1
|
Gokhman VE, Kuznetsova VG. Structure and Evolution of Ribosomal Genes of Insect Chromosomes. INSECTS 2024; 15:593. [PMID: 39194798 DOI: 10.3390/insects15080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes less than 0.1 percent of the described members of this enormous group, certain conclusions can already be drawn. Since haploid karyotypes with single 45S and 5S rDNA clusters predominate in both basal and derived insect groups, this character state is apparently ancestral for the class Insecta in general. Nevertheless, the number, chromosomal location, and other characteristics of both 45S and 5S rDNA sites substantially vary across different species, and sometimes even within the same species. There are several main factors and molecular mechanisms that either maintain these parameters or alter them on the short-term and/or long-term scale. Chromosome structure (i.e., monocentric vs. holokinetic chromosomes), excessive numbers of rRNA gene copies per cluster, interactions with transposable elements, pseudogenization, and meiotic recombination are perhaps the most important among them.
Collapse
Affiliation(s)
| | - Valentina G Kuznetsova
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Orosová M, Marková A, Zrzavá M, Marec F, Oros M. Chromosome analysis and the occurrence of B chromosomes in fish parasite Acanthocephalus anguillae (Palaeacanthocephala: Echinorhynchida). Parasite 2023; 30:44. [PMID: 37870409 PMCID: PMC10592040 DOI: 10.1051/parasite/2023045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
The cytogenetics of Acanthocephala is a neglected area in the study of this group of endoparasites. Chromosome number and/or karyotypes are known for only 12 of the 1,270 described species, and molecular cytogenetic data are limited to rDNA mapping in two species. The standard karyological technique and mapping of 18S rRNA and H3 histone genes on the chromosomes of Acanthocephalus anguillae individuals from three populations, one of which originated from the unfavorable environmental conditions of the Zemplínska Šírava reservoir in eastern Slovakia, were applied for the first time. All specimens had 2n = 7/8 (male/female); n = 1m + 1m-sm + 1a + 1a (X). Fluorescence in situ hybridization (FISH) revealed three loci of 18S rDNA on two autosomes and dispersion of H3 histone genes on all autosomes and the X chromosome. In addition to the standard A chromosome set, 34% of specimens from Zemplínska Šírava possessed a small acrocentric B chromosome, which was always found to be univalent, with no pairing observed between the B chromosome and the A complement. The B chromosome had a small amount of heterochromatin in the centromeric and telomeric regions of the chromosomal arms and showed two clusters of H3 genes. It is well known that an environment permanently polluted with chemicals leads to an increased incidence of chromosomal rearrangements. As a possible scenario for the B chromosome origin, we propose chromosomal breaks due to the mutagenic effect of pollutants in the aquatic environment. The results are discussed in comparison with previous chromosome data from Echinorhynchida species.
Collapse
Affiliation(s)
- Martina Orosová
- Institute of Parasitology, Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
| | - Anna Marková
- Institute of Parasitology, Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
- Department of Zoology, Faculty of Natural Sciences, Comenius University Ilkovičova 6 842 15 Bratislava Slovakia
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology Branišovská 31 370 05 České Budějovice Czech Republic
- Faculty of Science, University of South Bohemia Branišovská 1760 370 05 České Budějovice Czech Republic
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology Branišovská 31 370 05 České Budějovice Czech Republic
| | - Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
| |
Collapse
|
3
|
Chrostek G, Domaradzka A, Yurchenko A, Kratochvíl L, Mazzoleni S, Rovatsos M. Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos. Genes (Basel) 2023; 14:178. [PMID: 36672918 PMCID: PMC9859368 DOI: 10.3390/genes14010178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Geckos (Gekkota), the species-rich clade of reptiles with more than 2200 currently recognized species, demonstrate a remarkable variability in diploid chromosome numbers (2n = 16-48) and mode of sex determination. However, only a small fraction of gekkotan species have been studied with cytogenetic methods. Here, we applied both conventional (karyotype reconstruction and C-banding) and molecular (fluorescence in situ hybridization with probes for rDNA loci and telomeric repeats) cytogenetic analyses in seven species of geckos, namely Blaesodactylus boivini, Chondrodactylus laevigatus, Gekko badenii, Gekko cf. lionotum, Hemidactylus sahgali, Homopholis wahlbergii (Gekkonidae) and Ptyodactylus togoensis (Phyllodactylidae), in order to provide further insights into the evolution of karyotypes in geckos. Our analysis revealed the presence of interstitial telomeric repeats in four species, but we were not able to conclude if they are remnants of previous chromosome rearrangements or were formed by an accumulation of telomeric-like satellite motifs. Even though sex chromosomes were previously identified in several species from the genera Hemidactylus and Gekko by cytogenetic and/or genomic methods, they were not detected by us in any examined species. Our examined species either have poorly differentiated sex chromosomes or, possibly, environmental sex determination. Future studies should explore the effect of temperature and conduct genome-wide analyses in order to identify the mode of sex determination in these species.
Collapse
Affiliation(s)
| | | | | | | | | | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| |
Collapse
|
4
|
Král J, Ávila Herrera IM, Šťáhlavský F, Sadílek D, Pavelka J, Chatzaki M, Huber BA. Karyotype differentiation and male meiosis in European clades of the spider genus Pholcus (Araneae, Pholcidae). COMPARATIVE CYTOGENETICS 2022; 16:185-209. [PMID: 36760487 PMCID: PMC9836407 DOI: 10.3897/compcytogen.v16i4.85059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/28/2022] [Indexed: 06/18/2023]
Abstract
Haplogyne araneomorphs are a diverse spider clade. Their karyotypes are usually predominated by biarmed (i.e., metacentric and submetacentric) chromosomes and have a specific sex chromosome system, X1X2Y. These features are probably ancestral for haplogynes. Nucleolus organizer regions (NORs) spread frequently from autosomes to sex chromosomes in these spiders. This study focuses on pholcids (Pholcidae), a highly diverse haplogyne family. Despite considerable recent progress in pholcid cytogenetics, knowledge on many clades remains insufficient including the most species-rich pholcid genus, Pholcus Walckenaer, 1805. To characterize the karyotype differentiation of Pholcus in Europe, we compared karyotypes, sex chromosomes, NORs, and male meiosis of seven species [P.alticeps Spassky, 1932; P.creticus Senglet, 1971; P.dentatus Wunderlich, 1995; P.fuerteventurensis Wunderlich, 1992; P.phalangioides (Fuesslin, 1775); P.opilionoides (Schrank, 1781); P.silvai Wunderlich, 1995] representing the dominant species groups in this region. The species studied show several features ancestral for Pholcus, namely the 2n♂ = 25, the X1X2Y system, and a karyotype predominated by biarmed chromosomes. Most taxa have a large acrocentric NOR-bearing pair, which evolved from a biarmed pair by a pericentric inversion. In some lineages, the acrocentric pair reverted to biarmed. Closely related species often differ in the morphology of some chromosome pairs, probably resulting from pericentric inversions and/or translocations. Such rearrangements have been implicated in the formation of reproductive barriers. While the X1 and Y chromosomes retain their ancestral metacentric morphology, the X2 chromosome shows a derived (acrocentric or subtelocentric) morphology. Pairing of this element is usually modified during male meiosis. NOR patterns are very diverse. The ancestral karyotype of Pholcus contained five or six terminal NORs including three X chromosome-linked loci. The number of NORs has been frequently reduced during evolution. In the Macaronesian clade, there is only a single NOR-bearing pair. Sex chromosome-linked NORs are lost in Madeiran species and in P.creticus. Our study revealed two cytotypes in the synanthropic species P.phalangioides (Madeiran and Czech), which differ by their NOR pattern and chromosome morphology. In the Czech cytotype, the large acrocentric pair was transformed into a biarmed pair by pericentric inversion.
Collapse
Affiliation(s)
- Jiří Král
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech RepublicCharles UniversityPragueCzech Republic
| | - Ivalú M. Ávila Herrera
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech RepublicCharles UniversityPragueCzech Republic
| | - František Šťáhlavský
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech RepublicCharles UniversityPragueCzech Republic
| | - David Sadílek
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech RepublicCharles UniversityPrague 2Czech Republic
| | - Jaroslav Pavelka
- Centre of Biology, Geosciences and Environmental Education, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech RepublicUniversity of West BohemiaPlzeňCzech Republic
| | - Maria Chatzaki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, GreeceDemocritus University of ThraceAlexandroupolisGreece
| | - Bernhard A. Huber
- Alexander Koenig Zoological Research Museum, Adenauerallee 127, 53113 Bonn, GermanyAlexander Koenig Zoological Research MuseumBonnGermany
| |
Collapse
|
5
|
Stocker AJ, Schiffer M, Gorab E, Hoffmann A. Chromosome Comparisons of Australian Scaptodrosophila Species. INSECTS 2022; 13:insects13040364. [PMID: 35447805 PMCID: PMC9024860 DOI: 10.3390/insects13040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023]
Abstract
The Scaptodrosophila represent a diverse group of Diptera closely related to Drosophila. Although they have radiated extensively in Australia, they have been the focus of few studies. Here, we characterized the karyotypes of 12 Scaptodrosophila species from several species groups and showed that they have undergone similar types of karyotypic change to those seen in Drosophila. This includes heterochromatin amplification involved in length changes of the sex and ‘dot’ chromosomes as well as the autosomes, particularly in the coracina group of species. Numerous weak points along the arms of the polytene chromosomes suggest the presence of internal repetitive sequence DNA, but these regions did not C-band in mitotic chromosomes, and their analysis will depend on DNA sequencing. The nucleolar organizing regions (NORs) are at the same chromosome positions in Scaptodrosophila as in Drosophila, and the various mechanisms responsible for changing arm configurations also appear to be the same. These chromosomal studies provide a complementary resource to other investigations of this group, with several species currently being sequenced.
