1
|
He C, Wang T, Han Y, Zuo C, Wang G. Jun-activated SOCS1 enhances ubiquitination and degradation of CCAAT/enhancer-binding protein β to ameliorate cerebral ischaemia/reperfusion injury. J Physiol 2024; 602:4959-4985. [PMID: 39197117 DOI: 10.1113/jp285673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/18/2024] [Indexed: 08/30/2024] Open
Abstract
This study investigates the molecular mechanisms behind ischaemia/reperfusion (I/R) injury in the brain, focusing on neuronal apoptosis. It scrutinizes the role of the Jun proto-oncogene in apoptosis, involvement of SOCS1 in neural precursor cell accumulation in ischaemic regions, and the upregulation of C-EBPβ in the hippocampus following I/R. Key to the study is understanding how Jun controls C-EBPβ degradation via SOCS1, potentially offering new clinical treatment avenues for I/R. Techniques such as mRNA sequencing, KEGG enrichment analysis and protein-protein interaction (PPI) in mouse models have indicated involvement of Jun (AP-1) in I/R-induced cerebral damage. The study employs middle cerebral artery occlusion in different mouse models and oxygen-glucose deprivation/reoxygenation in cortical neurons to examine the impacts of Jun and SOCS1 manipulation on cerebral I/R injury and neuronal damage. The findings reveal that I/R reduces Jun expression in the brain, but its restoration lessens cerebral I/R injury and neuron death. Jun activates SOCS1 transcriptionally, leading to C-EBPβ degradation, thereby diminishing cerebral I/R injury through the SOCS1/C-EBPβ pathway. These insights provide a deeper understanding of post-I/R cerebral injury mechanisms and suggest new therapeutic targets for cerebral I/R injury. KEY POINTS: Jun and SOCS1 are poorly expressed, and C-EBPβ is highly expressed in ischaemia/reperfusion mouse brain tissues. Jun transcriptionally activates SOCS1. SOCS1 promotes the ubiquitination-dependent C-EBPβ protein degradation. Jun blunts oxygen-glucose deprivation/reoxygenation-induced neuron apoptosis and alleviates neuronal injury. This study provides a theoretical basis for the management of post-I/R brain injury.
Collapse
Affiliation(s)
- Chuan He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Tie Wang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yanwu Han
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Changyang Zuo
- Department of Neurosurgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, P.R. China
| | - Guangming Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
2
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Rajan RK, Kumar RP, Ramanathan M. Piceatannol improved cerebral blood flow and attenuated JNK3 and mitochondrial apoptotic pathway in a global ischemic model to produce neuroprotection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:479-496. [PMID: 37470802 DOI: 10.1007/s00210-023-02616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. The only FDA-approved treatment is recanalization with systemic tissue plasminogen activators like alteplase, although reperfusion caused by recanalization can result in neuroinflammation, which can cause brain cell apoptosis. Therefore, after an ischemic/reperfusion injury, interventions are needed to minimize the neuroinflammatory cascade. In the present study, piceatannol (PCT) was studied for its neuroprotective efficacy in a rat model of global ischemic injury by attenuating c-Jun N-terminal kinase 3 (JNK3) downstream signaling. PCT is a resveratrol analog and a polyphenolic stilbenoid naturally occurring in passion fruit and grapes. The neuroprotective efficacy of PCT (1, 5, 10 mg/kg) in ischemic conditions was assessed through pre- and post-treatment. Cerebral blood flow (CBF) and tests for functional recovery were assessed. Protein and gene expression were done for JNK3 and other inflammatory markers. A docking study was performed to identify the amino acid interaction. The results showed that PCT improved motor and memory function as measured by a functional recovery test believed to be due to an increase in cerebral blood flow. Also, the caspase signaling which promotes apoptosis was found to be down-regulated; however, nitric oxide synthase expression was up-regulated, which could explain the enhanced cerebral blood flow (CBF). According to our findings, PCT impeded c-Jun N-terminal kinase 3 (JNK3) signaling by suppressing phosphorylation and disrupting the mitochondrial apoptotic pathway, which resulted in the neuroprotective effect. Molecular docking analysis was performed to investigate the atomic-level interaction of JNK3 and PCT, which reveals that Met149, Leu206, and Lys93 amino acid residues are critical for the interaction of PCT and JNK3. According to our current research, JNK3 downstream signaling and the mitochondrial apoptosis pathway are both inhibited by PCT, which results in neuroprotection under conditions of global brain ischemia. Piceatannol attenuated JNK3 phosphorylation during the ischemic condition and prevented neuronal apoptosis.
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India.
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Girijananda Chowdhury University, Dekargaon, Tezpur, 784501, Assam, India.
| | - Ram Pravin Kumar
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India
| | - M Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India
| |
Collapse
|
4
|
Plotnikov MB, Chernysheva GA, Smol’yakova VI, Aliev OI, Anishchenko AM, Ulyakhina OA, Trofimova ES, Ligacheva AA, Anfinogenova ND, Osipenko AN, Kovrizhina AR, Khlebnikov AI, Schepetkin IA, Drozd AG, Plotnikov EV, Atochin DN, Quinn MT. Neuroprotective Effects of Tryptanthrin-6-Oxime in a Rat Model of Transient Focal Cerebral Ischemia. Pharmaceuticals (Basel) 2023; 16:1057. [PMID: 37630972 PMCID: PMC10457995 DOI: 10.3390/ph16081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
The activation of c-Jun N-terminal kinase (JNK) plays an important role in stroke outcomes. Tryptanthrin-6-oxime (TRYP-Ox) is reported to have high affinity for JNK and anti-inflammatory activity and may be of interest as a promising neuroprotective agent. The aim of this study was to investigate the neuroprotective effects of TRYP-Ox in a rat model of transient focal cerebral ischemia (FCI), which involved intraluminal occlusion of the left middle cerebral artery (MCA) for 1 h. Animals in the experimental group were administered intraperitoneal injections of TRYP-Ox 30 min before reperfusion and 23 and 47 h after FCI. Neurological status was assessed 4, 24, and 48 h following FCI onset. Treatment with 5 and 10 mg/kg of TRYP-Ox decreased mean scores of neurological deficits by 35-49 and 46-67% at 24 and 48 h, respectively. At these doses, TRYP-Ox decreased the infarction size by 28-31% at 48 h after FCI. TRYP-Ox (10 mg/kg) reduced the content of interleukin (IL) 1β and tumor necrosis factor (TNF) in the ischemic core area of the MCA region by 33% and 38%, respectively, and attenuated cerebral edema by 11% in the left hemisphere, which was affected by infarction, and by 6% in the right, contralateral hemisphere 24 h after FCI. TRYP-Ox reduced c-Jun phosphorylation in the MCA pool at 1 h after reperfusion. TRYP-Ox was predicted to have high blood-brain barrier permeability using various calculated descriptors and binary classification trees. Indeed, reactive oxidant production was significantly lower in the brain homogenates from rats treated with TRYP-Ox versus that in control animals. Our data suggest that the neuroprotective activity of TRYP-Ox may be due to the ability of this compound to inhibit JNK and exhibit anti-inflammatory and antioxidant activity. Thus, TRYP-Ox may be considered a promising neuroprotective agent that potentially could be used for the development of new treatment strategies in cerebral ischemia.
Collapse
Affiliation(s)
- Mark B. Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
- Faculty of Radiophysics, National Research Tomsk State University, Tomsk 634050, Russia
| | - Galina A. Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
| | - Vera I. Smol’yakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
| | - Oleg I. Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
| | - Anna M. Anishchenko
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
- Department of Pharmacology, Siberian State Medical University, Tomsk 634050, Russia;
| | - Olga A. Ulyakhina
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
| | - Eugene S. Trofimova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
- Department of Pharmacology, Siberian State Medical University, Tomsk 634050, Russia;
| | - Anastasia A. Ligacheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
| | - Nina D. Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia;
| | - Anton N. Osipenko
- Department of Pharmacology, Siberian State Medical University, Tomsk 634050, Russia;
| | - Anastasia R. Kovrizhina
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia; (A.R.K.); (A.I.K.)
| | - Andrei I. Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia; (A.R.K.); (A.I.K.)
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Anastasia G. Drozd
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; (A.G.D.); (E.V.P.)
| | - Evgenii V. Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; (A.G.D.); (E.V.P.)
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02115, USA
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
5
|
Balkaya M, Dohare P, Chen S, Schober AL, Fidaleo AM, Nalwalk JW, Sah R, Mongin AA. Conditional deletion of LRRC8A in the brain reduces stroke damage independently of swelling-activated glutamate release. iScience 2023; 26:106669. [PMID: 37182109 PMCID: PMC10173736 DOI: 10.1016/j.isci.2023.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The ubiquitous volume-regulated anion channels (VRACs) facilitate cell volume control and contribute to many other physiological processes. Treatment with non-specific VRAC blockers or brain-specific deletion of the essential VRAC subunit LRRC8A is highly protective in rodent models of stroke. Here, we tested the widely accepted idea that the harmful effects of VRACs are mediated by release of the excitatory neurotransmitter glutamate. We produced conditional LRRC8A knockout either exclusively in astrocytes or in the majority of brain cells. Genetically modified mice were subjected to an experimental stroke (middle cerebral artery occlusion). The astrocytic LRRC8A knockout yielded no protection. Conversely, the brain-wide LRRC8A deletion strongly reduced cerebral infarction in both heterozygous (Het) and full KO mice. Yet, despite identical protection, Het mice had full swelling-activated glutamate release, whereas KO animals showed its virtual absence. These findings suggest that LRRC8A contributes to ischemic brain injury via a mechanism other than VRAC-mediated glutamate release.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Preeti Dohare
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Sophie Chen
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Alexandra L. Schober
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Antonio M. Fidaleo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Julia W. Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander A. Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
- Corresponding author
| |
Collapse
|
6
|
Song NN, Zhao Y, Sun C, Zhang J, Lin GJ, Yin XW, Ma CY. DUSP10 alleviates ischemic stroke-induced neuronal damage by restricting p38/JNK pathway. Behav Brain Res 2023; 450:114478. [PMID: 37164190 DOI: 10.1016/j.bbr.2023.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/23/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Neuronal apoptosis is considered one of the hallmarks of ischemic stroke. Dual specificity phosphatase 10 (DUSP10), a member of the dual-specificity phosphatase family, which is involved in the regulation of apoptosis process. This study aimed to investigate the effect of on apoptosis in primary cortical neurons exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) and mice suffered from transient middle cerebral artery occlusion and reperfusion (MCAO/R). The results showed that DUSP10 overexpression improved survival and reduced apoptosis in neurons subjected to OGD/R, which was manifested by decreased apoptotic proteins (cleaved caspase 3 and bax) and TUNEL+ cells, as well as increased the anti-apoptotic protein (bcl-2). DUSP10 overexpression inhibited the p38/JNK signaling pathway after OGD/R treatment, whilst DUSP10 knockdown had opposite effects. In addition, the p38 inhibitor SB203580 or JNK inhibitor SP600125 attenuated the increased apoptosis of OGD/R-stimulated neurons treated with DUSP10 silencing. Consistently, DUSP10 knockdown exacerbated infarct volume in MCAO/R injury. The data of Nissl staining and TUNEL-NeuN double staining revealed that DUSP10 interference aggravated neuronal damage in the ischemic penumbra of mice. Furthermore, DUSP10 inhibition activated the p38/JNK axis accompanied by enhanced phosphorylation of p38 and JNK in vivo. In summary, DUSP10 is a neuroprotective agent against ischemic stroke-induced neuronal damage via suppressing the p38/JNK signaling pathway.
