1
|
Du J, Shen M, Chen J, Yan H, Xu Z, Yang X, Yang B, Luo P, Ding K, Hu Y, He Q. The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications. Front Pharmacol 2025; 15:1510080. [PMID: 39850557 PMCID: PMC11754210 DOI: 10.3389/fphar.2024.1510080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions. Based on common metabolic dysregulation and related metabolic substances, we explored the relationship between several major families of SLC supergroup and metabolic diseases, providing examples of drugs targeting SLC proteins that have been approved or are currently in clinical/preclinical research as well as SLC-related diagnostic techniques that are in clinical use or under investigation. By highlighting these connections, we aim to provide insights that may contribute to the development of improved treatment strategies and targeted therapies for metabolic disorders.
Collapse
Affiliation(s)
- Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minhui Shen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhuai Hu
- Yuhong Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qiaojun He
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Bayer S, Reik A, von Hesler L, Hauner H, Holzapfel C. Association between Genotype and the Glycemic Response to an Oral Glucose Tolerance Test: A Systematic Review. Nutrients 2023; 15:nu15071695. [PMID: 37049537 PMCID: PMC10096950 DOI: 10.3390/nu15071695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The inter-individual variability of metabolic response to foods may be partly due to genetic variation. This systematic review aims to assess the associations between genetic variants and glucose response to an oral glucose tolerance test (OGTT). Three databases (PubMed, Web of Science, Embase) were searched for keywords in the field of genetics, OGTT, and metabolic response (PROSPERO: CRD42021231203). Inclusion criteria were available data on single nucleotide polymorphisms (SNPs) and glucose area under the curve (gAUC) in a healthy study cohort. In total, 33,219 records were identified, of which 139 reports met the inclusion criteria. This narrative synthesis focused on 49 reports describing gene loci for which several reports were available. An association between SNPs and the gAUC was described for 13 gene loci with 53 different SNPs. Three gene loci were mostly investigated: transcription factor 7 like 2 (TCF7L2), peroxisome proliferator-activated receptor gamma (PPARγ), and potassium inwardly rectifying channel subfamily J member 11 (KCNJ11). In most reports, the associations were not significant or single findings were not replicated. No robust evidence for an association between SNPs and gAUC after an OGTT in healthy persons was found across the identified studies. Future studies should investigate the effect of polygenic risk scores on postprandial glucose levels.
Collapse
Affiliation(s)
- Sandra Bayer
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
| | - Anna Reik
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
| | - Lena von Hesler
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
- Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, 36037 Fulda, Germany
- Correspondence:
| |
Collapse
|
3
|
Pravednikova AE, Shevchenko SY, Kerchev VV, Skhirtladze MR, Larina SN, Kachaev ZM, Egorov AD, Shidlovskii YV. Association of uncoupling protein (Ucp) gene polymorphisms with cardiometabolic diseases. Mol Med 2020; 26:51. [PMID: 32450815 PMCID: PMC7249395 DOI: 10.1186/s10020-020-00180-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
The hereditary aspect of obesity is a major focus of modern medical genetics. The genetic background is known to determine a higher-than-average prevalence of obesity in certain regions, like Oceania. There is evidence that dysfunction of brown adipose tissue (BAT) may be a risk factor for obesity and type 2 diabetes (T2D). A significant number of studies in the field focus on the UCP family. The Ucp genes code for electron transport carriers. UCP1 (thermogenin) is the most abundant protein of the UCP superfamily and is expressed in BAT, contributing to its capability of generating heat. Single nucleotide polymorphisms (SNPs) of Ucp1-Ucp3 were recently associated with risk of cardiometabolic diseases. This review covers the main Ucp SNPs A-3826G, A-1766G, A-112C, Met229Leu, Ala64Thr (Ucp1), Ala55Val, G-866A (Ucp2), and C-55 T (Ucp3), which may be associated with the development of obesity, disturbance in lipid metabolism, T2D, and cardiovascular diseases.
Collapse
Affiliation(s)
- Anna E. Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey Y. Shevchenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Kerchev
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Manana R. Skhirtladze
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Svetlana N. Larina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zaur M. Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander D. Egorov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Zou Z, Mao L, Chen J, Wang L, Cai W. RETRACTED: Association between peroxisome proliferator-activated receptor, UCP3 and lipoprotein lipase gene polymorphisms and obesity in Chinese adolescents. Obes Res Clin Pract 2017; 11:27-33. [PMID: 26483159 DOI: 10.1016/j.orcp.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/09/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). Please note that this retraction notice has been updated in September 2021, as follows: This article has been retracted at the request of the Editors in Chief due to concerns regarding the authorship. Certain individuals were erroneously indicated as co-authors of the article when it was originally published. These individuals have informed the journal that they did not contribute to the article and that they had no knowledge of its submission for publication. We confirm, following investigation, that those individuals previously identified by the submitting author as co-authors did not author, approve or submit this article for publication, and the previous attribution of the article to them was in error. We have not had a response from Dr Mao and Dr Cai regarding authorship. As a result of the correspondence with Associate Professor Z. Zou and Dr L. Wang, we believe that the paper needs to be retracted and have elected to proceed with retraction.
Collapse
Affiliation(s)
- Zhichun Zou
- Department of Physical Education, Southwest University for Nationalities, Chengdu 610041, PR China; Department of Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Lijuan Mao
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | | | | | - Wei Cai
- Department of Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| |
Collapse
|
5
|
Lapice E, Monticelli A, Cocozza S, Pinelli M, Giacco A, Rivellese AA, Cocozza S, Riccardi G, Vaccaro O. The energy intake modulates the association of the -55CT polymorphism of UCP3 with body weight in type 2 diabetic patients. Int J Obes (Lond) 2013; 38:873-7. [PMID: 24026107 DOI: 10.1038/ijo.2013.174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/05/2013] [Accepted: 08/27/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous association studies of the -55CT polymorphism of the uncoupling protein 3 (UCP3) gene with body mass index (BMI) have provided inconsistent results. The study aim is twofold: (1) to evaluate the association of the -55CT polymorphism of UCP3 with BMI in two independent populations to verify the reproducibility of the finding; (2) to evaluate whether this association is modulated by energy intake. METHODS Study participants are 736 males and females with type 2 diabetes belonging to independent populations (N=394 population 1; N=342 population 2). Anthropometry and laboratory parameters were measured; in population 2, energy intake and physical exercise were also assessed. RESULTS The -55CT polymorphism was associated with a significantly lower BMI in population 1 (27.8±3.9 vs 28.9±4.6 kg m(-2); P<0.02), the finding was confirmed in population 2 (that is, 30.3±6.0 vs 32.1±5.9 kg m(-2); P<0.01) independent of gender, age, HbA1c, use of drugs and energy intake. To evaluate the role of diet in population 2, the study participants were stratified by genotype and tertiles of energy intake. In both genotype groups, BMI increased with increasing caloric intake with a significant trend (P<0.001), the BMI difference between the two genotype groups was large and statistically significant in the lower tertile (27.6 vs 31.2 kg m(-2); P<0.001), intermediate in the second tertile and negligible in the upper tertile (32.8 vs 32.9; kg m(-2); nonsignificant). The multivariate regression analysis confirmed a significant interaction between genotype and energy intake as correlates of BMI independent of age, gender, glucose control, physical activity and medications for diabetes (P=0.004). CONCLUSIONS The study replicates in two independent populations the association between the -55CT polymorphism of UCP3 and a lower BMI. This association was modulated by energy intake, thus suggesting that the unmeasured effect of diet may partly account for inconsistencies of prior association studies.
