China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taían, P. R.of China
| |
Collapse
|
31
|
Downregulation of Aedes aegypti chromodomain helicase DNA binding protein 7/Kismet by Wolbachia and its effect on dengue virus replication. Sci Rep 2016; 6:36850. [PMID: 27827425 PMCID: PMC5101808 DOI: 10.1038/srep36850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-transmitted virus imposing a significant burden on human health around the world. Since current control strategies are not sufficient, there is an urgent need to find alternative methods to control DENV transmission. It has been demonstrated that introduction of Wolbachia pipientis in Aedes aegypti mosquitoes can impede DENV transmission with the mechanism(s) not fully understood. Recently, a number of studies have found the involvement of chromodomain DNA binding helicases in case of Human Immunodeficiency virus (HIV) and Influenza A virus infection. In this study, we have identified three chromodomain helicase DNA binding protein (CHD) genes in Ae. aegypti and looked at their response in the case of Wolbachia and DENV infections. Foremost amongst them we have found that AeCHD7/Kismet is significantly downregulated in the presence of Wolbachia infection only in female mosquitoes. Furthermore, AeCHD7 levels showed significant increase during DENV infection, and AeCHD7 depletion led to severe reduction in the replication of DENV. Our data have identified AeCHD7 as a novel Ae. aegypti host factor that is important for DENV replication, and Wolbachia downregulates it, which may contribute towards the mechanism(s) of limiting DENV replication.
Collapse
|
32
|
Okayama K, Katsuki M, Sumida Y, Okada K. Costs and benefits of symbiosis between a bean beetle and Wolbachia. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Ahmed MZ, Breinholt JW, Kawahara AY. Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol Biol 2016; 16:118. [PMID: 27233666 PMCID: PMC4882834 DOI: 10.1186/s12862-016-0660-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/18/2016] [Indexed: 01/15/2023] Open
Abstract
Background Wolbachia is one of the most widespread bacteria on Earth. Previous research on Wolbachia-host interactions indicates that the bacterium is typically transferred vertically, from mother to offspring, through the egg cytoplasm. Although horizontal transmission of Wolbachia from one species to another is reported to be common in arthropods, limited direct ecological evidence is available. In this study, we examine horizontal transmission of Wolbachia using a multilocus sequence typing (MLST) strains dataset and used Wolbachia and Lepidoptera genomes to search for evidence for lateral gene transfer (LGT) in Lepidoptera, one of the most diverse cosmopolitan insect orders. We constructed a phylogeny of arthropod-associated MLST Wolbachia strains and calibrated the age of Wolbachia strains associated with lepidopteran species. Results Our results reveal inter-specific, inter-generic, inter-familial, and inter-ordinal horizontal transmission of Wolbachia strains, without discernible geographic patterns. We found at least seven probable cases of horizontal transmission among 31 species within Lepidoptera and between Lepidoptera and other arthropod hosts. The divergence time analysis revealed that Wolbachia is recently (22.6–4.7 mya, 95 % HPD) introduced in Lepidoptera. Analysis of nine Lepidoptera genomes (Bombyx mori, Danaus plexippus, Heliconius melpomene, Manduca sexta, Melitaea cinxia, Papilio glaucus, P. polytes, P. xuthus and Plutella xylostella) yielded one possible instance of Wolbachia LGT. Conclusions Our results provide evidence of high incidence of identical and multiple strains of Wolbachia among butterflies and moths, adding Lepidoptera to the growing body of evidence for common horizontal transmission of Wolbachia. This study demonstrates interesting dynamics of this remarkable and influential microorganism. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0660-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Z Ahmed
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Jesse W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
34
|
Furihata S, Hirata M, Matsumoto H, Hayakawa Y. Bacteria Endosymbiont, Wolbachia, Promotes Parasitism of Parasitoid Wasp Asobara japonica. PLoS One 2015; 10:e0140914. [PMID: 26492411 PMCID: PMC4619603 DOI: 10.1371/journal.pone.0140914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/01/2015] [Indexed: 01/14/2023] Open
Abstract
Wolbachia is the most widespread endosymbiotic bacterium that manipulates reproduction of its arthropod hosts to enhance its own spread throughout host populations. Infection with Wolbachia causes complete parthenogenetic reproduction in many Hymenoptera, producing only female offspring. The mechanism of such reproductive manipulation by Wolbachia has been extensively studied. However, the effects of Wolbachia symbiosis on behavioral traits of the hosts are scarcely investigated. The parasitoid wasp Asobara japonica is an ideal insect to investigate this because symbiotic and aposymbiotic strains are available: Wolbachia-infected Tokyo (TK) and noninfected Iriomote (IR) strains originally collected on the main island and southwest islands of Japan, respectively. We compared the oviposition behaviors of the two strains and found that TK strain females parasitized Drosophila melanogaster larvae more actively than the IR strain, especially during the first two days after eclosion. Removing Wolbachia from the TK strain wasps by treatment with tetracycline or rifampicin decreased their parasitism activity to the level of the IR strain. Morphological and behavioral analyses of both strain wasps showed that Wolbachia endosymbionts do not affect development of the host female reproductive tract and eggs, but do enhance host-searching ability of female wasps. These results suggest the possibility that Wolbachia endosymbionts may promote their diffusion and persistence in the host A. japonica population not only at least partly by parthenogenesis but also by enhancement of oviposition frequency of the host females.