Collapse
Affiliation(s)
- Ni-Na Song
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Zhao
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chuang Sun
- Department of Radiology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jun Zhang
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guang-Jun Lin
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiao-Wei Yin
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chun-Ye Ma
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
7
|
Suppression of Age-Related Macular Degeneration-like Pathology by c-Jun N-Terminal Kinase Inhibitor IQ-1S. Biomedicines 2023; 11:biomedicines11020395. [PMID: 36830932 PMCID: PMC9953667 DOI: 10.3390/biomedicines11020395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment worldwide. The development of AMD is associated with inflammation, oxidative stress, and progressive proteostasis imbalance, in the regulation of which c-Jun N-terminal kinases (JNK) play a crucial role. JNK inhibition is discussed as an alternative way for prevention and treatment of AMD and other neurodegenerative diseases. Here we assess the retinoprotective potential of the recently synthesized JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S) using senescence-accelerated OXYS rats as a model of AMD. The treatment with IQ-1S (50 mg/kg body weight intragastric) during the period of active disease development (from 4.5 to 6 months of age) improved some (but not all) histological abnormalities associated with retinopathy. IQ-1S improved blood circulation, increased the functional activity of the retinal pigment epithelium, reduced the VEGF expression in the endothelial cells, and increased the expression of PEDF in the neuroretina. The result was a decrease in the degeneration of photoreceptors and neurons of the inner layers. IQ-1S significantly improved the retinal ultrastructure and increased the number of mitochondria, which were significantly reduced in the neuroretina of OXYS rats compared to Wistar rats. It seems probable that using IQ-1S can be a good prophylactic strategy to treat AMD.
Collapse
|
8
|
Flores AE, Pascotini ET, Kegler A, Broetto N, Gabbi P, Duarte T, Prado ALC, Duarte MMMF, da Cruz IBM, Dos Santos ARS, Royes LFF, Fighera MR. Worst spasticity in patients post-stroke associated with MNSOD ALA16VAL polymorphism and interleukin-1β. Gene X 2022; 847:146880. [PMID: 36100117 DOI: 10.1016/j.gene.2022.146880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022] Open
Abstract
The MnSOD Ala16Val single nucleotide polymorphism (SNP) has shown to be associated to risk factors of several metabolic and vascular diseases. However, little is known about interaction between MnSOD Ala16Val SNP in stroke, a frequent neurologic disease that involves clinic manifestations such as motor deficits and spasticity. In this sense, we decided to investigate the relationship between MnSOD Ala16Val SNP with spasticity in stroke and also its influence on interleukin levels, BDNF, and glycolipid parameters. Eighty post-stroke subjects and 80 healthy controls were investigated. We showed a higher spasticity, levels of total cholesterol, LDL, IL-1β, IL-6, and INF-γ in VV post-stroke group. Interesting, we found a correlation between IL-1β levels and spasticity in VV post-stroke. Triglycerides, glucose levels and caspases (1 and 3) activation were significantly higher, as well as BDNF levels were lower in VV and AV post-stroke. DNA damage was higher in post-stroke group. Thus, we can suggest that the V allele has a worse glycolipid profile, which would facilitate changes in neurovascular homeostasis. These events associated with an increase in inflammatory markers and a reduction in BDNF can contribute with the stroke and a worse clinical evolution in relation to spasticity in patients with VV genotype.
Collapse
Affiliation(s)
- Ariane Ethur Flores
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Eduardo Tanuri Pascotini
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Aline Kegler
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Núbia Broetto
- Curso de Fisioterapia, Departamento de Ginástica e Saúde, Universidade Federal de Pelotas, RS, Brazil
| | - Patricia Gabbi
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Thiago Duarte
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | - Marta M M F Duarte
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Ivana B M da Cruz
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | - Luiz Fernando Freire Royes
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Schepetkin IA, Chernysheva GA, Aliev OI, Kirpotina LN, Smol’yakova VI, Osipenko AN, Plotnikov MB, Kovrizhina AR, Khlebnikov AI, Plotnikov EV, Quinn MT. Neuroprotective Effects of the Lithium Salt of a Novel JNK Inhibitor in an Animal Model of Cerebral Ischemia–Reperfusion. Biomedicines 2022; 10:biomedicines10092119. [PMID: 36140222 PMCID: PMC9495587 DOI: 10.3390/biomedicines10092119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/31/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs) regulate many physiological processes, including inflammatory responses, morphogenesis, cell proliferation, differentiation, survival, and cell death. Therefore, JNKs represent attractive targets for therapeutic intervention. In an effort to develop improved JNK inhibitors, we synthesized the lithium salt of 11H-indeno[1,2-b]quinoxaline-11-one oxime (IQ-1L) and evaluated its affinity for JNK and biological activity in vitro and in vivo. According to density functional theory (DFT) modeling, the Li+ ion stabilizes the six-membered ring with the 11H-indeno[1,2-b]quinoxaline-11-one (IQ-1) oximate better than Na+. Molecular docking showed that the Z isomer of the IQ-1 oximate should bind JNK1 and JNK3 better than (E)-IQ-1. Indeed, experimental analysis showed that IQ-1L exhibited higher JNK1-3 binding affinity in comparison with IQ-1S. IQ-1L also was a more effective inhibitor of lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue monocytes and was a potent inhibitor of proinflammatory cytokine production by MonoMac-6 monocytic cells. In addition, IQ-1L inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. In a rat model of focal cerebral ischemia (FCI), intraperitoneal injections of 12 mg/kg IQ-1L led to significant neuroprotective effects, decreasing total neurological deficit scores by 28, 29, and 32% at 4, 24, and 48 h after FCI, respectively, and reducing infarct size by 52% at 48 h after FCI. The therapeutic efficacy of 12 mg/kg IQ-1L was comparable to that observed with 25 mg/kg of IQ-1S, indicating that complexation with Li+ improved efficacy of this compound. We conclude that IQ-1L is more effective than IQ-1S in treating cerebral ischemia injury and thus represents a promising anti-inflammatory compound.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Galina A. Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
| | - Oleg I. Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Vera I. Smol’yakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
| | - Anton N. Osipenko
- Department of Pharmacology, Siberian State Medical University, 2 Moskovskiy tract, 634050 Tomsk, Russia
| | - Mark B. Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
- Radiophysical Faculty, National Research Tomsk State University, 634050 Tomsk, Russia
| | | | | | - Evgenii V. Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
10
|
Ischemic Brain Stroke and Mesenchymal Stem Cells: An Overview of Molecular Mechanisms and Therapeutic Potential. Stem Cells Int 2022; 2022:5930244. [PMID: 35663353 PMCID: PMC9159823 DOI: 10.1155/2022/5930244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/12/2021] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic brain injury is associated with a high rate of mortality and disability with no effective therapeutic strategy. Recently, a growing number of studies are focusing on mesenchymal stem cell-based therapies for neurodegenerative disorders. However, despite having the promising outcome of preclinical studies, the clinical application of stem cell therapy remained elusive due to little or no progress in clinical trials. The objective of this study was to provide a generalized critique for the role of mesenchymal stem cell therapy in ischemic stroke injury, its underlying mechanisms, and constraints on its preclinical and clinical applications. Thus, we attempted to present an overview of previously published reports to evaluate the progress and provide molecular basis of mesenchymal stem cells (MSCs) therapy and its application in preclinical and clinical settings, which could aid in designing an effective regenerative therapeutic strategy in the future.
Collapse
|
11
|
Tsai YT, Huang HC, Kao ST, Chang TT, Cheng CY. Neuroprotective Effects of Alpinia oxyphylla Miq against Mitochondria-Related Apoptosis by the Interactions between Upregulated p38 MAPK Signaling and Downregulated JNK Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2057-2083. [DOI: 10.1142/s0192415x22500884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apoptosis in the penumbra region is the major cell death mechanism occurring during ischemia–reperfusion injury’s early phase. Here, we evaluated how the Alpinia oxyphylla Miq (AOM) affects mitochondria-related apoptosis 3 days after transient middle cerebral artery occlusion (MCAo) and examined the mechanisms underlying the regulation of MAPK-mediated mitochondria-related apoptotic signaling in the peri-infarct cortex in rats. The rats were administered the AOM extract intraperitoneally at doses of 0.2[Formula: see text]g/kg (AOM-0.2[Formula: see text]g), 0.4[Formula: see text]g/kg (AOM-0.4[Formula: see text]g), or 0.8[Formula: see text]g/kg (AOM-0.8[Formula: see text]g) at MCAo initiation. The AOM-0.4[Formula: see text]g and AOM-0.8[Formula: see text]g significantly ameliorated apoptotic cell death and considerably downregulated cytochrome c (cyto c) and cleaved caspase-3 immunoreactivity 3 days after reperfusion. Simultaneously, they significantly downregulated cytosolic p-JNK/JNK, cathepsin B/actin, cyto c/actin, Smac/DIABLO/actin, cleaved caspase-3/actin, and AIF/actin and mitochondrial p53/HSP60 and Bax/HSP60 fractions but upregulated cytosolic p-p38 MAPK/p38 MAPK, p-p90RSK/actin, p-Bad/Bad, p-CREB/actin, and XIAP/actin and cytosolic and mitochondrial Bcl-2/Bax and Bcl-xL/Bax fractions in the peri-infarct cortex. Pretreatment with SB203580 — a p38 MAPK inhibitor — completely abrogated the effects of AOM-0.8[Formula: see text]g on the aforementioned protein expression, whereas treatment with SP600125 — a JNK inhibitor — exerted protective effects similar to those of AOM-0.8[Formula: see text]g. Treatment with 0.4 or 0.8[Formula: see text]g/kg AOM has neuroprotective effects against mitochondria-related apoptosis by suppressing cyto c, Smac/DIABLO, and AIF release from the mitochondria to cytosol. The anti-mitochondria related apoptotic effects of the AOM extract are attributable to the interactions between upregulated p38 MAPK/p90RSK-mediated p-Bad and CREB signaling and downregulated JNK/cathepsin B-mediated Bax and p53 signaling in the peri-infarct cortex 3 days after transient MCAo.
Collapse
Affiliation(s)
- Yueh-Ting Tsai
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
- Department of Traditional Chinese Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Tung-Ti Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Chin-Yi Cheng
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung 42056, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 42056, Taiwan
| |
Collapse
|
12
|
Huo Y, Feng X, Niu M, Wang L, Xie Y, Wang L, Ha J, Cheng X, Gao Z, Sun Y. Therapeutic time windows of compounds against NMDA receptors signaling pathways for ischemic stroke. J Neurosci Res 2021; 99:3204-3221. [PMID: 34676594 DOI: 10.1002/jnr.24937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
Much evidence has proved that excitotoxicity induced by excessive release of glutamate contributes largely to damage caused by ischemia. In view of the key role played by NMDA receptors in mediating excitotoxicity, compounds against NMDA receptors signaling pathways have become the most promising type of anti-stroke candidate compounds. However, the limited therapeutic time window for neuroprotection is a key factor preventing NMDA receptor-related compounds from showing efficacy in all clinical trials for ischemic stroke. In this perspective, the determination of therapeutic time windows of these kinds of compounds is useful in ensuring a therapeutic effect and accelerating clinical application. This mini-review discussed the therapeutic time windows of compounds against NMDA receptors signaling pathways, described related influence factors and the status of clinical studies. The purpose of this review is to look for compounds with wide therapeutic time windows and better clinical application prospect.