Collapse
Affiliation(s)
- E Lapice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Monticelli
- 1] Department of Cellular and Molecular Biology and Pathology A Califano DBPCM, University of Naples Federico II, Naples, Italy [2] IEOS CNR, Naples, Italy
| | - S Cocozza
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - M Pinelli
- Department of Cellular and Molecular Biology and Pathology A Califano DBPCM, University of Naples Federico II, Naples, Italy
| | - A Giacco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A A Rivellese
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - S Cocozza
- Department of Cellular and Molecular Biology and Pathology A Califano DBPCM, University of Naples Federico II, Naples, Italy
| | - G Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - O Vaccaro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Uncoupling protein 2 -866G/A and uncoupling protein 3 -55C/T polymorphisms in young South African Indian coronary artery disease patients. Gene 2013; 524:79-83. [PMID: 23639961 DOI: 10.1016/j.gene.2013.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Uncoupling proteins (UCPs) 2 and 3 play an important role in the regulation of oxidative stress which contributes to chronic inflammation. Promoter polymorphisms of these genes have been linked to chronic diseases including heart disease and type II diabetes mellitus in several populations. This is the first investigation of the UCP2 -866G/A rs659366 and UCP3 -55C/T rs1800849 polymorphisms in young South African (SA) Indians with coronary artery disease (CAD). METHODS A total of 300 subjects were recruited into this study of which 100 were SA Indian males with CAD, 100 age- (range 24-45 years), gender- and race-matched controls and 100 age-matched black SA males. The frequency of the UCP2 -866G/A and UPC3 -55C/T genotypes was assessed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). RESULTS The heterozygous UCP2 -866G/A and homozygous UCP3 -55C/C genotypes occurred at highest frequency in CAD patients (60% and 64%, respectively) compared to SA Indian controls (52% and 63%) and SA Black controls (50% and 58%). The UCP2 -886G/A (OR=1.110; 95% CI=0.7438-1.655; p=0.6835) and UCP3 -55C/T (OR=0.788; 95% CI=0.482-1.289; p=0.382) polymorphisms did not influence the risk of CAD. The rare homozygous UCP3 -55T/T genotype was associated with highest fasting glucose (11.87 ± 3.7 mmol/L vs. C/C:6.11 ± 0.27 mmol/L and C/T:6.48 ± 0.57 mmol/L, p=0.0025), HbA1c (10.05 ± 2.57% vs. C/C:6.44 ± 0.21% and C/T:6.76 ± 0.35%, p=0.0006) and triglycerides (6.47 ± 1.7 mmol/L vs. C/C:2.33 ± 0.17 mmol/L and C/T:2.06 ± 0.25 mmol/L, p<0.0001) in CAD patients. CONCLUSION The frequency of the UCP2 -866G/A and UCP3 -55C/T polymorphisms was similar in our SA Indian and SA Black groups. The presence of the UCP2 -866G/A and UCP3 -55C/T polymorphisms does not influence the risk of CAD in young South African Indian CAD patients.
Collapse
|
7
|
Snyder EE, Walts B, Pérusse L, Chagnon YC, Weisnagel SJ, Rankinen T, Bouchard C. The Human Obesity Gene Map: The 2003 Update. ACTA ACUST UNITED AC 2012; 12:369-439. [PMID: 15044658 DOI: 10.1038/oby.2004.47] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome-wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Eric E Snyder
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hesselink MKC, Mensink M, Schrauwen P. Human Uncoupling Protein-3 and Obesity: An Update. ACTA ACUST UNITED AC 2012; 11:1429-43. [PMID: 14694206 DOI: 10.1038/oby.2003.192] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cloning of the uncoupling protein (UCP)1 homologs UCP2 and UCP3 has raised considerable interest in the mechanism. The expression of UCP3 mainly in skeletal muscle mitochondria and the potency of the skeletal muscle as a thermogenic organ made UCP3 an attractive target for studies toward manipulation of energy expenditure to fight disorders such as obesity and type 2 diabetes. Overexpressing UCP3 in mice resulted in lean, hyperphagic mice. However, the lack of an apparent phenotype in mice lacking UCP3 triggered the search for alternative functions of UCP3. The observation that fatty acid levels significantly affect UCP3 expression has given UCP3 a position in fatty acid handling and/or oxidation. Emerging data indicate that the primary physiological role of UCP3 may be the mitochondrial handling of fatty acids rather than the regulation of energy expenditure through thermogenesis. It has been proposed that UCP3 functions to export fatty acid anions away from the mitochondrial matrix. In doing so, fatty acids are exchanged with protons, explaining the uncoupling activity of UCP3. The exported fatty acid anions may originate from hydrolysis of fatty acid esters by a mitochondrial thioesterase, or they may have entered the mitochondria as nonesterified fatty acids by incorporating into and flip-flopping across the mitochondrial inner membrane. Regardless of the origin of the fatty acid anions, this putative function of UCP3 might be of great importance in protecting mitochondria against fatty acid accumulation and may help to maintain muscular fat oxidative capacity.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Movement Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
10
|
Dhamrait SS, Williams AG, Day SH, Skipworth J, Payne JR, World M, Humphries SE, Montgomery HE. Variation in the uncoupling protein 2 and 3 genes and human performance. J Appl Physiol (1985) 2012; 112:1122-7. [PMID: 22241057 DOI: 10.1152/japplphysiol.00766.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uncoupling proteins 2 and 3 (UCP2 and UCP3) may negatively regulate mitochondrial ATP synthesis and, through this, influence human physical performance. However, human data relating to both these issues remain sparse. Examining the association of common variants in the UCP3/2 locus with performance phenotypes offers one means of investigation. The efficiency of skeletal muscle contraction, delta efficiency (DE), was assessed by cycle ergometry in 85 young, healthy, sedentary adults both before and after a period of endurance training. Of these, 58 were successfully genotyped for the UCP3-55C>T (rs1800849) and 61 for the UCP2-866G>A (rs659366) variant. At baseline, UCP genotype was unrelated to any physical characteristic, including DE. However, the UCP2-866G>A variant was independently and strongly associated with the DE response to physical training, with UCP2-866A allele carriers exhibiting a greater increase in DE with training (absolute change in DE of -0.2 ± 3.6% vs. 1.7 ± 2.8% vs. 2.3 ± 3.7% for GG vs. GA vs. AA, respectively; P = 0.02 for A allele carriers vs. GG homozygotes). In multivariate analysis, there was a significant interaction between UCP2-866G>A and UCP3-55C>T genotypes in determining changes in DE (adjusted R(2) = 0.137; P value for interaction = 0.003), which was independent of the effect of either single polymorphism or baseline characteristics. In conclusion, common genetic variation at the UCP3/2 gene locus is associated with training-related improvements in DE, an index of skeletal muscle performance. Such effects may be mediated through differences in the coupling of mitochondrial energy transduction in human skeletal muscle, but further mechanistic studies are required to delineate this potential role.
Collapse
Affiliation(s)
- Sukhbir S Dhamrait
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Royal Free & University College London Medical School, London.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Four novel UCP3 gene variants associated with childhood obesity: effect on fatty acid oxidation and on prevention of triglyceride storage. Int J Obes (Lond) 2011; 36:207-17. [PMID: 21544083 PMCID: PMC3279655 DOI: 10.1038/ijo.2011.81] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective of the study was to look for uncoupling protein 3 (UCP3) gene variants in early-onset severe childhood obesity and to determine their effect on long-chain fatty acid oxidation and triglyceride storage. METHODS AND RESULTS We identified four novel mutations in the UCP3 gene (V56M, A111V, V192I and Q252X) in 200 children with severe, early-onset obesity (body mass index-standard deviation score >2.5; onset: <4 years) living in Southern Italy. We evaluated the role of wild-type (wt) and mutant UCP3 proteins in palmitate oxidation and in triglyceride storage in human embryonic kidney cells (HEK293). Palmitate oxidation was ∼60% lower (P<0.05; P<0.01) and triglyceride storage was higher in HEK293 cells expressing the four UCP3 mutants than in cells expressing wt UCP3. Moreover, mutants V56M and Q252X exerted a dominant-negative effect on wt protein activity (P<0.01 and P<0.05, respectively). Telmisartan, an angiotensin II receptor antagonist used in the management of hypertension, significantly (P<0.05) increased palmitate oxidation in HEK293 cells expressing wt and mutant proteins (P<0.05; P<0.01), including the dominant-negative mutants. CONCLUSIONS These data indicate that protein UCP3 affects long-chain fatty acid metabolism and can prevent cytosolic triglyceride storage. Our results also suggest that telmisartan, which increases fatty acid oxidation in rat skeletal muscle, also improves UCP3 wt and mutant protein activity, including the dominant-negative UCP3 mutants.