Collapse
Affiliation(s)
- Shunsuke Furihata
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| | - Makiko Hirata
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| | - Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga, Japan
- * E-mail:
| |
Collapse
|
35
|
Sugimoto TN, Kayukawa T, Matsuo T, Tsuchida T, Ishikawa Y. A short, high-temperature treatment of host larvae to analyze Wolbachia-host interactions in the moth Ostrinia scapulalis. JOURNAL OF INSECT PHYSIOLOGY 2015; 81:48-51. [PMID: 26142572 DOI: 10.1016/j.jinsphys.2015.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
Maternally inherited endosymbiotic bacteria of the genus Wolbachia cause various reproductive alterations in their hosts. Wolbachia induces male-specific death during embryonic and larval stages in the moth Ostrinia scapulalis. To investigate how the density of Wolbachia affects their performance in the host, we attempted to reduce its density using a short, high-temperature treatment of the host at the larval stage. Individuals cured of infection as well as sexual mosaics, which harbor Wolbachia, were obtained by this method in the next generation. The sex of uninfected offspring was exclusively male, similar to that of the offspring of larvae treated with antibiotics. A strong correlation was found between Wolbachia density in female moths and the sex ratio of their progeny. These results suggest that a short, high-temperature treatment at the larval stage reduced the density of Wolbachia in the adult stage, and, hence, inhibited interference with the host's development in the next generation. Since the direct effects of the heat treatment on Wolbachia were transient, this method may be useful for specifying the critical time for interference by Wolbachia in host development.
Collapse
Affiliation(s)
- Takafumi N Sugimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan.
| | - Takumi Kayukawa
- National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Takashi Matsuo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tsutomu Tsuchida
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| | - Yukio Ishikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
36
|
Ahmed MZ, Araujo-Jnr EV, Welch JJ, Kawahara AY. Wolbachia in butterflies and moths: geographic structure in infection frequency. Front Zool 2015; 12:16. [PMID: 26180539 PMCID: PMC4502936 DOI: 10.1186/s12983-015-0107-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/18/2015] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Butterflies and moths (Lepidoptera) constitute one of the most diverse insect orders, and play an important role in ecosystem function. However, little is known in terms of their bacterial communities. Wolbachia, perhaps the most common and widespread intracellular bacterium on Earth, can manipulate the physiology and reproduction of its hosts, and is transmitted vertically from mother to offspring, or sometimes horizontally between species. While its role in some hosts has been studied extensively, its incidence across Lepidoptera is poorly understood. A recent analysis using a beta-binomial model to infer the between-species distribution of prevalence estimated that approximately 40 % of arthropod species are infected with Wolbachia, but particular taxonomic groups and ecological niches seem to display substantially higher or lower incidences. In this study, we took an initial step and applied a similar, maximum likelihood approach to 300 species of Lepidoptera (7604 individuals from 660 populations) belonging to 17 families and 10 superfamilies, and sampled from 36 countries, representing all continents excluding Antarctica. RESULTS Approximately a quarter to a third of individuals appear to be infected with Wolbachia, and around 80 % of Lepidoptera species are infected at a non-negligible frequency. This incidence estimate is very high compared to arthropods in general. Wolbachia infection in Lepidoptera is shown to vary between families, but there is no evidence for closely related groups to show similar infection levels. True butterflies (Papilionoidea) are overrepresented in our data, however, our estimates show this group can be taken as a representative for the other major lepidopteran superfamilies. We also show substantial variation in infection level according to geography - closer locations tend to show similar infection levels. We further show that variation in geography is due to a latitudinal gradient in Wolbachia infection, with lower frequencies towards higher latitudes. CONCLUSIONS Our comprehensive survey of Wolbachia infection in Lepidoptera suggests that infection incidence is very high, and provides evidence that climate and geography are strong predictors of infection frequency.