Collapse
Affiliation(s)
- Yuexiang Huo
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xue Feng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Menghan Niu
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China.,Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, CA, USA
| | - Jing Ha
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaokun Cheng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
13
|
Cheng CY, Chiang SY, Kao ST, Huang SC. Alpinia oxyphylla Miq extract reduces cerebral infarction by downregulating JNK-mediated TLR4/T3JAM- and ASK1-related inflammatory signaling in the acute phase of transient focal cerebral ischemia in rats. Chin Med 2021; 16:82. [PMID: 34419138 PMCID: PMC8379872 DOI: 10.1186/s13020-021-00495-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background Post-ischemic inflammation is a crucial component in stroke pathology in the early phase of cerebral ischemia–reperfusion (I/R) injury. Inflammation caused by microglia, astrocytes, and necrotic cells, produces pro-inflammatory mediators and exacerbates cerebral I/R injury. This study evaluated the effects of the Alpinia oxyphylla Miq [Yi Zhi Ren (YZR)] extract on cerebral infarction at 1 day after 90 min of transient middle cerebral artery occlusion (MCAo) and investigated the molecular mechanisms underlying the regulation of c-Jun N-terminal kinase (JNK)-mediated inflammatory cascades in the penumbral cortex. Rats were intraperitoneally injected with the YZR extract at the doses of 0.2 g/kg (YZR-0.2 g), 0.4 g/kg (YZR-0.4 g), or 0.8 g/kg (YZR-0.8 g) at MCAo onset. Results YZR-0.4 g and YZR-0.8 g treatments markedly reduced cerebral infarction, attenuated neurological deficits, and significantly downregulated the expression of phospho-apoptosis signal-regulating kinase 1 (p-ASK1)/ASK1, tumor necrosis factor receptor-associated factor 3 (TRAF3), TRAF3-interacting JNK-activating modulator (T3JAM), ionized calcium-binding adapter molecule 1 (Iba1), p-JNK/JNK, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, toll-like receptor 4 (TLR4), glial fibrillary acidic protein (GFAP), nuclear factor-kappa B (NF-κB), and interleukin-6 in the penumbral cortex at 1 day after reperfusion. SP600125 (SP), a selective JNK inhibitor, had the same effects. Furthermore, Iba1- and GFAP-positive cells were colocalized with TLR4, and colocalization of GFAP-positive cells was found with NF-κB in the nuclei. Conclusion YZR-0.4 g and YZR-0.8 g treatments exerted beneficial effects on cerebral ischemic injury by downregulating JNK-mediated signaling in the peri-infarct cortex. Moreover, the anti-infarction effects of YZR extract treatments were partially attributed to the downregulation of JNK-mediated TLR4/T3JAM- and ASK1-related inflammatory signaling pathways in the penumbral cortex at 1 day after reperfusion.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Chinese Medicine, Hui-Sheng Hospital, Taichung, 42056, Taiwan
| | - Su-Yin Chiang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Shang-Chih Huang
- Department of Neurology, China Medical University Hospital, Taichung City, 40447, Taiwan.
| |
Collapse
|
14
|
Yi X, Fan D, Yi T, Chen H, Qing T, Han Z, Bao S. 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) Urea Exerts Neuro-Protective Effects Against Ischemic Injury via Suppressing JNK/p38 MAPK-Mediated Mitochondrial Apoptosis Pathway. J Stroke Cerebrovasc Dis 2021; 30:105957. [PMID: 34217066 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND 1-trifluoromethoxyphenyl-3-(1- propionylpiperidin-4-yl) urea (TPPU) is a novel soluble epoxide hydrolase inhibitor which can protect against cerebral ischemic injury in middle cerebral artery occlusion rat model. However, the effects and potential mechanisms of TPPU on mitochondrial dysfunction are poorly understood. MATERIALS AND METHODS In oxygen-glucose deprivation/reperfusion (OGD/R)-induced cortical neurons, the effect of TPPU on cell viability was measured by MTT assay and apoptosis was evaluated using TUNEL assay. Mitochondria were observed by transmission electron microscopy and Mitotracker green staining assay, mitochondrial membrane potential was determined by JC-1 staining assay, activities of mitochondrial respiratory chain complexes (MRCC) I-IV and ATPase were measured by MRCC Activity Assay Kits and spectrophotometer. Western blot was used to investigate the effects of TPPU on apoptosis-related proteins. RESULTS TPPU treatment demonstrated significant protective effect on the OGD/R-induced cortical neurons by reducing cell death and number of apoptotic cells, stabilizing mitochondrial ultrastructure and morphology, increasing mitochondrial membrane potential and activities of MRCC I-IV and ATPase. Furthermore, TPPU treatment might effectively reverse the upregulation of caspase-3, Bax, p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal protein kinase (JNK), alleviate the inhibition of Bcl-2 in OGD/R-induced cortical neurons. CONCLUSIONS TPPU exerts a marked neuroprotective effect against mitochondrial dysfunction after cerebral ischemia potentially via suppressing JNK/p38 MAPK-mediated mitochondrial apoptosis signal pathway, it may be a promising neuroprotective agent for cerebral ischemia.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, People's Hospital of Deyang City, Deyang, China
| | - Daofeng Fan
- Department of Neurology, the Affiliated Longyan first Hospital of Fujian Medical University, Longyan, China
| | - Tong Yi
- Department of Neurology, the Second People's Hospital of Deyang City, Deyang, China
| | - Hong Chen
- Department of Neurology, People's Hospital of Deyang City, Deyang, China
| | - Ting Qing
- Department of Neurology, People's Hospital of Deyang City, Deyang, China
| | - Zhao Han
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaozhi Bao
- Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
15
|
Fu X, Zhou G, Zhuang J, Xu C, Zhou H, Peng Y, Cao Y, Zeng H, Li J, Yan F, Wang L, Chen G. White Matter Injury After Intracerebral Hemorrhage. Front Neurol 2021; 12:562090. [PMID: 34177751 PMCID: PMC8222731 DOI: 10.3389/fneur.2021.562090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 15% of all stroke cases. ICH is a devastating form of stroke associated with high morbidity, mortality, and disability. Preclinical studies have explored the mechanisms of neuronal death and gray matter damage after ICH. However, few studies have examined the development of white matter injury (WMI) following ICH. Research on WMI indicates that its pathophysiological presentation involves axonal damage, demyelination, and mature oligodendrocyte loss. However, the detailed relationship and mechanism between WMI and ICH remain unclear. Studies of other acute brain insults have indicated that WMI is strongly correlated with cognitive deficits, neurological deficits, and depression. The degree of WMI determines the short- and long-term prognosis of patients with ICH. This review demonstrates the structure and functions of the white matter in the healthy brain and discusses the pathophysiological mechanism of WMI following ICH. Our review reveals that the development of WMI after ICH is complex; therefore, comprehensive treatment is essential. Understanding the relationship between WMI and other brain cells may reveal therapeutic targets for the treatment of ICH.
Collapse
Affiliation(s)
- Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoyang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Neuroprotective effects of Senkyunolide I against glutamate-induced cells death by attenuating JNK/caspase-3 activation and apoptosis. Biomed Pharmacother 2021; 140:111696. [PMID: 34044281 DOI: 10.1016/j.biopha.2021.111696] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Glutamate-induced neurotoxicity is one of the most important pathogenic mechanisms in neurological diseases and is widely used as an in vitro model for ischemic stroke. Senkyunolide I (SEI), an active constituent derived from traditional Chinese medicine Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, has been shown to have beneficial effects against focal cerebral ischemia-reperfusion in rats. However, the mechanisms underlying SEI-mediated neuroprotection remain not well understood. Thus, we explored the influence of SEI in glutamate-mediated injury to mouse neuroblastoma (Neuro2a) cells and determined the mechanisms involved. Neuro2a cells were treated with SEI under exposure to glutamate for 24 h. Cell viability was assessed by using WST-1 reagents, and apoptosis was evaluated using Annexin V-FITC and a PI double staining kit. The protein expression levels of p-AKT, AKT, p-GSK3β, GSK3β, p-p38, p38, p-ERK, ERK, p-JNK, JNK, Bcl-2, Bax, Bcl-xl, p-Bad, Bad, p53, and cleaved caspase-3 were determined by Western blot analysis. Glutamate significantly decreased cell viability and elevated the level of apoptosis. Treatment with SEI reversed those effects. Furthermore, the expression of p-JNK/JNK and cleaved caspase-3 were also reduced after treatment with SEI. Our findings demonstrate that SEI protected Neuro2a cells against glutamate toxicity by regulating JNK/caspase-3 pathway and apoptosis. Thus, SEI maybe a promising candidate for neuroprotection.
Collapse
|
17
|
Zulfiqar Z, Shah FA, Shafique S, Alattar A, Ali T, Alvi AM, Rashid S, Li S. Repurposing FDA Approved Drugs as JNK3 Inhibitor for Prevention of Neuroinflammation Induced by MCAO in Rats. J Inflamm Res 2020; 13:1185-1205. [PMID: 33384558 PMCID: PMC7770337 DOI: 10.2147/jir.s284471] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Stress-associated kinases are considered major pathological mediators in several incurable neurological disorders. Importantly, among these stress kinases, the c-Jun NH2-terminal kinase (JNK) has been linked to numerous neuropathological conditions, including oxidative stress, neuroinflammation, and brain degeneration associated with brain injuries such as ischemia/reperfusion injury. In this study, we adopted a drug repurposing/reprofiling approach to explore novel JNK3 inhibitors from FDA-approved medications to supplement existing therapeutic strategies. Materials and Methods We performed in silico docking analysis and molecular dynamics simulation to screen potential candidates from the FDA approved drug library using the standard JNK inhibitor SP600125 as a reference. After the virtual screening, dabigatran, estazolam, leucovorin, and pitavastatin were further examined in ischemic stroke using an animal rodent model of focal cerebral ischemia using transient middle cerebral artery occlusion (t-MCAO). The selected drugs were probed for neuroprotective effectiveness by measuring the infarct area (%) and neurological deficits using a 28-point composite score. Biochemical assays including ELISA and immunohistochemical experiments were performed. Results We obtained structural insights for dabigatran, estazolam, and pitavastatin binding to JNK3, revealing a significant contribution of the hydrophobic regions and significant residues of active site regions. To validate the docking results, the pharmacological effects of dabigatran, estazolam, leucovorin, and pitavastatin on MCAO were tested in parallel with the JNK inhibitor SP600125. After MCAO surgery, severe neurological deficits were detected in the MCAO group compared with the sham controls, which were significantly reversed by dabigatran, estazolam, and pitavastatin treatment. Aberrant morphological features and brain damage were observed in the ipsilateral cortex and striatum of the MCAO groups. The drugs restored the anti-oxidant enzyme activity and reduced the levels of oxidative stress-induced p-JNK and neuroinflammatory mediators such as NF-kB and TNF-ɑ in rats subjected to MCAO. Conclusion Our results demonstrated that the novel FDA-approved medications attenuate ischemic stroke-induced neuronal degeneration, possibly by inhibiting JNK3. Being FDA-approved safe medications, the use of these drugs can be clinically translated for ischemic stroke-associated brain degeneration and other neurodegenerative diseases associated with oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Zikra Zulfiqar
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Shagufta Shafique
- National Center for Bioinformatics, Quaid-I-Azam University, Islamabad, Pakistan
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Tahir Ali
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arooj Mohsin Alvi
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-I-Azam University, Islamabad, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| |
Collapse
|
18
|
Plotnikov MB, Chernysheva GA, Smolyakova VI, Aliev OI, Trofimova ES, Sherstoboev EY, Osipenko AN, Khlebnikov AI, Anfinogenova YJ, Schepetkin IA, Atochin DN. Neuroprotective Effects of a Novel Inhibitor of c-Jun N-Terminal Kinase in the Rat Model of Transient Focal Cerebral Ischemia. Cells 2020; 9:cells9081860. [PMID: 32784475 PMCID: PMC7464312 DOI: 10.3390/cells9081860] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
A novel specific inhibitor of c-Jun N-terminal kinase, 11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S), has a high affinity to JNK3 compared to JNK1/JNK2. The aim of this work was to study the mechanisms of neuroprotective activity of IQ-1S in the models of reversible focal cerebral ischemia (FCI) in Wistar rats. The animals were administered with an intraperitoneal injection of IQ-1S (5 and 25 mg/kg) or citicoline (500 mg/kg). Administration of IQ-1S exerted a pronounced dose-dependent neuroprotective effect, not inferior to the effects of citicoline. Administration of IQ-1S at doses of 5 and 25 mg/kg reduced the infarct size by 20% and 50%, respectively, 48 h after FCI, whereas administration of citicoline reduced the infarct size by 34%. The administration of IQ-1S was associated with a faster amelioration of neurological status. Control rats showed a 2.0-fold increase in phospho-c-Jun levels in the hippocampus compared to the corresponding values in sham-operated rats 4 h after FCI. Administration of IQ-1S at a dose of 25 mg/kg reduced JNK-dependent phosphorylation of c-Jun by 20%. Our findings suggest that IQ-1S inhibits JNK enzymatic activity in the hippocampus and protects against stroke injury when administered in the therapeutic and prophylactic regimen in the rat model of FCI.