Collapse
|
12
|
Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS, Russell RR. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol 2010; 67:1381-8. [PMID: 20809120 DOI: 10.1007/s00280-010-1441-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/17/2010] [Indexed: 01/08/2023]
Abstract
PURPOSE Doxorubicin-based chemotherapy is limited by the development of dose-dependent left ventricular dysfunction and congestive heart failure caused by reactive oxygen species (ROS). Uncoupling proteins (UCP) can inhibit mitochondrial ROS production as well as decrease myocyte damage from exogenous ROS. Prior studies have shown that cardiac UCP2 and UCP3 mRNA expression is decreased with acute doxorubicin treatment. However, the expression of UCP protein in hearts with doxorubicin cardiotoxicity and the resultant changes in mitochondrial function and oxidant stress have not been determined. METHODS Heart failure was induced in Sprague-Dawley rats with intraperitoneal injections of doxorubicin (2 mg/kg t.i.w., total dose: 18 mg/kg). Mitochondria were isolated from mice receiving doxorubicin or saline injections for determination of UCP2 and UCP3 expression. In addition, mitochondrial respiration, ATP synthesis and ROS production were determined. RESULTS Doxorubicin-induced heart failure was associated with significant decreases in UCP2 and UCP3 protein expression compared with nonfailing hearts (P < 0.05). While the rates of state 3 and state 4 respiration and ATP synthesis were lower in mitochondria isolated from failing hearts, the respiratory control ratio was 15% higher (P < 0.05), and the ratio of ATP production to oxygen consumption was 25% higher (P < 0.05) in mitochondria from failing hearts, indicating greater coupling between citric acid cycle flux and mitochondrial ATP synthesis. However, the decrease in UCP expression was associated with 50% greater mitochondrial ROS generation (P < 0.05). CONCLUSIONS Downregulation of myocardial UCP2 and UCP3 in the setting of doxorubicin-induced heart failure is associated with improved efficiency of ATP synthesis, which might compensate for abnormal energy metabolism. However, this beneficial effect is counterbalanced by greater oxidant stress.
Collapse
Affiliation(s)
- Heiko Bugger
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, FMP 3, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hancock AM, Clark VJ, Qian Y, Di Rienzo A. Population genetic analysis of the uncoupling proteins supports a role for UCP3 in human cold resistance. Mol Biol Evol 2010; 28:601-14. [PMID: 20802238 PMCID: PMC3002247 DOI: 10.1093/molbev/msq228] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Production of heat via nonshivering thermogenesis (NST) is critical for temperature homeostasis in mammals. Uncoupling protein UCP1 plays a central role in NST by uncoupling the proton gradients produced in the inner membranes of mitochondria to produce heat; however, the extent to which UCP1 homologues, UCP2 and UCP3, are involved in NST is the subject of an ongoing debate. We used an evolutionary approach to test the hypotheses that variants that are associated with increased expression of these genes (UCP1 -3826A, UCP2 -866A, and UCP3 -55T) show evidence of adaptation with winter climate. To that end, we calculated correlations between allele frequencies and winter climate variables for these single-nucleotide polymorphisms (SNPs), which we genotyped in a panel of 52 worldwide populations. We found significant correlations with winter climate for UCP1 -3826G/A and UCP3 -55C/T. Further, by analyzing previously published genotype data for these SNPs, we found that the peak of the correlation for the UCP1 region occurred at the disease-associated -3826A/G variant and that the UCP3 region has a striking signal overall, with several individual SNPs showing interesting patterns, including the -55C/T variant. Resequencing of the regions in a set of three diverse population samples helped to clarify the signals that we found with the genotype data. At UCP1, the resequencing data revealed modest evidence that the haplotype carrying the -3826A variant was driven to high frequency by selection. In the UCP3 region, combining results from the climate analysis and resequencing survey suggest a more complex model in which variants on multiple haplotypes may independently be correlated with temperature. This is further supported by an excess of intermediate frequency variants in the UCP3 region in the Han Chinese population. Taken together, our results suggest that adaptation to climate influenced the global distribution of allele frequencies in UCP1 and UCP3 and provide an independent source of evidence for a role in cold resistance for UCP3.
Collapse
|
14
|
Labayen I, Olsson LA, Ortega FB, Nilsson TK, Sjöström M, Lucia A, Ruiz JR. Cardiorespiratory fitness modifies the association between the UCP3-55C>T (rs1800849) polymorphism and plasma homocysteine in Swedish youth. Atherosclerosis 2010; 210:183-7. [DOI: 10.1016/j.atherosclerosis.2009.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 11/09/2009] [Accepted: 11/22/2009] [Indexed: 12/22/2022]
|
15
|
Kaur P, Reis MD, Couchman GR, Forjuoh SN, Greene JF, Asea A. SERPINE 1 Links Obesity and Diabetes: A Pilot Study. ACTA ACUST UNITED AC 2010; 3:191-199. [PMID: 21113241 DOI: 10.4172/jpb.1000139] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the past decade there has been a dramatic increase in the number of Americans considered obese. Over this same period, the number of individuals diagnosed with diabetes has increased by over 40%. Interestingly, in a great number of cases individuals considered obese develop diabetes later on. Although a link between obesity and diabetes has been suggested, conclusive scientific evidence is thus far just beginning to emerge. The present pilot study is designed to identify a possible link between obesity and diabetes. The plasma proteome is a desirable biological sample due to their accessibility and representative complexity due, in part, to the wide dynamic range of protein concentrations, which lead to the discovery of new protein markers. Here we present the results for the specific depletion of 14 high-abundant proteins from the plasma samples of obese and diabetic patients. Comparative proteomic profiling of plasma from individuals with either diabetes or obesity and individuals with both obesity and diabetes revealed SERPINE 1 as a possible candidate protein of interest, which might be a link between obesity and diabetes.
Collapse
Affiliation(s)
- Punit Kaur
- Department of Pathology, Scott & White Memorial Hospital and Clinic, and the Texas A&M Health Science Center, Temple, TX 76504 USA
| | | | | | | | | | | |
Collapse
|
16
|
Salopuro T, Pulkkinen L, Lindström J, Kolehmainen M, Tolppanen AM, Eriksson JG, Valle TT, Aunola S, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Tuomilehto J, Laakso M, Uusitupa M. Variation in the UCP2 and UCP3 genes associates with abdominal obesity and serum lipids: the Finnish Diabetes Prevention Study. BMC MEDICAL GENETICS 2009; 10:94. [PMID: 19769793 PMCID: PMC2754982 DOI: 10.1186/1471-2350-10-94] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/21/2009] [Indexed: 02/06/2023]
Abstract
Background We explored the associations of three variants in the uncoupling protein 2 (UCP2) gene, one variant in the UCP2-UCP3 intergenic region and five variants in the uncoupling protein 3 (UCP3) gene with obesity and diabetes related traits in subjects with impaired glucose tolerance participating in Finnish Diabetes Prevention Study. Altogether 507 overweight individuals (body mass index: 31.2 ± 4.5 kg/m2, age: 55 ± 7 years) for whom DNA was available were randomized to either an intensified diet and physical activity group or to a conventional care control group. Methods We analysed the data from the baseline and annual follow-up visits from years 1, 2 and 3. Measurements of anthropometry, plasma glucose and serum insulin in oral glucose tolerance test, serum total cholesterol, HDL-cholesterol and triglycerides were included. The median follow-up time for type 2 diabetes incidence was 7 years. Genetic variants were screened by restriction fragment length polymorphism or Illumina method. Results UCP3 gene variant rs3781907 was associated with increased serum total and LDL-cholesterol levels, at baseline and during the follow-up period. The same variant was associated with a higher risk of type 2 diabetes. Variants rs1726745, rs11235972 and rs1800849 in the UCP3 gene associated with serum total and LDL-cholesterol at baseline. Haploblock including variants rs659366, rs653529, rs15763, and rs1726745 was associated with measures of abdominal obesity at baseline and in the longitudinal analysis. The haplotype comprising alleles rs659366-G, rs653529-A, rs15763-G and rs1726745-A was associated with higher waist-to-hip ratio, and haplotype comprising alleles rs3781907-G, rs11235972-A, and rs1800849-T was associated with increased serum total and LDL-cholesterol concentrations. Conclusion Genetic variation in the UCP2-UCP3 gene cluster may act as a modifier increasing serum lipid levels and indices of abdominal obesity, and may thereby also contribute to the metabolic aberrations observed in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Titta Salopuro
- University of Kuopio, Department of Clinical Nutrition and Food and Health Research Center, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jia JJ, Zhang X, Ge CR, Jois M. The polymorphisms of UCP2 and UCP3 genes associated with fat metabolism, obesity and diabetes. Obes Rev 2009; 10:519-26. [PMID: 19413708 DOI: 10.1111/j.1467-789x.2009.00569.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uncoupling proteins (UCPs) belong to the family of mitochondrial transporter proteins that may uncouple the transport of protons across the inner mitochondrial membrane from electron transport and the synthesis of ATP from ADP, hence generating heat rather than energy. In mammals, more than five family members have been identified, including UCP1, UCP2, UCP3, UCP4 (or BMCP1/UCP5) and UCP5. The UCPs may play an important role in energy homeostasis and have become prominent in the fields of thermogenesis, obesity, diabetes and free-radical biology and have been considered candidate genes for obesity and insulin resistance. They have been as important potential targets for treatment of aging, degenerative diseases, diabetes and obesity. Recently, a series of studies showed the polymorphisms of UCPs gene association with the fat metabolism, obesity and diabetes. This review summarizes data supporting the roles of UCP2 and UCP3 in energy dissipation, as well as the genetic variety association with fat metabolism, obesity and diabetes in humans.