Collapse
Affiliation(s)
- Ann Jacob Stocker
- Pest and Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia;
- Correspondence:
| | - Michele Schiffer
- Daintree Rainforest Observatory, James Cook University, Cape Tribulation, QLD 4873, Australia;
| | - Eduardo Gorab
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo 05508-090, SP, Brazil;
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
6
|
Chang CH, Gregory LE, Gordon KE, Meiklejohn CD, Larracuente AM. Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes. eLife 2022; 11:e75795. [PMID: 34989337 PMCID: PMC8794474 DOI: 10.7554/elife.75795] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long-read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of RochesterRochesterUnited States
| | - Lauren E Gregory
- Department of Biology, University of RochesterRochesterUnited States
| | - Kathleen E Gordon
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | | |
Collapse
|
7
|
Sochorová J, Gálvez F, Matyášek R, Garcia S, Kovařík A. Analyses of the Updated "Animal rDNA Loci Database" with an Emphasis on Its New Features. Int J Mol Sci 2021; 22:11403. [PMID: 34768834 PMCID: PMC8584138 DOI: 10.3390/ijms222111403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
We report on a major update to the animal rDNA loci database, which now contains cytogenetic information for 45S and 5S rDNA loci in more than 2600 and 1000 species, respectively.The data analyses show the following: (i) A high variability in 5S and 45S loci numbers, with both showing 50-fold or higher variability. However, karyotypes with an extremely high number of loci were rare, and medians generally converged to two 5S sites and two 45S rDNA sites per diploid genome. No relationship was observed between the number of 5S and 45S loci. (ii) The position of 45S rDNA on sex chromosomes was relatively frequent in some groups, particularly in arthropods (14% of karyotypes). Furthermore, 45S rDNA was almost exclusively located in microchromosomes when these were present (in birds and reptiles). (iii) The proportion of active NORs (positively stained with silver staining methods) progressively decreased with an increasing number of 45S rDNA loci, and karyotypes with more than 12 loci showed, on average, less than 40% of active loci. In conclusion, the updated version of the database provides some new insights into the organization of rRNA genes in chromosomes. We expect that its updated content will be useful for taxonomists, comparative cytogeneticists, and evolutionary biologists. .
Collapse
Affiliation(s)
- Jana Sochorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic; (J.S.); (R.M.)
| | - Francisco Gálvez
- Bioscripts—Centro de Investigación y Desarrollo de Recursos Científicos, 41012 Sevilla, Spain;
| | - Roman Matyášek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic; (J.S.); (R.M.)
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC), Passeig del Migdia s/n, 08038 Barcelona, Spain;
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic; (J.S.); (R.M.)
| |
Collapse
|
8
|
Bracewell R, Bachtrog D. Complex Evolutionary History of the Y Chromosome in Flies of the Drosophila obscura Species Group. Genome Biol Evol 2021; 12:494-505. [PMID: 32176296 PMCID: PMC7199386 DOI: 10.1093/gbe/evaa051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2020] [Indexed: 12/23/2022] Open
Abstract
The Drosophila obscura species group shows dramatic variation in karyotype, including transitions among sex chromosomes. Members of the affinis and pseudoobscura subgroups contain a neo-X chromosome (a fusion of the X with an autosome), and ancestral Y genes have become autosomal in species harboring the neo-X. Detailed analysis of species in the pseudoobscura subgroup revealed that ancestral Y genes became autosomal through a translocation to the small dot chromosome. Here, we show that the Y-dot translocation is restricted to the pseudoobscura subgroup, and translocation of ancestral Y genes in the affinis subgroup likely followed a different route. We find that most ancestral Y genes have translocated to unique autosomal or X-linked locations in different taxa of the affinis subgroup, and we propose a dynamic model of sex chromosome formation and turnover in the obscura species group. Our results suggest that Y genes can find unique paths to escape unfavorable genomic environments that form after sex chromosome–autosome fusions.
Collapse
Affiliation(s)
- Ryan Bracewell
- Department of Integrative Biology, University of California, Berkeley
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley
| |
Collapse
|
9
|
Teixeira GA, de Aguiar HJAC, Petitclerc F, Orivel J, Lopes DM, Barros LAC. Evolutionary insights into the genomic organization of major ribosomal DNA in ant chromosomes. INSECT MOLECULAR BIOLOGY 2021; 30:340-354. [PMID: 33586259 DOI: 10.1111/imb.12699] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The major rDNA genes are composed of tandem repeats and are part of the nucleolus organizing regions (NORs). They are highly conserved and therefore useful in understanding the evolutionary patterns of chromosomal locations. The evolutionary dynamics of the karyotype may affect the organization of rDNA genes within chromosomes. In this study, we physically mapped 18S rDNA genes in 13 Neotropical ant species from four subfamilies using fluorescence in situ hybridization. Furthermore, a survey of published rDNA cytogenetic data for 50 additional species was performed, which allowed us to detect the evolutionary patterns of these genes in ant chromosomes. Species from the Neotropical, Palearctic, and Australian regions, comprising a total of 63 species from 19 genera within six subfamilies, were analysed. Most of the species (48 out of 63) had rDNA genes restricted to a single chromosome pair in their intrachromosomal regions. The position of rDNA genes within the chromosomes appears to hinder their dispersal throughout the genome, as translocations and ectopic recombination are uncommon in intrachromosomal regions because they can generate meiotic abnormalities. Therefore, rDNA genes restricted to a single chromosome pair seem to be a plesiomorphic feature in ants, while multiple rDNA sites, observed in distinct subfamilies, may have independent origins in different genera.
Collapse
Affiliation(s)
- G A Teixeira
- Programa de Pós-graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Viçosa, Brazil
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - H J A C de Aguiar
- Universidade Federal do Amapá, Campus Binacional, BR 156, n° 3051, Bairro Universidade, Oiapoque, 68980-000, Brazil
| | - F Petitclerc
- CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, France
| | - J Orivel
- CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, France
| | - D M Lopes
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - L A C Barros
- Universidade Federal do Amapá, Campus Binacional, BR 156, n° 3051, Bairro Universidade, Oiapoque, 68980-000, Brazil
| |
Collapse
|
10
|
Ávila Herrera IM, Král J, Pastuchová M, Forman M, Musilová J, Kořínková T, Šťáhlavský F, Zrzavá M, Nguyen P, Just P, Haddad CR, Hiřman M, Koubová M, Sadílek D, Huber BA. Evolutionary pattern of karyotypes and meiosis in pholcid spiders (Araneae: Pholcidae): implications for reconstructing chromosome evolution of araneomorph spiders. BMC Ecol Evol 2021; 21:75. [PMID: 33941079 PMCID: PMC8091558 DOI: 10.1186/s12862-021-01750-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Despite progress in genomic analysis of spiders, their chromosome evolution is not satisfactorily understood. Most information on spider chromosomes concerns the most diversified clade, entelegyne araneomorphs. Other clades are far less studied. Our study focused on haplogyne araneomorphs, which are remarkable for their unusual sex chromosome systems and for the co-evolution of sex chromosomes and nucleolus organizer regions (NORs); some haplogynes exhibit holokinetic chromosomes. To trace the karyotype evolution of haplogynes on the family level, we analysed the number and morphology of chromosomes, sex chromosomes, NORs, and meiosis in pholcids, which are among the most diverse haplogyne families. The evolution of spider NORs is largely unknown. RESULTS Our study is based on an extensive set of species representing all major pholcid clades. Pholcids exhibit a low 2n and predominance of biarmed chromosomes, which are typical haplogyne features. Sex chromosomes and NOR patterns of pholcids are diversified. We revealed six sex chromosome systems in pholcids (X0, XY, X1X20, X1X2X30, X1X2Y, and X1X2X3X4Y). The number of NOR loci ranges from one to nine. In some clades, NORs are also found on sex chromosomes. CONCLUSIONS The evolution of cytogenetic characters was largely derived from character mapping on a recently published molecular phylogeny of the family. Based on an extensive set of species and mapping of their characters, numerous conclusions regarding the karyotype evolution of pholcids and spiders can be drawn. Our results suggest frequent autosome-autosome and autosome-sex chromosome rearrangements during pholcid evolution. Such events have previously been attributed to the reproductive isolation of species. The peculiar X1X2Y system is probably ancestral for haplogynes. Chromosomes of the X1X2Y system differ considerably in their pattern of evolution. In some pholcid clades, the X1X2Y system has transformed into the X1X20 or XY systems, and subsequently into the X0 system. The X1X2X30 system of Smeringopus pallidus probably arose from the X1X20 system by an X chromosome fission. The X1X2X3X4Y system of Kambiwa probably evolved from the X1X2Y system by integration of a chromosome pair. Nucleolus organizer regions have frequently expanded on sex chromosomes, most probably by ectopic recombination. Our data suggest the involvement of sex chromosome-linked NORs in achiasmatic pairing.
