1
|
Zhang M, Xi Z. Wolbachia Transinfection Via Embryonic Microinjection. Methods Mol Biol 2024; 2739:175-188. [PMID: 38006552 DOI: 10.1007/978-1-0716-3553-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The process of transferring Wolbachia from one species to another to establish a stable, maternally inherited infection in the target species is known as transinfection. The success of transinfection is primarily achieved through embryonic microinjection, which is the most direct and efficient means of delivering Wolbachia into the germline of the target species and establishing stable maternal transmission. For the fundamental studies, transinfection is often used to characterize Wolbachia-host interactions, including Wolbachia host range, the role of host or bacterial factors in symbiosis, and evolution of Wolbachia-host associations. For the applied studies, use of transinfection to generate a novel infection in the target species is the first step to build the weapon for both population replacement and population suppression for controlling insect pests or their transmitted diseases. For the primary dengue vector Aedes aegypti and Anopheles vectors of malaria, which either do not naturally carry Wolbachia or are infected with strains that lack necessary features for implementation, transinfection can be established by introducing a novel strain capable of inducing both cytoplasmic incompatibility (CI) and pathogen blocking. For A. albopictus and Culex mosquito species, which naturally harbor CI-inducing Wolbachia, transinfection can be achieved by either introducing a novel strain to generate superinfection or replacing the native infection with a different Wolbachia strain in a symbiont-free line, which is derived from antibiotic treatment of the wild type. Here, we use A. aegypti as an example to describe the Wolbachia transinfection method, which can be adapted to other insect species, such as planthoppers, according to their specific developmental requirements.
Collapse
Affiliation(s)
- Meichun Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Gong JT, Li TP, Wang MK, Hong XY. Wolbachia-based strategies for control of agricultural pests. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101039. [PMID: 37105498 DOI: 10.1016/j.cois.2023.101039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 05/22/2023]
Abstract
Wolbachia-based incompatible insect technique (IIT) and pathogen blocking technique (PBT) have been shown to be effective at protecting humans from mosquito-borne diseases in the past decades. Population suppression based on IIT and population replacement based on PBT have become major field application strategies that have continuously been improved by the translational research on Wolbachia-transinfected mosquitoes. Similarly, Wolbachia-based approaches have been proposed for the protection of plants from agricultural pests and their associated diseases. However, a bottleneck in Wolbachia-based strategies for the control of agricultural pests is the need for methods to establish Wolbachia-transinfected insect lines. As a first step in this direction, we compare field control strategies for mosquitos with the potential strategies for agricultural pests based on Wolbachia. Our results show that there is a critical need for establishing productive insect lines and accumulating field test data.
Collapse
Affiliation(s)
- Jun-Tao Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Guangzhou Wolbaki Biotech Co., Ltd., Guangzhou, Guangdong 510535, China
| | - Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng-Ke Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
3
|
Kil EJ, Kim D. The small brown planthopper (Laodelphax striatellus) as a vector of the rice stripe virus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21992. [PMID: 36575628 DOI: 10.1002/arch.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.
Collapse
Affiliation(s)
- Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Donghun Kim
- Department of Entomology, Kyungpook National University, Sangju, Republic of Korea
- Department of Vector Entomology, Kyungpook National University, Sangju, Republic of Korea
- Research Institute of Invertebrate Vector, Kyungpook National University, Sangju, Republic of Korea
| |
Collapse
|
4
|
Liu Y, He ZQ, Wen Q, Peng J, Zhou YT, Mandour N, McKenzie CL, Ahmed MZ, Qiu BL. Parasitoid-mediated horizontal transmission of Rickettsia between whiteflies. Front Cell Infect Microbiol 2023; 12:1077494. [PMID: 36683703 PMCID: PMC9846228 DOI: 10.3389/fcimb.2022.1077494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Intracellular bacterial endosymbionts of arthropods are mainly transmitted vertically from mother to offspring, but phylogenetically distant insect hosts often harbor identical endosymbionts, indicating that horizontal transmission from one species to another occurs in nature. Here, we investigated the parasitoid Encarsia formosa-mediated horizontal transmission of the endosymbiont Rickettsia between different populations of whitefly Bemisia tabaci MEAM1. Rickettsia was successfully transmitted from the positive MEAM1 nymphs (R +) into E. formosa and retained at least for 48 h in E. formosa adults. Fluorescence in situ hybridization (FISH) visualization results revealed that the ovipositors, mouthparts, and digestive tract of parasitoid adults get contaminated with Rickettsia. Random non-lethal probing of Rickettisia-negative (R- ) MEAM1 nymphs by these Rickettsia-carrying E. formosa resulted in newly infected MEAM1 nymphs, and the vertical transmission of Rickettsia within the recipient females can remain at least up to F3 generation. Further phylogenetic analyses revealed that Rickettsia had high fidelity during the horizontal transmission in whiteflies and parasitoids. Our findings may help to explain why Rickettsia bacteria are so abundant in arthropods and suggest that, in some insect species that shared the same parasitoids, Rickettsia may be maintained in populations by horizontal transmission.
Collapse
Affiliation(s)
- Yuan Liu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Zi-Qi He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Qin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Jing Peng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Yu-Tong Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Nasser Mandour
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Cindy L. McKenzie
- Subtropical Insects and Horticulture Research Unit, Agricultural Research Service, Unite States Department of Agriculture (USDA), Fort Pierce, FL, United States
| | - Muhammad Z. Ahmed
- Subtropical Insects and Horticulture Research Unit, Agricultural Research Service, Unite States Department of Agriculture (USDA), Fort Pierce, FL, United States
| | - Bao-Li Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China,*Correspondence: Bao-Li Qiu,
| |
Collapse
|
5
|
Infection Dynamics of Cotransmitted Reproductive Symbionts Are Mediated by Sex, Tissue, and Development. Appl Environ Microbiol 2022; 88:e0052922. [PMID: 35730939 PMCID: PMC9275221 DOI: 10.1128/aem.00529-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the most prevalent intracellular infections on earth is with Wolbachia, a bacterium in the Rickettsiales that infects a range of insects, crustaceans, chelicerates, and nematodes. Wolbachia is maternally transmitted to offspring and has profound effects on the reproduction and physiology of its hosts, which can result in reproductive isolation, altered vectorial capacity, mitochondrial sweeps, and even host speciation. Some populations stably harbor multiple Wolbachia strains, which can further contribute to reproductive isolation and altered host physiology. However, almost nothing is known about the requirements for multiple intracellular microbes to be stably maintained across generations while they likely compete for space and resources. Here, we use a coinfection of two Wolbachia strains (“wHa” and “wNo”) in Drosophila simulans to define the infection and transmission dynamics of an evolutionarily stable double infection. We find that a combination of sex, tissue, and host development contributes to the infection dynamics of the two microbes and that these infections exhibit a degree of niche partitioning across host tissues. wHa is present at a significantly higher titer than wNo in most tissues and developmental stages, but wNo is uniquely dominant in ovaries. Unexpectedly, the ratio of wHa to wNo in embryos does not reflect those observed in the ovaries, indicative of strain-specific transmission dynamics. Understanding how Wolbachia strains interact to establish and maintain stable infections has important implications for the development and effective implementation of Wolbachia-based vector biocontrol strategies, as well as more broadly defining how cooperation and conflict shape intracellular communities. IMPORTANCEWolbachia is a maternally transmitted intracellular bacterium that manipulates the reproduction and physiology of arthropods, resulting in drastic effects on the fitness, evolution, and even speciation of its hosts. Some hosts naturally harbor multiple strains of Wolbachia that are stably transmitted across generations, but almost nothing is known about the factors that limit or promote these coinfections, which can have profound effects on the host’s biology and evolution and are under consideration as an insect-management tool. Here, we define the infection dynamics of a known stably transmitted double infection in Drosophila simulans with an eye toward understanding the patterns of infection that might facilitate compatibility between the two microbes. We find that a combination of sex, tissue, and development all contributes to infection dynamics of the coinfection.
