1
|
Bühler R, Riecke TV, Schalcher K, Roulin A, Almasi B. Individual quality and environmental factors interact to shape reproduction and survival in a resident bird of prey. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231934. [PMID: 39263448 PMCID: PMC11387063 DOI: 10.1098/rsos.231934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024]
Abstract
Investigating among-individual differences in reproductive success and survival is essential for understanding eco-evolutionary processes. We used 5 years of demographic data from 556 breeding barn owls (Tyto alba) to estimate associations between intrinsic and extrinsic covariates on survival and reproduction throughout the annual cycle. As males and females have distinct roles in reproduction, environmental conditions and individual quality may be differentially linked to their fitness at different time points. Males breeding early and inhabiting prey-rich areas experienced higher reproductive success but faced greater reproductive costs. Indeed, the number of offspring a male cared for was negatively associated with his body condition and survival. However, our results indicate that these influences can be mitigated in males experiencing favourable post-breeding environmental conditions. For female owls, early breeding and high food availability during the breeding period were linked with increased reproductive success. Prey availability during incubation and higher reproductive output were associated with higher survival into the next breeding period in females. Unlike males, females did not exhibit obvious trade-offs between reproductive success and survival. Our research demonstrates trade-offs between fecundity and survival, and that females paired with males able to provide sufficient food experience higher survival and reproduction.
Collapse
Affiliation(s)
- Roman Bühler
- Swiss Ornithological Institute, Seerose 1, Sempach CH-6204, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne CH-1015, Switzerland
| | - Thomas V Riecke
- Swiss Ornithological Institute, Seerose 1, Sempach CH-6204, Switzerland
- Wildlife Biology Program, University of Montana, Missoula MT 59812, USA
| | - Kim Schalcher
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne CH-1015, Switzerland
| | - Bettina Almasi
- Swiss Ornithological Institute, Seerose 1, Sempach CH-6204, Switzerland
| |
Collapse
|
2
|
Ottocento C, Rojas B, Burdfield-Steel E, Furlanetto M, Nokelainen O, Winters S, Mappes J. Diet influences resource allocation in chemical defence but not melanin synthesis in an aposematic moth. J Exp Biol 2024; 227:jeb245946. [PMID: 38179687 DOI: 10.1242/jeb.245946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
For animals that synthesise their chemical compounds de novo, resources, particularly proteins, can influence investment in chemical defences and nitrogen-based wing colouration such as melanin. Competing for the same resources often leads to trade-offs in resource allocation. We manipulated protein availability in the larval diet of the wood tiger moth, Arctia plantaginis, to test how early life resource availability influences relevant life history traits, melanin production and chemical defences. We expected higher dietary protein to result in more effective chemical defences in adult moths and a higher amount of melanin in the wings. According to the resource allocation hypothesis, we also expected individuals with less melanin to have more resources to allocate to chemical defences. We found that protein-deprived moths had a slower larval development, and their chemical defences were less unpalatable for bird predators, but the expression of melanin in their wings did not differ from that of moths raised on a high-protein diet. The amount of melanin in the wings, however, unexpectedly correlated positively with chemical defences. Our findings demonstrate that the resources available in early life have an important role in the efficacy of chemical defences, but melanin-based warning colours are less sensitive to resource variability than other fitness-related traits.
Collapse
Affiliation(s)
- Cristina Ottocento
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| | - Bibiana Rojas
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Emily Burdfield-Steel
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Miriam Furlanetto
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| | - Ossi Nokelainen
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
- Open Science Centre, PO Box 35, 40014University of Jyväskylä, Finland
| | - Sandra Winters
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
3
|
Ferreira D, San‐Jose LM, Roulin A, Gaigher A, Fumagalli L. Limited associations between MHC diversity and reproductive success in a bird species with biparental care. Ecol Evol 2024; 14:e10950. [PMID: 38384825 PMCID: PMC10879840 DOI: 10.1002/ece3.10950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 02/23/2024] Open
Abstract
The selective pressure from pathogens on individuals can have direct consequences on reproduction. Genes from the major histocompatibility complex (MHC) are central to the vertebrate adaptive immune system and pathogen resistance. In species with biparental care, each sex has distinct reproductive roles and levels of investment, and due to a trade-off with immunity, one can expect different selective regimes acting upon the MHC of each parent. Here, we addressed whether couples combine each other's variation at MHC loci to increase their breeding success. Specifically, we used a 23-year dataset from a barn owl population (Tyto alba) to understand how MHC class Iα and IIβ functional divergence and supertypes of each parent were associated with clutch size and fledging success. We did not detect associations between MHC diversity and supertypes with the clutch size or with the fledging success. In addition, to understand the relative contribution from the MHC of the genetic parents and the social parents, we analyzed the fledging success using only a cross-fostered dataset. We found several associations of weak-to-moderate effect sizes between the father's MHC and fledging success: (i) lower MHC-Iα divergence in the genetic father increases fledging success, which might improve paternal care during incubation, and (ii) one and two MHC-IIβ DAB2 supertypes in the social father decrease and increase, respectively, fledging success, which may affect the paternal care after hatching. Furthermore, fledging success increased when both parents did not carry MHC-IIβ DAB1 supertype 2, which could suggest conditional effects of this supertype. Although our study relied on a substantial dataset, we showed that the associations between MHC diversity and reproductive success remain scarce and of complex interpretation in the barn owl. Moreover, our results highlighted the need to incorporate more than one proxy of reproductive success and several MHC classes to capture more complex associations.
Collapse
Affiliation(s)
- Diana Ferreira
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Luis M. San‐Jose
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRSUniversité Toulouse III Paul Sabatier, IRDToulouseFrance
| | - Alexandre Roulin
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Arnaud Gaigher
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
- Research Unit for Evolutionary Immunogenomics, Department of BiologyUniversity of HamburgHamburgGermany
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
- Swiss Human Institute of Forensic Taphonomy, University Centre of Legal Medicine Lausanne‐GenevaLausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Cumer T, Machado AP, San-Jose LM, Ducrest AL, Simon C, Roulin A, Goudet J. The genomic architecture of continuous plumage colour variation in the European barn owl ( Tyto alba). Proc Biol Sci 2024; 291:20231995. [PMID: 38196365 PMCID: PMC10777144 DOI: 10.1098/rspb.2023.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
The maintenance of colour variation in wild populations has long fascinated evolutionary biologists, although most studies have focused on discrete traits exhibiting rather simple inheritance patterns and genetic architectures. However, the study of continuous colour traits and their potentially oligo- or polygenic genetic bases remains rare in wild populations. We studied the genetics of the continuously varying white-to-rufous plumage coloration of the European barn owl (Tyto alba) using a genome-wide association approach on the whole-genome data of 75 individuals. We confirmed a mutation at the melanocortin-1-receptor gene (MC1R) is involved in the coloration and identified two new regions, located in super-scaffolds 9 and 42. The combination of the three regions explains most of the colour variation (80.37%, 95% credible interval 58.45-100%). One discovered region, located in the sex chromosome, differs between the most extreme colorations in owls sharing a specific MC1R genotype. This region may play a role in the colour sex dimorphism of this species, possibly in interaction with the autosomal MC1R. We thus provide insights into the genetic architecture of continuous colour variation, pointing to an oligogenic basis with potential epistatic effects among loci that should aid future studies understanding how continuous colour variation is maintained in nature.