Collapse
Affiliation(s)
- Muhammad Z. Ahmed
- />Florida Museum of Natural History, University of Florida, 32611 Gainesville, FL USA
- />Institute of Food and Agricultural Sciences, Tropical Research and Education Center, University of Florida, 18905 SW 280th Street, 33031 Homestead, FL USA
| | - Eli V. Araujo-Jnr
- />Institute of Food and Agricultural Sciences, Tropical Research and Education Center, University of Florida, 18905 SW 280th Street, 33031 Homestead, FL USA
| | - John J. Welch
- />Department of Genetics, University of Cambridge, CB2 3EH Cambridge, UK
| | - Akito Y. Kawahara
- />Institute of Food and Agricultural Sciences, Tropical Research and Education Center, University of Florida, 18905 SW 280th Street, 33031 Homestead, FL USA
| |
Collapse
|
37
|
Badawi M, Grève P, Cordaux R. Feminization of the Isopod Cylisticus convexus after Transinfection of the wVulC Wolbachia Strain of Armadillidium vulgare. PLoS One 2015; 10:e0128660. [PMID: 26047139 PMCID: PMC4457857 DOI: 10.1371/journal.pone.0128660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
Reproductive parasites such as Wolbachia are able to manipulate the reproduction of their hosts by inducing parthenogenesis, male-killing, cytoplasmic incompatibility or feminization of genetic males. Despite extensive studies, no underlying molecular mechanism has been described to date. The goal of this study was to establish a system with a single Wolbachia strain that feminizes two different isopod species to enable comparative analyses aimed at elucidating the genetic basis of feminization. It was previously suggested that Wolbachia wVulC, which naturally induces feminization in Armadillidium vulgare, induces the development of female secondary sexual characters in transinfected Cylisticus convexus adult males. However, this does not demonstrate that wVulC induces feminization in C. convexus since feminization is the conversion of genetic males into functional females that occurs during development. Nevertheless, it suggests that C. convexus may represent a feminization model suitable for further development. Knowledge about C. convexus sexual differentiation is also essential for comparative analyses, as feminization is thought to take place just before or during sexual differentiation. Consequently, we first described gonad morphological differentiation of C. convexus and compared it with that of A. vulgare. Then, wVulC was injected into male and female C. convexus adult individuals. The feminizing effect was demonstrated by the combined appearance of female secondary sexual characters in transinfected adult males, as well as the presence of intersexes and female biases in progenies in which wVulC was vertically transmitted from transinfected mothers. The establishment of a new model of feminization of a Wolbachia strain in a heterologous host constitutes a useful tool towards the understanding of the molecular mechanism of feminization.
Collapse
Affiliation(s)
- Myriam Badawi
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073, Poitiers, Cedex 9, France
| | - Pierre Grève
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073, Poitiers, Cedex 9, France
| | - Richard Cordaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073, Poitiers, Cedex 9, France
| |
Collapse
|
38
|
Goodacre SL, Fricke C, Martin OY. A screen for bacterial endosymbionts in the model organisms Tribolium castaneum, T. confusum, Callosobruchus maculatus, and related species. INSECT SCIENCE 2015; 22:165-177. [PMID: 24347564 DOI: 10.1111/1744-7917.12096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Reproductive parasites such as Wolbachia are extremely widespread amongst the arthropods and can have a large influence over the reproduction and fitness of their hosts. Undetected infections could thus confound the results of a wide range of studies that focus on aspects of host behavior, reproduction, fitness, and degrees of reproductive isolation. This potential problem has already been underlined by work investigating the incidence of Wolbachia infections in stocks of the model system Drosophila melanogaster. Here we survey a range of lab stocks of further commonly used model arthropods, focusing especially on the flour beetles Tribolium castaneum and Tribolium confusum, the cowpea weevil Callosobruchus maculatus and related species (Coleoptera: Tenebrionidae and Bruchidae). These species are widespread stored product pests so knowledge of infections with symbionts further has potential use in informing biocontrol measures. Beetles were assessed for infection with 3 known microbial reproductive parasites: Wolbachia, Rickettsia, Spiroplasma. Infections with some of these microbes were found in some of the lab stocks studied, although overall infections were relatively rare. The consequences of finding infections in these or other species and the type of previous studies likely to be affected most are discussed.