Collapse
Affiliation(s)
- Ivalú M. Ávila Herrera
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jiří Král
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Markéta Pastuchová
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Martin Forman
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jana Musilová
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- Research Team of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 161 00 Prague 6, Czech Republic
| | - Tereza Kořínková
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- Prague 1, Czech Republic
| | - František Šťáhlavský
- Invertebrate Zoology Unit, Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Magda Zrzavá
- Laboratory of Molecular Cytogenetics, Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Laboratory of Molecular Cytogenetics, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Petr Nguyen
- Laboratory of Molecular Cytogenetics, Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Laboratory of Molecular Cytogenetics, Department of Molecular Biology and Genetics, Institute of Entomology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Pavel Just
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- Invertebrate Zoology Unit, Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Charles R. Haddad
- Research Group of Arachnid Systematics and Ecology, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300 Republic of South Africa
| | - Matyáš Hiřman
- Invertebrate Zoology Unit, Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Martina Koubová
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - David Sadílek
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
- Invertebrate Zoology Unit, Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Bernhard A. Huber
- Arachnida Section, Alexander Koenig Zoological Research Museum, Adenauerallee 160, 53113 Bonn, Germany
| |
Collapse
|
11
|
de Bustos A, Figueroa RI, Sixto M, Bravo I, Cuadrado Á. The 5S rRNA genes in Alexandrium: their use as a FISH chromosomal marker in studies of the diversity, cell cycle and sexuality of dinoflagellates. HARMFUL ALGAE 2020; 98:101903. [PMID: 33129460 DOI: 10.1016/j.hal.2020.101903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/25/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Chromosomal markers of the diversity and evolution of dinoflagellates are scarce because the genomes of these organisms are unique among eukaryotes in terms of their base composition and chromosomal structure. Similarly, a lack of appropriate tools has hindered studies of the chromosomal localization of 5S ribosomal DNA (rDNA) in the nucleosome-less chromosomes of dinoflagellates. In this study, we isolated and cloned 5S rDNA sequences from various toxin-producing species of the genus Alexandrium and developed a fluorescence in situ hybridization (FISH) probe that allows their chromosomal localization. Our results can be summarized as follows: 1) The 5S rDNA unit is composed of a highly conserved 122-bp coding region and an intergenic spacer (IGS), the length and sequence of which are variable even within strains. 2) Three different IGS types, one containing the U6 small nuclear RNA (snRNA) gene, were found among four of the studied species (A. minutum, A. tamarense, A. catenella and A. pacificum). 3) In all strains investigated by FISH (A. minutum, A. tamarense, A. pacificum, A. catenella, A. andersonii and A. ostenfeldii), 5S rDNA gene arrays were separate from the nucleolar organizer region, which contains the genes for the large 45S pre-ribosomal RNA. 4) One to three 5S rDNA sites per haploid genome were detected, depending on the strains/species. Intraspecific variability in the number of 5S rDNA sites was determined among strains of A. minutum and A. pacificum. 5) 5S rDNA is a useful chromosomal marker of mitosis progression and can be employed to differentiate vegetative (haploid) vs. planozygotes (diploid) cells. Thus, the FISH probe (oligo-Dino5Smix5) developed in this study facilitates analyses of the diversity, cell cycle and life stages of the genus Alexandrium.
Collapse
Affiliation(s)
- Alfredo de Bustos
- Universidad de Alcalá (UAH), Dpto Biomedicina y Biotecnología, 28805 Alcalá de Henares, Madrid, Spain.
| | - Rosa I Figueroa
- Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Marta Sixto
- Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain; Campus do Mar, Facultad de Ciencias del Mar, Universidad de Vigo, 36311 Vigo, Spain.
| | - Isabel Bravo
- Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Ángeles Cuadrado
- Universidad de Alcalá (UAH), Dpto Biomedicina y Biotecnología, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
12
|
Degrandi TM, Gunski RJ, Garnero ADV, Oliveira EHCD, Kretschmer R, Souza MSD, Barcellos SA, Hass I. The distribution of 45S rDNA sites in bird chromosomes suggests multiple evolutionary histories. Genet Mol Biol 2020; 43:e20180331. [PMID: 32251493 PMCID: PMC7197993 DOI: 10.1590/1678-4685-gmb-2018-0331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/08/2019] [Indexed: 03/08/2023] Open
Abstract
The distribution of 45S rDNA cluster in avian karyotypes varies in different
aspects, such as position, number of bearer chromosomes, and bearers being
macro- or microchromosomes. The present study investigated the patterns of
variation in the 45S rDNA-bearer chromosomes of birds in order to understand the
evolutionary dynamics of the cluster configuration and its contribution to the
evolution of bird karyotypes. A total of 73 bird species were analyzed,
including both published data and species for which rDNA-FISH was conducted for
the first time. In most birds, the 45S rDNA clusters were located in a single
pair of microchromosomes. Hence, the location of 45S rDNA in macrochromosomes,
observed only in Neognathae species, seems to be a derived state, probably the
result of chromosomal fusion between microchromosomes and distinct
macrochromosomes. Additionally, the 45S rDNA was observed in multiple
microchromosomes in different branches of the bird phylogeny, suggesting
recurrence of dispersion processeses, such as duplications and translocations.
Overall, this study indicated that the redistribution of the 45S rDNA sites in
bird chromosomes followed different evolutionary trajectories with respect to
each lineage of the class Aves.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Kretschmer
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Biociências, Porto Alegre, RS, Brazil
| | | | | | - Iris Hass
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Curitiba, PR, Brazil
| |
Collapse
|
13
|
Sassi FDMC, Hatanaka T, de Moraes RLR, Toma GA, de Oliveira EA, Liehr T, Rab P, Bertollo LAC, Viana PF, Feldberg E, Nirchio M, Marinho MMF, Souza JFDSE, Cioffi MDB. An Insight into the Chromosomal Evolution of Lebiasinidae (Teleostei, Characiformes). Genes (Basel) 2020; 11:genes11040365. [PMID: 32231057 PMCID: PMC7254295 DOI: 10.3390/genes11040365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 11/29/2022] Open
Abstract
Lebiasinidae fishes have been historically neglected by cytogenetical studies. Here we present a genomic comparison in eleven Lebiasinidae species, in addition to a review of the ribosomal DNA sequences distribution in this family. With that, we develop ten sets of experiments in order to hybridize the genomic DNA of representative species from the genus Copeina, Copella, Nannostomus, and Pyrrhulina in metaphase plates of Lebiasina melanoguttata. Two major pathways on the chromosomal evolution of these species can be recognized: (i) conservation of 2n = 36 bi-armed chromosomes in Lebiasininae, as a basal condition, and (ii) high numeric and structural chromosomal rearrangements in Pyrrhulininae, with a notable tendency towards acrocentrization. The ribosomal DNA (rDNA) distribution also revealed a marked differentiation during the chromosomal evolution of Lebiasinidae, since both single and multiple sites, in addition to a wide range of chromosomal locations can be found. With some few exceptions, the terminal position of 18S rDNA appears as a common feature in Lebiasinidae-analyzed species. Altogether with Ctenoluciidae, this pattern can be considered a symplesiomorphism for both families. In addition to the specific repetitive DNA content that characterizes the genome of each particular species, Lebiasina also keeps inter-specific repetitive sequences, thus reinforcing its proposed basal condition in Lebiasinidae.
Collapse
Affiliation(s)
- Francisco de M. C. Sassi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| | - Renata Luiza R. de Moraes
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| | - Gustavo A. Toma
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| | | | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena 07747, Germany
- Correspondence: ; Tel.: +49-3641-9396850; Fax: +49-3641-9396852
| | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Luiz A. C. Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69067-375, Brazil; (P.F.V.); (E.F.); (J.F.d.S.e.S.)
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69067-375, Brazil; (P.F.V.); (E.F.); (J.F.d.S.e.S.)
| | - Mauro Nirchio
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala 070151, Ecuador;
| | - Manoela Maria F. Marinho
- Museu de Zoologia da Universidade de São Paulo (MZUSP), São Paulo, SP 04263-000, Brazil;
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB 58033-455, Brazil
| | - José Francisco de S. e Souza
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69067-375, Brazil; (P.F.V.); (E.F.); (J.F.d.S.e.S.)
| | - Marcelo de B. Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| |
Collapse
|
14
|
de Souza-Firmino TS, Alevi KCC, Itoyama MM. Chromosomal divergence and evolutionary inferences in Pentatomomorpha infraorder (Hemiptera, Heteroptera) based on the chromosomal location of ribosomal genes. PLoS One 2020; 15:e0228631. [PMID: 32017800 PMCID: PMC6999898 DOI: 10.1371/journal.pone.0228631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
With the objective of assisting in the understanding of the chromosome evolution of Pentatomomorpha and in the quest to understand how the genome organizes/reorganizes for the chromosomal position of the 45S rDNA in this infraorder, we analyzed 15 species (it has being 12 never studied before by FISH) of Pentatomomorpha with the probe of 18S rDNA. The mapping of the 45S gene in the Coreidae family demonstrated that the species presented markings on the autosomes, with the exception of Acanthocephala parensis and Leptoglossus gonagra that showed markers on m-chromosomes. Most species of the Pentatomidae family showed marking in the autosomes, except for two species that had 45S rDNA on X sex chromosome (Odmalea sp. and Graphosoma lineatum) and two that showed marking on the X and Y sex chromosomes. Species of the Pyrrhocoridae family showed 18S rDNA markers in autosomes, X chromosome as well as in Neo X. The Largidae and Scutelleridae families were represented by only one species that showed marking on the X sex chromosome and on a pair of autosomes, respectively. Based on this, we characterized the arrangement of 45S DNAr in the chromosomes of 12 new species of Heteroptera and discussed the main evolutionary events related to the genomic reorganization of these species during the events of chromosome and karyotype evolution in Pentatomomorpha infraorder.
Collapse
Affiliation(s)
- Tatiani Seni de Souza-Firmino
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Kaio Cesar Chaboli Alevi
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de Araraquara, Araraquara, SP, Brazil
| | - Mary Massumi Itoyama
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| |
Collapse
|
15
|
Silva BSML, Heringer P, Dias GB, Svartman M, Kuhn GCS. De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines. PLoS One 2019; 14:e0223466. [PMID: 31856171 PMCID: PMC6922343 DOI: 10.1371/journal.pone.0223466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023] Open
Abstract
Satellite DNAs are among the most abundant repetitive DNAs found in eukaryote genomes, where they participate in a variety of biological roles, from being components of important chromosome structures to gene regulation. Experimental methodologies used before the genomic era were insufficient, too laborious and time-consuming to recover the collection of all satDNAs from a genome. Today, the availability of whole sequenced genomes combined with the development of specific bioinformatic tools are expected to foster the identification of virtually all the "satellitome" of a particular species. While whole genome assemblies are important to obtain a global view of genome organization, most of them are incomplete and lack repetitive regions. We applied short-read sequencing and similarity clustering in order to perform a de novo identification of the most abundant satellite families in two Drosophila species from the virilis group: Drosophila virilis and D. americana, using the Tandem Repeat Analyzer (TAREAN) and RepeatExplorer pipelines. These species were chosen because they have been used as models to understand satDNA biology since the early 70's. We combined the computational approach with data from the literature and chromosome mapping to obtain an overview of the major tandem repeat sequences of these species. The fact that all of the abundant tandem repeats (TRs) we detected were previously identified in the literature allowed us to evaluate the efficiency of TAREAN in correctly identifying true satDNAs. Our results indicate that raw sequencing reads can be efficiently used to detect satDNAs, but that abundant tandem repeats present in dispersed arrays or associated with transposable elements are frequent false positives. We demonstrate that TAREAN with its parent method RepeatExplorer may be used as resources to detect tandem repeats associated with transposable elements and also to reveal families of dispersed tandem repeats.