Collapse
Affiliation(s)
- Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Luis M. San-Jose
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
5
|
Attisano A, Gill BJ, Anderson MG, Gula R, Langmore NE, Okahisa Y, Sato NJ, Tanaka KD, Thorogood R, Ueda K, Theuerkauf J. Polymorphism at the nestling stage and host-specific mimicry in an Australasian cuckoo-host arms race. J Anim Ecol 2023; 92:30-43. [PMID: 36426636 DOI: 10.1111/1365-2656.13849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
Abstract
Decades of research have shown that the coevolutionary arms race between avian brood parasites and their hosts can promote phenotypic diversification in hosts and brood parasites. However, relatively little is known about the role of brood parasitism in promoting phenotypic diversification of nestlings. We review field data collected over four decades in Australia, New Caledonia and New Zealand to assess potential for coevolutionary interactions between the shining bronze-cuckoo (Chalcites lucidus) and its hosts, and how diversification at the nestling stage may be generating different subspecies. The shining bronze-cuckoo is a specialist parasite of a few hosts in the family Acanthizidae. It has diversified into subspecies, of which the nestlings closely mimic the respective host nestlings in each region. Additionally, some cuckoo subspecies have polymorphic nestlings. The Acanthizidae hosts have similar breeding and nesting habits and only moderately effective frontline defences against parasitism at cuckoo egg laying or at the egg stages. However, some hosts have developed highly effective defences at the nestling stage by recognising and ejecting cuckoo nestlings from the nest. As with the cuckoo nestlings, some hosts have polymorphic nestlings. The coevolutionary interactions in each region suggest different evolutionary stages of the arms race in which either the parasite or the host is currently in the lead. The presence of moderately effective defences at the egg laying and egg stages might explain why some hosts do not have defences at the nestling stage. The south-Pacific cuckoo - host systems are excellent models to explore the evolutionary mechanisms driving the diversification at the nestling stage in the coevolutionary arms race between avian brood parasites and their hosts.
Collapse
Affiliation(s)
- Alfredo Attisano
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Brian J Gill
- Auckland Museum (retired), Auckland, New Zealand
| | - Michael G Anderson
- School of Natural Sciences, Auckland Campus, Massey University, Auckland, New Zealand
| | - Roman Gula
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Naomi E Langmore
- Research School of Biology, Australian National University, Canberra, Australia
| | | | | | | | - Rose Thorogood
- Department of Zoology, University of Cambridge, Cambridge, UK.,HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Research programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Jörn Theuerkauf
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Nolazco S, Delhey K, Nakagawa S, Peters A. Ornaments are equally informative in male and female birds. Nat Commun 2022; 13:5917. [PMID: 36207296 PMCID: PMC9546859 DOI: 10.1038/s41467-022-33548-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Female ornaments are often reduced, male-like traits. Although these were long perceived as non-functional, it is now broadly accepted that female ornaments can be adaptive. However, it is unclear whether this is as common in females as it is in males, and whether ornaments fulfil similar signalling roles. Here, we apply a bivariate meta-analysis to a large dataset of ornaments in mutually ornamented birds. As expected, female ornament expression tends to be reduced compared to males. However, ornaments are equally strongly associated with indicators of condition and aspects of reproductive success in both sexes, regardless of the degree of sexual dimorphism. Thus, we show here in a paired comparison within-and-across species, that ornaments in birds provide similar information in both sexes: more ornamented individuals are in better condition and achieve higher reproductive success. Although limited by their correlational nature, these outcomes imply that female ornaments could widely function in a similar manner as male ornaments.
Collapse
Affiliation(s)
- Sergio Nolazco
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia.
| | - Kaspar Delhey
- Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anne Peters
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
7
|
Machado AP, Cumer T, Iseli C, Beaudoing E, Ducrest AL, Dupasquier M, Guex N, Dichmann K, Lourenço R, Lusby J, Martens HD, Prévost L, Ramsden D, Roulin A, Goudet J. Unexpected post-glacial colonisation route explains the white colour of barn owls (Tyto alba) from the British Isles. Mol Ecol 2021; 31:482-497. [PMID: 34695244 PMCID: PMC9298239 DOI: 10.1111/mec.16250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
The climate fluctuations of the Quaternary shaped the movement of species in and out of glacial refugia. In Europe, the majority of species followed one of the described traditional postglacial recolonization routes from the southern peninsulas towards the north. Like most organisms, barn owls are assumed to have colonized the British Isles by crossing over Doggerland, a land bridge that connected Britain to northern Europe. However, while they are dark rufous in northern Europe, barn owls in the British Isles are conspicuously white, a contrast that could suggest selective forces are at play on the islands. Yet, our analysis of known candidate genes involved in coloration found no signature of selection. Instead, using whole genome sequences and species distribution modelling, we found that owls colonised the British Isles soon after the last glaciation, directly from a white coloured refugium in the Iberian Peninsula, before colonising northern Europe. They would have followed a hitherto unknown post‐glacial colonization route to the Isles over a westwards path of suitable habitat in now submerged land in the Bay of Biscay, thus not crossing Doggerland. As such, they inherited the white colour of their Iberian founders and maintained it through low gene flow with the mainland that prevents the import of rufous alleles. Thus, we contend that neutral processes probably explain this contrasting white colour compared to continental owls. With the barn owl being a top predator, we expect future research will show this unanticipated route was used by other species from its paleo community.
Collapse
Affiliation(s)
- Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
| | | | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
| | | | - Rui Lourenço
- Laboratory of Ornithology, Mediterranean Institute for Agriculture, Environment and Development, IIFA, University of Évora, Évora, Portugal
| | - John Lusby
- BirdWatch Ireland, Kilcoole, Co., Wicklow, Ireland
| | | | - Laure Prévost
- Association CHENE, Centre d'Hébergement et d'Etude sur la Nature et l'Environnement, Allouville-Bellefosse, France
| | | | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
8
|
Exogenous corticosterone and melanin-based coloration explain variation in juvenile dispersal behaviour in the barn owl (Tyto alba). PLoS One 2021; 16:e0256038. [PMID: 34492014 PMCID: PMC8423310 DOI: 10.1371/journal.pone.0256038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
Natal dispersal affects many processes such as population dynamics. So far, most studies have examined the intrinsic and extrinsic factors that determine the distance between the place of birth and of first breeding. In contrast, few researchers followed the first steps of dispersal soon after fledging. To study this gap, we radio-tracked 95 barn owl nestlings (Tyto alba) to locate their diurnal roost sites from the fledging stage until December. This was used to test whether the age of nest departure, post-fledging movements and dispersal distance were related to melanin-based coloration, which is correlated to fitness-related traits, as well as to corticosterone, a hormone that mediates a number of life history trade-offs and the physiological and behavioural responses to stressful situations. We found that the artificial administration of corticosterone delayed the age when juveniles left their parental home-range in females but not in males. During the first few months after fledging, longer dispersal distances were reached by females compared to males, by individuals marked with larger black feather spots compared to individuals with smaller spots, by larger individuals and by those experimentally treated with corticosterone. We conclude that the onset and magnitude of dispersal is sensitive to the stress hormone corticosterone, melanin-based coloration and body size.