Collapse
Affiliation(s)
- Mark B. Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 3 Lenin ave, 634028 Tomsk, Russia; (G.A.C.); (V.I.S.); (O.I.A.); (E.S.T.); (E.Y.S.)
- National Research Tomsk State University, 36 Lenin ave., 634050 Tomsk, Russia
- Correspondence: ; Tel.: +7-913-822-1783
| | - Galina A. Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 3 Lenin ave, 634028 Tomsk, Russia; (G.A.C.); (V.I.S.); (O.I.A.); (E.S.T.); (E.Y.S.)
| | - Vera I. Smolyakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 3 Lenin ave, 634028 Tomsk, Russia; (G.A.C.); (V.I.S.); (O.I.A.); (E.S.T.); (E.Y.S.)
| | - Oleg I. Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 3 Lenin ave, 634028 Tomsk, Russia; (G.A.C.); (V.I.S.); (O.I.A.); (E.S.T.); (E.Y.S.)
| | - Eugene S. Trofimova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 3 Lenin ave, 634028 Tomsk, Russia; (G.A.C.); (V.I.S.); (O.I.A.); (E.S.T.); (E.Y.S.)
| | - Eugene Y. Sherstoboev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 3 Lenin ave, 634028 Tomsk, Russia; (G.A.C.); (V.I.S.); (O.I.A.); (E.S.T.); (E.Y.S.)
| | - Anton N. Osipenko
- Department of Pharmacology, Siberian State Medical University, 2 Moskovskiy tract, 634050 Tomsk, Russia;
| | - Andrei I. Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.I.K.); (I.A.S.); (D.N.A.)
| | - Yana J. Anfinogenova
- Cardiology Research Institute, Tomsk NRMC, 111a Kievskaya St., 634012 Tomsk, Russia;
| | - Igor A. Schepetkin
- Kizhner Research Center, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.I.K.); (I.A.S.); (D.N.A.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Dmitriy N. Atochin
- Kizhner Research Center, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.I.K.); (I.A.S.); (D.N.A.)
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
19
|
Fadel F, Al-Kandari N, Khashab F, Al-Saleh F, Al-Maghrebi M. JNK inhibition alleviates oxidative DNA damage, germ cell apoptosis, and mitochondrial dysfunction in testicular ischemia reperfusion injury. Acta Biochim Biophys Sin (Shanghai) 2020; 52:891-900. [PMID: 32662511 DOI: 10.1093/abbs/gmaa074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 01/05/2023] Open
Abstract
The aim of this study is to determine whether the c-Jun N-terminal kinase (JNK) signaling is a regulator of oxidative DNA damage, germ cell apoptosis (GCA), and mitochondrial dysfunction during testicular ischemia reperfusion injury (tIRI) using the JNK inhibitor SP600125. Male Sprague Dawley rats (n = 36) were equally divided into three groups: sham, tIRI only, and tIRI + SP600125 (15 mg/kg). Testicular ischemia was induced for 1 h followed by 4 h of reperfusion prior to animal sacrifice. Spermatogenesis was evaluated by light microscopy, while expression of oxidative stress and GCA-related mRNAs and proteins were evaluated by real-time polymerase chain reaction and colorimetric assays, respectively. Expressions of JNK, p53, and survivin were detected by immunofluorescence (IF) staining. Indicators of mitochondrial dysfunction were examined by western blot analysis and colorimetric assay. In comparison to sham, the tIRI testes showed a significant increase in lipid and protein oxidation products. Oxidative DNA damage was reflected by a significant increase in the number of DNA strand breaks, increased concentration of 8-OHdG, and elevated poly (ADP-ribose) polymerase activity. Spermatogenic damage was associated with the activation of caspase 3 and elevated Bax to Bcl2 ratio. This was also accompanied by a significantly heightened IF expression of the phosphorylated forms of JNK and p53 paralled with the suppression of survivin. Mitochondrial dysfunction was reflected by NAD+ depletion, overexpression of uncoupling protein 2, and increased level of cytochrome c. Such tIRI-induced modulations were all attenuated by SP600125 treatment prior to reperfusion. In conclusion, JNK signaling regulates oxidative DNA damage, GCA, and mitochondrial dysfunction through activation of p53 and suppression of survivin during tIRI.
Collapse
Affiliation(s)
- Fatemah Fadel
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah 13110, Kuwait
| | - Nora Al-Kandari
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah 13110, Kuwait
| | - Farah Khashab
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah 13110, Kuwait
| | - Farah Al-Saleh
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah 13110, Kuwait
| | - May Al-Maghrebi
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah 13110, Kuwait
| |
Collapse
|
20
|
Uzdensky AB. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 2020; 24:687-702. [PMID: 31256300 DOI: 10.1007/s10495-019-01556-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is the leading cause of human disability and mortality in the world. The main problem in stroke therapy is the search of efficient neuroprotector capable to rescue neurons in the potentially salvageable transition zone (penumbra), which is expanding after brain damage. The data on molecular mechanisms of penumbra formation and expression of diverse signaling proteins in the penumbra during first 24 h after ischemic stroke are discussed. Two basic features of cell death regulation in the ischemic penumbra were observed: (1) both apoptotic and anti-apoptotic proteins are simultaneously over-expressed in the penumbra, so that the fate of individual cells is determined by the balance between these opposite tendencies. (2) Similtaneous and concerted up-regulation in the ischemic penumbra of proteins that execute apoptosis (caspases 3, 6, 7; Bcl-10, SMAC/DIABLO, AIF, PSR), signaling proteins that regulate different apoptosis pathways (p38, JNK, DYRK1A, neurotrophin receptor p75); transcription factors that control expression of various apoptosis regulation proteins (E2F1, p53, c-Myc, GADD153); and proteins, which are normally involved in diverse cellular functions, but stimulate apoptosis in specific situations (NMDAR2a, Par4, GAD65/67, caspase 11). Hence, diverse apoptosis initiation and regulation pathways are induced simultaneously in penumbra from very different initial positions. Similarly, various anti-apoptotic proteins (Bcl-x, p21/WAF-1, MDM2, p63, PKBα, ERK1, RAF1, ERK5, MAKAPK2, protein phosphatases 1α and MKP-1, estrogen and EGF receptors, calmodulin, CaMKII, CaMKIV) are upregulated. These data provide an integral view of neurodegeneration and neuroprotection in penumbra. Some discussed proteins may serve as potential targets for anti-stroke therapy.
Collapse
Affiliation(s)
- Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Prospect, Rostov-on-Don, Russia, 344090.
| |
Collapse
|
21
|
Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res 2020; 11:1185-1202. [PMID: 32219729 DOI: 10.1007/s12975-020-00806-z] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is one of the significant causes of morbidity and mortality, affecting millions of people across the globe. Cell injury in the infarct region is an inevitable consequence of focal cerebral ischemia. Subsequent reperfusion exacerbates the harmful effect and increases the infarct volume. These cellular injuries follow either a regulated pathway involving tightly structured signaling cascades and molecularly defined effector mechanisms or a non-regulated pathway, also known as accidental cell death, where the process is biologically uncontrolled. Classical cell death pathways are long established and well reported in several articles that majorly define apoptotic cell death. A recent focus on cell death study also considers investigation on non-classical pathways that are tightly regulated, may or may not involve caspases, but non-apoptotic. Pathological cell death is a cardinal feature of different neurodegenerative diseases. Although ischemia cannot be classified as a neurodegenerative disease, it is a cerebrovascular event where the infarct region exhibits aberrant cell death. Over the past few decades, several therapeutic options have been implicated for ischemic stroke. However, their use has been hampered owing to the number of limitations that they possess. Ischemic penumbral neurons undergo apoptosis and become dysfunctional; however, they are salvageable. Thus, understanding the role of different cell death pathways is crucial to aid in the modern treatment of protecting apoptotic neurons.
Collapse
|
22
|
Meloni BP, Mastaglia FL, Knuckey NW. Cationic Arginine-Rich Peptides (CARPs): A Novel Class of Neuroprotective Agents With a Multimodal Mechanism of Action. Front Neurol 2020; 11:108. [PMID: 32158425 PMCID: PMC7052017 DOI: 10.3389/fneur.2020.00108] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
There are virtually no clinically available neuroprotective drugs for the treatment of acute and chronic neurological disorders, hence there is an urgent need for the development of new neuroprotective molecules. Cationic arginine-rich peptides (CARPs) are an expanding and relatively novel class of compounds, which possess intrinsic neuroprotective properties. Intriguingly, CARPs possess a combination of biological properties unprecedented for a neuroprotective agent including the ability to traverse cell membranes and enter the CNS, antagonize calcium influx, target mitochondria, stabilize proteins, inhibit proteolytic enzymes, induce pro-survival signaling, scavenge toxic molecules, and reduce oxidative stress as well as, having a range of anti-inflammatory, analgesic, anti-microbial, and anti-cancer actions. CARPs have also been used as carrier molecules for the delivery of other putative neuroprotective agents across the blood-brain barrier and blood-spinal cord barrier. However, there is increasing evidence that the neuroprotective efficacy of many, if not all these other agents delivered using a cationic arginine-rich cell-penetrating peptide (CCPPs) carrier (e.g., TAT) may actually be mediated largely by the properties of the carrier molecule, with overall efficacy further enhanced according to the amino acid composition of the cargo peptide, in particular its arginine content. Therefore, in reviewing the neuroprotective mechanisms of action of CARPs we also consider studies using CCPPs fused to a putative neuroprotective peptide. We review the history of CARPs in neuroprotection and discuss in detail the intrinsic biological properties that may contribute to their cytoprotective effects and their usefulness as a broad-acting class of neuroprotective drugs.