Collapse
Affiliation(s)
- Bráulio S. M. L. Silva
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Heringer
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Guilherme B. Dias
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Gustavo C. S. Kuhn
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
16
|
Sassi FDMC, Oliveira EAD, Bertollo LAC, Nirchio M, Hatanaka T, Marinho MMF, Moreira-Filho O, Aroutiounian R, Liehr T, Al-Rikabi ABH, Cioffi MDB. Chromosomal Evolution and Evolutionary Relationships of Lebiasina Species (Characiformes, Lebiasinidae). Int J Mol Sci 2019; 20:E2944. [PMID: 31208145 PMCID: PMC6628269 DOI: 10.3390/ijms20122944] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 01/21/2023] Open
Abstract
We present the first cytogenetic data for Lebiasina bimaculata and L. melanoguttata with the aim of (1) investigating evolutionary events within Lebiasina and their relationships with other Lebiasinidae genera and (2) checking the evolutionary relationships between Lebiasinidae and Ctenoluciidae. Both species have a diploid number 2n = 36 with similar karyotypes and microsatellite distribution patterns but present contrasting C-positive heterochromatin and CMA3+ banding patterns. The remarkable interstitial series of C-positive heterochromatin occurring in L. melanoguttata is absent in L. bimaculata. Accordingly, L. bimaculata shows the ribosomal DNA sites as the only GC-rich (CMA3+) regions, while L. melanoguttata shows evidence of a clear intercalated CMA3+ banding pattern. In addition, the multiple 5S and 18S rDNA sites in L. melanogutatta contrast with single sites present in L. bimaculata. Comparative genomic hybridization (CGH) experiments also revealed a high level of genomic differentiation between both species. A polymorphic state of a conspicuous C-positive, CMA3+, and (CGG)n band was found only to occur in L. bimaculata females, and its possible relationship with a nascent sex chromosome system is discussed. Whole chromosome painting (WCP) and CGH experiments indicate that the Lebiasina species examined and Boulengerella maculata share similar chromosomal sequences, thus supporting the relatedness between them and the evolutionary relationships between the Lebiasinidae and Ctenoluciidae families.
Collapse
Affiliation(s)
| | - Ezequiel Aguiar de Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.
- Secretaria de Estado de Educação de Mato Grosso-SEDUC-MT, Cuiabá, MT 78049-909, Brazil.
| | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.
| | - Mauro Nirchio
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala 070151, Ecuador.
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.
| | | | - Orlando Moreira-Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Yerevan 0063, Armenia.
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena 07747, Germany.
| | | | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
17
|
Buleu OG, Jetybayev IY, Chobanov DP, Bugrov AG. Comparative analysis of C-heterochromatin, ribosomal and telomeric DNA markers in chromosomes of Pamphagidae grasshoppers from Morocco. COMPARATIVE CYTOGENETICS 2019; 13:61-74. [PMID: 30854170 PMCID: PMC6403196 DOI: 10.3897/compcytogen.v13i1.32039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/30/2019] [Indexed: 05/19/2023]
Abstract
The karyotypes and the localization of C-bands, clusters of ribosomal DNA and telomeric repeats of 10 species of the family Pamphagidae from Morocco are described for the first time. The species studied belong to the subfamilies Pamphaginae and Thrinchinae. All species have karyotypes consisting of 19 and 20 acrocentric chromosomes and X0/XX sex chromosome system in males and females, respectively (2n♂=19, NF=19; 2n♀=20, NF=20). Despite the karyotype conservatism, we revealed differences in the location and size of C-heterochromatin blocks and ribosomal DNA clusters. A comparative analysis of these differences shows that karyotype divergences in this group is connected not to structural chromosome rearrangements, but to the evolution of repetitive DNA.
Collapse
Affiliation(s)
- Olesya G. Buleu
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, RussiaInstitute of Systematics and Ecology of Animals, Russian Academy of SciencesNovosibirskRussia
- Institute of Systematics and Ecology of Animals, Russian Academy of Sciences, Siberian Branch, Frunze str. 11, 630091 Novosibirsk, RussiaNovosibirsk State UniversityNovosibirskRussia
| | - Ilyas Y. Jetybayev
- Institute of Systematics and Ecology of Animals, Russian Academy of Sciences, Siberian Branch, Frunze str. 11, 630091 Novosibirsk, RussiaNovosibirsk State UniversityNovosibirskRussia
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Pr. Lavrentjeva 10, 630090 Novosibirsk, RussiaInstitute of Cytology and Genetics, Russian Academy of SciencesNovosibirskRussia
| | - Dragan P. Chobanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Tsar Osvobodotel Boul. 1, Sofia 1000, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of SciencesSofiaBulgaria
| | - Alexander G. Bugrov
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, RussiaInstitute of Systematics and Ecology of Animals, Russian Academy of SciencesNovosibirskRussia
- Institute of Systematics and Ecology of Animals, Russian Academy of Sciences, Siberian Branch, Frunze str. 11, 630091 Novosibirsk, RussiaNovosibirsk State UniversityNovosibirskRussia
| |
Collapse
|
18
|
De novo assembly of a young Drosophila Y chromosome using single-molecule sequencing and chromatin conformation capture. PLoS Biol 2018; 16:e2006348. [PMID: 30059545 PMCID: PMC6117089 DOI: 10.1371/journal.pbio.2006348] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/30/2018] [Accepted: 07/04/2018] [Indexed: 01/27/2023] Open
Abstract
While short-read sequencing technology has resulted in a sharp increase in the number of species with genome assemblies, these assemblies are typically highly fragmented. Repeats pose the largest challenge for reference genome assembly, and pericentromeric regions and the repeat-rich Y chromosome are typically ignored from sequencing projects. Here, we assemble the genome of Drosophila miranda using long reads for contig formation, chromatin interaction maps for scaffolding and short reads, and optical mapping and bacterial artificial chromosome (BAC) clone sequencing for consensus validation. Our assembly recovers entire chromosomes and contains large fractions of repetitive DNA, including about 41.5 Mb of pericentromeric and telomeric regions, and >100 Mb of the recently formed highly repetitive neo-Y chromosome. While Y chromosome evolution is typically characterized by global sequence loss and shrinkage, the neo-Y increased in size by almost 3-fold because of the accumulation of repetitive sequences. Our high-quality assembly allows us to reconstruct the chromosomal events that have led to the unusual sex chromosome karyotype in D. miranda, including the independent de novo formation of a pair of sex chromosomes at two distinct time points, or the reversion of a former Y chromosome to an autosome.
Collapse
|
19
|
Kaur H, Gaba K. Cytogenetic characterization of three species of Antilochus (Hemiptera: Heteroptera: Pyrrhocoridae). THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma 2018; 127:141-150. [PMID: 29192338 PMCID: PMC5818627 DOI: 10.1007/s00412-017-0651-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/24/2022]
Abstract
Ribosomal DNA (rDNA) loci encoding 5S and 45S (18S-5.8S-28S) rRNAs are important components of eukaryotic chromosomes. Here, we set up the animal rDNA database containing cytogenetic information about these loci in 1343 animal species (264 families) collected from 542 publications. The data are based on in situ hybridisation studies (both radioactive and fluorescent) carried out in major groups of vertebrates (fish, reptiles, amphibians, birds, and mammals) and invertebrates (mostly insects and mollusks). The database is accessible online at www.animalrdnadatabase.com . The median number of 45S and 5S sites was close to two per diploid chromosome set for both rDNAs despite large variation (1-74 for 5S and 1-54 for 45S sites). No significant correlation between the number of 5S and 45S rDNA loci was observed, suggesting that their distribution and amplification across the chromosomes follow independent evolutionary trajectories. Each group, irrespective of taxonomic classification, contained rDNA sites at any chromosome location. However, the distal and pericentromeric positions were the most prevalent (> 75% karyotypes) for 45S loci, while the position of 5S loci was more variable. We also examined potential relationships between molecular attributes of rDNA (homogenisation and expression) and cytogenetic parameters such as rDNA positions, chromosome number, and morphology.