Collapse
|
9
|
The Role of Sexual Selection in the Evolution of Facial Displays in Male Non-human Primates and Men. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2020. [DOI: 10.1007/s40750-020-00139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Fogelholm J, Henriksen R, Höglund A, Huq N, Johnsson M, Lenz R, Jensen P, Wright D. CREBBP and WDR 24 Identified as Candidate Genes for Quantitative Variation in Red-Brown Plumage Colouration in the Chicken. Sci Rep 2020; 10:1161. [PMID: 31980681 PMCID: PMC6981141 DOI: 10.1038/s41598-020-57710-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/28/2019] [Indexed: 01/12/2023] Open
Abstract
Plumage colouration in birds is important for a plethora of reasons, ranging from camouflage, sexual signalling, and species recognition. The genes underlying colour variation have been vital in understanding how genes can affect a phenotype. Multiple genes have been identified that affect plumage variation, but research has principally focused on major-effect genes (such as those causing albinism, barring, and the like), rather than the smaller effect modifier loci that more subtly influence colour. By utilising a domestic × wild advanced intercross with a combination of classical QTL mapping of red colouration as a quantitative trait and a targeted genetical genomics approach, we have identified five separate candidate genes (CREBBP, WDR24, ARL8A, PHLDA3, LAD1) that putatively influence quantitative variation in red-brown colouration in chickens. By treating colour as a quantitative rather than qualitative trait, we have identified both QTL and genes of small effect. Such small effect loci are potentially far more prevalent in wild populations, and can therefore potentially be highly relevant to colour evolution.
Collapse
Affiliation(s)
- J Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden
| | - R Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden
| | - A Höglund
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden
| | - N Huq
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden
| | - M Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, Scotland, United Kingdom.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - R Lenz
- ITN Dept of Science and Technology, Linköping University, Linköping, 58183, Sweden
| | - P Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden
| | - D Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58183, Sweden.
| |
Collapse
|
11
|
Galván I, Jorge A, Nielsen JT, Møller AP. Pheomelanin synthesis varies with protein food abundance in developing goshawks. J Comp Physiol B 2019; 189:441-450. [PMID: 31104080 DOI: 10.1007/s00360-019-01222-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022]
Abstract
The accumulation of the amino acid cysteine in lysosomes produces toxic substances, which are avoided by a gene (CTNS) coding for a transporter that pumps cystine out of lysosomes. Melanosomes are lysosome-related organelles that synthesize melanins, the most widespread pigments in animals. The synthesis of the orange melanin, termed pheomelanin, depends on cysteine levels because the sulfhydryl group is used to form the pigment. Pheomelanin synthesis may, therefore, be affected by cysteine homeostasis, although this has never been explored in a natural system. As diet is an important source of cysteine, here we indirectly tested for such an effect by searching for an association between food abundance and pheomelanin content of feathers in a wild population of Northern goshawk Accipiter gentilis. As predicted on the basis that CTNS expression may inhibit pheomelanin synthesis and increase with food abundance as previously found in other strictly carnivorous birds, we found that the feather pheomelanin content in nestling goshawks, but not in adults, decreased as the abundance of prey available to them increased. In contrast, variation in the feather content of the non-sulphurated melanin form (eumelanin) was only explained by sex in both nestlings and adults. We also found that the feather pheomelanin content of nestlings was negatively related to that of their mothers, suggesting a relevant environmental influence on pheomelanin synthesis. Overall, our findings suggest that variation in pheomelanin synthesis may be a side effect of the maintenance of cysteine homeostasis. This may help explaining variability in the expression of pigmented phenotypes.
Collapse
Affiliation(s)
- Ismael Galván
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, 41092, Sevilla, Spain.
| | - Alberto Jorge
- Laboratorio de Técnicas Analíticas No Destructivas, Museo Nacional de Ciencias Naturales, CSIC, 28006, Madrid, Spain
| | | | - Anders P Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405, Orsay Cedex, France
| |
Collapse
|
12
|
Heritability of plumage colour morph variation in a wild population of promiscuous, long-lived Australian magpies. Heredity (Edinb) 2019; 123:349-358. [PMID: 30911140 PMCID: PMC6781111 DOI: 10.1038/s41437-019-0212-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 11/08/2022] Open
Abstract
Colour polymorphisms have evolutionary significance for the generation and maintenance of species diversity. Demonstrating heritability of polymorphic traits can be challenging for wild populations of long-lived species because accurate information is required on trait expression and familial relationships. The Australian magpie Cracticus tibicen has a continent-wide distribution featuring several distinct plumage morphs, differing primarily in colour of back feathers. Black or white-backed morphs occur in eastern Australia, with intermediate morphs common in a narrow hybrid zone where the two morphs meet. This study investigated heritability of back colour phenotypes in a hybrid zone population (Seymour, Victoria) based on long-term observational data and DNA samples collected over an 18 year period (1993-2010). High extra-pair paternity (~ 36% offspring), necessitated verification of parent-offspring relationships by parentage analysis. A total of 538 birds (221 parents and 317 offspring) from 36 territories were analysed. Back colour was a continuous trait scored on a five-morph scale in the field (0-4). High and consistent estimates of back colour heritability (h2) were obtained via weighted mid-parent regression (h2 = 0.94) and by animal models (h2 = 0.92, C.I. 0.80-0.99). Single-parent heritability estimates indicated neither maternal nor paternal non-genetic effects (e.g., parent body condition) played a large role in determining offspring back colour, and environmental effects of territory group and cohort contributed little to trait heritability. Distinctive back colouration of the Australian magpie behaves as a quantitative trait that is likely polygenic, although mechanisms responsible for maintaining these geographically structured morphs and the hybrid zone where they meet are unknown.
Collapse
|
13
|
Kappers EF, de Vries C, Alberda A, Forstmeier W, Both C, Kempenaers B. Inheritance patterns of plumage coloration in common buzzards Buteo buteo do not support a one-locus two-allele model. Biol Lett 2019; 14:rsbl.2018.0007. [PMID: 29669846 PMCID: PMC5938563 DOI: 10.1098/rsbl.2018.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Balancing selection is a major mechanism to maintain colour polymorphisms over evolutionary time. In common buzzards, variation in plumage colour was reportedly maintained by a heterozygote advantage: heterozygote intermediates had higher fitness than homozygote light and dark morphs. Here, we challenge one of the basic premises of the heterozygote advantage hypothesis, by testing whether plumage colour variation in common buzzards follows a one-locus two-allele inheritance model. Using a long-term population study with 202 families, we show that colour variation in buzzards is highly heritable. However, we find no support for a simple Mendelian one-locus two-allele model of inheritance. Our results rather suggest that buzzard plumage colour should be considered a quantitative polygenic trait. As a consequence, it is unlikely that the proposed heterozygote advantage is the mechanism that maintains this genetic variation. We hypothesize that plumage colour effects on fitness might depend on the environment, but this remains to be tested.