Collapse
Affiliation(s)
- J-J Jia
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | | | | | | |
Collapse
|
18
|
Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON, Mozhayskaya IA, Vinogradova OL, Astratenkova IV, Montgomery HE, Rogozkin VA. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet 2009; 126:751-61. [DOI: 10.1007/s00439-009-0728-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 07/25/2009] [Indexed: 11/30/2022]
|
19
|
Several obesity- and nutrient-related gene polymorphisms but not FTO and UCP variants modulate postabsorptive resting energy expenditure and fat-induced thermogenesis in obese individuals: the NUGENOB study. Int J Obes (Lond) 2009; 33:669-79. [PMID: 19399022 DOI: 10.1038/ijo.2009.59] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Part of the heterogeneity of the obesity phenotype may originate from genetic differences between obese individuals that may influence energy expenditure (EE). OBJECTIVE To examine if common single-nucleotide polymorphisms (SNPs) in genes related to obesity-associated phenotypes are associated with postabsorptive resting energy expenditure (REE) and postprandial REE in obese individuals. DESIGN AND METHODS Postabsorptive REE and 3-h postprandial REE (liquid test meal containing 95% fat, energy content 50% of estimated REE) were measured in 743 obese individuals from eight clinical centres in seven European countries. The analysis assessed the association of genotypes of 44 SNPs in 28 obesity-related candidate genes with postabsorptive REE and postprandial REE taking into consideration the influence of body composition, habitual physical activity, insulin sensitivity, circulating thermogenic hormones and metabolites. RESULTS After adjustment for fat-free mass (FFM), age, sex and research centre, SNPs in CART, GAD2, PCSK1, PPARG3, HSD11B1 and LIPC were significantly associated with postabsorptive REE. SNPs in GAD2, HSD11B1 and LIPC remained significantly associated with postabsorptive REE after further adjustment for fat mass (FM). SNPs in CART, PPARG2 and IGF2 were significantly associated with postprandial REE after similar adjustments. These associations with postprandial REE remained significant after further adjustment for FM. FTO, UCP2 and UCP3 variants were not associated with postabsorptive or postprandial REE. CONCLUSIONS Several gene polymorphisms associated with obesity-related phenotypes but not FTO and UCP variants may be responsible for some of the inter-individual variability in postabsorptive REE and fat-induced thermogenesis unaccounted for by FFM, FM, age and sex. The association between FTO and obesity that has been reported earlier may not be mediated directly through modulation of EE in obese individuals.
Collapse
|
20
|
Association of UCP2 and UCP3 polymorphisms with heart rate variability in Japanese men. J Hypertens 2009; 27:305-13. [PMID: 19155787 DOI: 10.1097/hjh.0b013e32831ac967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Jun HS, Kim IK, Lee HJ, Lee HJ, Kang JH, Kim JR, Shin HD, Song J. Effects of UCP2 and UCP3 variants on the manifestation of overweight in Korean children. Obesity (Silver Spring) 2009; 17:355-62. [PMID: 19039313 DOI: 10.1038/oby.2008.531] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To investigate the associations of uncoupling protein (UCP)2 and UCP3 gene variants with overweight and related traits, we genotyped UCP2-866G>A, UCP2Ala55Val, and UCP3-55C>T in 737 Korean children and 732 adults and collected data regarding anthropometric status and blood biochemistry. Information concerning the children's lifestyles and dietary habits was collected. The UCP2-866G>A and UCP3-55C>T gene variants showed significant associations with BMI level, waist circumference, and body weight in the children but not in the adults. Compared with -866GG carriers, the -866GA and AA carriers showed a strong decreasing trend in the risk for overweight (odds ratio (OR), 0.67; 95% confidence interval (CI), 0.45-1.01; P = 0.053). In comparison with UCP3-55CC carriers, children carrying -55CT and TT showed a significant reduction in the risk of overweight (OR, 0.67; 95% CI, 0.46-0.98; P = 0.039). There was also evidence of interactions between the effects of the combined UCP2-UCP3 genotype and obesity-related metabolic traits. The greatest protective effect against overweight was seen in those with the combined genotype non-UCP2-866GG and non-UCP3-55CC, as compared with those carrying both UCP2-866GG and UCP3-55CC (OR,0.60; 95% CI, 0.38-0.95; P = 0.030). In the subgroup with a low level of physical activity, UCP3-55CC carriers had higher BMI values than UCP3-55T carriers (16.6 +/- 2.3 kg/m(2) vs. 16.1 +/- 1.9 kg/m(2), P = 0.016). Low physical activity may aggravate the susceptibility to overweight in UCP2-866GG and UCP3-55CC carriers.
Collapse
Affiliation(s)
- H S Jun
- Division of Metabolic Diseases, Center for Biomedical Sciences, Korean National Institute of Health, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee HJ, Ryu HJ, Shin HD, Park BL, Kim JY, Cho YM, Park KS, Song J, Oh B. Associations between polymorphisms in the mitochondrial uncoupling proteins (UCPs) with T2DM. Clin Chim Acta 2008; 398:27-33. [PMID: 18755175 DOI: 10.1016/j.cca.2008.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/27/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Mitochondrial uncoupling proteins (UCPs) are considered pivotal regulators of energy and glucose homeostasis. We examined the effect of 23 single nucleotide polymorphisms (SNPs) in the UCP genes on type 2 diabetes mellitus (T2DM) and related phenotypes to identify genetic factors that may be involved in susceptibility to T2DM. METHODS We directly sequenced the coding region, portions of the 5'- and 3'-flanking sequences, and the intron-exon boundaries of the UCP genes from 24 individuals. We genotyped 23 SNPs in 761 unrelated patients with T2DM and 632 unrelated non-diabetic control subjects and investigated their potential involvement in T2DM. RESULTS We identified association between T2DM and the following 3 SNPs in UCP2: UCP2 -5331G>A (P=0.018, odds ratio (OR)=1.38, 95% CI (confidence interval)=1.06-1.79), UCP2 -3998C>G (P=0.021, OR=1.37, 95% CI=1.05-1.78), and UCP2 +320C>T (P=0.019, OR=0.73, 95% CI=0.57-0.95). There was strong linkage disequilibrium (LD) among these 3 SNPs (r2=0.94-0.97). UCP2 -5331G>A is a regulatory SNP (rSNP), and its association with T2DM was significant among obese or abdominally obese subjects (P=0.017, OR=1.78, 95% CI=1.11-2.85; P=0.004, OR=1.82, 95% CI=1.21-2.74; respectively). UCP3 -2078C>T of UCP3 SNPs was associated with T2DM only among women (P=0.026, OR=0.71, 95% CI=0.52-0.96). Patients with combinations of the rSNPs UCP2 -5331G>A and UCP3 -2078C>T displayed an increased risk for T2DM. Specifically, those patients homozygous for both rSNPs among susceptible alleles had a higher risk for T2DM than patients heterozygous for one rSNP and homozygous for the other rSNP (P=0.033, OR=1.38, 95% CI=1.03-1.85). This association was more obvious in women (P=0.022, OR=1.58, 95% CI=1.07-2.34). CONCLUSIONS Our results suggest that the UCP2 -5331G>A and UCP3 -2078C>T polymorphisms are susceptibility markers for T2DM among Koreans.