Collapse
Affiliation(s)
- Jana Sochorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265, Brno, Czech Republic
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Francisco Gálvez
- Bioscripts-Centro de Investigación y Desarrollo de Recursos Científicos, 41012, Sevilla, Andalusia, Spain
| | - Radka Symonová
- Faculty of Science, University of Hradec Kralove, Hradecka 1285, CZ-50003, Hradec Kralove, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265, Brno, Czech Republic.
| |
Collapse
|
21
|
Mahajan S, Bachtrog D. Convergent evolution of Y chromosome gene content in flies. Nat Commun 2017; 8:785. [PMID: 28978907 PMCID: PMC5627270 DOI: 10.1038/s41467-017-00653-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
Sex-chromosomes have formed repeatedly across Diptera from ordinary autosomes, and X-chromosomes mostly conserve their ancestral genes. Y-chromosomes are characterized by abundant gene-loss and an accumulation of repetitive DNA, yet the nature of the gene repertoire of fly Y-chromosomes is largely unknown. Here we trace gene-content evolution of Y-chromosomes across 22 Diptera species, using a subtraction pipeline that infers Y genes from male and female genome, and transcriptome data. Few genes remain on old Y-chromosomes, but the number of inferred Y-genes varies substantially between species. Young Y-chromosomes still show clear evidence of their autosomal origins, but most genes on old Y-chromosomes are not simply remnants of genes originally present on the proto-sex-chromosome that escaped degeneration, but instead were recruited secondarily from autosomes. Despite almost no overlap in Y-linked gene content in different species with independently formed sex-chromosomes, we find that Y-linked genes have evolved convergent gene functions associated with testis expression. Thus, male-specific selection appears as a dominant force shaping gene-content evolution of Y-chromosomes across fly species. While X-chromosome gene content tends to be conserved, Y-chromosome evolution is dynamic and difficult to reconstruct. Here, Mahajan and Bachtrog use a subtraction pipeline to identify Y-linked genes in 22 Diptera species, revealing patterns of Y-chromosome gene-content evolution.
Collapse
Affiliation(s)
- Shivani Mahajan
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94720, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94720, USA.
| |
Collapse
|
22
|
Comparative Analysis of Satellite DNA in the Drosophila melanogaster Species Complex. G3-GENES GENOMES GENETICS 2017; 7:693-704. [PMID: 28007840 PMCID: PMC5295612 DOI: 10.1534/g3.116.035352] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Satellite DNAs are highly repetitive sequences that account for the majority of constitutive heterochromatin in many eukaryotic genomes. It is widely recognized that sequences and locations of satellite DNAs are highly divergent even in closely related species, contributing to the hypothesis that satellite DNA differences may underlie speciation. However, due to its repetitive nature, the mapping of satellite DNAs has been mostly left out of recent genomics analyses, hampering the use of molecular genetics techniques to better understand their role in speciation and evolution. Satellite DNAs are most extensively and comprehensively mapped in Drosophila melanogaster, a species that is also an excellent model system with which to study speciation. Yet the lack of comprehensive knowledge regarding satellite DNA identity and location in its sibling species (D. simulans, D. mauritiana, and D. sechellia) has prevented the full utilization of D. melanogaster in studying speciation. To overcome this problem, we initiated the mapping of satellite DNAs on the genomes of the D. melanogaster species complex (D. melanogaster, D. simulans, D. mauritiana, and D. sechellia) using multi-color fluorescent in situ hybridization (FISH) probes. Our study confirms a striking divergence of satellite DNAs in the D. melanogaster species complex, even among the closely related species of the D. simulans clade (D. simulans, D. mauritiana, and D. sechellia), and suggests the presence of unidentified satellite sequences in these species.
Collapse
|
23
|
Hernández-Roldán JL, Dapporto L, Dincă V, Vicente JC, Hornett EA, Šíchová J, Lukhtanov VA, Talavera G, Vila R. Integrative analyses unveil speciation linked to host plant shift inSpialiabutterflies. Mol Ecol 2016; 25:4267-84. [DOI: 10.1111/mec.13756] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 06/25/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Juan L. Hernández-Roldán
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Departamento de Biología (Zoología); Facultad de Ciencias de la Universidad Autónoma de Madrid; C/ Darwin 2 E-28049 Madrid Spain
| | - Leonardo Dapporto
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Department of Biology; University of Florence; Via Madonna del Piano 6 50019 Sesto Fiorentino FI Italy
| | - Vlad Dincă
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Biodiversity Institute of Ontario; University of Guelph; Guelph Ontario Canada N1G 2W1
| | | | - Emily A. Hornett
- Department of Zoology; University of Cambridge; Cambridge CB2 3EJ UK
| | - Jindra Šíchová
- Institute of Entomology; Biology Centre ASCR; 370 05 České Budějovice Czech Republic
| | - Vladimir A. Lukhtanov
- Department of Karyosystematics; Zoological Institute of Russian Academy of Sciences; Universitetskaya nab. 1 199034 St. Petersburg Russia
- Department of Entomology; St. Petersburg State University; Universitetskaya nab. 7/9 199034 St. Petersburg Russia
| | - Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; Cambridge MA 02138 USA
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
| |
Collapse
|
24
|
Pita S, Lorite P, Nattero J, Galvão C, Alevi KCC, Teves SC, Azeredo-Oliveira MTV, Panzera F. New arrangements on several species subcomplexes of Triatoma genus based on the chromosomal position of ribosomal genes (Hemiptera - Triatominae). INFECTION GENETICS AND EVOLUTION 2016; 43:225-31. [PMID: 27245153 DOI: 10.1016/j.meegid.2016.05.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/28/2022]
Abstract
The hemipteran subfamily Triatominae includes 150 blood-sucking species, vectors of Chagas disease. By far the most specious genus is Triatoma, assembled in groups, complexes and subcomplexes based on morphological similarities, geographic distribution and genetic data. However, many molecular studies questioned the species integration of several subcomplexes as monophyletic units. In triatomines, chromosomal position of major ribosomal DNA (rDNA) loci is extremely variable but seems to be species-specific and an evolutionary conserved genetic trait, so that closely related species tend to have ribosomal clusters in the same chromosomal location. Considering that the autosomal position as the ancestral character for all heteropteran species, including triatomines, we suggest that the movement of rDNA loci from autosomes to sex chromosomes rapidly established reproductive barriers between divergent lineages. We proposed that the rDNA translocation from the autosomes to the sex chromosomes restrict reproductive compatibility and eventually promote speciation processes. We analyzed the chromosomal position of 45S rDNA clusters in almost all species of the matogrossensis, rubrovaria, maculata and sordida subcomplexes. The fluorescent in situ hybridization results are discussed considering the available genetic data and we proposed new arrangements in the species that constitute each one of these subcomplexes.
Collapse
Affiliation(s)
- Sebastián Pita
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pedro Lorite
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Julieta Nattero
- Cátedra de Introducción a la Biología, Facultad de Ciencias Exactas Físicas y Naturales, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Universidad Nacional de Córdoba (UNC-CONICET), Córdoba, Argentina
| | - Cleber Galvão
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Kaio C C Alevi
- Laboratorio de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho" (IBILCE-UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Simone C Teves
- Laboratório Interdisciplinar de Vigilância Entomológica em Diptera e Hemiptera (LIVEDIH), Instituto Oswaldo Cruz/Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria T V Azeredo-Oliveira
- Laboratorio de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho" (IBILCE-UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Francisco Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
25
|
Zhang ZT, Yang SQ, Li ZA, Zhang YX, Wang YZ, Cheng CY, Li J, Chen JF, Lou QF. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Genome 2016; 59:449-57. [PMID: 27334092 DOI: 10.1139/gen-2015-0207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosomal DNAs are useful cytogenetic markers for chromosome analysis. Studies investigating site numbers and distributions of rDNAs have provided important information for elucidating genome organization and chromosomal relationships of many species by fluorescence in situ hybridization. But relevant studies are scarce for species of the genus Cucumis, especially in wild species. In the present study, FISH was conducted to investigate the organization of 45S and 5S rDNA among 20 Cucumis accessions, including cultivars and wild accessions. Our results showed that the number of 45S rDNA sites varied from one to five pairs in different accessions, and most of these sites are located at the terminal regions of chromosomes. Interestingly, up to five pairs of 45S rDNA sites were observed in C. sativus var. sativus, the species which has the lowest chromosome number, i.e., 2n = 14. Only one pair of 5S rDNA sites was detected in all accessions, except for C. heptadactylus, C. sp, and C. spp that had two pairs of 5S rDNA sites. The distributions of 5S rDNA sites showed more variation than 45S rDNA sites. The phylogenetic analysis in this study showed that 45S and 5S rDNA have contrasting evolutionary patterns. We find that 5S rDNA has a polyploidization-related tendency towards the terminal location from an interstitial location but maintains a conserved site number, whereas the 45S rDNA showed a trend of increasing site number but a relatively conserved location.
Collapse
Affiliation(s)
- Zhen-Tao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Shu-Qiong Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Zi-Ang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Yun-Xia Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Yun-Zhu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Chun-Yan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Jin-Feng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Qun-Feng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| |
Collapse
|
26
|
Cardoso AL, Ready JS, Pieczarka JC, Milhomem SSR, de Figueiredo-Ready WMB, Silva FHR, Nagamachi CY. Chromosomal Variability Between Populations of Electrophorus electricus Gill, 1864 (Pisces: Gymnotiformes: Gymnotidae). Zebrafish 2015; 12:440-7. [PMID: 25695141 DOI: 10.1089/zeb.2014.1059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The electric eel, Electrophorus electricus, the only species of its genus, has a wide distribution in the Amazon and Orinoco drainages. There is little previous information regarding the population variation in E. electricus, with only basic karyotype data from two populations (Amazon and Araguaia Rivers). Karyotypic description and analysis of CO1 barcode sequences were performed for E. electricus from three localities (Caripetuba, Irituia, and Maicuru Rivers). All samples share the 2n=52 (42 m-sm [meta-submetacentric] +10 st-a [subtelo-acrocentric]) with previously studied material. However, the Maicuru River samples differ from the other populations, as they have B chromosomes. The distribution of noncentromeric constitutive heterochromatin between samples is relatively divergent. All samples analyzed present the Nucleolar Organizer Region (NOR) located in a single chromosome pair. In the samples from Caripetuba, NORs were colocalized with a heterochromatin block, whereas the NOR was flanked by heterochromatin in Maicuru River samples and pericentromeric heterochromatin adjacent NOR was found in Irituia River samples. Alignment of CO1 barcode sequences indicated no significant differentiation between the samples analyzed. Results suggest that karyotypic differences between samples from the Caripetuba, Irituia, and Amazon Rivers represent chromosome polymorphisms. However, differences between the samples from the Maicuru and Araguaia Rivers and the remaining populations could represent interpopulation differentiation, which has not had time to accrue divergence at the CO1 gene level.