Collapse
Affiliation(s)
- Elena Frederika Kappers
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands .,Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | | | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Christiaan Both
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
14
|
Arai E, Hasegawa M, Wakamatsu K, Ito S. Males with More Pheomelanin Have a Lower Oxidative Balance in Asian Barn Swallows (Hirundo rustica gutturalis). Zoolog Sci 2018; 35:505-513. [DOI: 10.2108/zs170204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Emi Arai
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0115, Japan
| | - Masaru Hasegawa
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0115, Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
15
|
Visual discrimination of polymorphic nestlings in a cuckoo-host system. Sci Rep 2018; 8:10359. [PMID: 29985476 PMCID: PMC6037703 DOI: 10.1038/s41598-018-28710-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/28/2018] [Indexed: 11/28/2022] Open
Abstract
Mimicry by avian brood parasites favours uniformity over variation within a breeding attempt as host defence against parasitism. In a cuckoo-host system from New Caledonia, the arms race resulted in both host (Gerygone flavolateralis) and parasite (Chalcites lucidus) having nestlings of two discrete skin colour phenotypes, bright and dark. In our study sites, host nestlings occurred in monomorphic and polymorphic broods, whereas cuckoo nestlings only occurred in the bright morph. Irrespective of their brood colour, host parents recognised and ejected parasite nestlings but never ejected their own. We investigated whether host parents visually recognised their own nestlings by using colour, luminance and pattern of multiple body regions. We found that the parasite mimicked multiple visual features of both host morphs and that the visual difference between host morphs was larger than the difference between the parasite and the mimicked host morph. Visual discrimination alone may result in higher chances of recognition errors in polymorphic than in monomorphic host broods. Host parents may rely on additional sensorial cues, not only visual, to assess nestling identity. Nestling polymorphism may be a trace of evolutionary past and may only have a marginal role in true-recognition of nestlings in the arms race in New Caledonia.
Collapse
|
16
|
Uva V, Päckert M, Cibois A, Fumagalli L, Roulin A. Comprehensive molecular phylogeny of barn owls and relatives (Family: Tytonidae), and their six major Pleistocene radiations. Mol Phylogenet Evol 2018. [PMID: 29535030 DOI: 10.1016/j.ympev.2018.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The owl family Tytonidae comprises two genera: Phodilus, limited to the forests of central Africa and South-East Asia, and the ubiquitous Tyto. The genus Tyto is majorly represented by the cosmopolitan Common Barn Owl group, with more than 30 subspecies worldwide. Discrete differences in body size and plumage colouration have led to the classification of this family into many species and subspecies, but the taxonomic status and phylogenetic relationships between taxa remain unclear, and in some groups controversial. Although several previous studies attempted to resolve this problem, they have been limited in their taxonomic and geographical coverage, or have relied on restricted molecular evidence and low sample sizes. Based on the most comprehensive sampling to date (16 out of 17 Tyto species, and one out of three Phodilus species), a multi-locus approach using seven mitochondrial and two nuclear markers, and taking advantage of field data and museum collections available worldwide, our main questions in this study were: (1) what are the phylogenetic relationships and classification status of the whole family; (2) when and where did the most important speciation events occur? We confirm that the Common Barn Owl, Tyto alba is divided into three main evolutionary units: the American Barn Owl, T. furcata; the Western Barn Owl, T. alba; and the Eastern Barn Owl, T. javanica, and suggest a Late Miocene (ca. 6 mya) Australasian and African origin of the group. Our results are supported by fossil age information, given that the most recent common ancestor between the Tytonidae genera Phodilus and Tyto was probably from the Oligocene (ca. 28 mya) of Australasia. We finally reveal six major Pleistocene radiations of Tyto, all resulting in wide-range distributions.
Collapse
Affiliation(s)
- Vera Uva
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Martin Päckert
- Senckenberg Natural History Collections, Königsbrücker, Landstraße 159, 01109 Dresden, Germany.
| | - Alice Cibois
- Museum of Natural History of Geneva, Route de Managnou 1, 1208 Geneva, Switzerland.
| | - Luca Fumagalli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; Unité de Génétique Forensique, Centre Universitaire Romand de Médecine Légale, Rue du Bugnon 21, 1011 Lausanne, Switzerland.
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
17
|
Henderson CB, Michel ES, Demarais S, Strickland BK. Camouflage patterns are highly heritable but predictability varies among three populations of white-tailed deer. Ecosphere 2018. [DOI: 10.1002/ecs2.2169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Colby B. Henderson
- Department of Wildlife, Fisheries, and Aquaculture; Deer Ecology and Management Laboratory; Mississippi State University; P.O. Box 9690 Mississippi State Mississippi USA
| | - Eric S. Michel
- Department of Wildlife, Fisheries, and Aquaculture; Deer Ecology and Management Laboratory; Mississippi State University; P.O. Box 9690 Mississippi State Mississippi USA
| | - Stephen Demarais
- Department of Wildlife, Fisheries, and Aquaculture; Deer Ecology and Management Laboratory; Mississippi State University; P.O. Box 9690 Mississippi State Mississippi USA
| | - Bronson K. Strickland
- Department of Wildlife, Fisheries, and Aquaculture; Deer Ecology and Management Laboratory; Mississippi State University; P.O. Box 9690 Mississippi State Mississippi USA
| |
Collapse
|
18
|
Ciach M, Czyż S, Wieloch M. Bill colour pattern in Bewick’s swan: information on sex and body size displayed on face? ETHOL ECOL EVOL 2018. [DOI: 10.1080/03949370.2017.1310761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Michał Ciach
- Department of Forest Biodiversity, Institute of Forest Ecology and Silviculture, Faculty of Forestry, University of Agriculture, 29 Listopada 46, 31-425 Kraków, Poland
| | - Stanisław Czyż
- Polish Swan Study Group, Leśna 38/31, Jaroszowiec, 32-310 Klucze, Poland
| | - Maria Wieloch
- Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences, Nadwiślańska 108, 80-680 Gdańsk, Poland
| |
Collapse
|
19
|
Kerimov AB, Ilyina TA, Ivankina EV, Bushuev AV, Sokolova OV, Rogovin KA. Melanin-based coloration and immunity in polymorphic population of pied flycatcher, Ficedula hypoleuca. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9926-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
San-Jose LM, Ducret V, Ducrest AL, Simon C, Roulin A. Beyond mean allelic effects: A locus at the major color gene MC1R associates also with differing levels of phenotypic and genetic (co)variance for coloration in barn owls. Evolution 2017; 71:2469-2483. [PMID: 28861897 DOI: 10.1111/evo.13343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/05/2023]
Abstract
The mean phenotypic effects of a discovered variant help to predict major aspects of the evolution and inheritance of a phenotype. However, differences in the phenotypic variance associated to distinct genotypes are often overlooked despite being suggestive of processes that largely influence phenotypic evolution, such as interactions between the genotypes with the environment or the genetic background. We present empirical evidence for a mutation at the melanocortin-1-receptor gene, a major vertebrate coloration gene, affecting phenotypic variance in the barn owl, Tyto alba. The white MC1R allele, which associates with whiter plumage coloration, also associates with a pronounced phenotypic and additive genetic variance for distinct color traits. Contrarily, the rufous allele, associated with a rufous coloration, relates to a lower phenotypic and additive genetic variance, suggesting that this allele may be epistatic over other color loci. Variance differences between genotypes entailed differences in the strength of phenotypic and genetic associations between color traits, suggesting that differences in variance also alter the level of integration between traits. This study highlights that addressing variance differences of genotypes in wild populations provides interesting new insights into the evolutionary mechanisms and the genetic architecture underlying the phenotype.