Collapse
Affiliation(s)
- Hye-Ja Lee
- Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul, 122-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hamada T, Kotani K, Fujiwara S, Sano Y, Domichi M, Tsuzaki K, Sakane N. The common -55 C/T polymorphism in the promoter region of the uncoupling protein 3 gene reduces prevalence of obesity and elevates serum high-density lipoprotein cholesterol levels in the general Japanese population. Metabolism 2008; 57:410-5. [PMID: 18249216 DOI: 10.1016/j.metabol.2007.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/30/2007] [Indexed: 12/14/2022]
Abstract
Uncoupling protein 3 (UCP3) is considered to be associated with obesity, given its function in the regulation of energy and lipid metabolism. An increased body mass index (BMI) and a decreased level of high-density lipoprotein cholesterol (HDL-C) are risk factors for cardiovascular disease. The purpose of this study was to investigate whether the UCP3 promoter -55 C/T single nucleotide polymorphism (UCP3 -55 C/T SNP) was associated with obesity according to the criteria for Japanese (BMI > or = 25 kg/m2), BMI, and serum HDL-C levels in the general Japanese population. The subjects, numbering 282 and aged 65 +/- 13 years (mean +/- SD), were recruited through an annual health checkup of residents of Mima city, Tokushima, in Japan. Body mass index, blood pressure, biochemical indexes including lipid, and lipoprotein profiles were measured. The UCP3 -55 C/T SNP was determined with a fluorescence-based allele-specific DNA primer assay system. The frequency of the -55 T allele was 30.0%. Subjects with the T/T genotype had significantly higher HDL-C levels than those with the C/C genotype or the C/T genotype. Furthermore, subjects with the T/T genotype had a significantly lower BMI than those with the C/C genotype. A multivariate analysis revealed that the -55 T allele was a significant independent variable contributing to the variance in HDL-C levels and BMI. The T/T genotype was associated with a lower prevalence of obesity than the C/C and C/T genotypes, with an odds ratio of 0.358 (95% confidence interval, 0.132-0.972; P = .037). In conclusion, the UCP3 -55 C/T SNP was associated with elevated HDL-C levels and a reduced BMI, independent of modifiable factors such as lifestyle. Furthermore, this polymorphism, when expressed in its homozygous form, reduced the prevalence of obesity in Japanese.
Collapse
Affiliation(s)
- Taku Hamada
- Department of Preventive Medicine and Diabetes Education, Clinical Research Institute for Endocrinology and Metabolic Disease, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Costford SR, Seifert EL, Bézaire V, F Gerrits M, Bevilacqua L, Gowing A, Harper ME. The energetic implications of uncoupling protein-3 in skeletal muscle. Appl Physiol Nutr Metab 2008; 32:884-94. [PMID: 18059613 DOI: 10.1139/h07-063] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite almost a decade of research since the identification of uncoupling protein-3 (UCP3), the molecular mechanisms and physiological functions of this mitochondrial anion carrier protein are not well understood. Because of its highly selective expression in skeletal muscle and the existence of mitochondrial proton leak in this tissue, early reports proposed that UCP3 caused a basal proton leak and increased thermogenesis. However, gene expression data and results from knockout and overexpression studies indicated that UCP3 does not cause basal proton leak or physiological thermogenesis. UCP3 expression is associated with increases in circulating fatty acids and in fatty acid oxidation (FAO) in muscle. Fatty acids are also well recognized as activators of the prototypic UCP1 in brown adipose tissue. This has led to hypotheses implicating UCP3 in mitochondrial fatty acid translocation. The corresponding hypothesized physiological roles include facilitated FAO and protection from the lipotoxic effects of fatty acids. Recent in vitro studies of physiological increases in UCP3 in muscle cells demonstrate increased FAO, and decreased reactive oxygen species (ROS) production. Detailed mechanistic studies indicate that ROS or lipid by-products of ROS can activate a UCP3-mediated proton leak, which in turn acts in a negative feedback loop to mitigate ROS production. Altogether, UCP3 appears to play roles in muscle FAO and mitigated ROS production. Future studies will need to elucidate the molecular mechanisms underlying increased FAO, as well as the physiological relevance of ROS-activated proton leak.
Collapse
Affiliation(s)
- Sheila R Costford
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Ochoa MC, Santos JL, Azcona C, Moreno-Aliaga MJ, Martínez-González MA, Martínez JA, Marti A. Association between obesity and insulin resistance with UCP2-UCP3 gene variants in Spanish children and adolescents. Mol Genet Metab 2007; 92:351-8. [PMID: 17870627 DOI: 10.1016/j.ymgme.2007.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 11/25/2022]
Abstract
A number of studies have yielded controversial results on the association between polymorphisms in UCP2 and UCP3 genes with obesity and its comorbidities. The discrepancy among studies might be partially explained by the lack of consideration of the effect of adjacent loci in the same haplotype and the exclusion of key lifestyle factors in the statistical analysis. In this study, we have assessed the association between three genetic variants of the UCP2-UCP3 gene cluster, the -866G/A (rs659366) and the 45bp insertion (in position 173247 of the AC019121) of the UCP2 gene, the -55C/T (rs1800849) polymorphism of the UCP3 gene and their estimated haplotypes with childhood obesity and insulin resistance. This research was designed as a case-control study and information about several environmental parameters such as leisure time physical activity and time spent watching television were included. The study sample consisted in 193 obese children and adolescents (cases) and 170 controls aged 6-18. We found that the individual polymorphisms were not associated with obesity, but the (-866G; rs659366)-(Del; 45bp)-(-55T; rs1800849) haplotype was significantly associated with obesity and its presence in the control group increased about nine times the insulin resistance risk. Thus, the (-866A; rs659366)-(Ins; 45bp)-(-55C; rs1800849) haplotype may protect against insulin resistance in the obese population group.
Collapse
Affiliation(s)
- María C Ochoa
- Department of Nutrition and Food Sciences, Physiology and Toxicology, C/Irunlarrea s/n, University of Navarra, 31080 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Ahituv N, Kavaslar N, Schackwitz W, Ustaszewska A, Martin J, Hebert S, Doelle H, Ersoy B, Kryukov G, Schmidt S, Yosef N, Ruppin E, Sharan R, Vaisse C, Sunyaev S, Dent R, Cohen J, McPherson R, Pennacchio LA. Medical sequencing at the extremes of human body mass. Am J Hum Genet 2007; 80:779-91. [PMID: 17357083 PMCID: PMC1852707 DOI: 10.1086/513471] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 01/16/2007] [Indexed: 01/19/2023] Open
Abstract
Body weight is a quantitative trait with significant heritability in humans. To identify potential genetic contributors to this phenotype, we resequenced the coding exons and splice junctions of 58 genes in 379 obese and 378 lean individuals. Our 96-Mb survey included 21 genes associated with monogenic forms of obesity in humans or mice, as well as 37 genes that function in body weight-related pathways. We found that the monogenic obesity-associated gene group was enriched for rare nonsynonymous variants unique to the obese population compared with the lean population. In addition, computational analysis predicted a greater fraction of deleterious variants within the obese cohort. Together, these data suggest that multiple rare alleles contribute to obesity in the population and provide a medical sequencing-based approach to detect them.