Collapse
|
6
|
Guo CF, Ahmed MZ, Ou D, Zhang LH, Lu ZT, Sang W, McKenzie CL, Shatters RG, Qiu BL. Parasitoid vectors a plant pathogen, potentially diminishing the benefits it confers as a biological control agent. Commun Biol 2021; 4:1331. [PMID: 34824370 PMCID: PMC8617049 DOI: 10.1038/s42003-021-02851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Huanglongbing (HLB) is a destructive disease of citrus primarily transmitted by the Asian citrus psyllid (ACP). Biocontrol of ACP is an environmentally sustainable alternative to chemicals. However, the risk of parasitoid rational application in ACP biocontrol has never been evaluated. Here we show, the dominant parasitoid of ACP, Tamarixia radiata, can acquire the HLB pathogen Candidatus Liberibacter asiaticus (CLas) and transmit it horizontally when probing ACP nymphs. If these ACP nymphs survive the probing, develop to adults and move to healthy plants, CLas can be transmitted to citrus leaves during feeding. We illustrate the formerly unrecognized risk that a parasitoid can potentially serve as a phoretic vector of the pathogen transmitted by its host, thus potentially diminishing some of the benefits it confers via biocontrol. Our findings present a significant caution to the strategy of using parasitoids in orchards with different infection status of insect-vectored pathogens.
Collapse
Affiliation(s)
- Chang-Fei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, China
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou, 510640, China
| | - Muhammad Z Ahmed
- Subtropical Insects and Horticulture Research Unit, Agricultural Research Service, USDA, Fort Pierce, FL, 34945, USA
| | - Da Ou
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou, 510640, China
| | - Li-He Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, China
| | - Zi-Tong Lu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, China
| | - Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, China
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou, 510640, China
| | - Cindy L McKenzie
- Subtropical Insects and Horticulture Research Unit, Agricultural Research Service, USDA, Fort Pierce, FL, 34945, USA
| | - Robert G Shatters
- Subtropical Insects and Horticulture Research Unit, Agricultural Research Service, USDA, Fort Pierce, FL, 34945, USA
| | - Bao-Li Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510640, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, China.
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou, 510640, China.
- College of Life Sciences, Chongqing Normal University, Chongqing, 401300, China.
| |
Collapse
|
7
|
Stable Introduction of Plant-Virus-Inhibiting Wolbachia into Planthoppers for Rice Protection. Curr Biol 2020; 30:4837-4845.e5. [PMID: 33035486 DOI: 10.1016/j.cub.2020.09.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023]
Abstract
Progress has been made in developing the maternally inherited endosymbiotic bacterium Wolbachia as a tool for protecting humans from mosquito-borne diseases. In contrast, Wolbachia-based approaches have not yet been developed for the protection of plants from insect pests and their associated diseases, with a major challenge being the establishment of artificial Wolbachia infections expressing desired characteristics in the hemipterans that transmit the majority of plant viruses. Here, we report stable introduction of Wolbachia into the brown planthopper, Nilaparvata lugens, the most destructive rice pest that annually destroys millions of hectares of staple crops. The Wolbachia strain wStri from the small brown planthopper, Laodelphax striatellus, was transferred to this new host, where it showed high levels of cytoplasmic incompatibility, enabling rapid invasion of laboratory populations. Furthermore, wStri inhibited infection and transmission of Rice ragged stunt virus and mitigated virus-induced symptoms in rice plants, opening up the development of Wolbachia-based strategies against major agricultural pests and their transmitted pathogens. VIDEO ABSTRACT.
Collapse
|
8
|
Zhang X, Li TP, Zhou CY, Zhao DS, Zhu YX, Bing XL, Huang HJ, Hong XY. Antibiotic exposure perturbs the bacterial community in the small brown planthopper Laodelphax striatellus. INSECT SCIENCE 2020; 27:895-907. [PMID: 30924288 DOI: 10.1111/1744-7917.12675] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/09/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Bacteria symbionts in herbivores play an important role in host biology and ecology, and are affected by environmental factors such as temperature, diet, habitat, antibiotics and so on. However, the effects of antibiotics on the microbiome of the small brown planthopper Laodelphax striatellus (SBPH) remain unclear. Here, we studied the effects of tetracycline on the diversity and composition of bacterial colonies in different tissues of SBPH using high throughput sequencing of 16S ribosomal RNA amplicons. Our results show that Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria were most abundant in SBPH, and the genera Asaia and Wolbachia were most abundant in all body parts of SBPH. Antibiotic treatment had persistent effects on the composition of the SBPH microbiome. Tetracycline depleted the population of Firmicutes, Bacteroidetes, Tenericutes and Fusobacteria, and nearly 100% eliminated Wolbachia, Bacteroides and Abiotrophia in SBPH. Together, these results suggest that antibiotic exposure affects the bacteria symbionts of different body parts in SBPH and will facilitate future studies of the bacterial symbionts of arthropod hosts.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Chun-Ying Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Madhav M, Brown G, Morgan JAT, Asgari S, McGraw EA, James P. Transinfection of buffalo flies (Haematobia irritans exigua) with Wolbachia and effect on host biology. Parasit Vectors 2020; 13:296. [PMID: 32522243 PMCID: PMC7285521 DOI: 10.1186/s13071-020-04161-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Buffalo flies (Haematobia irritans exigua) (BF) and closely related horn flies (Haematobia irritans irritans) (HF) are invasive haematophagous parasites with significant economic and welfare impacts on cattle production. Wolbachia are intracellular bacteria found widely in insects and currently of much interest for use in novel strategies for the area wide control of insect pests and insect-vectored diseases. In this paper, we report the transinfection of BF towards the development of area-wide controls. METHODS Three stages of BF; embryos, pupae and adult female flies, were injected with different Wolbachia strains (wAlbB, wMel and wMelPop). The success of transinfection and infection dynamics was compared by real-time PCR and FISH and fitness effects were assessed in transinfected flies. RESULTS BF eggs were not easily injected because of their tough outer chorion and embryos were frequently damaged with less than 1% hatch rate of microinjected eggs. No Wolbachia infection was recorded in flies successfully reared from injected eggs. Adult and pupal injection resulted in higher survival rates and somatic and germinal tissue infections, with transmission to the succeeding generations on some occasions. Investigations of infection dynamics in flies from injected pupae confirmed that Wolbachia were actively multiplying in somatic tissues. Ovarian infections were confirmed with wMel and wMelPop in a number of instances, though not with wAlbB. Measurement of fitness traits indicated reduced longevity, decreased and delayed adult emergence, and reduced fecundity in Wolbachia-infected flies compared to mock-injected flies. Effects varied with the Wolbachia strain injected with most marked changes seen in the wMelPop-injected flies and least severe effects seen with wAlbB. CONCLUSIONS Adult and pupal injection were the most suitable methods for transinfecting BF and all three strains of Wolbachia successfully replicated in somatic tissues. The Wolbachia-induced fitness effects seen in transinfected BF suggest potential for use of the wMel or wMelPop strains in Wolbachia-based biocontrol programmes for BF.
Collapse
Affiliation(s)
- Mukund Madhav
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Geoff Brown
- Department of Agriculture and Fisheries, Brisbane, 4001, Australia
| | - Jess A T Morgan
- Department of Agriculture and Fisheries, Brisbane, 4001, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elizabeth A McGraw
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
10
|
Stable Establishment of Cardinium spp. in the Brown Planthopper Nilaparvata lugens despite Decreased Host Fitness. Appl Environ Microbiol 2020; 86:AEM.02509-19. [PMID: 31811033 DOI: 10.1128/aem.02509-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
The brown planthopper Nilaparvata lugens (Hemiptera) is a major pest of rice crops in Asia. Artificial transinfections of Wolbachia have recently been used for reducing host impacts, but transinfections have not yet been undertaken with another important endosymbiont, Cardinium This endosymbiont can manipulate the reproduction of hosts through phenotypes such as cytoplasmic incompatibility (CI), which is strong in the related white-backed planthopper, Sogatella furcifera (Hemiptera). Here, we stably infected N. lugens with Cardinium from S. furcifera and showed that it exhibits perfect maternal transmission in N. lugens The density of Cardinium varied across developmental stages and tissues of the transinfected host. Cardinium did not induce strong CI in N. lugens, likely due to its low density in testicles. The infection did decrease fecundity and hatching rate in the transinfected host, but a decrease in fecundity was not apparent when transinfected females mated with Wolbachia-infected males. The experiments show the feasibility of transferring Cardinium endosymbionts across hosts, but the deleterious effects of Cardinium on N. lugens limit its potential to spread in wild populations of N. lugens in the absence of strong CI.IMPORTANCE In this study we established a Cardinium-infected N. lugens line that possessed complete maternal transmission. Cardinium had a widespread distribution in tissues of N. lugens, and this infection decreased the fecundity and hatching rate of the host. Our findings emphasize the feasibility of transinfection of Cardinium in insects, which expands the range of endosymbionts that could be manipulated for pest control.