Collapse
Affiliation(s)
- Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Béziers P, Ducrest AL, Simon C, Roulin A. Circulating testosterone and feather-gene expression of receptors and metabolic enzymes in relation to melanin-based colouration in the barn owl. Gen Comp Endocrinol 2017; 250:36-45. [PMID: 28457648 DOI: 10.1016/j.ygcen.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/11/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Knowledge of how and why secondary sexual characters are associated with sex hormones is important to understand their signalling function. Such a link can occur if i) testosterone participates in the elaboration of sex-traits, ii) the display of an ornament triggers behavioural response in conspecifics that induce a rise in testosterone, or iii) genes implicated in the elaboration of a sex-trait pleiotropically regulate testosterone physiology. To evaluate the origin of the co-variation between melanism and testosterone, we measured this hormone and the expression of enzymes involved in its metabolism in feathers of barn owl (Tyto alba) nestlings at the time of melanogenesis and in adults outside the period of melanogenesis. Male nestlings displaying smaller black feather spots had higher levels of circulating testosterone, potentially suggesting that testosterone could block the production of eumelanin pigments, or that genes involved in the production of small spots pleiotropically regulate testosterone production. In contrast, the enzyme 5α-reductase, that metabolizes testosterone to DHT, was more expressed in feathers of reddish-brown than light-reddish nestlings. This is consistent with the hypothesis that testosterone might be involved in the expression of reddish-brown pheomelanic pigments. In breeding adults, male barn owls displaying smaller black spots had higher levels of circulating testosterone, whereas in females the opposite result was detected during the rearing period, but not during incubation. The observed sex- and age-specific co-variations between black spottiness and testosterone in nestling and adult barn owls may not result from testosterone-dependent melanogenesis, but from melanogenic genes pleiotropically regulating testosterone, or from colour-specific life history strategies that influence testosterone levels.
Collapse
Affiliation(s)
- Paul Béziers
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Hiramatsu L, Garland T. Nature or Nurture? Heritability in the Classroom. Physiol Biochem Zool 2016; 89:457-461. [PMID: 27792537 DOI: 10.1086/688289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding evolution is a necessary component of undergraduate education in biology, and evolution is difficult to explain without studying the heritability of traits. However, in most classes, heritability is presented with only a handful of graphs showing typical morphological traits, for example, beak size in finches and height in humans. The active-inquiry exercise outlined in the following pages allows instructors to engage students in this formerly dry subject by bringing their own data as the basis for estimates of heritability. Students are challenged to come up with their own hypotheses regarding how and to what extent their traits are inherited from their parents and then gather, analyze data, and make inferences with help from the instructor. The exercise is simple in concept and execution but uncovers many new avenues of inquiry for students, including potential biases in their estimates of heritability and misconceptions that they may have had about the extent of inference that can be made from their heritability estimates. The active-inquiry format of the exercise prioritizes curiosity and discussion, leading to a much deeper understanding of heritability and the scientific method.
Collapse
|
23
|
Michel ES, Demarais S, Strickland BK, Smith T, Dacus CM. Antler characteristics are highly heritable but influenced by maternal factors. J Wildl Manage 2016. [DOI: 10.1002/jwmg.21138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eric S. Michel
- Deer Ecology and Management Laboratory, Department of Wildlife, Fisheries and Aquaculture; Forest and Wildlife Research Center, Mississippi State University; Mississippi State MS 39762 USA
| | - Stephen Demarais
- Deer Ecology and Management Laboratory, Department of Wildlife, Fisheries and Aquaculture; Forest and Wildlife Research Center, Mississippi State University; Mississippi State MS 39762 USA
| | - Bronson K. Strickland
- Deer Ecology and Management Laboratory, Department of Wildlife, Fisheries and Aquaculture; Forest and Wildlife Research Center, Mississippi State University; Mississippi State MS 39762 USA
| | - Trent Smith
- Department of Animal and Dairy Sciences; Mississippi State University; Mississippi State MS USA
| | - Chad M. Dacus
- Mississippi Department of Wildlife; Fisheries and Parks; Jackson MS 39211 USA
| |
Collapse
|
24
|
Roulin A. Evolutionary trade-off between naturally- and sexually-selected melanin-based colour traits in worldwide barn owls and allies. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Biophore Building CH-1015 Lausanne Switzerland
| |
Collapse
|
25
|
Bolton PE, Rollins LA, Griffith SC. Colour polymorphism is likely to be disadvantageous to some populations and species due to genetic architecture and morph interactions. Mol Ecol 2016; 25:2713-8. [PMID: 27178202 DOI: 10.1111/mec.13632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/22/2016] [Accepted: 03/24/2016] [Indexed: 11/29/2022]
Abstract
Polymorphism describes two or more distinct, genetically determined, phenotypes that co-occur in the same population, where the rarest morph is maintained at a frequency above the mutation rate (Ford 1945; Huxley 1955). In a recent opinion piece, we explored a new idea regarding the role of genetic architectures and morph interactions in colour polymorphisms and how this can negatively affect population performance (Bolton et al. 2015). In this issue of Molecular Ecology, Forsman (2016) thoroughly discusses the current evidence for polymorphisms enhancing population performance and critiques the validity of the definitions of polymorphism we use in our original paper. We respond by clarifying that the negative consequences of polymorphisms that we discussed are likely to be most pertinent in species that have a particular set of characteristics, such as strong sexual or social interactions between morphs and discrete genetic architectures. Although it was not our intention to redefine polymorphism, we do believe that there should be further discussion about refining or characterizing balanced polymorphisms with respect to the degree of morph sympatry, discreteness of traits and their underlying genetic architecture, and the types of selection that drive and maintain the variation. The latter describes whether polymorphism is primarily maintained by external factors such as predation pressure or internal factors such as interactions with members of the same species. The contribution of Forsman (2016) is useful to this discussion, and we hope that our exchange of opinions will inspire new empirical and theoretical ideas on the origin and maintenance of colour polymorphisms.
Collapse
Affiliation(s)
- Peri E Bolton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lee A Rollins
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, 75 Pigdons Road, Locked Bag 20000, Geelong, Vic., 3220, Australia
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
26
|
Galván I, Solano F. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution. Int J Mol Sci 2016; 17:520. [PMID: 27070583 PMCID: PMC4848976 DOI: 10.3390/ijms17040520] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 11/16/2022] Open
Abstract
Melanins are the ubiquitous pigments distributed in nature. They are one of the main pigments responsible for colors in living cells. Birds are among the most diverse animals regarding melanin-based coloration, especially in the plumage, although they also pigment bare parts of the integument. This review is devoted to the main characteristics of bird melanins, including updated views of the formation and nature of melanin granules, whose interest has been raised in the last years for inferring the color of extinct birds and non-avian theropod dinosaurs using resistant fossil feathers. The molecular structure of the two main types of melanin, eumelanin and pheomelanin, and the environmental and genetic factors that regulate avian melanogenesis are also presented, establishing the main relationship between them. Finally, the special functions of melanin in bird feathers are also discussed, emphasizing the aspects more closely related to these animals, such as honest signaling, and the factors that may drive the evolution of pheomelanin and pheomelanin-based color traits, an issue for which birds have been pioneer study models.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, Doñana Biological Station-CSIC, 41092 Sevilla, Spain.