Collapse
Affiliation(s)
- Nadav Ahituv
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bézaire V, Seifert EL, Harper ME. Uncoupling protein-3: clues in an ongoing mitochondrial mystery. FASEB J 2007; 21:312-24. [PMID: 17202247 DOI: 10.1096/fj.06-6966rev] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uncoupling protein (UCP) 3 (UCP3) is a mitochondrial anion carrier protein with highly selective expression in skeletal muscle. Despite a great deal of interest, to date neither its molecular mechanism nor its biochemical and physiological functions are well understood. Based on its high degree of homology to the original UCP (UCP1), early studies examined a role for UCP3 in thermogenesis. However, evidence for such a function is lacking. Recent studies have focused on two distinct, but not mutually exclusive, hypotheses: 1) UCP3 mitigates reactive oxygen species (ROS) production, and 2) UCP3 is somehow involved in fatty acid (FA) translocation. While supportive evidence exists for both hypotheses, the interpretation of the corresponding evidence has created some controversy. Mechanistic studies examining mitigated ROS production have been largely conducted in vitro, and the physiological significance of the findings is questioned. Conversely, while physiological evidence exists for FA translocation hypotheses, the evidence is largely correlative, leaving causal relationships unexplored. This review critically assesses evidence for the hypotheses and attempts to link the outcomes from mechanistic studies to physiological implications. Important directions for future studies, using current and novel approaches, are discussed.
Collapse
Affiliation(s)
- Véronic Bézaire
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada K1H 8M5
| | | | | |
Collapse
|
28
|
Gable DR, Stephens JW, Cooper JA, Miller GJ, Humphries SE. Variation in the UCP2-UCP3 gene cluster predicts the development of type 2 diabetes in healthy middle-aged men. Diabetes 2006; 55:1504-11. [PMID: 16644712 DOI: 10.2337/db05-1645] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The impact of the UCP2 -866G>A and UCP3 -55C>T variants on prospective risk of type 2 diabetes was examined over 15 years in 2,936 healthy middle-aged men (mean age 56 years). Conversion to diabetes (n = 169) was associated with higher BMI, blood pressure, cholesterol, triglycerides and C-reactive protein. The hazard ratio (HR) for diabetes of a BMI >30 kg/m(2) was 3.96 (95% CI 2.87-5.47). Homozygosity for the UCP2A or UCP3T alleles accelerated the onset of diabetes, with significant differences in risk of diabetes at 10 years (HR [95% CI] UCP2AA vs. GA+GG 1.94 [1.18-3.19], P = 0.009; UCP3TT vs. CC+ CT 2.06 [1.06-3.99], P = 0.03) but less so at 15 years (UCP2AA 1.42 [0.92-2.19], P = 0.1; UCP3TT 1.57 [0.87-2.04], P = 0.13). Men who were homozygous for both UCP2AA and UCP3TT (1.5% of men) had a risk for diabetes at 10 years of 4.20 (1.70-10.37), P = 0.002. These genotype effects were additive with obesity, and men with a BMI >30 kg/m(2) and this genotype combination had a 10-year risk of diabetes of 19.23 [5.63-63.69], P < 0.0001. Functional promoter variants UCP2 and UCP3 increase the prospective risk of diabetes. Although the mechanism of the UCP2 effect is likely to be caused by increased expression in the pancreas and subsequent reduced insulin secretion, the mechanism of the UCP3 effect is currently unknown. Both effects are exacerbated by obesity.
Collapse
Affiliation(s)
- David R Gable
- Centre For Cardiovascular Genetics, Royal Free and University College London Medical School, The Rayne Institute, 5 University Street, London WC1E 6JJ, U.K.
| | | | | | | | | |
Collapse
|
29
|
Cha MH, Shin HD, Kim KS, Lee BH, Yoon Y. The effects of uncoupling protein 3 haplotypes on obesity phenotypes and very low-energy diet-induced changes among overweight Korean female subjects. Metabolism 2006; 55:578-86. [PMID: 16631432 DOI: 10.1016/j.metabol.2005.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Accepted: 11/02/2005] [Indexed: 11/18/2022]
Abstract
Responses to energy restriction tend to vary within the population because of genetic differences. In this study, we have genotyped 6 uncoupling protein 3 (UCP-3) polymorphisms (-55C/T, Int2-143G/C, Tyr99Tyr, Int3-47G/A, Int4-498C/T, and Tyr210Tyr) among 214 overweight Korean female subjects recruited from an obesity clinic. Three major haplotypes, identified with frequencies in excess of 0.04, were constructed from 6 single nucleotide polymorphisms. Association studies were then undertaken, involving the measurement of anthropometric characteristics and body composition both before and after 1 month of a energy-restriction regimen. At baseline, haplotype 1 (ht1) [CGTACC] was associated with elevated anthropometric characteristics, including body weight, waist-hip ratio, and body mass index, as well as body components, including body fat mass and body fat-free mass. After the completion of the 1-month weight control program, which involved a very low-energy (2900 kJ/d) diet, we analyzed the outcomes according to the UCP-3 genetic polymorphisms. Among the 3 principal haplotypes, ht1 [CGTACC] was significantly associated with an increased reduction in body weight, in the codominant (P=.022), dominant (P=.016), and recessive (P=.041) models. Body mass index reduction was associated with the ht1 haplotype in a similar fashion. Among the body components, changes in body fat mass were significantly associated with ht1 [CGTACC] (P=.028), but changes in body fat-free mass were not significantly associated with the UCP-3 polymorphism.
Collapse
Affiliation(s)
- Min Ho Cha
- Department of Medical Research, Korea Institute of Oriental Medicine, Daejon 305-811, and School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | | | | | |
Collapse
|
30
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 698] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rudofsky G, Schroedter A, Schlotterer A, Voron'ko OE, Schlimme M, Tafel J, Isermann BH, Humpert PM, Morcos M, Bierhaus A, Nawroth PP, Hamann A. Functional polymorphisms of UCP2 and UCP3 are associated with a reduced prevalence of diabetic neuropathy in patients with type 1 diabetes. Diabetes Care 2006; 29:89-94. [PMID: 16373902 DOI: 10.2337/diacare.29.01.06.dc05-0757] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We studied the association between polymorphisms in the UCP genes and diabetes complications in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS We analyzed 227 patients with type 1 diabetes using PCR and subsequent cleavage by restriction endonucleases for the promoter variants A-3826G in the UCP1 gene, G-866A in the UCP2 gene, and C-55T in the UCP3 gene. RESULTS No effect of the A-3826G polymorphism in the UCP1 gene on diabetes complications was found. Patients who were heterozygous or homozygous for the G-866A polymorphism in the UCP2 gene or the C-55T polymorphism in the UCP3 gene had a significantly reduced prevalence of diabetic neuropathy (UCP2: odds ratio 0.44 [95% CI 0.24-0.79], P = 0.007; UCP3: 0.48 [0.25-0.92], P = 0.031), whereas there was no association with other diabetes complications. This effect was stronger when G-866A and C-55T occurred in a cosegregatory manner (UCP2 and UCP3: 0.28 [0.12-0.65], P = 0.002). Furthermore, a multiple logistic regression model showed an age- and diabetes duration-independent effect of the cosegregated polymorphisms on the prevalence of diabetic neuropathy (P = 0.013). CONCLUSIONS Our data indicate that both the G-866A polymorphism in the UCP2 gene and the C-55T polymorphism in the UCP3 gene are associated with a reduced risk of diabetic neuropathy in type 1 diabetes. Thus, the results presented here support the hypothesis that higher expression of uncoupling protein might prevent mitochondria-mediated neuronal injury and, ultimately, diabetic neuropathy.