Collapse
|
11
|
Bing XL, Zhao DS, Hong XY. Bacterial reproductive manipulators in rice planthoppers. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21548. [PMID: 30912174 DOI: 10.1002/arch.21548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Rice planthoppers (Hemiptera: Delphacidae) are notorious pests for rice (Oryza sativa) in Asia, posing a serious threat to rice production and grain security. Rice planthoppers harbor diverse bacterial symbionts, including Wolbachia, Cardinium, Spiroplasma, and Arsenophonus, which are known to manipulate reproduction in arthropod hosts. This microreview is to introduce current knowledge of bacterial reproductive manipulators in rice planthoppers, including their diversity, population dynamics, localization, transmission, and biological functions.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Lindsey ARI, Stouthamer R. The effects of outbreeding on a parasitoid wasp fixed for infection with a parthenogenesis-inducing Wolbachia symbiont. Heredity (Edinb) 2017; 119:411-417. [PMID: 28902190 DOI: 10.1038/hdy.2017.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023] Open
Abstract
Trichogramma wasps can be rendered asexual by infection with the maternally inherited symbiont Wolbachia. Previous studies indicate the Wolbachia strains infecting Trichogramma wasps are host-specific, inferred by failed horizontal transfer of Wolbachia to novel Trichogramma hosts. Additionally, Trichogramma can become dependent upon their Wolbachia infection for the production of female offspring, leaving them irreversibly asexual, further linking host and symbiont. We hypothesized Wolbachia strains infecting irreversibly asexual, resistant to horizontal transfer Trichogramma would show adaptation to a particular host genetic background. To test this, we mated Wolbachia-dependent females with males from a Wolbachia-naïve population to create heterozygous wasps. We measured sex ratios and fecundity, a proxy for Wolbachia fitness, produced by heterozygous wasps, and by their recombinant offspring. We find a heterozygote advantage, resulting in higher fitness for Wolbachia, as wasps will produce more offspring without any reduction in the proportion of females. While recombinant wasps did not differ in total fecundity after 10 days, recombinants produced fewer offspring early on, leading to an increased female-biased sex ratio for the whole brood. Despite the previously identified barriers to horizontal transfer of Wolbachia to and from Trichogramma pretiosum, there were no apparent barriers for Wolbachia to induce parthenogenesis in these non-native backgrounds. This is likely due to the route of infection being introgression rather than horizontal transfer, and possibly the co-evolution of Wolbachia with the mitochondria rather than the nuclear genome. These results help to elucidate the mechanisms by which Wolbachia adapt to hosts and the evolution of host-symbiont phenotypes.
Collapse
Affiliation(s)
- A R I Lindsey
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - R Stouthamer
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
13
|
Li S, Zhou C, Chen G, Zhou Y. Bacterial microbiota in small brown planthopper populations with different rice viruses. J Basic Microbiol 2017; 57:590-596. [PMID: 28471518 DOI: 10.1002/jobm.201700004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022]
Abstract
The small brown planthopper (SBPH) is an important virus vector, transmitting Rice stripe virus (RSV), and Rice black-streaked dwarf virus (RBSDV). Insect symbionts play an essential role in the insect fitness, however, it is still unclear about their contributions to viral transmission by SBPH. Here, we investigated endosymbiont communities in non-viruliferous, RSV-infected, and RBSDV-infected SBPH populations using Illumina 16S rRNA gene MiSeq sequencing. In total, 281,803 effective sequences of the 16S rRNA gene were generated from different samples. Sequence analysis revealed the percentages of these bacterial groups in different SBPH populations on several taxonomic levels ranging from phyla to genera. The extremely consistent bacterial diversity and abundance indicated that RSV or RBSDV infection did not affect the composition and abundance of symbionts in SBPH. It was notable that Wolbachia was dominant in all populations. The symbiosis between Wolbachia and SBPH might be potentially studied and utilized to control pest SBPH in the future.
Collapse
Affiliation(s)
- Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Changwei Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guangyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
14
|
Ahmed MZ, Breinholt JW, Kawahara AY. Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol Biol 2016; 16:118. [PMID: 27233666 PMCID: PMC4882834 DOI: 10.1186/s12862-016-0660-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/18/2016] [Indexed: 01/15/2023] Open
Abstract
Background Wolbachia is one of the most widespread bacteria on Earth. Previous research on Wolbachia-host interactions indicates that the bacterium is typically transferred vertically, from mother to offspring, through the egg cytoplasm. Although horizontal transmission of Wolbachia from one species to another is reported to be common in arthropods, limited direct ecological evidence is available. In this study, we examine horizontal transmission of Wolbachia using a multilocus sequence typing (MLST) strains dataset and used Wolbachia and Lepidoptera genomes to search for evidence for lateral gene transfer (LGT) in Lepidoptera, one of the most diverse cosmopolitan insect orders. We constructed a phylogeny of arthropod-associated MLST Wolbachia strains and calibrated the age of Wolbachia strains associated with lepidopteran species. Results Our results reveal inter-specific, inter-generic, inter-familial, and inter-ordinal horizontal transmission of Wolbachia strains, without discernible geographic patterns. We found at least seven probable cases of horizontal transmission among 31 species within Lepidoptera and between Lepidoptera and other arthropod hosts. The divergence time analysis revealed that Wolbachia is recently (22.6–4.7 mya, 95 % HPD) introduced in Lepidoptera. Analysis of nine Lepidoptera genomes (Bombyx mori, Danaus plexippus, Heliconius melpomene, Manduca sexta, Melitaea cinxia, Papilio glaucus, P. polytes, P. xuthus and Plutella xylostella) yielded one possible instance of Wolbachia LGT. Conclusions Our results provide evidence of high incidence of identical and multiple strains of Wolbachia among butterflies and moths, adding Lepidoptera to the growing body of evidence for common horizontal transmission of Wolbachia. This study demonstrates interesting dynamics of this remarkable and influential microorganism. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0660-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Z Ahmed
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Jesse W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
15
|
Hoffmann AA, Ross PA, Rašić G. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 2015; 8:751-68. [PMID: 26366194 PMCID: PMC4561566 DOI: 10.1111/eva.12286] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022] Open
Abstract
Wolbachia are endosymbionts found in many insects with the potential to suppress vectorborne diseases, particularly through interfering with pathogen transmission. Wolbachia strains are highly variable in their effects on hosts, raising the issue of which attributes should be selected to ensure that the best strains are developed for disease control. This depends on their ability to suppress viral transmission, invade host populations, persist without loss of viral suppression and not interfere with other control strategies. The potential to achieve these objectives is likely to involve evolutionary constraints; viral suppression may be limited by the ability of infections to spread due to deleterious host fitness effects. However, there are exceptions to these patterns in both natural infections and in novel associations generated following interspecific transfer, suggesting that pathogen blockage, deleterious fitness effects and changes to reproductive biology might be at least partly decoupled to achieve ideal infection attributes. The stability of introduced Wolbachia and its effects on viral transmission remain unclear, but rapid evolutionary changes seem unlikely. Although deliberate transfers of Wolbachia across species remain particularly challenging, the availability of strains with desirable attributes should be expanded, taking advantage of the diversity available across thousands of strains in natural populations.