Collapse
Affiliation(s)
- Adauto Lima Cardoso
- 1 Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará-Campus do Guamá , Belém, Pará, Brazil
| | - Jonathan Stuart Ready
- 1 Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará-Campus do Guamá , Belém, Pará, Brazil
| | - Julio Cesar Pieczarka
- 1 Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará-Campus do Guamá , Belém, Pará, Brazil .,2 Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Lago Sul, Brasília, DF, Brazil
| | - Susana Suely Rodrigues Milhomem
- 1 Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará-Campus do Guamá , Belém, Pará, Brazil
| | | | - Fernando Henrique Ramos Silva
- 1 Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará-Campus do Guamá , Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- 1 Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará-Campus do Guamá , Belém, Pará, Brazil .,2 Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Lago Sul, Brasília, DF, Brazil
| |
Collapse
|
27
|
Grabowska-Joachimiak A, Kula A, Książczyk T, Chojnicka J, Sliwinska E, Joachimiak AJ. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system. Chromosome Res 2014; 23:187-97. [PMID: 25394583 PMCID: PMC4430600 DOI: 10.1007/s10577-014-9446-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 11/28/2022]
Abstract
Rumex hastatulus is the North American endemic dioecious plant with heteromorphic sex chromosomes. It is differentiated into two chromosomal races: Texas (T) race characterised by a simple XX/XY sex chromosome system and North Carolina (NC) race with a polymorphic XX/XY1Y2 sex chromosome system. The gross karyotype morphology in NC race resembles the derived type, but chromosomal changes that occurred during its evolution are poorly understood. Our C-banding/DAPI and fluorescence in situ hybridization (FISH) experiments demonstrated that Y chromosomes of both races are enriched in DAPI-positive sequences and that the emergence of polymorphic sex chromosome system was accompanied by the break of ancestral Y chromosome and switch in the localization of 5S rDNA, from autosomes to sex chromosomes (X and Y2). Two contrasting domains were detected within North Carolina Y chromosomes: the older, highly heterochromatinised, inherited from the original Y chromosome and the younger, euchromatic, representing translocated autosomal material. The flow-cytometric DNA estimation showed ∼3.5 % genome downsizing in the North Carolina race. Our results are in contradiction to earlier reports on the lack of heterochromatin within Y chromosomes of this species and enable unambiguous identification of autosomes involved in the autosome-heterosome translocation, providing useful chromosome landmarks for further studies on the karyotype and sex chromosome differentiation in this species.
Collapse
|
28
|
Evolutionary dynamics of rDNA clusters in chromosomes of five clam species belonging to the family Veneridae (Mollusca, Bivalvia). BIOMED RESEARCH INTERNATIONAL 2014; 2014:754012. [PMID: 24967400 PMCID: PMC4054880 DOI: 10.1155/2014/754012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 11/26/2022]
Abstract
The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescent in situ hybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata, Ruditapes philippinarum, Ruditapes decussatus, Dosinia exoleta, and Venus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae. While a single major rDNA cluster was found in each of the five species, the number of 5S rDNA clusters showed high interspecies variation. Major rDNA was either subterminal to the short arms or intercalary to the long arms of metacentric or submetacentric chromosomes, whereas minor rDNA signals showed higher variability. Major and minor rDNAs map to different chromosome pairs in all species, but in R. decussatus one of the minor rDNA gene clusters and the major rDNA cluster were located in the same position on a single chromosome pair. This interspersion of both sequences was confirmed by fiber FISH. Telomeric signals appeared at both ends of every chromosome in all species. FISH mapping data are discussed in relation to the molecular phylogenetic trees currently available for Veneridae.
Collapse
|
29
|
Pita S, Panzera F, Ferrandis I, Galvão C, Gómez-Palacio A, Panzera Y. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes. Mem Inst Oswaldo Cruz 2014; 108:S0074-02762013000300376. [PMID: 23778665 DOI: 10.1590/s0074-02762013000300017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/07/2013] [Indexed: 11/22/2022] Open
Abstract
In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.
Collapse
Affiliation(s)
- Sebastián Pita
- Universidad de la República, Facultad de Ciencias, Sección Genética Evolutiva, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
30
|
Vicoso B, Bachtrog D. Reversal of an ancient sex chromosome to an autosome in Drosophila. Nature 2013; 499:332-5. [PMID: 23792562 PMCID: PMC4120283 DOI: 10.1038/nature12235] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 04/30/2013] [Indexed: 01/14/2023]
Abstract
Although transitions of sex-determination mechanisms are frequent in species with homomorphic sex chromosomes, heteromorphic sex chromosomes are thought to represent a terminal evolutionary stage owing to chromosome-specific adaptations such as dosage compensation or an accumulation of sex-specific mutations. Here we show that an autosome of Drosophila, the dot chromosome, was ancestrally a differentiated X chromosome. We analyse the whole genome of true fruitflies (Tephritidae), flesh flies (Sarcophagidae) and soldier flies (Stratiomyidae) to show that genes located on the dot chromosome of Drosophila are X-linked in outgroup species, whereas Drosophila X-linked genes are autosomal. We date this chromosomal transition to early drosophilid evolution by sequencing the genome of other Drosophilidae. Our results reveal several puzzling aspects of Drosophila dot chromosome biology to be possible remnants of its former life as a sex chromosome, such as its minor feminizing role in sex determination or its targeting by a chromosome-specific regulatory mechanism. We also show that patterns of biased gene expression of the dot chromosome during early embryogenesis, oogenesis and spermatogenesis resemble that of the current X chromosome. Thus, although sex chromosomes are not necessarily evolutionary end points and can revert back to an autosomal inheritance, the highly specialized genome architecture of this former X chromosome suggests that severe fitness costs must be overcome for such a turnover to occur.
Collapse
Affiliation(s)
- Beatriz Vicoso
- Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
31
|
Šíchová J, Nguyen P, Dalíková M, Marec F. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS One 2013; 8:e64520. [PMID: 23717623 PMCID: PMC3663796 DOI: 10.1371/journal.pone.0064520] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/15/2013] [Indexed: 01/03/2023] Open
Abstract
Moths of the family Tortricidae constitute one of the major microlepidopteran groups in terms of species richness and economic importance. Yet, despite their overall significance, our knowledge of their genome organization is very limited. In order to understand karyotype evolution in the family Tortricidae, we performed detailed cytogenetic analysis of Grapholita molesta, G. funebrana, Lobesia botrana, and Eupoecilia ambiguella, representatives of two main tortricid subfamilies, Olethreutinae and Tortricinae. Besides standard cytogenetic methods, we used fluorescence in situ hybridization for mapping of major rRNA and histone gene clusters and comparative genomic hybridization to determine the level of molecular differentiation of the W and Z sex chromosomes. Our results in combination with available data in the codling moth, Cydia pomonella, and other tortricids allow us a comprehensive reconstruction of chromosomal evolution across the family Tortricidae. The emerging picture is that the karyotype of a common ancestor of Tortricinae and Olethreutinae differentiated from the ancestral lepidopteran chromosome print of n = 31 by a sex chromosome-autosome fusion. This rearrangement resulted in a large neo-sex chromosome pair and a karyotype with n = 30 conserved in most Tortricinae species, which was further reduced to n = 28 observed in Olethreutinae. Comparison of the tortricid neo-W chromosomes showed differences in their structure and composition presumably reflecting stochasticity of molecular degeneration of the autosomal part of the neo-W chromosome. Our analysis also revealed conservative pattern of the histone distribution, which is in contrast with high rDNA mobility. Despite the dynamic evolution of rDNA, we can infer a single NOR-chromosome pair as an ancestral state not only in tortricids but probably in all Lepidoptera. The results greatly expand our knowledge of the genome architecture in tortricids, but also contribute to the understanding of chromosomal evolution in Lepidoptera in general.
Collapse
Affiliation(s)
- Jindra Šíchová
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Nguyen
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martina Dalíková
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - František Marec
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- * E-mail:
| |
Collapse
|
32
|
Drosopoulou E, Nakou I, Síchová J, Kubíčková S, Marec F, Mavragani-Tsipidou P. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae). Genetica 2012; 140:169-80. [PMID: 22825842 DOI: 10.1007/s10709-012-9668-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
The olive fruit fly, Bactrocera oleae, has a diploid set of 2n = 12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
33
|
Panzera Y, Pita S, Ferreiro MJ, Ferrandis I, Lages C, Pérez R, Silva AE, Guerra M, Panzera F. High Dynamics of rDNA Cluster Location in Kissing Bug Holocentric Chromosomes (Triatominae, Heteroptera). Cytogenet Genome Res 2012; 138:56-67. [PMID: 22907389 DOI: 10.1159/000341888] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2012] [Indexed: 11/19/2022] Open
Affiliation(s)
- Y Panzera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Classical and molecular cytogenetics of Khawia sinensis (Cestoda: Caryophyllidea), invasive parasite of carp, Cyprinus carpio. Parasitol Res 2011; 110:1937-44. [DOI: 10.1007/s00436-011-2720-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
|
35
|
|
36
|
Yoshido A, Yasukochi Y, Sahara K. Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:370-7. [PMID: 21396446 DOI: 10.1016/j.ibmb.2011.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 05/08/2023]
Abstract
We performed gene-based comparative FISH mapping between a wild silkmoth, Samia cynthia ssp. with a low number of chromosomes (2n=25-28) and the model species, Bombyx mori (2n=56), in order to identify the genomic components that make up the chromosomes in a low-number karyotype. Mapping of 64 fosmid probes containing orthologs of B. mori genes revealed that the homologues of either two or four B. mori chromosomes constitute the S. c. ricini (Vietnam population, 2n=27♀/28♂, Z0/ZZ) autosomes. Where tested, even the gene order was conserved between S. c. ricini and B. mori. This was also true for the originally autosomal parts of the neo-sex chromosomes in S. c. walkeri (Sapporo population, 2n=26♀/26♂, neo-Wneo-Z/neo-Zneo-Z) and S. cynthia subsp. indet. (Nagano population, 2n=25♀/26♂, neo-WZ₁Z₂/Z₁Z₁Z₂Z₂). The results are evidence for an internal stability of lepidopteran chromosomes even when all autosomes had undergone fusion processes to form a low-number karyotype.