Collapse
Affiliation(s)
- Sara L Goodacre
- School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | | | | |
Collapse
|
39
|
Famah Sourassou N, Hanna R, Breeuwer JAJ, Negloh K, de Moraes GJ, Sabelis MW. The endosymbionts Wolbachia and Cardinium and their effects in three populations of the predatory mite Neoseiulus paspalivorus. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 64:207-221. [PMID: 24806619 DOI: 10.1007/s10493-014-9820-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Whereas endosymbiont-induced incompatibility is known to occur in various arthropod taxa, such as spider mites, insects and isopods, it has been rarely reported in plant-inhabiting predatory mites (Acari: Phytoseiidae). Recent cross-breeding studies with the phytoseiid mite Neoseiulus paspalivorus De Leon revealed a complete post-mating reproductive isolation between specimens collected from three geographic origins-Northeast Brazil (South America), Benin and Ghana (West Africa)-even though they are morphologically similar. We carried out a study to assess to what extent these populations exhibit genetic differences and whether endosymbionts are involved in the incompatibility. First, we used the mitochondrial cytochrome oxidase I (COI) gene to assess genetic diversity among the three populations. Second, we used a PCR-based method to check for the presence of Wolbachia and/or Cardinium in these populations, and we determined their phylogenetic relationships using specific primers for Wolbachia and Cardinium 16S rDNA genes. Third, we also conducted a test using an antibiotic (tetracycline) in an attempt to eliminate the symbionts and evaluate their effects on the reproductive compatibility of their host. Based on the DNA sequences of their COI genes, specimens of the three populations appear to be genetically similar. However, the 16S rDNA gene sequences of their associated endosymbionts differed among the three populations: the Benin and Brazil populations harbour different strains of Wolbachia symbionts, whereas the Ghana population harbours Cardinium symbionts. In response to antibiotic treatment females of each of the three populations became incompatible with untreated males of their own population, similar to that observed in crossings between females from one geographic population and males from another. Compatibility was restored in crosses involving uninfected Brazil females and uninfected Benin males, whereas the reciprocal crosses remained incompatible. Cardinium symbionts seem to be essential for oviposition in the Ghana population. It is concluded that their associated bacterial symbionts are the cause of the post-mating reproductive isolation previously observed among the three geographic populations. This insight is relevant to biological control of coconut mites for which N. paspalivorus is an effective predator, because introducing one geographic strain into the population of another (e.g. in field releases or mass cultures) may cause population growth depression.
Collapse
Affiliation(s)
- Nazer Famah Sourassou
- Departemento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz Queiroz", Universidade de Sao Paulo, Piracicaba, SP, 13418-900, Brazil,
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Graham RI, Wilson K. Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect. BMC Evol Biol 2012; 12:204. [PMID: 23061984 PMCID: PMC3557208 DOI: 10.1186/1471-2148-12-204] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022] Open
Abstract
Background Numerous recent studies have shown that resident symbiotic microorganisms of insects play a fundamental role in host ecology and evolution. The lepidopteran pest, African armyworm (Spodoptera exempta), is a highly migratory and destructive species found throughout sub-Saharan Africa, that can experience eruptive outbreaks within the space of a single generation, making predicting population dynamics and pest control forecasting extremely difficult. Three strains of Wolbachia have recently been identified infecting this species in populations sampled from Tanzania. In this study, we examined the interaction between Wolbachia pipiensis infections and the co-inherited marker, mtDNA, within populations of armyworm, as a means to investigate the population biology and evolutionary history of Wolbachia and its host. Results A Wolbachia-infected isofemale line was established in the laboratory. Phenotypic studies confirmed the strain wExe1 as a male-killer. Partial sequencing of the mitochondrial COI gene from 164 individual field-collected armyworm of known infection status revealed 17 different haplotypes. There was a strong association between Wolbachia infection status and mtDNA haplotype, with a single dominant haplotype, haplo1 (90.2% prevalence), harbouring the endosymbiont. All three Wolbachia strains were associated with this haplotype. This indicates that Wolbachia may be driving a selective sweep on armyworm haplotype diversity. Despite very strong biological and molecular evidence that the samples represent a single species (including from nuclear 28S gene markers), the 17 haplotypes did not fall into a monophyletic clade within the Spodoptera genus; with six haplotypes (2 each from 3 geographically separate populations) differing by >11% in their nucleotide sequence to the other eleven. Conclusions This study suggests that three strains of Wolbachia may be driving a selective sweep on armyworm haplotype diversity, and that based on COI sequence data, S. exempta is not a monophyletic group within the Spodoptera genus. This has clear implications for the use of mtDNA as neutral genetic markers in insects, and also demonstrates the impact of Wolbachia infections on host evolutionary genetics.