Collapse
Affiliation(s)
- Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne Parkville, Vic., Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne Parkville, Vic., Australia
| | - Gordana Rašić
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne Parkville, Vic., Australia
| |
Collapse
|
16
|
Badawi M, Grève P, Cordaux R. Feminization of the Isopod Cylisticus convexus after Transinfection of the wVulC Wolbachia Strain of Armadillidium vulgare. PLoS One 2015; 10:e0128660. [PMID: 26047139 PMCID: PMC4457857 DOI: 10.1371/journal.pone.0128660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
Reproductive parasites such as Wolbachia are able to manipulate the reproduction of their hosts by inducing parthenogenesis, male-killing, cytoplasmic incompatibility or feminization of genetic males. Despite extensive studies, no underlying molecular mechanism has been described to date. The goal of this study was to establish a system with a single Wolbachia strain that feminizes two different isopod species to enable comparative analyses aimed at elucidating the genetic basis of feminization. It was previously suggested that Wolbachia wVulC, which naturally induces feminization in Armadillidium vulgare, induces the development of female secondary sexual characters in transinfected Cylisticus convexus adult males. However, this does not demonstrate that wVulC induces feminization in C. convexus since feminization is the conversion of genetic males into functional females that occurs during development. Nevertheless, it suggests that C. convexus may represent a feminization model suitable for further development. Knowledge about C. convexus sexual differentiation is also essential for comparative analyses, as feminization is thought to take place just before or during sexual differentiation. Consequently, we first described gonad morphological differentiation of C. convexus and compared it with that of A. vulgare. Then, wVulC was injected into male and female C. convexus adult individuals. The feminizing effect was demonstrated by the combined appearance of female secondary sexual characters in transinfected adult males, as well as the presence of intersexes and female biases in progenies in which wVulC was vertically transmitted from transinfected mothers. The establishment of a new model of feminization of a Wolbachia strain in a heterologous host constitutes a useful tool towards the understanding of the molecular mechanism of feminization.
Collapse
Affiliation(s)
- Myriam Badawi
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073, Poitiers, Cedex 9, France
| | - Pierre Grève
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073, Poitiers, Cedex 9, France
| | - Richard Cordaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073, Poitiers, Cedex 9, France
| |
Collapse
|
17
|
Ahmed MZ, Li SJ, Xue X, Yin XJ, Ren SX, Jiggins FM, Greeff JM, Qiu BL. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog 2015; 10:e1004672. [PMID: 25675099 PMCID: PMC4347858 DOI: 10.1371/journal.ppat.1004672] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 01/08/2015] [Indexed: 11/18/2022] Open
Abstract
Facultative bacterial endosymbionts are associated with many arthropods and are primarily transmitted vertically from mother to offspring. However, phylogenetic affiliations suggest that horizontal transmission must also occur. Such horizontal transfer can have important biological and agricultural consequences when endosymbionts increase host fitness. So far horizontal transmission is considered rare and has been difficult to document. Here, we use fluorescence in situ hybridization (FISH) and multi locus sequence typing (MLST) to reveal a potentially common pathway of horizontal transmission of endosymbionts via parasitoids of insects. We illustrate that the mouthparts and ovipositors of an aphelinid parasitoid become contaminated with Wolbachia when this wasp feeds on or probes Wolbachia-infected Bemisia tabaci AsiaII7, and non-lethal probing of uninfected B. tabaci AsiaII7 nymphs by parasitoids carrying Wolbachia resulted in newly and stably infected B. tabaci matrilines. After they were exposed to infected whitefly, the parasitoids were able to transmit Wolbachia efficiently for the following 48 h. Whitefly infected with Wolbachia by parasitoids had increased survival and reduced development times. Overall, our study provides evidence for the horizontal transmission of Wolbachia between insect hosts by parasitic wasps, and the enhanced survival and reproductive abilities of insect hosts may adversely affect biological control programs.
Collapse
Affiliation(s)
- Muhammad Z. Ahmed
- Department of Entomology, South China Agricultural University, Guangzhou, China
- Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Shao-Jian Li
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xia Xue
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiang-Jie Yin
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Shun-Xiang Ren
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jaco M. Greeff
- Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Bao-Li Qiu
- Department of Entomology, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
18
|
Zhong Y, Li ZX. Bidirectional cytoplasmic incompatibility induced by cross-order transfection of Wolbachia: implications for control of the host population. MICROBIAL ECOLOGY 2014; 68:463-471. [PMID: 24787986 DOI: 10.1007/s00248-014-0425-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Wolbachia are widespread endosymbionts in arthropods and some nematodes. This genus of bacteria is known to manipulate host reproduction by inducing cytoplasmic incompatibility (CI). This important phenotype is implicated in the control of host populations since Wolbachia can suppress host populations through the induction of CI in a way similar to the sterile insect technique. Here, we identified a candidate CI-inducing Wolbachia strain from the parasitic wasp Scleroderma guani (wSguBJ) by sequencing and phylogenetic analysis. This Wolbachia strain was then isolated, purified, and artificially transfected into the new whitefly host Bemisia tabaci through nymphal microinjection. Infection frequency monitoring by molecular detection showed that 60-80 % of the offspring from transfected whitefly populations was infected with wSguBJ six generations after the transfer. Laboratory rearing experiments indicated that the artificial transfection caused no significant difference in the numbers of offspring between the transfected and naturally infected populations and had no significant detrimental effects on the development of transfected males, although the development of transfected females was delayed. Reciprocal crossings revealed that bidirectional CI was induced between the transfected and naturally infected whiteflies. These data indicated that the cross-order transfer of the heterologous Wolbachia strain by nymphal microinjection was successful. Mass release of the transfected males that could stably carry the heterologous Wolbachia without significant compromise of fecundity/development may provide an alternative approach to control of host populations.
Collapse
Affiliation(s)
- Yong Zhong
- Department of Entomology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | | |
Collapse
|
19
|
Chiel E, Kelly SE, Harris AM, Gebiola M, Li X, Zchori-Fein E, Hunter MS. Characteristics, phenotype, and transmission of Wolbachia in the sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), and its parasitoid Eretmocerus sp. nr. emiratus (Hymenoptera: Aphelinidae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:353-362. [PMID: 24763092 DOI: 10.1603/en13286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Wolbachia is a common intracellular bacterial endosymbiont of insects, causing a variety of effects including reproductive manipulations such as cytoplasmic incompatibility (CI). In this study, we characterized Wolbachia in the whitefly Bemisia tabaci and in the whitefly parasitoid Eretmocerus sp. nr. emiratus. We also tested for horizontal transmission of Wolbachia between and within trophic levels, and we determined the phenotype of Wolbachia in E. sp. nr. emiratus. Using multilocus sequence typing and phylogenetic analyses, we found that B. tabaci and E. sp. nr. emiratus each harbor a different and unique strain of Wolbachia. Both strains belong to the phylogenetic supergroup B. No evidence for horizontal transmission of Wolbachia between and within trophic levels was found in our study system. Finally, crossing results were consistent with a CI phenotype; when Wolbachia-infected E. sp. nr. emiratus males mate with uninfected females, wasp progeny survival dropped significantly, and the number of females was halved. This is the first description of CI caused by Wolbachia in the economically important genus Eretmocerus. Our study underscores the expectation that horizontal transmission events occur rarely in the dynamics of secondary symbionts such as Wolbachia, and highlights the importance of understanding the effects of symbionts on the biology of natural enemies.
Collapse
Affiliation(s)
- Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, Tiv'on, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Hughes GL, Rasgon JL. Transinfection: a method to investigate Wolbachia-host interactions and control arthropod-borne disease. INSECT MOLECULAR BIOLOGY 2014; 23:141-51. [PMID: 24329998 PMCID: PMC3949162 DOI: 10.1111/imb.12066] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The bacterial endosymbiont Wolbachia manipulates arthropod host biology in numerous ways, including sex ratio distortion and differential offspring survival. These bacteria infect a vast array of arthropods, some of which pose serious agricultural and human health threats. Wolbachia-mediated phenotypes such as cytoplasmic incompatibility and/or pathogen interference can be used for vector and disease control; however, many medically important vectors and important agricultural species are uninfected or are infected with strains of Wolbachia that do not elicit phenotypes desirable for disease or pest control. The ability to transfer strains of Wolbachia into new hosts (transinfection) can create novel Wolbachia-host associations. Transinfection has two primary benefits. First, Wolbachia-host interactions can be examined to tease apart the influence of the host and bacteria on phenotypes. Second, desirable phenotypes induced by Wolbachia in a particular insect can be transferred to another recipient host. This can allow the manipulation of insect populations that transmit pathogens or detrimentally affect agriculture. As such, transinfection is a valuable tool to explore Wolbachia biology and control arthropod-borne disease. The present review summarizes what is currently known about Wolbachia transinfection methods and applications. We also provide a comprehensive list of published successful and unsuccessful Wolbachia transinfection attempts.