Collapse
Affiliation(s)
- Gottfried Rudofsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gunter MJ, Leitzmann MF. Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes. J Nutr Biochem 2005; 17:145-56. [PMID: 16426829 DOI: 10.1016/j.jnutbio.2005.06.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/14/2005] [Accepted: 06/15/2005] [Indexed: 12/18/2022]
Abstract
There is increasing evidence that dysregulation of energy homeostasis is associated with colorectal carcinogenesis. Epidemiological data have consistently demonstrated a positive relation between increased body size and colorectal malignancy, whereas mechanistic studies have sought to uncover obesity-related carcinogenic pathways. The phenomenon of "insulin resistance" or the impaired ability to normalize plasma glucose levels has formed the core of these pathways, but other mechanisms have also been advanced. Obesity-induced insulin resistance leads to elevated levels of plasma insulin, glucose and fatty acids. Exposure of the colonocyte to heightened concentrations of insulin may induce a mitogenic effect within these cells, whereas exposure to glucose and fatty acids may induce metabolic perturbations, alterations in cell signaling pathways and oxidative stress. The importance of chronic inflammation in the pathogenesis of obesity has recently been highlighted and may represent an additional mechanism linking increased adiposity to colorectal carcinogenesis. This review provides an overview of the epidemiology of body size and colorectal neoplasia and outlines current knowledge of putative mechanisms advanced to explain this relation. Family based studies have shown that the propensity to become obese is heritable, but this is only manifest in conditions of excess energy intake over expenditure. Inheritance of a genetic profile that predisposes to increased body size may also be predictive of colorectal cancer. Genomewide scans, linkage studies and candidate gene investigations have highlighted more than 400 chromosomal regions that may harbor variants that predispose to increased body size. The genetics underlying the pathogenesis of obesity are likely to be complex, but variants in a range of different genes have already been associated with increased body size and insulin resistance. These include genes encoding elements of insulin signaling, adipocyte metabolism and differentiation, and regulation of energy expenditure. A number of investigators have begun to study genetic variants within these pathways in relation to colorectal neoplasia, but at present data remain limited to a handful of studies. These pathways will be discussed with particular reference to genetic polymorphisms that have been associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Marc J Gunter
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD 20852, USA.
| | | |
Collapse
|
33
|
Alonso A, Martí A, Corbalán MS, Martínez-González MA, Forga L, Martínez JA. Association of UCP3 Gene –55C>T Polymorphism and Obesity in a Spanish Population. ANNALS OF NUTRITION AND METABOLISM 2005; 49:183-8. [PMID: 16006788 DOI: 10.1159/000086883] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Accepted: 02/16/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The uncoupling protein 3 (UCP3) gene has been suggested as a possible determinant affecting obesity risk given its function in the regulation of energy metabolism. However, available genetic association studies have been inconsistent, which could be attributable to not considering individual lifestyle patterns, such as physical activity, a factor that affects UCP3 expression. The objective of this study was to assess the association between the UCP3 -55C>T polymorphism and the risk of obesity. METHODS Case-control study conducted in a sample of Spanish adults. 157 obese subjects (BMI > or = 30) and 150 controls (BMI < 25) participated in the study. UCP3 -55C>T polymorphism was identified by the polymerase chain reaction-restriction fragment length polymorphism methodology. RESULTS The odds ratio (OR) for obesity (95% confidence interval [CI]) according to the presence of UCP 3 gene -55C>T polymorphism (heterozygotes and homozygotes merged together), adjusting for age, sex, and recreational physical activity, was 0.61 (0.37-1.00), p = 0.05. Interestingly, this association was only manifest among those with higher recreational physical activity (OR: 0.46, 95% CI 0.21-0.99, p = 0.05) and not among those with lower physical activity (OR: 0.84, 95% CI 0.41-1.70, p = 0.84). CONCLUSION UCP3 -55C>T polymorphism carriers have apparently a lower risk of obesity when taking into consideration recreational energy expenditure. Interestingly, this inverse beneficial association may only occur in people with a high level of physical activity.
Collapse
Affiliation(s)
- Alvaro Alonso
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Guo JJ, Liu YJ, Li MX, Yang YJ, Recker RR, Deng HW. Linkage exclusion analysis of two candidate regions on chromosomes 7 and 11: Leptin and UCP2/UCP3 are not QTLs for obesity in US Caucasians. Biochem Biophys Res Commun 2005; 332:602-8. [PMID: 15910756 DOI: 10.1016/j.bbrc.2005.04.160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 04/24/2005] [Indexed: 10/25/2022]
Abstract
Leptin (LEP) and the uncoupling proteins 2 and 3 (UCP2/UCP3) are key molecules involved in the regulation of food intake and energy expenditure. However, their contribution to variation of obesity phenotypes in the general population remains controversial. The present study is to investigate whether chromosomal regions 7q and 11q, which contain LEP and UCP2/UCP3, respectively, can be excluded for linkage with obesity phenotypes. The obesity phenotypes include body mass index (BMI), fat mass, and percentage fat mass (PFM), with the latter two measured by dual-energy X-ray absorptiometry. We conducted exclusion linkage analyses using a variance component approach in a sample of 1816 individuals coming from 79 extended Caucasian pedigrees. In this study, we were able to exclude chromosomal region 7q containing LEP as having an effect on fat mass and PFM at effect sizes of 5% or greater, and on BMI at effect sizes of 10% or greater. We were able to exclude chromosomal region 11q containing UCP2/UCP3 as having an effect on fat mass and PFM at effect sizes of 10% or greater, and on BMI at effect sizes of 5% or greater. Our results suggest that the LEP and UCP2/UCP3 genes are unlikely to have a substantial effect on variation in obesity phenotypes in this particular US Caucasian population.
Collapse
Affiliation(s)
- Jing-Jing Guo
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Liu YJ, Liu PY, Long J, Lu Y, Elze L, Recker RR, Deng HW. Linkage and association analyses of the UCP3 gene with obesity phenotypes in Caucasian families. Physiol Genomics 2005; 22:197-203. [PMID: 15870396 DOI: 10.1152/physiolgenomics.00031.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Uncoupling protein 3 (UCP3) uncouples ATP production from mitochondrial respiration, thereby dissipating energy as heat and affecting the efficiency of energy metabolism. Genetic variations in the UCP3 gene have been conceived to affect body weight in the general population. In this study, using the quantitative transmission disequilibrium test (QTDT), we assessed linkage and association between the UCP3 gene and obesity phenotypes in a large sample of 1,873 subjects from 405 United States Caucasian nuclear families. Obesity phenotypes tested include body mass index (BMI), fat mass, percent fat mass (PFM), and lean mass, with the latter three measured by dual-energy X-ray absorptiometry. We first selected five single nucleotide polymorphisms (SNPs) and then analyzed three highly polymorphic ones, namely, -55 C/T (promoter), Tyr99Tyr (exon 3), and Tyr210Tyr (exon 5), in the total sample. Significant linkage disequilibria (0.392 <or= D' <or= 0.940, P < 0.0001) were observed between pairs of SNPs. In single-locus analyses, we found statistically significant association (P = 0.034) and linkage (P = 0.031) between -55 C/T and BMI. This polymorphism explains 2.29% of BMI variation, and subjects carrying the T allele had an average of 3.5% lower BMI than those without it (P = 0.003). In haplotype analyses, we also observed evidence of linkage (P = 0.002) and association (P = 0.035) with BMI. In summary, our results suggest that UCP3 gene polymorphisms may contribute to BMI variation in this Caucasian population.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Obesity is an important cause of morbidity and mortality in developed countries, and is also becoming increasingly prevalent in the developing world. Although environmental factors are important, there is considerable evidence that genes also have a significant role in its pathogenesis. The identification of genes that are involved in monogenic, syndromic and polygenic obesity has greatly increased our knowledge of the mechanisms that underlie this condition. In the future, dissection of the complex genetic architecture of obesity will provide new avenues for treatment and prevention, and will increase our understanding of the regulation of energy balance in humans.
Collapse
Affiliation(s)
- Christopher G Bell
- Section of Genomic Medicine, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
37
|
Berentzen T, Dalgaard LT, Petersen L, Pedersen O, Sørensen TIA. Interactions between physical activity and variants of the genes encoding uncoupling proteins −2 and −3 in relation to body weight changes during a 10-y follow-up. Int J Obes (Lond) 2004; 29:93-9. [PMID: 15520825 DOI: 10.1038/sj.ijo.0802841] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To examine interactions between physical activity and possibly functional variants of the genes encoding uncoupling proteins -2 and -3 in relation to body weight change. We hypothesize that physical inactivity acts synergistically with a 45 bp insertion variant in the 3'untranslated region (3'UTR) of the UCP2-gene and with a t-allele of codon -55 in the promoter of the UCP3-gene in relation to subsequent weight change. DESIGN Population-based longitudinal study of cohorts of juvenile obese and nonobese men, who were identified at the mandatory draft board examination in Copenhagen and adjacent regions at a median age of 19 y in 1943-77 and later examined at general health surveys in 1981-83 and 1991-93. The juvenile obese cohort included 568 men who at the draft board had a BMI > or =31 kg/m2 and the cohort of controls included 717 randomly selected draftees. MEASUREMENTS Height and weight were measured, and information about physical activity was collected from a self-administered questionnaire. The genotyping of the polymorphisms was performed using RFLP techniques. The main outcome measure was change in BMI during the 10-y follow-up period. Additional outcome measures were obesity, waist circumference and body fat mass index measured at follow-up. RESULTS Physical activity, the 3'UTR insertion polymorphism and the -55 c/t polymorphism were not consistently associated with changes in BMI, and there were no evidence for interactions between the UCP-variants and physical activity in relation to changes in BMI. No evidence for interaction between the UCP-variants and physical activity was found in relation to the additional obesity measures. CONCLUSION This study does not support that interactions between physical activity and variants in the UCP2- or UCP3-gene are major determinants of subsequent weight changes in Danish Caucasian men.