Collapse
Affiliation(s)
- Robert I Graham
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | | |
Collapse
|
42
|
Graham RI, Grzywacz D, Mushobozi WL, Wilson K. Wolbachiain a major African crop pest increases susceptibility to viral disease rather than protects. Ecol Lett 2012; 15:993-1000. [DOI: 10.1111/j.1461-0248.2012.01820.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Robert I. Graham
- Lancaster Environment Centre; Lancaster University; Lancaster; LA1 4YQ; UK
| | - David Grzywacz
- Natural Resources Institute; University of Greenwich; Central Avenue; Chatham Maritime; ME4 4TB; UK
| | - Wilfred L. Mushobozi
- Eco Agri Consultancy Services Ltd; Nairobi Road; Kwa Idd; PO Box 15040; Arusha; Tanzania
| | - Kenneth Wilson
- Lancaster Environment Centre; Lancaster University; Lancaster; LA1 4YQ; UK
| |
Collapse
|
43
|
Insect Sex Determination Manipulated by Their Endosymbionts: Incidences, Mechanisms and Implications. INSECTS 2012; 3:161-99. [PMID: 26467955 PMCID: PMC4553623 DOI: 10.3390/insects3010161] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/14/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
Abstract
The sex-determining systems of arthropods are surprisingly diverse. Some species have male or female heterogametic sex chromosomes while other species do not have sex chromosomes. Most species are diploids but some species, including wasps, ants, thrips and mites, are haplodiploids (n in males; 2n in females). Many of the sexual aberrations, such as sexual mosaics, sex-specific lethality and conversion of sexuality, can be explained by developmental defects including double fertilization of a binucleate egg, loss of a sex chromosome or perturbation of sex-determining gene expression, which occur accidentally or are induced by certain environmental conditions. However, recent studies have revealed that such sexual aberrations can be caused by various groups of vertically-transmitted endosymbiotic microbes such as bacteria of the genera Wolbachia, Rickettsia, Arsenophonus, Spiroplasma and Cardinium, as well as microsporidian protists. In this review, we first summarize the accumulated data on endosymbiont-induced sexual aberrations, and then discuss how such endosymbionts affect the developmental system of their hosts and what kinds of ecological and evolutionary effects these endosymbionts have on their host populations.
Collapse
|
44
|
Tabata J, Hattori Y, Sakamoto H, Yukuhiro F, Fujii T, Kugimiya S, Mochizuki A, Ishikawa Y, Kageyama D. Male killing and incomplete inheritance of a novel spiroplasma in the moth Ostrinia zaguliaevi. MICROBIAL ECOLOGY 2011; 61:254-263. [PMID: 21234752 DOI: 10.1007/s00248-010-9799-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 12/24/2010] [Indexed: 05/30/2023]
Abstract
Bacteria of the genus Spiroplasma are widely found in plants and arthropods. Some of the maternally transmitted Spiroplasma endosymbionts in arthropods are known to kill young male hosts (male killing). Here, we describe a new case of Spiroplasma-induced male killing in a moth, Ostrinia zaguliaevi. The all-female trait caused by Spiroplasma was maternally inherited for more than 11 generations but was spontaneously lost in several lineages. Antibiotic treatment eliminated the Spiroplasma infection and restored the 1:1 sex ratio. The survival rates and presence/absence of the W chromosome in the embryonic and larval stages of O. zaguliaevi showed that males were selectively killed, exclusively during late embryogenesis in all-female broods. Based on phylogenetic analyses of 16S rRNA, dnaA and rpoB gene sequences, the causative bacteria were identified as Spiroplasma belonging to the tick symbiont Spiroplasma ixodetis clade. Electron microscopy confirmed bacterial structures in the follicle cells and follicular sheath of adult females. Although many congeneric Ostrinia moths harbor another sex ratio-distorting bacterium (Wolbachia), only O. zaguliaevi harbors Spiroplasma.