| | - Francisco Solano
- Department of Biochemistry and Molecular Biology B & Immunology, School of Medicine and IMIB, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
27
|
Lopez‐Idiaquez D, Vergara P, Fargallo JA, Martinez‐Padilla J. Old males reduce melanin-pigmented traits and increase reproductive outcome under worse environmental conditions in common kestrels. Ecol Evol 2016; 6:1224-35. [PMID: 26941948 PMCID: PMC4761766 DOI: 10.1002/ece3.1910] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
Abstract
Secondary sexual traits displayed by males and females may have evolved as a signal of individual quality. However, both individual quality and investment on producing or maintaining enhanced sexual traits change as individuals age. At the same time, the costs associated to produce sexual traits might be attenuated or increased if environmental conditions are benign or worse respectively. Accordingly, environmental conditions are expected to shape the association between the expression of sexual traits and their reproductive outcome as individuals age. Nonetheless, little is known about the environmental influence on the co-variation between sexual traits and reproductive outcome throughout the life of individuals. We studied the age-dependency of the number and size of back spots, a melanin-based and sexual trait in adults of common kestrels (Falco tinnunculus). We analysed the age-dependence of reproductive traits and the environmental influence, defined as vole abundance, using a 10-year individual-based dataset. We broke down age-related changes of reproductive traits into within- and between-individual variation to assess their contribution to population-level patterns. Our results showed a within-individual decrease in the number, but not the size, of back spots in males. The size of back spots was positively correlated with food availability in males. Reproductive performance of males increased as they aged, in agreement with the life-history theory but depending of vole abundance. Remarkably, we found that having fewer back spots was positively associated with clutch size only for old individuals under low-food conditions. We suggest that environmental variation may shape the association between the expression of a sexual signal and reproductive outcome. We speculate that the reliability of sexual traits is higher when environmental conditions are poor only for old individuals. Within an evolutionary context, we suggest that the expression of sexual traits might be constrained by environmental conditions at later stages of life.
Collapse
Affiliation(s)
- David Lopez‐Idiaquez
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesMadridJosé Gutiérrez Abascal2. 23006MadridSpain
- Department of EcologyInstituto de Investigación en Recursos Cinegéticos – IRECRonda de Toledos/n. 13005Ciudad RealSpain
| | - Pablo Vergara
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesMadridJosé Gutiérrez Abascal2. 23006MadridSpain
| | - Juan Antonio Fargallo
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesMadridJosé Gutiérrez Abascal2. 23006MadridSpain
| | - Jesús Martinez‐Padilla
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesMadridJosé Gutiérrez Abascal2. 23006MadridSpain
- Research Unit of Biodiversity (OU, CSIC, PA)Oviedo University33600MieresSpain
| |
Collapse
|
28
|
Burri R, Antoniazza S, Gaigher A, Ducrest AL, Simon C, Fumagalli L, Goudet J, Roulin A. The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution 2015; 70:140-53. [DOI: 10.1111/evo.12824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/08/2015] [Accepted: 11/09/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Sylvain Antoniazza
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
- Swiss Ornithological Institute; Seerose 1 CH-6204 Sempach Switzerland
| | - Arnaud Gaigher
- Laboratory for Conservation Biology, Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Céline Simon
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | | |
Collapse
|
29
|
Hubbard JK, Jenkins BR, Safran RJ. Quantitative genetics of plumage color: lifetime effects of early nest environment on a colorful sexual signal. Ecol Evol 2015; 5:3436-49. [PMID: 26380676 PMCID: PMC4569038 DOI: 10.1002/ece3.1602] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 11/11/2022] Open
Abstract
Phenotypic differences among individuals are often linked to differential survival and mating success. Quantifying the relative influence of genetic and environmental variation on phenotype allows evolutionary biologists to make predictions about the potential for a given trait to respond to selection and various aspects of environmental variation. In particular, the environment individuals experience during early development can have lasting effects on phenotype later in life. Here, we used a natural full-sib/half-sib design as well as within-individual longitudinal analyses to examine genetic and various environmental influences on plumage color. We find that variation in melanin-based plumage color - a trait known to influence mating success in adult North American barn swallows (Hirundo rustica erythrogaster) - is influenced by both genetics and aspects of the developmental environment, including variation due to the maternal phenotype and the nest environment. Within individuals, nestling color is predictive of adult color. Accordingly, these early environmental influences are relevant to the sexually selected plumage color variation in adults. Early environmental conditions appear to have important lifelong implications for individual reproductive performance through sexual signal development in barn swallows. Our results indicate that feather color variation conveys information about developmental conditions and maternal care alleles to potential mates in North American barn swallows. Melanin-based colors are used for sexual signaling in many organisms, and our study suggests that these signals may be more sensitive to environmental variation than previously thought.
Collapse
Affiliation(s)
- Joanna K Hubbard
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder Ramaley N122, UCB 334, Boulder, Colorado, 80309
| | - Brittany R Jenkins
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder Ramaley N122, UCB 334, Boulder, Colorado, 80309
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder Ramaley N122, UCB 334, Boulder, Colorado, 80309
| |
Collapse
|
30
|
San-Jose LM, Ducrest AL, Ducret V, Béziers P, Simon C, Wakamatsu K, Roulin A. Effect of the MC1R gene on sexual dimorphism in melanin-based colorations. Mol Ecol 2015; 24:2794-808. [PMID: 25857339 DOI: 10.1111/mec.13193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Variants of the melanocortin-1 receptor (MC1R) gene result in abrupt, naturally selected colour morphs. These genetic variants may differentially affect sexual dimorphism if one morph is naturally selected in the two sexes but another morph is naturally or sexually selected only in one of the two sexes (e.g. to confer camouflage in reproductive females or confer mating advantage in males). Therefore, the balance between natural and sexual selections can differ between MC1R variants, as suggest studies showing interspecific correlations between sexual dimorphism and the rate of nonsynonymous vs. synonymous amino acid substitutions at the MC1R. Surprisingly, how MC1R is related to within-species sexual dimorphism, and thereby to sex-specific selection, has not yet been investigated. We tackled this issue in the barn owl (Tyto alba), a species showing pronounced variation in the degree of reddish pheomelanin-based coloration and in the number and size of black feather spots. We found that a valine (V)-to-isoleucine (I) substitution at position 126 explains up to 30% of the variation in the three melanin-based colour traits and in feather melanin content. Interestingly, MC1R genotypes also differed in the degree of sexual colour dimorphism, with individuals homozygous for the II MC1R variant being 2 times redder and 2.5 times less sexually dimorphic than homozygous individuals for the VV MC1R variant. These findings support that MC1R interacts with the expression of sexual dimorphism and suggest that a gene with major phenotypic effects and weakly influenced by variation in body condition can participate in sex-specific selection processes.
Collapse
Affiliation(s)
- Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Paul Béziers
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, 470-1192, Japan
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| |
Collapse
|
31
|
Roulin A, Jensen H. Sex-linked inheritance, genetic correlations and sexual dimorphism in three melanin-based colour traits in the barn owl. J Evol Biol 2015; 28:655-66. [PMID: 25656218 DOI: 10.1111/jeb.12596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 02/03/2023]
Abstract
Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex-linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin-based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex-linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin-based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex-linked genes generate variation in sexual dimorphism in melanin-based traits.