Collapse
Affiliation(s)
- Bruno P Meloni
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Neville W Knuckey
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
23
|
Hu H, Hone EA, Provencher EAP, Sprowls SA, Farooqi I, Corbin DR, Sarkar SN, Hollander JM, Lockman PR, Simpkins JW, Ren X. MiR-34a Interacts with Cytochrome c and Shapes Stroke Outcomes. Sci Rep 2020; 10:3233. [PMID: 32094435 PMCID: PMC7040038 DOI: 10.1038/s41598-020-59997-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/04/2020] [Indexed: 12/02/2022] Open
Abstract
Blood-brain barrier (BBB) dysfunction occurs in cerebrovascular diseases and neurodegenerative disorders such as stroke. Opening of the BBB during a stroke has a negative impact on acute outcomes. We have recently demonstrated that miR-34a regulates the BBB by targeting cytochrome c (CYC) in vitro. To investigate the role of miR-34a in a stroke, we purified primary cerebrovascular endothelial cells (pCECs) from mouse brains following 1 h transient middle cerebral artery occlusion (tMCAO) and measured real-time PCR to detect miR-34a levels. We demonstrate that the miR-34a levels are elevated in pCECs from tMCAO mice at the time point of BBB opening following 1 h tMCAO and reperfusion. Interestingly, knockout of miR-34a significantly reduces BBB permeability, alleviates disruption of tight junctions, and improves stroke outcomes compared to wild-type (WT) controls. CYC is decreased in the ischemic hemispheres and pCECs from WT but not in miR-34a−/− mice following stroke reperfusion. We further confirmed CYC is a target of miR-34a by a dural luciferase reporter gene assay in vitro. Our study provides the first description of miR-34a affecting stroke outcomes and may lead to discovery of new mechanisms and treatments for cerebrovascular and neurodegenerative diseases such as stroke.
Collapse
Affiliation(s)
- Heng Hu
- Departments of Physiology and Pharmacology, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA.,Experimental Stroke Core, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Emily A Hone
- Neuroscience, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA.,Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Edward A P Provencher
- Neuroscience, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Samuel A Sprowls
- Department of Basic Pharmaceutic Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Imran Farooqi
- Neuroscience, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Deborah R Corbin
- Neuroscience, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Saumyendra N Sarkar
- Departments of Physiology and Pharmacology, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - John M Hollander
- Human Performance, School of Medicine, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Paul R Lockman
- Department of Basic Pharmaceutic Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - James W Simpkins
- Departments of Physiology and Pharmacology, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA.,Experimental Stroke Core, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Xuefang Ren
- Neuroscience, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA. .,Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA. .,Human Performance, School of Medicine, Center for Basic and Translational Stroke Research; West Virginia University, Morgantown, West Virginia, 26506, USA.
| |
Collapse
|
24
|
Syeda MZ, Fasae MB, Yue E, Ishimwe AP, Jiang Y, Du Z, Yang B, Bai Y. Anthocyanidin attenuates myocardial ischemia induced injury via inhibition of ROS‐JNK‐Bcl‐2 pathway: New mechanism of anthocyanidin action. Phytother Res 2019; 33:3129-3139. [DOI: 10.1002/ptr.6485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Madiha Zahra Syeda
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
| | - Moyondafoluwa Blessing Fasae
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
| | - Er Yue
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
| | - Alain Prudence Ishimwe
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
| | - Yannan Jiang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
- Translational Medicine Research and Cooperation Center of Northern ChinaHeilongjiang Academy of Medical Sciences Harbin P. R. China
| | - Zhimin Du
- Institute of Clinical Pharmacologythe Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Drug Development, Universities of Heilongjiang Province) Harbin P. R. China
| | - Baofeng Yang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
- Translational Medicine Research and Cooperation Center of Northern ChinaHeilongjiang Academy of Medical Sciences Harbin P. R. China
| | - Yunlong Bai
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
- Translational Medicine Research and Cooperation Center of Northern ChinaHeilongjiang Academy of Medical Sciences Harbin P. R. China
| |
Collapse
|
25
|
Zhou L, Ao LY, Yan YY, Li WT, Ye AQ, Li CY, Shen WY, Liang BW, Xiong-Zhu, Li YM. JLX001 Ameliorates Ischemia/Reperfusion Injury by Reducing Neuronal Apoptosis via Down-Regulating JNK Signaling Pathway. Neuroscience 2019; 418:189-204. [PMID: 31487541 DOI: 10.1016/j.neuroscience.2019.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/26/2023]
Abstract
JLX001, a novel compound with similar structure with cyclovirobuxine D (CVB-D), has been proved to exert therapeutical effects on permanent focal cerebral ischemia. However, the protective effects of JLX001 on cerebral ischemia/reperfusion (I/R) injury and its anti-apoptotic effects have not been reported. We investigated the efficacy of JLX001 in two pharmacodynamic tests (pre-treatment test and post-treatment) with rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The pharmacodynamic tests demonstrated that JLX001 ameliorated I/R injury by reducing infarct sizes and brain edema. The results of Morris water maze, neurological scores, cylinder test and posture reflex test implied that JLX001 improved the learning, memory and motor ability after MCAO/R in the long term. Anti-apoptotic effects of JLX001 and its regulation of cytosolic c-Jun N-terminal Kinases (JNKs) signal pathway were confirmed in vivo by co-immunofluorescence staining and western immunoblotting. Furthermore, primary cortical neuron cultures were prepared and exposed to oxygen glucose deprivation/reoxygenation (OGD/R) for in vitro studies. Cytotoxicity test and mitochondrial membrane potential (MMP) test showed that JLX001 enhanced cell survival rate and maintained MMP. Flow cytometry and TdT-mediated dUTP-X nick end labeling (TUNEL) staining demonstrated the anti-apoptotic effects of JLX001 in vitro. Likewise, JLX001 regulated JNK signal pathway in vivo, which was also confirmed by western immunoblotting. Collectively, this study presents the first evidence that JLX001 exerted protective effects against I/R injury by reducing neuronal apoptosis via down-regulating JNK signaling pathway.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wan-Ting Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - An-Qi Ye
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Yang Shen
- School of Sciences, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bing-Wen Liang
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR China
| | - Xiong-Zhu
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR China; Medicine & Chemical Institute, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
26
|
Hollville E, Romero SE, Deshmukh M. Apoptotic cell death regulation in neurons. FEBS J 2019; 286:3276-3298. [PMID: 31230407 DOI: 10.1111/febs.14970] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Apoptosis plays a major role in shaping the developing nervous system during embryogenesis as neuronal precursors differentiate to become post-mitotic neurons. However, once neurons are incorporated into functional circuits and become mature, they greatly restrict their capacity to die via apoptosis, thus allowing the mature nervous system to persist in a healthy and functional state throughout life. This robust restriction of the apoptotic pathway during neuronal differentiation and maturation is defined by multiple unique mechanisms that function to more precisely control and restrict the intrinsic apoptotic pathway. However, while these mechanisms are necessary for neuronal survival, mature neurons are still capable of activating the apoptotic pathway in certain pathological contexts. In this review, we highlight key mechanisms governing the survival of post-mitotic neurons, while also detailing the physiological and pathological contexts in which neurons are capable of overcoming this high apoptotic threshold.
Collapse
Affiliation(s)
| | - Selena E Romero
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| |
Collapse
|
27
|
Jiang C, Zou X, Zhu R, Shi Y, Wu Z, Zhao F, Chen L. The correlation between accumulation of amyloid beta with enhanced neuroinflammation and cognitive impairment after intraventricular hemorrhage. J Neurosurg 2019; 131:54-63. [PMID: 30028260 DOI: 10.3171/2018.1.jns172938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Intraventricular hemorrhage (IVH) is found in approximately 40% of intracerebral hemorrhages and is associated with increased mortality and poor functional outcome. Cognitive impairment is one of the complications and occurs due to various pathological changes. Amyloid beta (Aβ) accumulation and neuroinflammation, and the Alzheimer disease-like pathology, may contribute to cognitive impairment. Iron, the degradation product of hemoglobin, correlates with Aβ. In this study, the authors investigated the correlation between Aβ accumulation with enhanced neuroinflammation and cognitive impairment in a rat model of IVH. METHODS Nine male Sprague-Dawley rats underwent an intraventricular injection of autologous blood. Another 9 rats served as controls. Cognitive function was assessed by the Morris water maze and T-maze rewarded alternation tests. Biomarkers of Aβ accumulation, neuroinflammation, and c-Jun N-terminal kinase (JNK) activation were examined. RESULTS Cognitive function was impaired in the autologous blood injection group compared with the control group. In the blood injection group, Aβ accumulation was observed, with a co-located correlation between iron storage protein ferritin and Aβ. Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) activity was elevated. Microgliosis and astrogliosis were observed in hippocampal CA1, CA2, CA3, and dentate gyrus areas, with elevated proinflammatory cytokines tumor necrosis factor-α and interleukin-1. Protein levels of phosphorylated JNK were increased after blood injection. CONCLUSIONS Aβ accumulation and enhanced neuroinflammation have a role in cognitive impairment after IVH. A potential therapeutic method requires further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liang Chen
- 1Department of Neurosurgery and
- 2National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Vahidinia Z, Azami Tameh A, Nejati M, Beyer C, Talaei SA, Etehadi Moghadam S, Atlasi MA. The protective effect of bone marrow mesenchymal stem cells in a rat model of ischemic stroke via reducing the C-Jun N-terminal kinase expression. Pathol Res Pract 2019; 215:152519. [PMID: 31272760 DOI: 10.1016/j.prp.2019.152519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023]
Abstract
Ischemic stroke is the main cause of disability and mortality worldwide. Apoptosis and inflammation have an important role in ischemic brain injury. Mesenchymal stem cells (MSCs) have protective effects on stroke treatment due to anti-inflammatory properties. The inhibition of the C-Jun N-terminal kinase (JNK) pathway may be one of the molecular mechanisms of the neuroprotective effect of MSCs in ischemic brain injury. Twenty-eight male Wistar rats were divided randomly into 3 groups. Except the sham group, others subjected to transient middle cerebral artery occlusion (tMCAO). Bone marrow MSCs or saline were injected 3 h after tMCAO. Sensorimotor behavioral tests were performed 24 and 72 h after ischemia and reperfusion (I/R). The rats were sacrificed 72 h after I/R and infarct volume was measured by TTC staining. The number of apoptotic neurons and astrocytes in the peri-infarct area was assessed by TUNEL assay. The morphology of cells was checked by Nissl staining, and the expression of p-JNK was detected by immunohistochemistry and Western blot. Behavioral scores were improved and infarct volume was reduced by MSCs 24 h and 72 h after tMCAO. TUNEL assay showed that neuronal apoptosis and astroglial activity in the penumbra region were reduced by MSCs. Also, Nissl staining showed lower neuronal apoptosis in BMSCs-treated rats compared to controls. JNK phosphorylation which was profoundly induced by ischemia was significantly decreased after MSCs treatment. We concluded that anti-apoptotic and anti-inflammatory effects of MSCs therapy after brain ischemia may be associated with the down-regulation of p-JNK.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | | | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
29
|
Plotnikov MB, Chernysheva GA, Aliev OI, Smol'iakova VI, Fomina TI, Osipenko AN, Rydchenko VS, Anfinogenova YJ, Khlebnikov AI, Schepetkin IA, Atochin DN. Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats. Molecules 2019; 24:E1722. [PMID: 31058815 PMCID: PMC6539151 DOI: 10.3390/molecules24091722] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/23/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is activated by various brain insults and is implicated in neuronal injury triggered by reperfusion-induced oxidative stress. Some JNK inhibitors demonstrated neuroprotective potential in various models, including cerebral ischemia/reperfusion injury. The objective of the present work was to study the neuroprotective activity of a new specific JNK inhibitor, IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt), in the model of global cerebral ischemia (GCI) in rats compared with citicoline (cytidine-5'-diphosphocholine), a drug approved for the treatment of acute ischemic stroke and to search for pleiotropic mechanisms of neuroprotective effects of IQ-1S. The experiments were performed in a rat model of ischemic stroke with three-vessel occlusion (model of 3VO) affecting the brachiocephalic artery, the left subclavian artery, and the left common carotid artery. After 7-min episode of GCI in rats, 25% of animals died, whereas survived animals had severe neurological deficit at days 1, 3, and 5 after GCI. At day 5 after GCI, we observing massive loss of pyramidal neurons in the hippocampal CA1 area, increase in lipid peroxidation products in the brain tissue, and decrease in local cerebral blood flow (LCBF) in the parietal cortex. Moreover, blood hyperviscosity syndrome and endothelial dysfunction were found after GCI. Administration of IQ-1S (intragastrically at a dose 50 mg/kg daily for 5 days) was associated with neuroprotective effect comparable with the effect of citicoline (intraperitoneal at a dose of 500 mg/kg, daily for 5 days).The neuroprotective effect was accompanied by a decrease in the number of animals with severe neurological deficit, an increase in the number of animals with moderate degree of neurological deficit compared with control GCI group, and an increase in the number of unaltered neurons in the hippocampal CA1 area along with a significant decrease in the number of neurons with irreversible morphological damage. In rats with IQ-1S administration, the LCBF was significantly higher (by 60%) compared with that in the GCI control. Treatment with IQ-1S also decreases blood viscosity and endothelial dysfunction. A concentration-dependent decrease (IC50 = 0.8 ± 0.3 μM) of tone in isolated carotid arterial rings constricted with phenylephrine was observed after IQ-1S application in vitro. We also found that IQ-1S decreased the intensity of the lipid peroxidation in the brain tissue in rats with GCI. 2.2-Diphenyl-1-picrylhydrazyl scavenging for IQ-1S in acetonitrile and acetone exceeded the corresponding values for ionol, a known antioxidant. Overall, these results suggest that the neuroprotective properties of IQ-1S may be mediated by improvement of cerebral microcirculation due to the enhanced vasorelaxation, beneficial effects on blood viscosity, attenuation of the endothelial dysfunction, and antioxidant/antiradical IQ-1S activity.