Collapse
Affiliation(s)
- Jun Tabata
- Biodiversity Division, National Institute for Agro-Environmental Sciences, Tsukuba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jones EO, White A, Boots M. The evolutionary implications of conflict between parasites with different transmission modes. Evolution 2010; 64:2408-16. [PMID: 20298464 DOI: 10.1111/j.1558-5646.2010.00992.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Understanding the processes that shape the evolution of parasites is a key challenge for evolutionary biology. It is well understood that different parasites may often infect the same host and that this may have important implications to the evolutionary behavior. Here we examine the evolutionary implications of the conflict that arises when two parasite species, one vertically transmitted and the other horizontally transmitted, infect the same host. We show that the presence of a vertically transmitted parasite (VTP) often leads to the evolution of higher virulence in horizontally transmitted parasites (HTPs), particularly if the VTPs are feminizing. The high virulence in some HTPs may therefore result from coinfection with cryptic VTPs. The impact of an HTP on a VTP evolution depends crucially on the nature of the life-history trade-offs. Fast virulent HTPs select for intermediate feminization and virulence in VTPs. Coevolutionary models show similar insights, but emphasize the importance of host life span to the outcome, with higher virulence in both types of parasite in short-lived hosts. Overall, our models emphasize the interplay of host and parasite characteristics in the evolutionary outcome and point the way for further empirical study.
Collapse
Affiliation(s)
- Edward O Jones
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, England, United Kingdom.
| | | | | |
Collapse
|
46
|
A new case of Wolbachia dependence in the genus Asobara: evidence for parthenogenesis induction in Asobara japonica. Heredity (Edinb) 2009; 103:248-56. [PMID: 19513092 DOI: 10.1038/hdy.2009.63] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Wolbachia is a maternally inherited bacterium that is widely distributed among arthropods, in which it manipulates the reproduction of its hosts. Although generally facultative for its hosts, Wolbachia has recently become obligatory in Asobara tabida (Hymenoptera: Braconidae) in which it is required for the completion of oogenesis. Here, we describe a new Wolbachia strain (wAjap) that is associated with the genus Asobara and infects Asobara japonica. wAjap was detected in all female-biased populations of A. japonica found in the main islands of Japan, but not in the arrhenotokous populations from the southern islands. Using phylogenetic analyses based on multi-locus sequence typing (MLST), we show that this strain is closely related to wAtab3 (the strain required for oogenesis in A. tabida), even though they differ on Wolbachia surface protein (WSP) and WO phage sequences. Using antibiotic treatments, we show that cured thelytokous females are not dependent on Wolbachia for oogenesis. However, they produced only sons, showing that wAjap induces thelytokous parthenogenesis. Analyses of mating behavior and offspring production of individuals from Wolbachia-infected populations showed that while males were still sexually functional, females no longer attract males, making Wolbachia an obligate partner for daughter production in thelytokous populations. The fact that Wolbachia has become independently obligatory in two species of the same genus tends to show that dependence evolution can be common and swift, although no clear benefit for the parasitoid can be attributed to this dependence. Although dependence should lead to co-divergence between Wolbachia and its hosts, the very few cases of co-speciation observed in host-Wolbachia associations question the stability of these obligatory associations.