Collapse
Affiliation(s)
- A Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
32
|
Vergara P, Fargallo JA, Martínez-Padilla J. Genetic basis and fitness correlates of dynamic carotenoid-based ornamental coloration in male and female common kestrels Falco tinnunculus. J Evol Biol 2014; 28:146-54. [DOI: 10.1111/jeb.12553] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 11/28/2022]
Affiliation(s)
- P. Vergara
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid Spain
| | - J. A. Fargallo
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid Spain
| | - J. Martínez-Padilla
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid Spain
- Department of Ethology and Biodiversity Conservation; Estación Biológica de Doñana - CSIC; Sevilla Spain
| |
Collapse
|
33
|
Antoniazza S, Kanitz R, Neuenschwander S, Burri R, Gaigher A, Roulin A, Goudet J. Natural selection in a postglacial range expansion: the case of the colour cline in the European barn owl. Mol Ecol 2014; 23:5508-23. [PMID: 25294501 DOI: 10.1111/mec.12957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Gradients of variation--or clines--have always intrigued biologists. Classically, they have been interpreted as the outcomes of antagonistic interactions between selection and gene flow. Alternatively, clines may also establish neutrally with isolation by distance (IBD) or secondary contact between previously isolated populations. The relative importance of natural selection and these two neutral processes in the establishment of clinal variation can be tested by comparing genetic differentiation at neutral genetic markers and at the studied trait. A third neutral process, surfing of a newly arisen mutation during the colonization of a new habitat, is more difficult to test. Here, we designed a spatially explicit approximate Bayesian computation (ABC) simulation framework to evaluate whether the strong cline in the genetically based reddish coloration observed in the European barn owl (Tyto alba) arose as a by-product of a range expansion or whether selection has to be invoked to explain this colour cline, for which we have previously ruled out the actions of IBD or secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 locations genotyped at 22 microsatellites loci, we first determined how barn owls colonized Europe after the last glaciation. Using these results in new simulations on the evolution of the colour phenotype, and assuming various genetic architectures for the colour trait, we demonstrate that the observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a powerful method to disentangle the respective roles of selection and drift in range expansions, we conclude that the formation of the colour cline observed in the barn owl must be due to natural selection.
Collapse
Affiliation(s)
- Sylvain Antoniazza
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
34
|
Scriba MF, Rattenborg NC, Dreiss AN, Vyssotski AL, Roulin A. Sleep and vigilance linked to melanism in wild barn owls. J Evol Biol 2014; 27:2057-68. [PMID: 25056556 DOI: 10.1111/jeb.12450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/02/2014] [Accepted: 06/19/2014] [Indexed: 02/03/2023]
Abstract
Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin-based colour. We show here that wild, cross-fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non-REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep-wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin-based coloration.
Collapse
Affiliation(s)
- M F Scriba
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland; Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | | | | | | |
Collapse
|
35
|
Dreiss AN, Roulin A. Divorce in the barn owl: securing a compatible or better mate entails the cost of re-pairing with a less ornamented female mate. J Evol Biol 2014; 27:1114-24. [DOI: 10.1111/jeb.12402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/30/2022]
Affiliation(s)
- A. N. Dreiss
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | - A. Roulin
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
36
|
Steinsland I, Larsen CT, Roulin A, Jensen H. Quantitative genetic modeling and inference in the presence of nonignorable missing data. Evolution 2014; 68:1735-47. [PMID: 24673414 DOI: 10.1111/evo.12380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 01/21/2014] [Indexed: 11/28/2022]
Abstract
Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.
Collapse
|
37
|
Swierk L, Langkilde T. Bearded ladies: females suffer fitness consequences when bearing male traits. Biol Lett 2013; 9:20130644. [PMID: 24196514 DOI: 10.1098/rsbl.2013.0644] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A central assumption in evolutionary biology is that females of sexually dimorphic species suffer costs when bearing male secondary sexual traits, such as ornamentation. Nevertheless, it is common in nature to observe females bearing rudimentary versions of male ornaments (e.g. 'bearded ladies'), as ornaments can be under similar genetic control in both sexes. Here, we provide evidence that masculinized females incur both social and reproductive costs in nature. Male fence lizards (Sceloporus undulatus) discriminated against ornamented females during mate choice. Ornamented females had lower reproductive output, and produced eggs that were laid and hatched later than those of non-ornamented females. These findings support established theories of the evolution of sexual dimorphism and intralocus sexual conflict, and raise questions regarding the persistence of masculinizing ornamentation in females.
Collapse
Affiliation(s)
- Lindsey Swierk
- Department of Biology, Intercollege Graduate Program in Ecology, and Center for Brain, Behavior and Cognition, The Pennsylvania State University, , 208 Mueller Laboratory, University Park, PA 16802, USA
| | | |
Collapse
|
38
|
Integrated plumage colour variation in relation to body condition, reproductive investment and laying date in the collared flycatcher. Naturwissenschaften 2013; 100:983-91. [DOI: 10.1007/s00114-013-1099-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
|
39
|
Almasi B, Roulin A, Jenni L. Corticosterone shifts reproductive behaviour towards self-maintenance in the barn owl and is linked to melanin-based coloration in females. Horm Behav 2013; 64:161-71. [PMID: 23583559 DOI: 10.1016/j.yhbeh.2013.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/06/2013] [Accepted: 03/08/2013] [Indexed: 11/21/2022]
Abstract
Trade-offs between the benefits of current reproduction and the costs to future reproduction and survival are widely recognized. However, such trade-offs might only be detected when resources become limited to the point where investment in one activity jeopardizes investment in others. The resolution of the trade-off between reproduction and self-maintenance is mediated by hormones such as glucocorticoids which direct behaviour and physiology towards self-maintenance under stressful situations. We investigated this trade-off in male and female barn owls in relation to the degree of heritable melanin-based coloration, a trait that reflects the ability to cope with various sources of stress in nestlings. We increased circulating corticosterone in breeding adults by implanting a corticosterone-releasing-pellet, using birds implanted with a placebo-pellet as controls. In males, elevated corticosterone reduced the activity (i.e. reduced home-range size and distance covered within the home-range) independently of coloration, while we could not detect any effect on hunting efficiency. The effect of experimentally elevated corticosterone on female behaviour was correlated with their melanin-based coloration. Corticosterone (cort-) induced an increase in brooding behaviour in small-spotted females, while this hormone had no detectable effect in large-spotted females. Cort-females with small eumelanic spots showed the normal body-mass loss during the early nestling period, while large spotted cort-females did not lose body mass. This indicates that corticosterone induced a shift towards self-maintenance in males independently on their plumage, whereas in females this shift was observed only in large-spotted females.