Collapse
Affiliation(s)
- T Berentzen
- Danish Epidemiology Science Centre at the Institute of Preventive Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Tim R Nagy
- Department of Nutrition Sciences and the Clinical Nutrition Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-3360, USA.
| | | | | |
Collapse
|
39
|
Abstract
There are more than 430 chromosomic regions with gene variants involved in body weight regulation and obesity development. Polymorphisms in genes related to energy expenditure--uncoupling proteins (UCPs), related to adipogenesis and insulin resistance--hormone-sensitive lipase (HLS), peroxisome proliferator-activated receptor gamma (PPAR gamma), beta adrenergic receptors (ADRB2,3), and alfa tumor necrosis factor (TNF-alpha), and related to food intake--ghrelin (GHRL)--appear to be associated with obesity phenotypes. Obesity risk depends on two factors: a) genetic variants in candidate genes, and b) biographical exposure to environmental risk factors. It is necessary to perform new studies, with appropriate control groups and designs, in order to reach relevant conclusions with regard to gene/environmental (diet, lifestyle) interactions.
Collapse
|
40
|
Chagnon YC, Rankinen T, Snyder EE, Weisnagel SJ, Pérusse L, Bouchard C. The human obesity gene map: the 2002 update. OBESITY RESEARCH 2003; 11:313-67. [PMID: 12634430 DOI: 10.1038/oby.2003.47] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This is the ninth update of the human obesity gene map, incorporating published results through October 2002 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and various animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. For the first time, transgenic and knockout murine models exhibiting obesity as a phenotype are incorporated (N = 38). As of October 2002, 33 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and the causal genes or strong candidates have been identified for 23 of these syndromes. QTLs reported from animal models currently number 168; there are 68 human QTLs for obesity phenotypes from genome-wide scans. Additionally, significant linkage peaks with candidate genes have been identified in targeted studies. Seven genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 222 studies reporting positive associations with 71 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. More than 300 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Yvon C Chagnon
- Psychiatric Genetic Unit, Laval University Robert-Giffard Research Center, Beauport, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
SUMMARY
The uncoupling protein-1 (UCP1) homologues UCP2 and UCP3 are able to uncouple ATP production from mitochondrial respiration, thereby dissipating energy as heat and affecting energy metabolism efficiency. In contrast to UCP1, which plays an important role in adaptive thermogenesis, UCP2 and UCP3 do not have a primary role in the regulation of energy metabolism. UCP2, which is expressed in a wide variety of tissues, including white adipose tissue,skeletal muscle and tissues of the immune system, has been suggested to affect the production of reactive oxygen species. UCP2 has also been suggested to regulate the [ATP]/[ADP] ratio and was recently shown to influence insulin secretion in the β-cells of the pancreas. UCP3, in contrast, is expressed predominantly in skeletal muscle and has been associated with whole-body energy metabolism. However, the primary function of UCP3 is not the regulation of energy metabolism. For example, fasting, a condition attenuating energy expenditure, upregulates UCP3 expression. Moreover, UCP3-knockout mice have a normal metabolic rate. The exact function of UCP3 therefore remains to be elucidated, but putative roles for UCP3 include involvement in the regulation of ROS, in mitochondrial fatty acid transport and in the regulation of glucose metabolism in skeletal muscle. Whatever the primary function of these novel uncoupling proteins, a secondary effect via uncoupling might allow them to influence (but not to regulate) energy metabolism, which would be consistent with the observations from linkage and association studies. Therefore, UCP2 and UCP3 remain interesting targets for pharmacological upregulation in the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Patrick Schrauwen
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM) Department of Human Biology, Maastricht University, The Netherlands.
| | | |
Collapse
|
42
|
Abstract
Energy balance in animals is a metabolic state that exists when total body energy expenditure equals dietary energy intake. Energy expenditure, or thermogenesis, can be subcategorized into groups of obligatory and facultative metabolic processes. Brown adipose tissue (BAT), through the activity of uncoupling protein 1 (UCP1), is responsible for nonshivering thermogenesis, a major component of facultative thermogenesis in newborn humans and in small mammals. UCP1, found in the mitochondrial inner membrane in BAT, uncouples energy substrate oxidation from mitochondrial ATP production and hence results in the loss of potential energy as heat. Mice that do not express UCP1 (UCP1 knockouts) are markedly cold sensitive. The recent identification of four new homologs to UCP1 expressed in BAT, muscle, white adipose tissue, brain, and other tissues has been met by tremendous scientific interest. The hypothesis that the novel UCPs may regulate thermogenesis and/or fatty acid metabolism guides investigations worldwide. Despite several hundred publications on the new UCPs, there are a number of significant controversies, and only a limited understanding of their physiological and biochemical properties has emerged. The discovery of UCP orthologs in fish, birds, insects, and even plants suggests the widespread importance of their metabolic functions. Answers to fundamental questions regarding the metabolic functions of the new UCPs are thus pending and more research is needed to elucidate their physiological functions. In this review, we discuss recent findings from mammalian studies in an effort to identify potential patterns of function for the UCPs.
Collapse
|
43
|
Abstract
Thyroid hormones (TH) are potent modulators of adaptive thermogenesis and can potentially contribute to development of obesity. The decrease of T(3) in association with reduction of calorie intake is centrally regulated via decreases in leptin and melanocortin concentrations and peripherally via a decrease in deiodinase activity, all aimed at protein and energy sparing. The use of TH in the treatment of obesity is hardly justified except in cases of elevated thyrotropin (TSH) with low/normal T(3) and T(4) and/or a low T(3) or T'(3)/T(4) or a high TSH/T(3) ratio. TH treatment with small doses of T(3) can also be exceptionally applied in obese patients resistant to dietary therapy who are taking beta-adrenergic blockers or with obesity developed after cessation of cigarette smoking and with hyperlipidemia and a concomitant high thryrotropin/T(3) ratio. Supplementation with Se(2+) and Zn(2+) may be tried along with more severe calorie restriction to prevent decline of T(3).
Collapse
Affiliation(s)
- Marcin Krotkiewski
- Department of Rehabilitation Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
| |
Collapse
|
44
|
Rankinen T, Pérusse L, Weisnagel SJ, Snyder EE, Chagnon YC, Bouchard C. The human obesity gene map: the 2001 update. OBESITY RESEARCH 2002; 10:196-243. [PMID: 11886943 DOI: 10.1038/oby.2002.30] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This report constitutes the eighth update of the human obesity gene map, incorporating published results up to the end of October 2001. Evidence from the rodent and human obesity cases caused by single-gene mutations, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) uncovered in human genome-wide scans and in crossbreeding experiments in various animal models, association and linkage studies with candidate genes and other markers is reviewed. The human cases of obesity related in some way to single-gene mutations in six different genes are incorporated. Twenty-five Mendelian disorders exhibiting obesity as one of their clinical manifestations have now been mapped. The number of different QTLs reported from animal models currently reaches 165. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 174 studies reporting positive associations with 58 candidate genes. Finally, 59 loci have been linked to obesity indicators in genomic scans and other linkage study designs. The obesity gene map depicted in Figure 1 reveals that putative loci affecting obesity-related phenotypes can be found on all chromosomes except chromosome Y. A total of 54 new loci have been added to the map in the past 12 months, and the number of genes, markers, and chromosomal regions that have been associated or linked with human obesity phenotypes is now above 250. Likewise, the number of negative studies, which are only partially reviewed here, is also on the rise.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808-4124, USA.
| | | | | | | | | | | |
Collapse
|