Collapse
Affiliation(s)
- G L Hughes
- The Huck Institutes of The Life Sciences, The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA; Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
21
|
Deng J, Li S, Hong J, Ji Y, Zhou Y. Investigation on subcellular localization of Rice stripe virus in its vector small brown planthopper by electron microscopy. Virol J 2013; 10:310. [PMID: 24139455 PMCID: PMC4015704 DOI: 10.1186/1743-422x-10-310] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022] Open
Abstract
Background Rice stripe virus (RSV), which is transmitted by small brown planthopper (Laodelphax striatellus Fallén, SBPH), has been reported to be epidemic and cause severe rice stripe disease in rice fields in many East Asian countries, including China. Investigation on viral localization in the vector is very important for elucidating transmission mechanisms of RSV by SBPH. In this study, transmission electron microscopy and immuno-gold labeling technique were used to investigate the subcellular localization of the ribonucleoproteins (RNPs) of RSV in the digestive tract, muscles, ovary and testes of SBPH. Results A lot of amorphous RSV inclusion bodies with high electron density were observed in the cytoplasmic matrix and vacuoles of follicular cells of ovarioles in viruliferous SBPH, which were very similar to viral inclusions formed in rice cells. After magnified, it was found that sand-like or parallel filamentary structures were constructed inside the electron-dense inclusions. A large numbers of RSV RNPs distributed diffusely throughout the eggshell surface and interior of ovum, midgut lumen and epithelial cells, while the amount of the virus in muscles was far less than that in the ovary and midgut tissues. Besides RSV, numerous endogenous microorganisms were also observed in SBPH body, including yeast-like endosymbiotes (YLES), endosymbiotic bacteria and insect virus. Conclusions According to the results of the virus localization, a potential mechanism of RSV transovarial transmission was proposed that RSV might replicate and accumulate initially in the inclusions of follicular cells, then exploit the pathway of the nutrition transportation to pass through the eggshell and spread into the oocytes along with the nutrition. Moreover, RSV might exploit muscles for its spread in vector body with a lower efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, People's Republic of China.
| |
Collapse
|
22
|
Schuler H, Bertheau C, Egan SP, Feder JL, Riegler M, Schlick-Steiner BC, Steiner FM, Johannesen J, Kern P, Tuba K, Lakatos F, Köppler K, Arthofer W, Stauffer C. Evidence for a recent horizontal transmission and spatial spread ofWolbachiafrom endemicRhagoletis cerasi(Diptera: Tephritidae) to invasiveRhagoletis cingulatain Europe. Mol Ecol 2013; 22:4101-11. [DOI: 10.1111/mec.12362] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Hannes Schuler
- Department of Forest and Soil Sciences; Institute of Forest Entomology; Forest Pathology and Forest Protection; Boku; University of Natural Resources and Life Sciences; Hasenauerstr, 38 1190 Vienna Austria
| | - Coralie Bertheau
- Department of Forest and Soil Sciences; Institute of Forest Entomology; Forest Pathology and Forest Protection; Boku; University of Natural Resources and Life Sciences; Hasenauerstr, 38 1190 Vienna Austria
| | - Scott P. Egan
- Department of Biological Sciences; Galvin Life Sciences Building; University of Notre Dame; Notre Dame IN 46556 USA
| | - Jeffrey L. Feder
- Department of Biological Sciences; Galvin Life Sciences Building; University of Notre Dame; Notre Dame IN 46556 USA
| | - Markus Riegler
- Hawkesbury Institute for the Environment; University of Western Sydney; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Birgit C. Schlick-Steiner
- Institute of Ecology; Molecular Ecology Group; University of Innsbruck; Technikerstr. 25 6020 Innsbruck Austria
| | - Florian M. Steiner
- Institute of Ecology; Molecular Ecology Group; University of Innsbruck; Technikerstr. 25 6020 Innsbruck Austria
| | - Jes Johannesen
- Zoological Institute; Department of Ecology; University of Mainz; Johann-Joachim-Becherweg 13 55128 Mainz Germany
| | - Peter Kern
- Department of Forest and Soil Sciences; Institute of Forest Entomology; Forest Pathology and Forest Protection; Boku; University of Natural Resources and Life Sciences; Hasenauerstr, 38 1190 Vienna Austria
- Hawkesbury Institute for the Environment; University of Western Sydney; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Katalin Tuba
- Institute of Silviculture and Forest Protection; University of West-Hungary; Bajcsy-Zs. u. 4 9400 Sopron Hungary
| | - Ferenc Lakatos
- Institute of Silviculture and Forest Protection; University of West-Hungary; Bajcsy-Zs. u. 4 9400 Sopron Hungary
| | - Kirsten Köppler
- Center for Agricultural Technology Augustenberg; Nesslerstr. 23-31 76227 Karlsruhe Germany
| | - Wolfgang Arthofer
- Institute of Ecology; Molecular Ecology Group; University of Innsbruck; Technikerstr. 25 6020 Innsbruck Austria
| | - Christian Stauffer
- Department of Forest and Soil Sciences; Institute of Forest Entomology; Forest Pathology and Forest Protection; Boku; University of Natural Resources and Life Sciences; Hasenauerstr, 38 1190 Vienna Austria
| |
Collapse
|
23
|
Zhang KJ, Han X, Hong XY. Various infection status and molecular evidence for horizontal transmission and recombination of Wolbachia and Cardinium among rice planthoppers and related species. INSECT SCIENCE 2013; 20:329-344. [PMID: 23955885 DOI: 10.1111/j.1744-7917.2012.01537.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 06/02/2023]
Abstract
Wolbachia and Cardinium are widely distributed and are considered important for their ability to disturb reproduction and affect other fitness-related traits of their hosts. By using multilocus sequence typing (MLST), RFLP (restriction fragment length polymorphism) and 16S ribosomal DNA gene sequencing methods, we extensively surveyed Wolbachia and Cardinium infection status of four predominant rice planthoppers and one kind of leafhopper in different rice fields. The results demonstrated that Sogatella furcifera (Horváth) and Laodelphax striatellus (Fallén) were infected with the same Wolbachia strain (wStri), while Nilaparvata lugens (Stål) and its closely related species Nilaparvata muiri China were infected with two phylogeneticlly distant strains, wLug and wMui, respectively. Three new Wolbachia strains (provisionally named wMfas1, wMfas2 and wMfas3) were detected in the leafhopper Macrosteles fascifrons (Stål). Only S. furcifera was co-infected with Cardinium, which indicated that the distribution of Cardinium in these rice planthoppers was narrower than that of Wolbachia. Unambiguous intragenic recombination events among these Wolbachia strains and incongruent phylogenetic relationships show that the connections between different Wolbachia strains and hosts were more complex than we expected. These results suggest that horizontal transmission and host associated specialization are two factors affecting Wolbachia and Cardinium infections among planthoppers and their related species.
Collapse
Affiliation(s)
- Kai-Jun Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | | | | |
Collapse
|
24
|
Watanabe M, Kageyama D, Miura K. Transfer of a parthenogenesis-inducing Wolbachia endosymbiont derived from Trichogramma dendrolimi into Trichogramma evanescens. J Invertebr Pathol 2013; 112:83-7. [DOI: 10.1016/j.jip.2012.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
25
|
Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog 2011; 7:e1002043. [PMID: 21625582 PMCID: PMC3098226 DOI: 10.1371/journal.ppat.1002043] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/14/2011] [Indexed: 11/18/2022] Open
Abstract
Endosymbiotic Wolbachia bacteria are potent modulators of pathogen infection and transmission in multiple naturally and artificially infected insect species, including important vectors of human pathogens. Anopheles mosquitoes are naturally uninfected with Wolbachia, and stable artificial infections have not yet succeeded in this genus. Recent techniques have enabled establishment of somatic Wolbachia infections in Anopheles. Here, we characterize somatic infections of two diverse Wolbachia strains (wMelPop and wAlbB) in Anopheles gambiae, the major vector of human malaria. After infection, wMelPop disseminates widely in the mosquito, infecting the fat body, head, sensory organs and other tissues but is notably absent from the midgut and ovaries. Wolbachia initially induces the mosquito immune system, coincident with initial clearing of the infection, but then suppresses expression of immune genes, coincident with Wolbachia replication in the mosquito. Both wMelPop and wAlbB significantly inhibit Plasmodium falciparum oocyst levels in the mosquito midgut. Although not virulent in non-bloodfed mosquitoes, wMelPop exhibits a novel phenotype and is extremely virulent for approximately 12-24 hours post-bloodmeal, after which surviving mosquitoes exhibit similar mortality trajectories to control mosquitoes. The data suggest that if stable transinfections act in a similar manner to somatic infections, Wolbachia could potentially be used as part of a strategy to control the Anopheles mosquitoes that transmit malaria.