Collapse
|
40
|
Roulin A, Ducrest AL. Genetics of colouration in birds. Semin Cell Dev Biol 2013; 24:594-608. [PMID: 23665152 DOI: 10.1016/j.semcdb.2013.05.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 04/19/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023]
Abstract
Establishing the links between phenotype and genotype is of great importance for resolving key questions about the evolution, maintenance and adaptive function of phenotypic variation. Bird colouration is one of the most studied systems to investigate the role of natural and sexual selection in the evolution of phenotypic diversity. Given the recent advances in molecular tools that allow discovering genetic polymorphisms and measuring gene and protein expression levels, it is timely to review the literature on the genetics of bird colouration. The present study shows that melanin-based colour phenotypes are often associated with mutations at melanogenic genes. Differences in melanin-based colouration are caused by switches of eumelanin to pheomelanin production or by changes in feather keratin structure, melanoblast migration and differentiation, as well as melanosome structure. Similar associations with other types of colourations are difficult to establish, because our knowledge about the molecular genetics of carotenoid-based and structural colouration is quasi inexistent. This discrepancy stems from the fact that only melanin-based colouration shows pronounced heritability estimates, i.e. the resemblance between related individuals is usually mainly explained by genetic factors. In contrast, the expression of carotenoid-based colouration is phenotypically plastic with a high sensitivity to variation in environmental conditions. It therefore appears that melanin-based colour traits are prime systems to understand the genetic basis of phenotypic variation. In this context, birds have a great potential to bring us to new frontiers where many exciting discoveries will be made on the genetics of phenotypic traits, such as colouration. In this context, a major goal of our review is to suggest a number of exciting future avenues.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
41
|
Mitrus C, Mitrus J, Sikora M. Badge size and arrival time predict mating success of red-breasted flycatcher Ficedula parva males. Zoolog Sci 2013; 29:795-9. [PMID: 23215969 DOI: 10.2108/zsj.29.795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Older red-breasted flycatcher males (after the second year) have an orange patch on the throat and breast. To date, the occurrence of this ornament has been explained in terms of male-male interactions. In this paper, we show that badge size also influences the mating success of red-breasted-flycatcher males. In addition to the size of the ornament, arrival time was a second factor related to the males' mating success, but no effects of body parameters such as wing length, tarsus length, and body mass were observed. Mated males arrived significantly earlier than unmated ones. The arrival time of males was negatively correlated to body mass and positively correlated to tarsus length but no relation to wing length or badge size was observed. No correlations between badge size and body parameters were observed. This ornament was evolved through sexual selection, with both male-male interaction and selection pressure arising from female preference for males with larger badges.
Collapse
Affiliation(s)
- Cezary Mitrus
- Department of Zoology, Rzeszów University, Zelwerowicza 4, 35-601 Rzeszów, Poland.
| | | | | |
Collapse
|
42
|
Saino N, Romano M, Rubolini D, Teplitsky C, Ambrosini R, Caprioli M, Canova L, Wakamatsu K. Sexual dimorphism in melanin pigmentation, feather coloration and its heritability in the barn swallow (Hirundo rustica). PLoS One 2013; 8:e58024. [PMID: 23469134 PMCID: PMC3585210 DOI: 10.1371/journal.pone.0058024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022] Open
Abstract
Melanin is the main pigment in animal coloration and considerable variation in the concentrations of the two melanin forms (pheo- and eumlanin) in pigmented tissues exists among populations and individuals. Melanin-based coloration is receiving increasing attention particularly in socio-sexual communication contexts because the melanocortin system has been hypothesized to provide a mechanistic basis for covariation between coloration and fitness traits. However, with few notable exceptions, little detailed information is available on inter-individual and inter-population variation in melanin pigmentation and on its environmental, genetic and ontogenetic components. Here, we investigate melanin-based coloration in an Italian population of a passerine bird, the barn swallow (Hirundo rustica rustica), its sex- and age-related variation, and heritability. The concentrations of eu- and pheomelanin in the throat (brown) and belly (white-to-brownish) feathers differed between sexes but not according to age. The relative concentration of either melanin (Pheo:Eu) differed between sexes in throat but not in belly feathers, and the concentrations in males compared to females were larger in belly than in throat feathers. There were weak correlations between the concentrations of melanins within as well as among plumage regions. Coloration of belly feathers was predicted by the concentration of both melanins whereas coloration of throat feathers was only predicted by pheomelanin in females. In addition, Pheo:Eu predicted coloration of throat feathers in females and that of belly feathers in males. Finally, we found high heritability of color of throat feathers. Melanization was found to differ from that recorded in Hirundo rustica rustica from Scotland or from H. r. erythrogaster from North America. Hence, present results show that pigmentation strategies vary in a complex manner according to sex and plumage region, and also among geographical populations, potentially reflecting adaptation to different natural and sexual selection regimes, and that some coloration components seem to be highly heritable.
Collapse
Affiliation(s)
- Nicola Saino
- Department of Biosciences, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jacquin L, Haussy C, Bertin C, Laroucau K, Gasparini J. Darker female pigeons transmit more specific antibodies to their eggs than do paler ones. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisa Jacquin
- Laboratoire Ecologie et Evolution (EcoEvo); UMR 7625; CNRS UPMC ENS; Université Pierre et Marie Curie (UPMC); 75005 Paris France
- Université Versailles-St-Quentin UVSQ; 78000 Versailles France
| | - Claudy Haussy
- Laboratoire Ecologie et Evolution (EcoEvo); UMR 7625; CNRS UPMC ENS; Université Pierre et Marie Curie (UPMC); 75005 Paris France
| | - Claire Bertin
- Bacterial Zoonoses Unit; French Agency for Food, Environmental and Occupational Health Safety (ANSES); 94700 Maisons-Alfort France
| | - Karine Laroucau
- Bacterial Zoonoses Unit; French Agency for Food, Environmental and Occupational Health Safety (ANSES); 94700 Maisons-Alfort France
| | - Julien Gasparini
- Laboratoire Ecologie et Evolution (EcoEvo); UMR 7625; CNRS UPMC ENS; Université Pierre et Marie Curie (UPMC); 75005 Paris France
| |
Collapse
|
44
|
Colour Polymorphism and Alternative Breeding Strategies: Effects of Parent’s Colour Morph on Fitness Traits in the Common Wall Lizard. Evol Biol 2013. [DOI: 10.1007/s11692-012-9222-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Roulin A, Da Silva A, Ruppli CA. Dominant nestlings displaying female-like melanin coloration behave altruistically in the barn owl. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.08.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Monti DM, Raia P, Vroonen J, Maselli V, Van Damme R, Fulgione D. Physiological change in an insular lizard population confirms the reversed island syndrome. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02019.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daria Maria Monti
- Department of Structural and Functional Biology; University of Naples Federico II; 80126; Naples; Italy
| | - Pasquale Raia
- Department of Earth Science; University of Naples Federico II; L.go San Marcellino 10; 80138; Naples; Italy
| | - Jessica Vroonen
- Functional Morphology, Department of Biology; University of Antwerp; Universiteitsplein 1; BE-2610; Wilrijk; Belgium
| | - Valeria Maselli
- Department of Environmental Science; University of Naples 2 SUN; Via Vivaldi; 81100; Caserta; Italy
| | - Raoul Van Damme
- Functional Morphology, Department of Biology; University of Antwerp; Universiteitsplein 1; BE-2610; Wilrijk; Belgium
| | - Domenico Fulgione
- Department of Structural and Functional Biology; University of Naples Federico II; 80126; Naples; Italy
| |
Collapse
|
47
|
van den Brink V, Dreiss AN, Roulin A. Melanin-based coloration predicts natal dispersal in the barn owl, Tyto alba. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
ALMASI B, ROULIN A, KORNER-NIEVERGELT F, JENNI-EIERMANN S, JENNI L. Coloration signals the ability to cope with elevated stress hormones: effects of corticosterone on growth of barn owls are associated with melanism. J Evol Biol 2012; 25:1189-99. [DOI: 10.1111/j.1420-9101.2012.02508.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Condition-dependent expression of melanin-based coloration in the Eurasian kestrel. Naturwissenschaften 2012; 99:391-6. [DOI: 10.1007/s00114-012-0914-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|
50
|
CHARTER MOTTI, PELEG ORI, LESHEM YOSSI, ROULIN ALEXANDRE. Similar patterns of local barn owl adaptation in the Middle East and Europe with respect to melanic coloration. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01863.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|