Collapse
Affiliation(s)
- Mark B Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
- National Research Tomsk State University, Tomsk 634050, Russia.
| | - Galina A Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Oleg I Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Vera I Smol'iakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Tatiana I Fomina
- Department of Medicine Toxicology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634028, Russia.
| | - Anton N Osipenko
- Department of Pharmacology, Siberian State Medical University, Tomsk 634050, Russia.
| | - Victoria S Rydchenko
- Department of Biophysics, Siberian State Medical University, Tomsk 634050, Russia.
| | - Yana J Anfinogenova
- Cardiology Research Institute, Tomsk NRMC, Tomsk 634012, Russia.
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Research Institute of Biological Medicine, Altai State University, Barnaul 656049, Russia.
| | - Igor A Schepetkin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Dmitriy N Atochin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
30
|
Lucero M, Suarez AE, Chambers JW. Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci Ther 2019; 25:837-858. [PMID: 31025544 PMCID: PMC6566066 DOI: 10.1111/cns.13141] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c-Jun N-terminal kinase (JNK), protein kinase A (PKA), PTEN-induced kinase-1 (PINK1), and AMP-dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria-cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen-activated protein kinase phosphatase-1 (MKP-1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A-kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5-SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson's disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein-protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD.
Collapse
Affiliation(s)
- Maribel Lucero
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Ana E Suarez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Jeremy W Chambers
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| |
Collapse
|
31
|
Tribulusterine Containing Tribulus terrestris Extract Exhibited Neuroprotection Through Attenuating Stress Kinases Mediated Inflammatory Mechanism: In Vitro and In Vivo Studies. Neurochem Res 2019; 44:1228-1242. [DOI: 10.1007/s11064-019-02768-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022]
|
32
|
Wu C, Zhao J, Chen Y, Li T, Zhu R, Zhu B, Zhang Y. Tangeretin protects human brain microvascular endothelial cells against oxygen-glucose deprivation-induced injury. J Cell Biochem 2018; 120:4883-4891. [PMID: 30260010 DOI: 10.1002/jcb.27762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/06/2018] [Indexed: 01/24/2023]
Abstract
Tangeretin, a citrus flavonoid extracted from the peel of citrus fruits, was reported to possess antiasthmatic, antioxidant, anti-inflammatory, and neuroprotective properties. However, the effect of tangeretin on human brain microvascular endothelial cells (HBMECs) has not been examined. This study was designed to investigate the protective effects of tangeretin on oxygen-glucose deprivation (OGD)-induced injury of HBMECs, and explore the underlying mechanisms. Our results showed that tangeretin improved HBMECs viability in response to OGD. In addition, tangeretin was able to increase the activity of superoxide dismutase and decrease the levels of reactive oxygen species and malondialdehyde (MDA), as well as ameliorate cell apoptosis in OGD-stimulated HBMECs. Mechanistic studies showed that tangeretin prevented the activation of JNK signaling pathway in OGD-stimulated HBMECs. Taken together, our current study demonstrated that tangeretin could ameliorate OGD-induced HBMECs injury through the JNK signaling pathway. Thus, tangeretin might be used as a therapeutic strategy for ischemia-reperfusion brain injury and related diseases.
Collapse
Affiliation(s)
- Chunfang Wu
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jun Zhao
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yong Chen
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ting Li
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ruiming Zhu
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Baihui Zhu
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Youran Zhang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
33
|
Xing Y, Yang SD, Wang MM, Dong F, Feng YS, Zhang F. Electroacupuncture Alleviated Neuronal Apoptosis Following Ischemic Stroke in Rats via Midkine and ERK/JNK/p38 Signaling Pathway. J Mol Neurosci 2018; 66:26-36. [PMID: 30062439 DOI: 10.1007/s12031-018-1142-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022]
Abstract
This study aimed to evaluate the effects of electroacupuncture (EA) intervention administered at rats of middle cerebral artery occlusion (MCAO)/reperfusion. Fifty-four male Sprague-Dawley rats were divided into three groups, consisting of sham group, MCAO/R group, and EA group. EA treatment at Quchi and Zusanli acupoints was applied in rats of EA group at 24 h after MCAO once per day for 3 days. Our results indicated that EA treatment reduced infarct volumes and neurological deficits, as well alleviated the apoptotic cells in peri-infarct cortex, indicating that EA exerted neuroprotective effect in cerebral ischemic rats. Moreover, EA treatment may effectively reverse the upregulation of caspase-3 and Bim and alleviate the inhibition of Bcl-2 following 72-h ischemic stroke. EA may significantly reverse the promoted relative density level of p-ERK1/2, p-JNK, and p-p38 in the EA group compared with the MCAO/R group. In addition, the growth factor midkine (MK) was upregulated at 72 h after MCAO/R, and EA treatment may significantly prompt expression of MK. Our study demonstrated that EA exerted neuroprotective effect against neuronal apoptosis and the mechanism might involve in upregulation of MK and mediation of ERK/JNK/p38 signal pathway.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Si-Dong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China. .,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
34
|
Liu Q, Li X, Li L, Xu Z, Zhou J, Xiao W. Ginkgolide K protects SH‑SY5Y cells against oxygen‑glucose deprivation‑induced injury by inhibiting the p38 and JNK signaling pathways. Mol Med Rep 2018; 18:3185-3192. [PMID: 30066915 PMCID: PMC6102632 DOI: 10.3892/mmr.2018.9305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 05/10/2018] [Indexed: 12/25/2022] Open
Abstract
The purpose of the present study was to explore the protective effect and functional mechanism of ginkgolide K (GK: C20H22O9) on cerebral ischemia. SH-SY5Y cells were exposed to oxygen-glucose deprivation (OGD) to simulate an ischemic model in vitro. Cell viability, reactive oxygen species (ROS), nuclear staining with Hoechst 33258 and mitochondrial membrane potential were detected following 4 h of exposure to OGD. Subsequently, the expression levels of the apoptosis-related proteins, caspase-9, caspase-3, Bcl-2, Bax, p53 and c-Jun, as well as the mitogen-activated protein kinases (MAPKs) signaling molecules were detected by western blot analysis. GK significantly elevated the cell viability and decreased the generation of ROS and the number of apoptotic cells in a dose-dependent manner. Furthermore, GK markedly decreased the protein expression levels of p-p38, p-JNK, p-p53, p-c-Jun and the expression levels of Bcl-2, Bax, cleaved caspase-9 and caspase-3. In conclusion, GK demonstrated a neuroprotective effect on the simulated cerebral ischemia in vitro, and this effect was mediated through the inhibition of the mitochondria-mediated apoptosis pathway triggered by ROS-evoked p38 and JNK activation.
Collapse
Affiliation(s)
- Qiu Liu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu, Lianyungang 222001, P.R. China
| | - Xueke Li
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu, Lianyungang 222001, P.R. China
| | - Liang Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu, Lianyungang 222001, P.R. China
| | - Zhiliang Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu, Lianyungang 222001, P.R. China
| | - Jun Zhou
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu, Lianyungang 222001, P.R. China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu, Lianyungang 222001, P.R. China
| |
Collapse
|
35
|
c-Jun N-Terminal Kinases and Their Pharmacological Modulation in Ischemic and Reperfusion Brain Injury. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11055-018-0622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN. c-Jun N-Terminal Kinases (JNKs) in Myocardial and Cerebral Ischemia/Reperfusion Injury. Front Pharmacol 2018; 9:715. [PMID: 30026697 PMCID: PMC6041399 DOI: 10.3389/fphar.2018.00715] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
In this article, we review the literature regarding the role of c-Jun N-terminal kinases (JNKs) in cerebral and myocardial ischemia/reperfusion injury. Numerous studies demonstrate that JNK-mediated signaling pathways play an essential role in cerebral and myocardial ischemia/reperfusion injury. JNK-associated mechanisms are involved in preconditioning and post-conditioning of the heart and the brain. The literature and our own studies suggest that JNK inhibitors may exert cardioprotective and neuroprotective properties. The effects of modulating the JNK-depending pathways in the brain and the heart are reviewed. Cardioprotective and neuroprotective mechanisms of JNK inhibitors are discussed in detail including synthetic small molecule inhibitors (AS601245, SP600125, IQ-1S, and SR-3306), ion channel inhibitor GsMTx4, JNK-interacting proteins, inhibitors of mixed-lineage kinase (MLK) and MLK-interacting proteins, inhibitors of glutamate receptors, nitric oxide (NO) donors, and anesthetics. The role of JNKs in ischemia/reperfusion injury of the heart in diabetes mellitus is discussed in the context of comorbidities. According to reviewed literature, JNKs represent promising therapeutic targets for protection of the brain and the heart against ischemic stroke and myocardial infarction, respectively. However, different members of the JNK family exert diverse physiological properties which may not allow for systemic administration of non-specific JNK inhibitors for therapeutic purposes. Currently available candidate JNK inhibitors with high therapeutic potential are identified. The further search for selective JNK3 inhibitors remains an important task.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yana Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
- RASA Center, Kazan Federal University, Kazan, Russia
| | - Igor A. Schepetkin
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
37
|
Minaei Beyrami S, Khadem Ansari MH, Rasemi Y, Shakib N, Karimi P. Complete inhibition of phosphatase and tensin homolog promotes the normal and oxygen-glucose deprivation/reperfusion-injured PC12 cells to cell death. J Cardiovasc Thorac Res 2018; 10:83-89. [PMID: 30116506 PMCID: PMC6088763 DOI: 10.15171/jcvtr.2018.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/26/2018] [Indexed: 12/27/2022] Open
Abstract
Introduction: Lipid phosphatase and tensin homolog deleted from chromosome 10 (PTEN) antagonizes phosphoinositide 3-kinase (PI3K)/AKT cell survival pathway. The effect of PTEN inhibitors has been rarely examined on cell survival following reperfusion injury. In this study, we investigated the neuroprotective effect of SF1670, as a new PTEN inhibitor, on an in vitro stroke-like model.