Collapse
Affiliation(s)
- Grant L. Hughes
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
| | - Ryuichi Koga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ping Xue
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Jason L. Rasgon
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Chevalier F, Herbinière-Gaboreau J, Bertaux J, Raimond M, Morel F, Bouchon D, Grève P, Braquart-Varnier C. The immune cellular effectors of terrestrial isopod Armadillidium vulgare: meeting with their invaders, Wolbachia. PLoS One 2011; 6:e18531. [PMID: 21533137 PMCID: PMC3080368 DOI: 10.1371/journal.pone.0018531] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/10/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most of crustacean immune responses are well described for the aquatic forms whereas almost nothing is known for the isopods that evolved a terrestrial lifestyle. The latter are also infected at a high prevalence with Wolbachia, an endosymbiotic bacterium which affects the host immune system, possibly to improve its transmission. In contrast with insect models, the isopod Armadillidium vulgare is known to harbor Wolbachia inside the haemocytes. METHODOLOGY/PRINCIPAL FINDINGS In A. vulgare we characterized three haemocyte types (TEM, flow cytometry): the hyaline and semi-granular haemocytes were phagocytes, while semi-granular and granular haemocytes performed encapsulation. They were produced in the haematopoietic organs, from central stem cells, maturing as they moved toward the edge (TEM). In infected individuals, live Wolbachia (FISH) colonized 38% of the haemocytes but with low, variable densities (6.45±0.46 Wolbachia on average). So far they were not found in hyaline haemocytes (TEM). The haematopoietic organs contained 7.6±0.7×10(3)Wolbachia, both in stem cells and differentiating cells (FISH). While infected and uninfected one-year-old individuals had the same haemocyte density, in infected animals the proportion of granular haemocytes in particular decreased by one third (flow cytometry, Pearson's test = 12 822.98, df = 2, p<0.001). CONCLUSIONS/SIGNIFICANCE The characteristics of the isopod immune system fell within the range of those known from aquatic crustaceans. The colonization of the haemocytes by Wolbachia seemed to stand from the haematopoietic organs, which may act as a reservoir to discharge Wolbachia in the haemolymph, a known route for horizontal transfer. Wolbachia infection did not affect the haemocyte density, but the quantity of granular haemocytes decreased by one third. This may account for the reduced prophenoloxidase activity observed previously in these animals.
Collapse
Affiliation(s)
- Frédéric Chevalier
- Université de Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Poitiers, France
| | | | - Joanne Bertaux
- Université de Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Poitiers, France
| | - Maryline Raimond
- Université de Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Poitiers, France
| | - Franck Morel
- Université de Poitiers, Laboratoire Inflammation, Tissus Epitheliaux et Cytokines, EA 4331, Poitiers, France
| | - Didier Bouchon
- Université de Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Poitiers, France
| | - Pierre Grève
- Université de Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, Poitiers, France
| | | |
Collapse
|
27
|
Stouthamer R, Russell JE, Vavre F, Nunney L. Intragenomic conflict in populations infected by Parthenogenesis Inducing Wolbachia ends with irreversible loss of sexual reproduction. BMC Evol Biol 2010; 10:229. [PMID: 20667099 PMCID: PMC2927591 DOI: 10.1186/1471-2148-10-229] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 07/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The maternally inherited, bacterial symbiont, parthenogenesis inducing (PI) Wolbachia, causes females in some haplodiploid insects to produce daughters from both fertilized and unfertilized eggs. The symbionts, with their maternal inheritance, benefit from inducing the production of exclusively daughters, however the optimal sex ratio for the nuclear genome is more male-biased. Here we examine through models how an infection with PI-Wolbachia in a previously uninfected population leads to a genomic conflict between PI-Wolbachia and the nuclear genome. In most natural populations infected with PI-Wolbachia the infection has gone to fixation and sexual reproduction is impossible, specifically because the females have lost their ability to fertilize eggs, even when mated with functional males. RESULTS The PI Wolbachia infection by itself does not interfere with the fertilization process in infected eggs, fertilized infected eggs develop into biparental infected females. Because of the increasingly female-biased sex ratio in the population during a spreading PI-Wolbachia infection, sex allocation alleles in the host that cause the production of more sons are rapidly selected. In haplodiploid species a reduced fertilization rate leads to the production of more sons. Selection for the reduced fertilization rate leads to a spread of these alleles through both the infected and uninfected population, eventually resulting in the population becoming fixed for both the PI-Wolbachia infection and the reduced fertilization rate. Fertilization rate alleles that completely interfere with fertilization ("virginity alleles") will be selected over alleles that still allow for some fertilization. This drives the final resolution of the conflict: the irreversible loss of sexual reproduction and the complete dependence of the host on its symbiont. CONCLUSIONS This study shows that dependence among organisms can evolve rapidly due to the resolution of the conflicts between cytoplasmic and nuclear genes, and without requiring a mutualism between the partners.
Collapse
Affiliation(s)
- Richard Stouthamer
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
28
|
Zhang F, Guo H, Zheng H, Zhou T, Zhou Y, Wang S, Fang R, Qian W, Chen X. Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV). BMC Genomics 2010; 11:303. [PMID: 20462456 PMCID: PMC2885366 DOI: 10.1186/1471-2164-11-303] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/13/2010] [Indexed: 11/19/2022] Open
Abstract
Background The small brown planthopper (Laodelphax striatellus) is an important agricultural pest that not only damages rice plants by sap-sucking, but also acts as a vector that transmits rice stripe virus (RSV), which can cause even more serious yield loss. Despite being a model organism for studying entomology, population biology, plant protection, molecular interactions among plants, viruses and insects, only a few genomic sequences are available for this species. To investigate its transcriptome and determine the differences between viruliferous and naïve L. striatellus, we employed 454-FLX high-throughput pyrosequencing to generate EST databases of this insect. Results We obtained 201,281 and 218,681 high-quality reads from viruliferous and naïve L. striatellus, respectively, with an average read length as 230 bp. These reads were assembled into contigs and two EST databases were generated. When all reads were combined, 16,885 contigs and 24,607 singletons (a total of 41,492 unigenes) were obtained, which represents a transcriptome of the insect. BlastX search against the NCBI-NR database revealed that only 6,873 (16.6%) of these unigenes have significant matches. Comparison of the distribution of GO classification among viruliferous, naïve, and combined EST databases indicated that these libraries are broadly representative of the L. striatellus transcriptomes. Functionally diverse transcripts from RSV, endosymbiotic bacteria Wolbachia and yeast-like symbiotes were identified, which reflects the possible lifestyles of these microbial symbionts that live in the cells of the host insect. Comparative genomic analysis revealed that L. striatellus encodes similar innate immunity regulatory systems as other insects, such as RNA interference, JAK/STAT and partial Imd cascades, which might be involved in defense against viral infection. In addition, we determined the differences in gene expression between vector and naïve samples, which generated a list of candidate genes that are potentially involved in the symbiosis of L. striatellus and RSV. Conclusions To our knowledge, the present study is the first description of a genomic project for L. striatellus. The identification of transcripts from RSV, Wolbachia, yeast-like symbiotes and genes abundantly expressed in viruliferous insect, provided a starting-point for investigating the molecular basis of symbiosis among these organisms.