Collapse
|
47
|
Infection by Wolbachia: from passengers to residents. C R Biol 2008; 332:284-97. [PMID: 19281959 DOI: 10.1016/j.crvi.2008.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 11/24/2022]
Abstract
Wolbachia are endosymbiotic alpha-proteobacteria harboured by terrestrial arthropods and filarial nematodes, where they are maternally transmitted through egg cytoplasm. According to the host group, Wolbachia have developed two contrasting symbiotic strategies. In arthropods, symbiosis is secondary (i.e. facultative), and Wolbachia insure their transmission as reproduction parasites. However, despite of the efficiency of the manipulation mechanisms used, Wolbachia are limited to the state of passenger because some factors can prevent the association between Wolbachia and their hosts to become permanent. On the contrary, symbiosis is primary (i.e. obligatory) in filarial nematodes where Wolbachia insure their transmission via a mutualistic relationship, leading them to become permanent residents of their hosts. However, a few examples show that in arthropods too some Wolbachia have started to present the first stages of a mutualistic behaviour, or are even truly indispensable to their host. Whatever its strategy, Wolbachia infection is a spectacular evolutionary success, this symbiotic bacterium representing one of the most important biomass of its kind.
Collapse
|
48
|
Kageyama D, Narita S, Noda H. Transfection of feminizing Wolbachia endosymbionts of the butterfly, Eurema hecabe, into the cell culture and various immature stages of the silkmoth, Bombyx mori. MICROBIAL ECOLOGY 2008; 56:733-741. [PMID: 18458997 DOI: 10.1007/s00248-008-9392-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/14/2008] [Accepted: 02/20/2008] [Indexed: 05/26/2023]
Abstract
Wolbachia are maternally inherited endosymbiotic bacteria of invertebrates that can manipulate the reproductive systems of their arthropod hosts in a variety of ways. To establish a useful model system for investigating the mechanism of Wolbachia-induced host feminization, we conducted the following series of experiments: (1) feminizing Wolbachia of the butterfly, Eurema hecabe, were transferred into cell cultures of the silkmoth, Bombyx mori, and (2) the transfected Wolbachia in cell cultures were inoculated into B. mori at four immature stages. Wolbachia were successfully transfected into the cell cultures and stably maintained for more than 1 year (>30 passages). However, none of the inoculated insects produced mature oocytes that were Wolbachia-positive. This finding was consistent with the fact that Wolbachia was not detected in individuals in subsequent generations. In contrast, Wolbachia were detected at relatively high frequencies (60-80% of individuals) in the somatic tissues of inoculated insects. Real-time quantitative polymerase chain reaction revealed that the Wolbachia densities in the cultured cells were approximately tenfold higher than those in the native host E. hecabe. Among B. mori individuals inoculated at various developmental stages, those inoculated at early stages exhibited higher Wolbachia densities at the adult stage. The Wolbachia densities in individuals inoculated at the second-instar stage were comparable to those in intact E. hecabe. These results suggest that infection and/or proliferation of Wolbachia in germline cells are actively hindered by regulation in B. mori but feasible in somatic cells and that the Wolbachia densities in somatic tissues are regulated by the living host insects.
Collapse
Affiliation(s)
- Daisuke Kageyama
- National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
49
|
Hoshizaki S, Washimori R, Kubota S, Ohno S, Huang Y, Tatsuki S, Ishikawa Y. Two mitochondrial lineages occur in the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae), in Japan. BULLETIN OF ENTOMOLOGICAL RESEARCH 2008; 98:519-526. [PMID: 18826668 DOI: 10.1017/s0007485308005841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The genealogy and diversity of the mitochondrial cytochrome oxidase subunit II (COII) gene were investigated for Ostrinia furnacalis in Japan. A preliminary examination of mitochondrial lineages in China and the Philippines was also made. Two lineages (A and B) were found in the COII gene. Lineage A was frequent throughout the Japanese main islands (Hokkaido, Honshu, Shikoku and Kyushu), while the frequency of lineage B varied among these islands. No clear patterns of geographical population structure were found. Population genetic features suggested that the O. furnacalis population harboring the lineage A mitochondria expanded in the recent past, while lineage B showed weak signals of a population expansion. It is not clear whether the two lineages of mtDNA evolved in separate or identical geographical regions. We discuss two hypotheses regarding the two lineages of mtDNA: a cryptic race/species hypothesis and a selective sweep hypothesis.
Collapse
Affiliation(s)
- S Hoshizaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 2008; 6:741-51. [PMID: 18794912 DOI: 10.1038/nrmicro1969] [Citation(s) in RCA: 1728] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|