Methods: PC12 cells were exposed to oxygen-glucose deprivation/reperfusion (OGD/R). The cells were treated in five conditions as follows: normoxic normoglycemic (NO/NG); 60 minutes OGD; 60 minutes OGD and 6 h reperfusion (OGD/R); OGD/R treated with 10 µM SF1670 (OGD/R-SF), and NO/NG treated with 10 µM SF1670 (NO/NG-SF). Then, phosphorylation levels of AKT, P38 in PC12 cells were measured by immunoblotting. The cell viability was also determined by colorimetric assay.
Results: The results of immunoblotting revealed that following OGD/R the levels of phospho-AKT (p-AKT) significantly decreased, compared to NO/NG cells (P < 0.05). However, the ratio of p-AKT/total AKT significantly increased in the presence of SF1670 in the OGD/R-SF group, compared to the OGD/R condition. On the other hand, SF1670 significantly reduced the p-P38 MAPK and p-JNK levels, compared to OGD/R cells. Moreover, cell viability significantly decreased in the OGD and OGD/R condition compared to NO/NG cells. Surprisingly, SF-treated cells (OGD/R-SF and NO/NG-SF group) showed low cell viability compared to NO/NG condition.
Conclusion: Overall, our results demonstrated that complete inhibition of phosphatase activity of PTEN not only did not exhibit neuroprotective effect but also promoted PC12-deprived cells to death.
Collapse
Affiliation(s)
- Sohrab Minaei Beyrami
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Yousef Rasemi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nader Shakib
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Yang J, Qi J, Xiu B, Yang B, Niu C, Yang H. Reactive Oxygen Species Play a Biphasic Role in Brain Ischemia. J INVEST SURG 2018; 32:97-102. [PMID: 29420085 DOI: 10.1080/08941939.2017.1376131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jinchong Qi
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Baoxin Xiu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Bei Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Caihong Niu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Hua Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
39
|
Sayeed A, Lu H, Liu Q, Deming D, Duffy A, McCue P, Dicker AP, Davis RJ, Gabrilovich D, Rodeck U, Altieri DC, Languino LR. β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation. Oncotarget 2018; 7:52618-52630. [PMID: 27438371 PMCID: PMC5288136 DOI: 10.18632/oncotarget.10522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/15/2016] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy is an effective cancer treatment modality although tumors invariably become resistant. Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model system, we report that a hypofractionated radiation schedule (10 Gy/day for 5 consecutive days) effectively blocks prostate tumor growth in wild type (β1wt /TRAMP) mice as well as in mice carrying a conditional ablation of β1 integrins in the prostatic epithelium (β1pc-/- /TRAMP). Since JNK is known to be suppressed by β1 integrins and mediates radiation-induced apoptosis, we tested the effect of SP600125, an inhibitor of c-Jun amino-terminal kinase (JNK) in the TRAMP model system. Our results show that SP600125 negates the effect of radiation on tumor growth in β1pc-/- /TRAMP mice and leads to invasive adenocarcinoma. These effects are associated with increased focal adhesion kinase (FAK) expression and phosphorylation in prostate tumors in β1pc-/- /TRAMP mice. In marked contrast, radiation-induced tumor growth suppression, FAK expression and phosphorylation are not altered by SP600125 treatment of β1wt /TRAMP mice. Furthermore, we have reported earlier that abrogation of insulin-like growth factor receptor (IGF-IR) in prostate cancer cells enhances the sensitivity to radiation. Here we further explore the β1/IGF-IR crosstalk and report that β1 integrins promote cell proliferation partly by enhancing the expression of IGF-IR. In conclusion, we demonstrate that β1 integrin-mediated inhibition of JNK signaling modulates tumor growth rate upon hypofractionated radiation.
Collapse
Affiliation(s)
- Aejaz Sayeed
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Huimin Lu
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qin Liu
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David Deming
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Duffy
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dmitry Gabrilovich
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, PA, USA
| | - Ulrich Rodeck
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
40
|
Zhang T, Yang X, Liu T, Shao J, Fu N, Yan A, Geng K, Xia W. Adjudin-preconditioned neural stem cells enhance neuroprotection after ischemia reperfusion in mice. Stem Cell Res Ther 2017; 8:248. [PMID: 29115993 PMCID: PMC5678778 DOI: 10.1186/s13287-017-0677-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/30/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transplantation of neural stem cells (NSCs) has been proposed as a promising therapeutic strategy for the treatment of ischemia/reperfusion (I/R)-induced brain injury. However, existing evidence has also challenged this therapy on its limitations, such as the difficulty for stem cells to survive after transplantation due to the unfavorable microenvironment in the ischemic brain. Herein, we have investigated whether preconditioning of NSCs with adjudin, a small molecule compound, could enhance their survivability and further improve the therapeutic effect for NSC-based stroke therapy. METHOD We aimed to examine the effect of adjudin pretreatment on NSCs by measuring a panel of parameters after their transplantation into the infarct area of ipsilateral striatum 24 hours after I/R in mice. RESULTS We found that pretreatment of NSCs with adjudin could enhance the viability of NSCs after their transplantation into the stroke-induced infarct area. Compared with the untreated NSC group, the adjudin-preconditioned group showed decreased infarct volume and neurobehavioral deficiency through ameliorating blood-brain barrier disruption and promoting the expression and secretion of brain-derived neurotrophic factor. We also employed H2O2-induced cell death model in vitro and found that adjudin preconditioning could promote NSC survival through inhibition of oxidative stress and activation of Akt signaling pathway. CONCLUSION This study showed that adjudin could be used to precondition NSCs to enhance their survivability and improve recovery in the stroke model, unveiling the value of adjudin for stem cell-based stroke therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Yang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Tengyuan Liu
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxiang Shao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ningzhen Fu
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Aijuan Yan
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Room 211, Med-X Research Institute, 1954 Huashan Road, Shanghai, 200030 China
| | - Keyi Geng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Room 211, Med-X Research Institute, 1954 Huashan Road, Shanghai, 200030 China
| |
Collapse
|
41
|
Biochemical targets of drugs mitigating oxidative stress via redox-independent mechanisms. Biochem Soc Trans 2017; 45:1225-1252. [PMID: 29101309 DOI: 10.1042/bst20160473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Acute or chronic oxidative stress plays an important role in many pathologies. Two opposite approaches are typically used to prevent the damage induced by reactive oxygen and nitrogen species (RONS), namely treatment either with antioxidants or with weak oxidants that up-regulate endogenous antioxidant mechanisms. This review discusses options for the third pharmacological approach, namely amelioration of oxidative stress by 'redox-inert' compounds, which do not inactivate RONS but either inhibit the basic mechanisms leading to their formation (i.e. inflammation) or help cells to cope with their toxic action. The present study describes biochemical targets of many drugs mitigating acute oxidative stress in animal models of ischemia-reperfusion injury or N-acetyl-p-aminophenol overdose. In addition to the pro-inflammatory molecules, the targets of mitigating drugs include protein kinases and transcription factors involved in regulation of energy metabolism and cell life/death balance, proteins regulating mitochondrial permeability transition, proteins involved in the endoplasmic reticulum stress and unfolded protein response, nuclear receptors such as peroxisome proliferator-activated receptors, and isoprenoid synthesis. The data may help in identification of oxidative stress mitigators that will be effective in human disease on top of the current standard of care.
Collapse
|
42
|
Abd El-Aal SA, Abd El-Fattah MA, El-Abhar HS. CoQ10 Augments Rosuvastatin Neuroprotective Effect in a Model of Global Ischemia via Inhibition of NF-κB/JNK3/Bax and Activation of Akt/FOXO3A/Bim Cues. Front Pharmacol 2017; 8:735. [PMID: 29081748 PMCID: PMC5645536 DOI: 10.3389/fphar.2017.00735] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022] Open
Abstract
Statins were reported to lower the Coenzyme Q10 (CoQ10) content upon their inhibition of HMG-CoA reductase enzyme and both are known to possess neuroprotective potentials; therefore, the aim is to assess the possible use of CoQ10 as an adds-on therapy to rosuvastatin to improve its effect using global I/R model. Rats were allocated into sham, I/R, rosuvastatin (10 mg/kg), CoQ10 (10 mg/kg) and their combination. Drugs were administered orally for 7 days before I/R. Pretreatment with rosuvastatin and/or CoQ10 inhibited the hippocampal content of malondialdehyde, nitric oxide, and boosted glutathione and superoxide dismutase. They also opposed the upregulation of gp91phox, and p47phox subunits of NADPH oxidase. Meanwhile, both agents reduced content/expression of TNF-α, iNOS, NF-κBp65, ICAM-1, and MPO. Besides, all regimens abated cytochrome c, caspase-3 and Bax, but increased Bcl-2 in favor of cell survival. On the molecular level, they increased p-Akt and its downstream target p-FOXO3A, with the inhibition of the nuclear content of FOXO3A to downregulate the expression of Bim, a pro-apoptotic gene. Additionally, both treatments downregulate the JNK3/c-Jun signaling pathway. The effect of the combination regimen overrides that of either treatment alone. These effects were reflected on the alleviation of the hippocampal damage in CA1 region inflicted by I/R. Together, these findings accentuate the neuroprotective potentials of both treatments against global I/R by virtue of their rigorous multi-pronged actions, including suppression of hippocampal oxidative stress, inflammation, and apoptosis with the involvement of the Akt/FOXO3A/Bim and JNK3/c-Jun/Bax signaling pathways. The study also nominates CoQ10 as an adds-on therapy with statins.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacology and Toxicology, October 6 University, Cairo, Egypt
| | - Mai A Abd El-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
43
|
Leaw B, Nair S, Lim R, Thornton C, Mallard C, Hagberg H. Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury. Front Cell Neurosci 2017; 11:199. [PMID: 28747873 PMCID: PMC5506196 DOI: 10.3389/fncel.2017.00199] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022] Open
Abstract
Injury to the fragile immature brain is implicated in the manifestation of long-term neurological disorders, including childhood disability such as cerebral palsy, learning disability and behavioral disorders. Advancements in perinatal practice and improved care mean the majority of infants suffering from perinatal brain injury will survive, with many subtle clinical symptoms going undiagnosed until later in life. Hypoxic-ischemia is the dominant cause of perinatal brain injury, and constitutes a significant socioeconomic burden to both developed and developing countries. Therapeutic hypothermia is the sole validated clinical intervention to perinatal asphyxia; however it is not always neuroprotective and its utility is limited to developed countries. There is an urgent need to better understand the molecular pathways underlying hypoxic-ischemic injury to identify new therapeutic targets in such a small but critical therapeutic window. Mitochondria are highly implicated following ischemic injury due to their roles as the powerhouse and main energy generators of the cell, as well as cell death processes. While the link between impaired mitochondrial bioenergetics and secondary energy failure following loss of high-energy phosphates is well established after hypoxia-ischemia (HI), there is emerging evidence that the roles of mitochondria in disease extend far beyond this. Indeed, mitochondrial turnover, including processes such as mitochondrial biogenesis, fusion, fission and mitophagy, affect recovery of neurons after injury and mitochondria are involved in the regulation of the innate immune response to inflammation. This review article will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after hypoxic-ischemic injury, as a means of identifying new avenues for clinical intervention.