Collapse
Affiliation(s)
- Fujie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kawai S, Matsumoto Y, Gotoh T, Noda H. Transinfection of Wolbachia in planthoppers: nymphal injection of cultured Wolbachia and infection dynamics. ENVIRONMENTAL ENTOMOLOGY 2009; 38:1626-1633. [PMID: 20021758 DOI: 10.1603/022.038.0615] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wolbachia species are intracellular symbionts that cause reproductive alterations in arthropods. Transinfection experiments have been performed in many arthropod species to elucidate the interaction between Wolbachia and a new host. To ease transinfection of this bacterium to new arthropod hosts, we introduced two techniques: nymphal injection instead of embryonic injection and the use of a cultured source of Wolbachia instead of direct transfer from donors to recipients. Wolbachia in the small brown planthopper Laodelphax striatellus was cultivated in a cell line and injected into the nymphal body cavity of the brown planthopper Nilaparvata lugens together with the cells. By using these techniques, two transinfected planthopper lines were obtained. In one line, Wolbachia disappeared after several generations; in the other line, Wolbachia was retained for >7 yr. Infection rates in this latter transinfected line were approximately 80% in early generations after transinjection but decreased to <10% through 40-60 generations. Subsequent selection for Wolbachia-infected females in this line did not increase the infection rate as a temporary effect. Thus, this transinfected line of N. lugens showed cytoplasmic incompatibility, although the incompatibility level was lower than in L. striatellus, the original host. The method of transinfection presented herein is useful for transmitting intracellular symbionts between small arthropod hosts.
Collapse
Affiliation(s)
- Sawako Kawai
- National Institute of Agrobiological Sciences, Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | |
Collapse
|
30
|
Russell JA, Goldman-Huertas B, Moreau CS, Baldo L, Stahlhut JK, Werren JH, Pierce NE. Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution 2008; 63:624-40. [PMID: 19054050 DOI: 10.1111/j.1558-5646.2008.00579.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wolbachia are the most prevalent and influential bacteria described among the insects to date. But despite their significance, we lack an understanding of their evolutionary histories. To describe the evolution of symbioses between Wolbachia and their hosts, we surveyed global collections of two diverse families of insects, the ants and lycaenid butterflies. In total, 54 Wolbachia isolates were typed using a Multi Locus Sequence Typing (MLST) approach, in which five unlinked loci were sequenced and analyzed to decipher evolutionary patterns. AMOVA and phylogenetic analyses demonstrated that related Wolbachia commonly infect related hosts, revealing a pattern of host association that was strongest among strains from the ants. A review of the literature indicated that horizontal transfer is most successful when Wolbachia move between related hosts, suggesting that patterns of host association are driven by specialization on a common physiological background. Aside from providing the broadest and strongest evidence to date for Wolbachia specialization, our findings also reveal that strains from New World ants differ markedly from those in ants from other locations. We, therefore, conclude that both geographic and phylogenetic barriers have promoted evolutionary divergence among these influential symbionts.
Collapse
Affiliation(s)
- Jacob A Russell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
McMeniman CJ, Lane AM, Fong AWC, Voronin DA, Iturbe-Ormaetxe I, Yamada R, McGraw EA, O'Neill SL. Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl Environ Microbiol 2008; 74:6963-9. [PMID: 18836024 PMCID: PMC2583474 DOI: 10.1128/aem.01038-08] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 09/22/2008] [Indexed: 11/20/2022] Open
Abstract
The horizontal transfer of the bacterium Wolbachia pipientis between invertebrate hosts hinges on the ability of Wolbachia to adapt to new intracellular environments. The experimental transfer of Wolbachia between distantly related host species often results in the loss of infection, presumably due to an inability of Wolbachia to adapt quickly to the new host. To examine the process of adaptation to a novel host, we transferred a life-shortening Wolbachia strain, wMelPop, from the fruit fly Drosophila melanogaster into a cell line derived from the mosquito Aedes albopictus. After long-term serial passage in this cell line, we transferred the mosquito-adapted wMelPop into cell lines derived from two other mosquito species, Aedes aegypti and Anopheles gambiae. After a prolonged period of serial passage in mosquito cell lines, wMelPop was reintroduced into its native host, D. melanogaster, by embryonic microinjection. The cell line-adapted wMelPop strains were characterized by a loss of infectivity when reintroduced into the original host, grew to decreased densities, and had reduced abilities to cause life-shortening infection and cytoplasmic incompatibility compared to the original strain. We interpret these shifts in phenotype as evidence for genetic adaptation to the mosquito intracellular environment. The use of cell lines to preadapt Wolbachia to novel hosts is suggested as a possible strategy to improve the success of transinfection in novel target insect species.
Collapse
Affiliation(s)
- Conor J McMeniman
- School of Integrative Biology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kageyama D, Narita S, Noda H. Transfection of feminizing Wolbachia endosymbionts of the butterfly, Eurema hecabe, into the cell culture and various immature stages of the silkmoth, Bombyx mori. MICROBIAL ECOLOGY 2008; 56:733-741. [PMID: 18458997 DOI: 10.1007/s00248-008-9392-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/14/2008] [Accepted: 02/20/2008] [Indexed: 05/26/2023]
Abstract
Wolbachia are maternally inherited endosymbiotic bacteria of invertebrates that can manipulate the reproductive systems of their arthropod hosts in a variety of ways. To establish a useful model system for investigating the mechanism of Wolbachia-induced host feminization, we conducted the following series of experiments: (1) feminizing Wolbachia of the butterfly, Eurema hecabe, were transferred into cell cultures of the silkmoth, Bombyx mori, and (2) the transfected Wolbachia in cell cultures were inoculated into B. mori at four immature stages. Wolbachia were successfully transfected into the cell cultures and stably maintained for more than 1 year (>30 passages). However, none of the inoculated insects produced mature oocytes that were Wolbachia-positive. This finding was consistent with the fact that Wolbachia was not detected in individuals in subsequent generations. In contrast, Wolbachia were detected at relatively high frequencies (60-80% of individuals) in the somatic tissues of inoculated insects. Real-time quantitative polymerase chain reaction revealed that the Wolbachia densities in the cultured cells were approximately tenfold higher than those in the native host E. hecabe. Among B. mori individuals inoculated at various developmental stages, those inoculated at early stages exhibited higher Wolbachia densities at the adult stage. The Wolbachia densities in individuals inoculated at the second-instar stage were comparable to those in intact E. hecabe. These results suggest that infection and/or proliferation of Wolbachia in germline cells are actively hindered by regulation in B. mori but feasible in somatic cells and that the Wolbachia densities in somatic tissues are regulated by the living host insects.
Collapse
Affiliation(s)
- Daisuke Kageyama
- National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
33
|
Modifying insect population age structure to control vector-borne disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:126-40. [PMID: 18510020 DOI: 10.1007/978-0-387-78225-6_11] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Age is a critical determinant of the ability of most arthropod vectors to transmit a range of human pathogens. This is due to the fact that most pathogens require a period of extrinsic incubation in the arthropod host before pathogen transmission can occur. This developmental period for the pathogen often comprises a significant proportion of the expected lifespan of the vector. As such, only a small proportion of the population that is oldest contributes to pathogen transmission. Given this, strategies that target vector age would be expected to obtain the most significant reductions in the capacity of a vector population to transmit disease. The recent identification of biological agents that shorten vector lifespan, such as Wolbachia, entomopathogenic fungi and densoviruses, offer new tools for the control of vector-borne diseases. Evaluation of the efficacy of these strategies under field conditions will be possible due to recent advances in insect age-grading techniques. Implementation of all of these strategies will require extensive field evaluation and consideration of the selective pressures that reductions in vector longevity may induce on both vector and pathogen.
Collapse
|
34
|
Dobson SL. Transfection of Wolbachia pipientis into Drosophila embryos. CURRENT PROTOCOLS IN MICROBIOLOGY 2007; Chapter 3:Unit 3A.4. [PMID: 18770621 DOI: 10.1002/9780471729259.mc03a04s05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wolbachia is a genus of obligate intracellular Alpha-Proteobacteria represented by the type species Wolbachia pipientis (Dumler et al., 2001). Wolbachia commonly reside within cytoplasmic vacuoles of arthropods and helminths (Werren and Windsor, 2000; Casiraghi et al., 2004); vertebrate infections have not been identified. Wolbachia are maternally transmitted from mothers to offspring though the embryonic cytoplasm. Wolbachia are able to induce a diverse range of phenotypes in their invertebrate hosts, ranging from classical mutualism to reproductive parasitism. Examples of the latter include male killing, host feminization, parthenogenesis, and cytoplasmic incompatibility (reviewed in Dobson, 2003a). Current Wolbachia research foci include examining the impacts of Wolbachia infection on host evolution, characterizing the mechanisms by which Wolbachia manipulate invertebrate hosts, and developing applied strategies that employ Wolbachia for pest and disease control. Wolbachia transfection has proven a useful technique for addressing questions within each of these research foci. This unit describes a method for Wolbachia transfection via embryonic microinjection.