Collapse
Affiliation(s)
- Atsuo Yoshido
- Laboratory of Applied Molecular Entomology, Graduate School of Agriculture, Hokkaido University, N9, W9, Kita-ku, Sapporo 060-8589, Japan.
| | | | | |
Collapse
|
37
|
Poggio MG, Bressa MJ, Papeschi AG. Male meiosis, heterochromatin characterization and chromosomal location of rDNA in Microtomus lunifer (Berg, 1900) (Hemiptera: Reduviidae: Hammacerinae). COMPARATIVE CYTOGENETICS 2011; 5:1-22. [PMID: 24260616 PMCID: PMC3833732 DOI: 10.3897/compcytogen.v5i1.1143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/16/2011] [Indexed: 05/12/2023]
Abstract
In the present work, we analysed the male meiosis, the content and distribution of heterochromatin and the number and location of nucleolus organizing regions in Microtomus lunifer (Berg, 1900) by means of standard technique, C- and fluorescent bandings, and fluorescent in situ hybridization with an 18S rDNA probe. This species is the second one cytogenetically analysed within the Hammacerinae. Its male diploid chromosome number is 31 (2n=28+X1X2Y), including a minute pair of m-chromosomes. The diploid autosomal number and the presence of m-chromosomes are similar to those reported in Microtomus conspicillaris (Drury, 1782) (2n=28+XY). However, Microtomus lunifer has a multiple sex chromosome system X1X2Y (male) that could have originated by fragmentation of the ancestral X chromosome. Taking into account that Microtomus conspicillaris and Microtomus lunifer are the only two species within Reduviidae that possess m-chromosomes, the presence of this pair could be a synapomorphy for the species of this genus. C- and fluorescent bandings showed that the amount of heterochromatin in Microtomus lunifer was small, and only a small CMA3 bright band was observed in the largest autosomal pair at one terminal region. FISH with the 18S rDNA probe demonstrated that ribosomal genes were terminally placed on the largest autosomal pair. Our present results led us to propose that the location of rDNA genes could be associated with variants of the sex chromosome systems in relation with a kind of the sex chromosome systems within this family. Furthermore, the terminal location of NOR in the largest autosomal pair allowed us to use it as a chromosome marker and, thus, to infer that the kinetic activity of both ends is not a random process, and there is an inversion of this activity.
Collapse
Affiliation(s)
- María Georgina Poggio
- />Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes 2160, C1428EGA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - María José Bressa
- />Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes 2160, C1428EGA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alba Graciela Papeschi
- />Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes 2160, C1428EGA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
38
|
Roehrdanz R, Heilmann L, Senechal P, Sears S, Evenson P. Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array. INSECT MOLECULAR BIOLOGY 2010; 19:463-471. [PMID: 20456508 DOI: 10.1111/j.1365-2583.2010.01006.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and the clusters are tandemly repeated. Ribosomal DNA contains a cluster of the rRNA sequences 18S, 5.8S and 28S. The rRNA genes are separated by the spacers ITS1, ITS2 and IGS. This cluster is also tandemly repeated. We found that the ribosomal RNA repeat unit of at least two species of Anthonomine weevils, Anthonomus grandis and Anthonomus texanus (Coleoptera: Curculionidae), is interspersed with a block containing the histone gene quintet. The histone genes are situated between the rRNA 18S and 28S genes in what is known as the intergenic spacer region (IGS). The complete reiterated Anthonomus grandis histone-ribosomal sequence is 16,248 bp.
Collapse
Affiliation(s)
- R Roehrdanz
- Biosciences Research Laboratory, Red River Valley Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Fargo, ND 58105, USA.
| | | | | | | | | |
Collapse
|
39
|
REBAGLIATI PJ, MOLA LM. Kinetic activity of the sex chromosomes of Mormidea paupercula (Heteroptera: Pentatomidae). EUROPEAN JOURNAL OF ENTOMOLOGY 2010. [DOI: 10.14411/eje.2010.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
Larracuente AM, Noor MAF, Clark AG. Translocation of Y-linked genes to the dot chromosome in Drosophila pseudoobscura. Mol Biol Evol 2010; 27:1612-20. [PMID: 20147437 DOI: 10.1093/molbev/msq045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the most striking cases of sex chromosome reorganization in Drosophila occurred in the lineage ancestral to Drosophila pseudoobscura, where there was a translocation of Y-linked genes to an autosome. These genes went from being present only in males, never recombining, and having an effective population size of 0.5N to a state of autosomal linkage, where they are passed through both sexes, may recombine, and their effective population size has quadrupled. These genes appear to be functional, and they underwent a drastic reduction in intron size after the translocation. A Y-autosome translocation may pose problems in meiosis if the rDNA locus responsible for X-Y pairing had also moved to an autosome. In this study, we demonstrate that the Y-autosome translocation moved Y-linked genes onto the dot chromosome, a small, mainly heterochromatic autosome with some sex chromosome-like properties. The rDNA repeats occur exclusively on the X chromosome in D. pseudoobscura, but we found that the new Y chromosome of this species harbors four clusters bearing only the intergenic spacer region (IGS) of the rDNA repeats. This arrangement appears analogous to the situation in Drosophila simulans, where X-rDNA to Y-IGS pairing could be responsible for X-Y chromosome pairing. We postulate that the nascent D. pseudoobscura Y chromosome acquired and amplified copies of the IGS, suggesting a potential mechanism for X-Y pairing in D. pseudoobscura.
Collapse
Affiliation(s)
- Amanda M Larracuente
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| | | | | |
Collapse
|
41
|
Orosová M, Marec F, Oros M, Xi BW, Scholz T. A chromosome study and localization of 18S rDNA in Khawia saurogobii (Cestoda: Caryophyllidea). Parasitol Res 2009; 106:587-93. [DOI: 10.1007/s00436-009-1702-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
42
|
Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 2009; 138:343-354. [PMID: 19921441 DOI: 10.1007/s10709-009-9424-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/03/2009] [Indexed: 01/05/2023]
|
43
|
Extensive conserved synteny of genes between the karyotypes of Manduca sexta and Bombyx mori revealed by BAC-FISH mapping. PLoS One 2009; 4:e7465. [PMID: 19829706 PMCID: PMC2759293 DOI: 10.1371/journal.pone.0007465] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 09/23/2009] [Indexed: 12/02/2022] Open
Abstract
Background Genome sequencing projects have been completed for several species representing four highly diverged holometabolous insect orders, Diptera, Hymenoptera, Coleoptera, and Lepidoptera. The striking evolutionary diversity of insects argues a need for efficient methods to apply genome information from such models to genetically uncharacterized species. Constructing conserved synteny maps plays a crucial role in this task. Here, we demonstrate the use of fluorescence in situ hybridization with bacterial artificial chromosome probes as a powerful tool for physical mapping of genes and comparative genome analysis in Lepidoptera, which have numerous and morphologically uniform holokinetic chromosomes. Methodology/Principal Findings We isolated 214 clones containing 159 orthologs of well conserved single-copy genes of a sequenced lepidopteran model, the silkworm, Bombyx mori, from a BAC library of a sphingid with an unexplored genome, the tobacco hornworm, Manduca sexta. We then constructed a BAC-FISH karyotype identifying all 28 chromosomes of M. sexta by mapping 124 loci using the corresponding BAC clones. BAC probes from three M. sexta chromosomes also generated clear signals on the corresponding chromosomes of the convolvulus hawk moth, Agrius convolvuli, which belongs to the same subfamily, Sphinginae, as M. sexta. Conclusions/Significance Comparison of the M. sexta BAC physical map with the linkage map and genome sequence of B. mori pointed to extensive conserved synteny including conserved gene order in most chromosomes. Only a few rearrangements, including three inversions, three translocations, and two fission/fusion events were estimated to have occurred after the divergence of Bombycidae and Sphingidae. These results add to accumulating evidence for the stability of lepidopteran genomes. Generating signals on A. convolvuli chromosomes using heterologous M. sexta probes demonstrated that BAC-FISH with orthologous sequences can be used for karyotyping a wide range of related and genetically uncharacterized species, significantly extending the ability to develop synteny maps for comparative and functional genomics.
Collapse
|
44
|
Genetics and lineage-specific evolution of a lethal hybrid incompatibility between Drosophila mauritiana and its sibling species. Genetics 2009; 181:1545-55. [PMID: 19189951 DOI: 10.1534/genetics.108.098392] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Dobzhansky-Muller model posits that intrinsic postzygotic reproductive isolation--the sterility or lethality of species hybrids--results from the evolution of incompatible epistatic interactions between species: favorable or neutral alleles that become fixed in the genetic background of one species can cause sterility or lethality in the genetic background of another species. The kind of hybrid incompatibility that evolves between two species, however, depends on the particular evolutionary history of the causative substitutions. An allele that is functionally derived in one species can be incompatible with an allele that is functionally derived in the other species (a derived-derived hybrid incompatibility). But an allele that is functionally derived in one species can also be incompatible with an allele that has retained the ancestral state in the other species (a derived-ancestral hybrid incompatibility). The relative abundance of such derived-derived vs. derived-ancestral hybrid incompatibilities is unknown. Here, we characterize the genetics and evolutionary history of a lethal hybrid incompatibility between Drosophila mauritiana and its two sibling species, D. sechellia and D. simulans. We show that a hybrid lethality factor(s) in the pericentric heterochromatin of the D. mauritiana X chromosome, hybrid lethal on the X (hlx), is incompatible with a factor(s) in the same small autosomal region from both D. sechellia and D. simulans, Suppressor of hlx [Su(hlx)]. By combining genetic and phylogenetic information, we infer that hlx-Su(hlx) hybrid lethality is likely caused by a derived-ancestral incompatibility, a hypothesis that can be tested directly when the genes are identified.