Collapse
Affiliation(s)
- Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Syam Nair
- Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University ClaytonClayton, VIC, Australia
| | - Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Carina Mallard
- Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Perinatal Center, Department of Clinical Sciences, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
44
|
Interaction of ARC and Daxx: A Novel Endogenous Target to Preserve Motor Function and Cell Loss after Focal Brain Ischemia in Mice. J Neurosci 2017; 36:8132-48. [PMID: 27488634 DOI: 10.1523/jneurosci.4428-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The aim of this study was to explore the signaling and neuroprotective effect of transactivator of transcription (TAT) protein transduction of the apoptosis repressor with CARD (ARC) in in vitro and in vivo models of cerebral ischemia in mice. In mice, transient focal cerebral ischemia reduced endogenous ARC protein in neurons in the ischemic striatum at early reperfusion time points, and in primary neuronal cultures, RNA interference resulted in greater neuronal susceptibility to oxygen glucose deprivation (OGD). TAT.ARC protein delivery led to a dose-dependent better survival after OGD. Infarct sizes 72 h after 60 min middle cerebral artery occlusion (MCAo) were on average 30 ± 8% (mean ± SD; p = 0.005; T2-weighted MRI) smaller in TAT.ARC-treated mice (1 μg intraventricularly during MCAo) compared with controls. TAT.ARC-treated mice showed better performance in the pole test compared with TAT.β-Gal-treated controls. Importantly, post-stroke treatment (3 h after MCAo) was still effective in affording reduced lesion volume by 20 ± 7% (mean ± SD; p < 0.05) and better functional outcome compared with controls. Delayed treatment in mice subjected to 30 min MCAo led to sustained neuroprotection and functional behavior benefits for at least 28 d. Functionally, TAT.ARC treatment inhibited DAXX-ASK1-JNK signaling in the ischemic brain. ARC interacts with DAXX in a CARD-dependent manner to block DAXX trafficking and ASK1-JNK activation. Our work identifies for the first time ARC-DAXX binding to block ASK1-JNK activation as an ARC-specific endogenous mechanism that interferes with neuronal cell death and ischemic brain injury. Delayed delivery of TAT.ARC may present a promising target for stroke therapy. SIGNIFICANCE STATEMENT Up to now, the only successful pharmacological target of human ischemic stroke is thrombolysis. Neuroprotective pharmacological strategies are needed to accompany therapies aiming to achieve reperfusion. We describe that apoptosis repressor with CARD (ARC) interacts and inhibits DAXX and proximal signals of cell death. In a murine stroke model mimicking human malignant infarction in the territory of the middle cerebral artery, TAT.ARC salvages brain tissue when given during occlusion or 3 h delayed with sustained functional benefits (28 d). This is a promising novel therapeutic approach because it appears to be effective in a model producing severe injury by interfering with an array of proximal signals and effectors of the ischemic cascade, upstream of JNK, caspases, and BIM and BAX activation.
Collapse
|
45
|
Rehman SU, Ahmad A, Yoon GH, Khan M, Abid MN, Kim MO. Inhibition of c-Jun N-Terminal Kinase Protects Against Brain Damage and Improves Learning and Memory After Traumatic Brain Injury in Adult Mice. Cereb Cortex 2017; 28:2854-2872. [DOI: 10.1093/cercor/bhx164] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/12/2017] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shafiq Ur Rehman
- Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ashfaq Ahmad
- Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gwang-Ho Yoon
- Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Mehtab Khan
- Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Muhammad Noman Abid
- Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeong Ok Kim
- Department of Biology and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
46
|
Zhao P, Chang RY, Liu N, Wang J, Zhou R, Qi X, Liu Y, Ma L, Niu Y, Sun T, Li YX, He YP, Yu JQ. Neuroprotective Effect of Oxysophocarpine by Modulation of MAPK Pathway in Rat Hippocampal Neurons Subject to Oxygen-Glucose Deprivation and Reperfusion. Cell Mol Neurobiol 2017; 38:529-540. [PMID: 28488010 DOI: 10.1007/s10571-017-0501-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022]
Abstract
Oxysophocarpine (OSC), an alkaloid isolated from Sophora flavescens Ait, has been traditionally used as a medicinal agent based on the observed pharmacological effects. In this study, the direct effect of OSC against neuronal injuries induced by oxygen and glucose deprivation (OGD) in neonatal rat primary-cultured hippocampal neurons and its mechanisms were investigated. Cultured hippocampal neurons, which were exposed to OGD for 2 h followed by a 24 h reoxygenation, were used as an in vitro model of ischemia and reperfusion. 2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) assay were used to confirm neural damage and to further evaluate the protective effects of OSC. The concentration of intracellular-free calcium [Ca2+]i and mitochondrial membrane potential (MMP) were measured to determine the intracellular mechanisms and to further estimate the degree of neuronal damage. Changes in expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, p-ERK1/2, p-JNK1/2, and p-p38 MAPK were also observed in the in vitro model. It was shown that OSC (0.8, 2, or 5 µmol/L) significantly attenuated the increased absorbance of MTT, and the release of LDH manifests the neuronal damage by the OGD/R. Meanwhile, the pretreatment of the neurons during the reoxygenation period with OSC significantly increased MMP; it also inhibited [Ca2+]i the elevation in a dose-dependent manner. Furthermore, the pretreatment with OSC (0.8, 2, or 5 µmol/L) significantly down-regulated expressions of IL-1β, TNF-α, p-ERK1/2, p-JNK1/2, and p-p38 MAPK in neonatal rat primary-cultured hippocampal neurons induced by OGD/R injury. In conclusion, OSC displays a protective effect on OGD-injured hippocampal neurons by attenuating expression of inflammatory factors via down-regulated the MAPK signaling pathway.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Ren-Yuan Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
- Pharmacy Department of Yulin First Hospital, Shaanxi, China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Xue Qi
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Yue Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Lin Ma
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, China
| | - Yan-Ping He
- General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, 750004, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
47
|
Li DY, Wu JL, Luo LL, Qiao LN, Liu ZQ, Lu GY, Wang Y. [Role of c-Jun N-terminal kinase-mediated FOXO3a nuclear translocation in neuronal apoptosis in neonatal rats with hypoxic-ischemic brain damage]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:458-462. [PMID: 28407836 PMCID: PMC7389669 DOI: 10.7499/j.issn.1008-8830.2017.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To explore the mechanisms of neuroprotective effects of c-Jun N-terminal kinase (JNK)/FOXO3a transcription factor signaling pathway inhibition on hypoxic-ischemic neuronal apoptosis in neonatal rats with hypoxic-ischemic brain damage (HIBD). METHODS Sixty-four 7-day-old Sprague-Dawley rats were divided into four groups: hypoxia-ischemia (HI), sham-operated, JNK specific inhibitor AS601245-treated, and DMSO vehicle. Rats' cerebral cortexes were collected at 24 hours after HI. Western blot was used to detect the protein expression of JNK, p-JNK, FOXO3a, nuclear and cytoplasmic FOXO3a, Bim, and CC3. TUNEL staining was used to detect the apoptotic cells. RESULTS Compared with the sham-operated group, p-JNK protein increased (P<0.01), nuclear protein of FOXO3a increased (P<0.01), cytoplasmic protein decreased (P<0.01), and pro-apoptotic proteins Bim and CC3 increased 24 hours after HI (P<0.01). Compared with the HI and DMSO vehicle groups, p-JNK protein was reduced (P<0.01), nuclear protein of FOXO3a was also reduced (P<0.01), cytoplasmic protein increased (P<0.01), and Bim and CC3 proteins decreased (P<0.01) in the AS601245-treated group 24 hours after HI. TUNEL positive cells were reduced in the AS601245-treated rats compared with the HI and DMSO vehicle groups 24 hours after HI (P<0.01). CONCLUSIONS JNK activity increases in the neonatal rat brain with HI damage. JNK activity inhibition can inhibit FOXO3a translocation from cytoplasm to nucleus and downregulate the levels of pro-apoptotic proteins Bim and CC3, leading to the reduction of neuronal apoptosis.
Collapse
Affiliation(s)
- De-Yuan Li
- Department of Pediatrics, West China Second Hospital, Sichuan University/Key Laboratory of Birth Defectts and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Fann DYW, Lim YA, Cheng YL, Lok KZ, Chunduri P, Baik SH, Drummond GR, Dheen ST, Sobey CG, Jo DG, Chen CLH, Arumugam TV. Evidence that NF-κB and MAPK Signaling Promotes NLRP Inflammasome Activation in Neurons Following Ischemic Stroke. Mol Neurobiol 2017; 55:1082-1096. [DOI: 10.1007/s12035-017-0394-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
|
49
|
Profiling of Signaling Proteins in Penumbra After Focal Photothrombotic Infarct in the Rat Brain Cortex. Mol Neurobiol 2016; 54:6839-6856. [PMID: 27771897 DOI: 10.1007/s12035-016-0191-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
Abstract
In ischemic stroke, cell damage propagates from infarct core to surrounding tissue. To reveal proteins involved in neurodegeneration and neuroprotection, we explored the protein profile in penumbra surrounding the photothrombotic infarct core induced in rat cerebral cortex by local laser irradiation after Bengal Rose administration. Using antibody microarrays, we studied changes in expression of 224 signaling proteins 1, 4, or 24 h after photothrombotic infarct compared with untreated contralateral cortex. Changes in protein expression were greatest at 4 h after photothrombotic impact. These included over-expression of proteins initiating, regulating, or executing various apoptosis stages (caspases, SMAC/DIABLO, Bcl-10, phosphatidylserine receptor (PSR), prostate apoptosis response 4 (Par4), E2F1, p75, p38, JNK, p53, growth arrest and DNA damage inducible protein 153 (GADD153), glutamate decarboxylases (GAD65/67), NMDAR2a, c-myc) and antiapoptotic proteins (Bcl-x, p63, MDM2, p21WAF-1, ERK1/2, ERK5, MAP kinase-activated protein kinase-2 (MAKAPK2), PKCα, PKCβ, PKCμ, RAF1, protein phosphatases 1α and MAP kinase phosphatase-1 (MKP-1), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), estrogen and EGF receptors, calmodulin, CaMKIIα, CaMKIV, amyloid precursor protein (APP), nicastrin). Phospholipase Cγ1, S-100, and S-100β were down-regulated. Bidirectional changes in levels of adhesion and cytoskeleton proteins were related to destruction and/or remodeling of penumbra. Following proteins regulating actin cytoskeleton were over-expressed: cofilin, actopaxin, p120CTN, α-catenin, p35, myosin Va, and pFAK were up-regulated, whereas ezrin, tropomyosin, spectrin (α + β), βIV-tubulin and polyglutamated β-tubulin, and cytokeratins 7 and 19 were down-regulated. Down-regulation of syntaxin, AP2β/γ, and adaptin β1/2 indicated impairment of vesicular transport and synaptic processes. Down-regulation of cyclin-dependent kinase 6 (Cdk6), cell division cycle 7-related protein kinase (Cdc7 kinase), telomeric repeat-binding factor 1 (Trf1), and topoisomerase-1 showed proliferation suppression. Cytoprotection proteins AOP-1 and chaperons Hsp70 and Hsp90 were down-regulated. These data provide the integral view on penumbra response to photothrombotic infarct. Some of these proteins may be potential targets for antistroke therapy.
Collapse
|
50
|
CaMKII inhibition promotes neuronal apoptosis by transcriptionally upregulating Bim expression. Neuroreport 2016; 27:1018-23. [DOI: 10.1097/wnr.0000000000000648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|