Collapse
|
35
|
Ruang-areerate T, Kittayapong P. Wolbachia transinfection in Aedes aegypti: a potential gene driver of dengue vectors. Proc Natl Acad Sci U S A 2006; 103:12534-9. [PMID: 16895998 PMCID: PMC1567913 DOI: 10.1073/pnas.0508879103] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The endosymbiotic bacteria in the genus Wolbachia are capable of inducing a wide range of reproductive abnormalities in their hosts, including cytoplasmic incompatibility (CI), which could lead to the replacement of uninfected host populations with infected ones. Because of this, Wolbachia have attracted considerable interest as a potential mechanism for spreading disease-blocking transgenes through vector populations. Here we report the establishment of double Wolbachia transinfection by direct adult microinjection of Wolbachia from naturally double-infected Aedes albopictus to Aedes aegypti, the most important mosquito vector of infectious viral diseases, and a mosquito in which natural Wolbachia infections are not known to occur. We further demonstrate that incomplete CI is induced in these double-transinfected mosquitoes. Comparisons of fitness traits between naturally uninfected and transinfected Ae. aegypti lines indicated one significant difference in favor of the latter, namely, an increased number of eggs laid. Levels of CI expression corresponded to the Wolbachia density. There were large differences in relative Wolbachia density between reproductive and nonreproductive tissues in both Ae. albopictus and transinfected Ae. aegypti, except Malpighian tubule, which implied the preferred establishment of Wolbachia within reproductive tissue. Results from a simulation model confirm that population replacement by transinfected Ae. aegypti is possible over time. The establishment of Wolbachia double infections in Ae. aegypti by direct adult microinjection and the demonstration of CI expression in this new host suggest that Wolbachia could be experimentally transferred into vector species and could also be used as a gene-driving system to genetically manipulate vector populations.
Collapse
Affiliation(s)
- Toon Ruang-areerate
- Center for Vectors and Vector-Borne Diseases and Department of Biology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Pattamaporn Kittayapong
- Center for Vectors and Vector-Borne Diseases and Department of Biology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Xi Z, Khoo CC, Dobson SL. Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus. Proc Biol Sci 2006; 273:1317-22. [PMID: 16777718 PMCID: PMC1560299 DOI: 10.1098/rspb.2005.3405] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracellular Wolbachia bacteria are obligate, maternally inherited endosymbionts found frequently in insects and other invertebrates. The evolutionary success of Wolbachia is due in part to an ability to manipulate reproduction. In mosquitoes and many other insects, Wolbachia causes a form of sterility known as cytoplasmic incompatibility (CI). Wolbachia-induced CI has attracted interest as a potential agent for affecting medically important disease vectors. However, application of the approach has been restricted by an absence of appropriate, naturally occurring Wolbachia infections. Here, we report the interspecific transfer of Wolbachia infection into a medically important mosquito. Using embryonic microinjection, Wolbachia is transferred from Drosophila simulans into the invasive pest and disease vector: Aedes albopictus (Asian tiger mosquito). The resulting infection is stably maintained and displays a unique pattern of bidirectional CI in crosses with naturally infected mosquitoes. Laboratory population cage experiments examine a strategy in which releases of Wolbachia-infected males are used to suppress mosquito egg hatch. We discuss the results in relation to developing appropriate Wolbachia-infected mosquito strains for population replacement and population suppression strategies.
Collapse
|
37
|
Frydman HM, Li JM, Robson DN, Wieschaus E. Somatic stem cell niche tropism in Wolbachia. Nature 2006; 441:509-12. [PMID: 16724067 DOI: 10.1038/nature04756] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 03/30/2006] [Indexed: 11/08/2022]
Abstract
Wolbachia are intracellular bacteria found in the reproductive tissue of all major groups of arthropods. They are transmitted vertically from the female hosts to their offspring, in a pattern analogous to mitochondria inheritance. But Wolbachia phylogeny does not parallel that of the host, indicating that horizontal infectious transmission must also occur. Insect parasitoids are considered the most likely vectors, but the mechanism for horizontal transfer is largely unknown. Here we show that newly introduced Wolbachia cross several tissues and infect the germline of the adult Drosophila melanogaster female. Through investigation of bacterial migration patterns during the course of infection, we found that Wolbachia reach the germline through the somatic stem cell niche in the D. melanogaster germarium. In addition, our data suggest that Wolbachia are highly abundant in the somatic stem cell niche of long-term infected hosts, implying that this location may also contribute to efficient vertical transmission. This is, to our knowledge, the first report of an intracellular parasite displaying tropism for a stem cell niche.
Collapse
Affiliation(s)
- Horacio M Frydman
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08540, USA.
| | | | | | | |
Collapse
|
38
|
Xi Z, Dean JL, Khoo C, Dobson SL. Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:903-10. [PMID: 15944085 PMCID: PMC1410910 DOI: 10.1016/j.ibmb.2005.03.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 02/28/2005] [Accepted: 03/23/2005] [Indexed: 05/02/2023]
Abstract
Genetic strategies that reduce or block pathogen transmission by mosquitoes are being investigated as a means to augment current control measures. Strategies of vector suppression and replacement are based upon intracellular Wolbachia bacteria, which occur naturally in many insect populations. Maternally inherited Wolbachia have evolved diverse mechanisms to manipulate host insect reproduction and promote infection invasion. One mechanism is cytoplasmic incompatibility (CI) through which Wolbachia promotes infection spread by effectively sterilizing uninfected females. In a prior field test, releases of Wolbachia-infected males were used to suppress a field population of Culex pipiens. An additional strategy would employ Wolbachia as a vehicle to drive desired transgenes into vector populations (population replacement). Wolbachia-based population suppression and population replacement strategies require an ability to generate artificial Wolbachia associations in mosquitoes. Here, we demonstrate a technique for transferring Wolbachia (transfection) in a medically important mosquito species: Aedes albopictus (Asian tiger mosquito). Microinjection was used to transfer embryo cytoplasm from a double-infected Ae. albopictus line into an aposymbiotic line. The resulting mosquito line is single-infected with the wAlbB Wolbachia type. The artificially generated infection type is not known to occur naturally and displays a new CI crossing type and the first known example of bidirectional CI in Aedes mosquitoes. We discuss the results in relation to applied mosquito control strategies and the evolution of Wolbachia infections in Ae. albopictus.
Collapse
Affiliation(s)
| | | | | | - Stephen. L. Dobson
- *Corresponding author. Tel.: +1 859 257 4902; fax: +1 859 323 1120., E-mail address: (S.L. Dobson)
| |
Collapse
|
39
|
Abstract
The success of obligate endosymbiotic Wolbachia infections in insects is due in part to cytoplasmic incompatibility (CI), whereby Wolbachia bacteria manipulate host reproduction to promote their invasion and persistence within insect populations. The observed diversity of CI types raises the question of what the evolutionary pathways are by which a new CI type can evolve from an ancestral type. Prior evolutionary models assume that Wolbachia exists within a host individual as a clonal infection. While endosymbiotic theory predicts a general trend toward clonality, Wolbachia provides an exception in which there is selection to maintain diversity. Here, evolutionary trajectories are discussed that assume that a novel Wolbachia variant will co-exist with the original infection type within a host individual as a superinfection. Relative to prior models, this assumption relaxes requirements and allows additional pathways for the evolution of novel CI types. In addition to describing changes in the Wolbachia infection frequency associated with the hypothesized evolutionary events, the predicted impact of novel CI variants on the host population is also described. This impact, resulting from discordant evolutionary interests of symbiont and host, is discussed as a possible cause of Wolbachia loss from the host population or host population extinction. The latter is also discussed as the basis for an applied strategy for the suppression of insect pest populations. Model predictions are discussed relative to a recently published Wolbachia genome sequence and prior characterization of CI in naturally and artificially infected insects.
Collapse
Affiliation(s)
- Stephen L Dobson
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, USA.
| |
Collapse
|
40
|
|