Collapse
|
45
|
Abstract
Drosophila ananassae Doleschall is a cosmopolitan and domestic species. It occupies a unique status among Drosophila species due to certain peculiarities in its genetic behaviour and is of common occurrence in India. Quantitative genetics of sexual and non-sexual traits provided evidence for genetic control of these traits. D. ananassae exhibits high level of chromosomal polymorphism in its natural populations. Indian natural populations of D. ananassae show geographic differentiation of inversion polymorphism due to their adaptation to varying environments and natural selection operates to maintain three cosmopolitan inversions. Populations do not show divergence on temporal scale, an evidence for rigid polymorphism. D. ananassae populations show substantial degree of sub-structuring and exist as semi-isolated populations. Gene flow is low despite co-transportation with human goods. There is persistence of cosmopolitan inversions when populations are transferred to laboratory conditions, which suggests that heterotic buffering is associated with these inversions in D. ananassae. Populations collected from similar environmental conditions that initially show high degree of genetic similarity have diverged to different degrees in laboratory environment. This randomness could be due to genetic drift. Interracial hybridization does not lead to breakdown of heterosis associated with cosmopolitan inversions, which shows that there is lack of genetic co-adaptation in D. ananassae. Linkage disequilibrium between independent inversions in laboratory populations has often been observed, which is likely to be due to suppression of crossing-over and random genetic drift. No evidence for chromosomal interactions has been found in natural and laboratory populations of D. ananassae. This strengthens the previous suggestion that there is lack of genetic co-adaptation in D. ananassae.
Collapse
|
46
|
Role of recombination in the long-term retention of transposable elements in rRNA gene loci. Genetics 2008; 180:1617-26. [PMID: 18791229 DOI: 10.1534/genetics.108.093716] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple theoretical studies have focused on the concerted evolution of the tandemly repeated rRNA genes of eukaryotes; however, these studies did not consider the transposable elements that interrupt the rRNA genes in many organisms. For example, in insects, R1 and R2 have been stable components of the rDNA locus for hundreds of millions of years, suggesting either that they have minimal effects on fitness or that they are unable to be eliminated. We constructed a simulation model of recombination and retrotransposition within the rDNA locus that addresses the population dynamics and fitness consequences associated with R1 and R2 insertions. The simulations suggest that even without R1 and R2 retrotransposition the frequent sister chromatid exchanges postulated from various empirical studies will, in combination with selection, generate rDNA loci that are much larger than those needed for transcription. These large loci enable the host to tolerate high levels of R1 and R2 insertions with little fitness consequences. Changes in retrotransposition rates are likely to be accommodated by adjustments in sister chromatid exchange (SCE) rate, rather than by direct selection on the number of uninserted rDNA units. These simulations suggest that the rDNA locus serves as an ideal niche for the long-term survival of transposable elements.
Collapse
|
47
|
Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM, O'Grady PM, Rohde C, Valente VLS, Aguadé M, Anderson WW, Edwards K, Garcia ACL, Goodman J, Hartigan J, Kataoka E, Lapoint RT, Lozovsky ER, Machado CA, Noor MAF, Papaceit M, Reed LK, Richards S, Rieger TT, Russo SM, Sato H, Segarra C, Smith DR, Smith TF, Strelets V, Tobari YN, Tomimura Y, Wasserman M, Watts T, Wilson R, Yoshida K, Markow TA, Gelbart WM, Kaufman TC. Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 2008; 179:1601-55. [PMID: 18622037 PMCID: PMC2475758 DOI: 10.1534/genetics.107.086074] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 03/13/2008] [Indexed: 11/18/2022] Open
Abstract
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.
Collapse
Affiliation(s)
- Stephen W Schaeffer
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stage DE, Eickbush TH. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res 2007; 17:1888-97. [PMID: 17989256 DOI: 10.1101/gr.6376807] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Concerted evolution maintains at near identity the hundreds of tandemly arrayed ribosomal RNA (rRNA) genes and their spacers present in any eukaryote. Few comprehensive attempts have been made to directly measure the identity between the rDNA units. We used the original sequencing reads (trace archives) available through the whole-genome shotgun sequencing projects of 12 Drosophila species to locate the sequence variants within the 7.8-8.2 kb transcribed portions of the rDNA units. Three to 18 variants were identified in >3% of the total rDNA units from 11 species. Species where the rDNA units are present on multiple chromosomes exhibited only minor increases in sequence variation. Variants were 10-20 times more abundant in the noncoding compared with the coding regions of the rDNA unit. Within the coding regions, variants were three to eight times more abundant in the expansion compared with the conserved core regions. The distribution of variants was largely consistent with models of concerted evolution in which there is uniform recombination across the transcribed portion of the unit with the frequency of standing variants dependent upon the selection pressure to preserve that sequence. However, the 28S gene was found to contain fewer variants than the 18S gene despite evolving 2.5-fold faster. We postulate that the fewer variants in the 28S gene is due to localized gene conversion or DNA repair triggered by the activity of retrotransposable elements that are specialized for insertion into the 28S genes of these species.
Collapse
Affiliation(s)
- Deborah E Stage
- University of Rochester, Department of Biology, Rochester, New York 14627, USA
| | | |
Collapse
|
49
|
Galián J, Proença SJR, Vogler AP. Evolutionary dynamics of autosomal-heterosomal rearrangements in a multiple-X chromosome system of tiger beetles (Cicindelidae). BMC Evol Biol 2007; 7:158. [PMID: 17822542 PMCID: PMC2034538 DOI: 10.1186/1471-2148-7-158] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 09/06/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic systems involving multiple X chromosomes have arisen repeatedly in sexually reproducing animals. Tiger beetles (Cicindelidae) exhibit a phylogenetically ancient multiple-X system typically consisting of 2-4 X chromosomes and a single Y. Because recombination rates are suppressed in sex chromosomes, changes in their numbers and movement of genes between sex chromosomes and autosomes, could have important consequences for gene evolution and rates of speciation induced by these rearrangements. However, it remains unclear how frequent these rearrangements are and which genes are affected. RESULTS Karyotype analyses were performed for a total of 26 North American species in the highly diverse genus Cicindela, tallying the number of X chromosomes and autosomes during mitosis and meiosis. The chromosomal location of the ribosomal rRNA gene cluster (rDNA) was used as an easily scored marker for genic turnover between sex chromosomes or autosomes. The findings were assessed in the light of a recent phylogenetic analysis of the group. While autosome numbers remained constant throughout the lineage, sex chromosome numbers varied. The predominant karyotype was n = 9+X1X2X3Y which was also inferred to be the ancestral state, with several changes to X1X2Y and X1X2X3X4Y confined to phylogenetically isolated species. The total (haploid) numbers of rDNA clusters varied between two, three, and six (in one exceptional case), and clusters were localized either on the autosomes, the sex chromosomes, or both. Transitions in rDNA localization and in numbers of rDNA clusters varied independently of each other, and also independently of changes in sex chromosome numbers. CONCLUSION Changes of X chromosome numbers and transposition of the rDNA locus (and presumably other genes) between autosomes and sex chromosomes in Cicindela occur frequently, and are likely to be the result of fusions or fissions between X chromosomes, rather than between sex chromosomes and autosomes. Yet, translocations between sex chromosomes and autosomes appear to be common, as indicated by the patterns of rDNA localization. Rearranged karyotypes involving multiple sex chromosomes would reduce recombination, and hybrid dysgenesis selects against polymorphic populations. Hence, the high frequency of these rearrangements could be a cause of the great species diversity in Cicindela.
Collapse
Affiliation(s)
- José Galián
- Área de Biología Animal, Departamento de Zoología y Antropología Física, Universidad de Murcia, Apdo 4021, Murcia 30071, Spain
| | - Sónia JR Proença
- Centro de Biologia Ambiental/Departamento de Zoologia e Antropologia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2 – 3° Piso, 1700 Lisboa, Portugal
| | - Alfried P Vogler
- Department of Entomology, Natural History Museum, London, SW7 5BD, UK
- Department of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
50
|
Nozawa M, Kumagai M, Aotsuka T, Tamura K. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Unusual evolution of interspersed repeat sequences in the Drosophila ananassae subgroup. Mol Biol Evol 2006; 23:981-7. [PMID: 16467489 DOI: 10.1093/molbev/msj105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
New repeat sequences were found in the Drosophila ananassae genome sequence. They accounted for approximately 1.2% of the D. ananassae genome and were estimated to be more abundant in genomes of its closely related species belonging to the Drosophila bipectinata complex, whereas it was entirely absent in the Drosophila melanogaster genome. They were interspersed throughout euchromatic regions of the genome, usually as short tandem arrays of unit sequences, which were mostly 175-200 bp long with two distinct peaks at 180 and 189 bp in the length distribution. The nucleotide differences among unit sequences within the same array (locus) were much smaller than those between separate loci, suggesting within-locus concerted evolution. The phylogenetic tree of the repeat sequences from different loci showed that divergences between sequences from different chromosome arms occurred only at earlier stages of evolution, while those within the same chromosome arm occurred thereafter, resulting in the increase in copy number. We found RNA polymerase III promoter sequences (A box and B box), which play a critical role in retroposition of short interspersed elements. We also found conserved stem-loop structures, which are possibly associated with certain DNA rearrangements responsible for the increase in copy number within a chromosome arm. Such an atypical combination of characteristics (i.e., wide dispersal and tandem repetition) may have been generated by these different transposition mechanisms during the course of evolution.
Collapse
Affiliation(s)
- Masafumi Nozawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | | | | | | |
Collapse
|